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1 | BACKGROUND

Karl Michael Schmidt?

Abstract

Polygenic risk scores (PRS) are a method increasingly used to capture the com-
bined effect of genome-wide significant variants and those which individually
do not show genome-wide significant association but are likely to contribute to
the risk of developing diseases. However, their practical use incurs complications
and inconsistencies that so far limit their clinical applicability. The aims of the
present review are to discuss the PRS for age-related diseases and to highlight
pitfalls and limitations of PRS prediction accuracy due to ageing and mortality
effects. We argue that the PRS is widely used but the individual’s PRS values
differ substantially depending on the number of genetic variants included, the
discovery GWAS and the method employed to generate them. Moreover, for
neurodegenerative disorders, although an individual’s genetics do not change
with age, the actual score depends on the age of the sample used in the discov-
ery GWAS and is likely to reflect the individual’s disease risk at this particular
age. Improvement of PRS prediction accuracy for neurodegenerative disorders
will come from two sides, both the precision of clinical diagnoses, and a careful
attention to the age distribution in the underlying samples and validation of the

prediction in longitudinal studies.

(Chavez-Gutierrez et al., 2012). The mean age at clinical
onset of AD is about 68 in APOE-e4e4 carriers and about

Dementia is primarily a disease of ageing, with prevalence
much higher in older age groups; among people above the
age of 65, dementia prevalence is 1 in 14, while above the
age of 80, the prevalence rises to 1 in 6. Moreover, in the
United Kingdom, the growth of prevalence of dementia
is fastest in the age group above 65 in the United King-
dom according to the Office of National Statistics (ONS,
2021). The most common form of dementia is Alzheimer’s
disease (AD), accounting for more than 60% of cases, and
this is also the most studied form of dementia. Very early
AD cases (aged 30-50) are mostly attributed to rare highly
penetrant mutations in the APP, PSENI and PSEN2 genes

84 in APOE-e4 noncarriers (Liu et al., 2013). Furthermore,
Lo et al. (2019) recently investigated age-related genetic
heterogeneity of AD and found only a moderate genetic
correlation (r, = 0.64) between the two age groups consid-
ered (60-79 years vs. 80+ years). This indicates a potential
difference in the genetic architecture of AD depending on
the age at (clinical) onset. In addition to disease (or gene)
related mortality, this makes studies of the genetic back-
ground of neurodegenerative disorders more complicated
than that of neurodevelopmental disorders. Conduct-
ing large-scale genome-wide association studies (GWAS)
in adults employing readily available population-based
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controls, with the aim of increasing the statistical power of
the study, is not very problematic for neurodevelopmental
disorders with small prevalence and an early age at onset
such as autistic spectrum disorder (onset in early child-
hood; see e.g., Tan et al., 2021) or schizophrenia (mean
onset ~30 years of age; see e.g., Gogtay et al., 2011), but
in neurodegenerative disorders the age of case and control
groups turns out to be of crucial importance.

The success of genome-wide association studies has
led to growing interest in making predictions of complex
trait phenotypes and diseases from genotype data. Going
beyond the genetic association of the disorder with rare
mutations or single highly associated loci, which only
explains part of the heritability, the Polygenic Risk Score
(PRS) method, where the effect sizes of a moderate or large
number of risk and protective alleles are combined into
a predictor variable, has shown a great potential to strat-
ify individuals into risk categories based on their genetic
profile for common genetic disorders (Escott-Price et al.,
2015; Purcell et al., 2009). While the polygenic risk scores
predict an individual’s general liability to develop the dis-
ease in question within their lifetime, this approach can
be taken further to predict particular aspects of the disease
by selecting variants occurring in putative disease-specific
pathways (Ahmad et al., 2018; Grama et al., 2020). Thus,
PRS in principle offer a route both to understanding the
pathways involved in disease pathogenesis and to identify-
ing people in the general population who are at high risk of
developing the disease. However, the utility of risk scores
in precision medicine and clinical settings remains an open
question (Lewis & Vassos, 2017).

In particular, application of PRS for late onset
Alzheimer’s disease (AD) prediction showed that PRS
is a statistically significant predictor of AD risk and of
conversion to AD (Bellenguez et al., 2022; Escott-Price
et al., 2015; Fulton-Howard et al., 2021); however, the PRS
was calculated differently in different studies, both in
terms of the numbers of variants and of the analytical
approaches used. The prediction accuracy measured by
area under the curve (AUC) lies in a range of between 70%
and 84% (Altmann et al., 2020; Escott-Price et al., 2017),
depending on the study. Rigorous assessment of the value
of predictors and the methodology used for PRS generation
is critical before implementation. Here we discuss some
of the limitations and pitfalls of prediction analysis for
age-related traits and show how naive implementations
can lead to severe bias and misinterpretation of results.

1.1 | Age effects on PRS

The choices made in conducting a discovery GWAS study
are often motivated by expediency and data availability

rather than a specific study design. The genetic risk
score, which includes only the most highly associated,
genome-wide significant variants from the discovery
GWAS (association p values less than 5 x 107®), is com-
posed of a fairly small number of variants (e.g., 83 variants;
Bellenguez et al., 2022) and therefore potentially misses
information from moderately associated variants. In con-
trast, the use of more relaxed p-value thresholds leads to
inclusion of thousands of variants (Leonenko et al., 2021)
and will inevitably introduce some random noise. The
former approach will mostly reflect the effect of the APOE
gene, as it has the strongest association with the disease (8
~ 1.2 for rs429358; Kunkle et al., 2019) while the addition of
a modest number of variants with effect sizes close to zero
(B < 0.2; Andrews et al., 2020) will only mildly alter an
individual’s risk score. Therefore, this risk score will firstly
prioritize the risk of APOE-e4 carriers and tend to overlook
the risk of APOE-e4 noncarriers. In addition, since e4
carriers also have earlier age at onset, this risk score will
give best prediction in a sample of younger participants.
For example, in Bellou et al. (2020), the sample was
collected at mean age of 64 years and the optimal choice
of selection threshold was p-value < 10~>. In contrast, in
samples of older and/or pathology confirmed individu-
als, with mean age ~80 years (Escott-Price et al., 2017;
Leonenko et al., 2021), the best accuracy was achieved
when including thousands of variants with a threshold of
AD association p-value < 0.1. This age effect can also be
observed in the following illustrative example (see table 1
in Bellou et al., 2020). In a sample of age below 80 years,
the APOE-variable (constructed as a sum of numbers of e4
and e2 alleles weighted by their effect sizes) by itself has 3
~ 1.15 and achieves prediction accuracy AUC =~ 0.74, while
a PRS constructed from variants outside the APOE region
has 8~ 0.68 and AUC = 0.68. For age 80 years and above,
the relative effect sizes are reversed (APOE: 8 =~ 0.78, AUC
~ 0.67; PRS: § ~ 0.68, AUC = 0.81). A possible explanation
for this is that in the higher age group the APOE-e4 risk
allele is already depleted due to AD and other conditions
affecting mortality associated with the allele; indeed, the
allele frequency of APOE-e4 has been reported to decrease
from 0.18 at age 60 to 0.09 at age 90 in individuals of
European ancestry (McKay et al., 2011). Although the
APOE effect size decreases in older cohorts, the highest
AD prevalence is reported in individuals over 80 years of
age (Hebert et al., 2003); this indicates that other genes
with smaller effect sizes contribute essentially to the
disease risk. Therefore, polygenic factors are likely to play
a higher role in AD at higher age. This age-dependent shift
in the relative importance of single-gene and polygenic
factors complicate the application of PRS. Using APOE
and a PRS calculated excluding the APOE region as two
separate predictors in bivariate regression here gives a
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APOE-e4 allele frequency depending on age
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APOE-e4 allele frequency dynamics in an ageing

consistent result with prediction accuracy exceeding both
separate predictors in both age ranges (AUC = 0.80 for age
below 80 years, AUC = 0.82 for 80 years and above; Bellou
et al., 2020).

In age matched samples of cases and controls, the strong
genetic risk factors, such as APOE-e4 for AD, are likely
to remain statistically significant and maintain the same
direction of association but show decreasing effect size
as the age in the samples increases. Figure 1 schemat-
ically shows the APOE-e4 allele frequency dynamics in
an ageing population, with frequency f = 0.42 in AD
cases (age at onset 66.4 + 7.8 years) and f = 0.16 in
population controls (age 66.0 + 6.5 years), with OR consis-
tently reported as ~ 3.4 (see e.g., the review by Andrews
et al., 2020). The APOE-e4 frequency is nearly halved
(f = 0.086) in centenarian controls (age 101.4 + 1.3 years)
(Tesi et al., 2019). Farrer et al. (1997) report an apparent
risk of the APOE-e4 allele with OR = 2 at age 90 which
could not be reliably assessed after age 95 (see Figure 1).
In addition, the heritability explained by variants on chro-
mosome 19 (which harbors APOE) was significantly larger
in the younger age group (below 80 years of age at onset)
than in the older (above 80 years of age at onset) (Lo
et al., 2019). The authors also demonstrated that other
genes with genome-wide significant association with AD
(BIN1 and PICALM) show larger effects at younger age
(Lo et al., 2019).

Like the effect illustrated in Figure 1, in a plausible sce-
nario for a variant with an association effect size OR ~
1.15, as typical for a GWAS, its effect size OR will also
decrease to or even below 1. In particular, if the disease risk

allele frequency in the ageing population decreases faster
in cases than in controls (for similar reasons as in the case
of APOE), then even in a comparison of cases and controls
within the same age group, the direction of association may
eventually be reversed.

Finally, when older cases, that is, individuals that
reached a sufficiently high age to develop a neurodegen-
erative condition, are compared with younger controls,
genes which are related to other diseases with earlier onset
and, consequently, earlier mortality (e.g., diabetes, can-
cers, stroke, etc.) may spuriously appear to be associated
with the neurodegenerative disorder.

1.2 | Genetic background effects on PRS
The determination of variant effect sizes in GWAS faces the
problem that the diagnostic accuracy for Alzheimer’s dis-
ease and other dementias is generally poor (Beach et al.,
2012; Escott-Price et al., 2019), introducing uncertainty
into the observed odds ratios. Moreover, it iS now com-
mon practice to perform AD GWAS, more appropriately
considered as AD-related dementia GWAS, using demen-
tia proxies based on family history in the UK Biobank
as putative cases and population-based young unscreened
controls. This allows for larger GWAS that would be
expected to have higher statistical power, but in fact pro-
vide less reliable estimates of effect sizes compared to
smaller, more precisely screened GWAS, resulting in a
smaller fraction of explained heritability (Escott-Price &
Hardy, 2022). As the PRS is determined from a moderate
to large number of §§ coefficients, their random errors add
up to a large uncertainty in the PRS, detracting from its
usability.

In addition, allele frequencies and LD patterns vary
between different human populations, so an individual’s
risk score must be calculated and put in relation with a suit-
able genetic background population. We remark that this
also refers to subpopulations such as age groups with dif-
ferent allele frequencies (see discussion of age dependency
above). To estimate the disease risk of a particular indi-
vidual from a particular population, their PRS needs to be
considered in the context of a matching background sam-
ple. Usually, the obtained PRS distribution is standardized
(i.e., rescaled so that scores have mean = 0 and standard
deviation = 1) within that sample; however, the standard-
ization parameters will differ in different samples. This
introduces some uncertainty in the classification of the
individual’s risk score as either unremarkable or indicative
of a heightened risk of disease. In non-European samples,
the lack of AD genetic research performed in populations
of non-European ancestry further limits the scope of risk
prediction by PRS.
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1.3 | Effects of PRS calculation
methodology

While the general idea of constructing a PRS is quite
straightforward and perspicuous, the practical calcula-
tion of PRS faces a number of challenges that may lead
to inconsistent and even contradictory outcomes, in par-
ticular when applied to assessing an individual’s risk of
developing the disease.

The original and simplest way of PRS calculation
involves selection of the variants most strongly associated
with the disease and subsequent removal of some of these
variants when in linkage disequilibrium (LD) with oth-
ers. The individual log odds ratios ({5 coefficients) for these
variants discovered in a GWAS are then added together,
weighted with the number of risk alleles in a genotype, to
form a risk score for this genotype. The interpretation of
the resulting numbers is based on comparison with their
standardized distribution in the controls or population.
One of the main parameters in this approach is the inclu-
sion threshold for associated variants, raising the question
of whether it is more advantageous to include a large
number or to focus on more highly associated variants.

This standard method of PRS calculation may miss out
on information contained in loci associated with the dis-
ease that happen to fall into a region of higher LD. There-
fore, more sophisticated statistical methods of accounting
for LD in the formation of a PRS have been devised, for
example, using Bayesian models (LDpred (Vilhjalmsson
et al., 2015), PRS-CS (Ge et al., 2019), LDAK (Speed &
Balding, 2019), and SBayesR (Lloyd-Jones et al., 2019)),
some of which considerably reduce the transparency of the
relationship between the raw effect sizes obtained from
a GWAS and the resulting PRS (Escott-Price & Schmidt,
2021). The prediction accuracy of the PRS, measured in
terms of the AUC, is quite similar between the various
methods in a variety of variant selection scenarios (e.g.,
AUC between 0.70 and 0.73 for schizophrenia (Ni et al.,
2021), and between 0.73 and 0.74 for AD with two pre-
dictors, APOE and PRS without APOE region, the latter
calculated with different methods; see supplemental table
2in Leonenko et al., 2021). So taken at face value any one of
these methods would appear as good as the other; however,
it turns out that the choice of method has a crucial effect
on the assessment of an individual’s PRS score against
the population distribution. Indeed, individuals with an
extreme PRS value as calculated by one method may have
an unremarkable PRS value near the middle of the dis-
tribution when another method is used (Leonenko et al.,
2021; supplemental figure 5). This ambiguity is a major
obstacle to clinical use of PRS until a reliable and correct
method of calculating the PRS is identified. As the sam-

ple prediction accuracy of the methods is comparable, this
identification cannot be based on AUC alone, but will need
to take into account the deduction logic of the method and
require the assessment of individual prediction correctness
in longitudinal studies.

2 | CONCLUSIONS

Age plays a critical role in the analysis of the genetic back-
ground of AD and gives rise to serious complications in the
application of the PRS method and the interpretation of the
results. There is a strong indication that the genetic archi-
tecture of AD is different depending on the age at (clinical)
onset. Also, the depletion of risk alleles through mortality,
either by AD or by other diseases with which the alleles
are associated, leads to substantial shifts in allele frequen-
cies and effect sizes that make PRS scores not comparable
between different age groups and may in extreme cases
imply apparent reversal of the direction of association and
lead to the identification of spurious protective alleles.
Imperfections in the underlying GWAS, such as misclas-
sification of cases, use of putative case proxies and lack of
attention to the change in genetic characteristics (specifi-
cally allele frequencies) in the population with age enter
the calculation of the PRS and impact the achievable pre-
diction accuracy. These difficulties are compounded with
the more general issues of inconsistency between different
available methods of PRS calculation and lack of suitable
population studies. Even a PRS in which these issues have
been resolved will need to be based on a GWAS focused
on a particular age group and subphenotype, and then
will give a risk prediction for individuals of lower age to
develop that particular subphenotype when they enter this
age group.

2.1 | Future directions for PRS: nonrisk
GWAS and their implications for prediction

In view of their fundamental function in the calculation
and use of PRS, it will be essential to improve on GWAS
study designs in a way that takes into account the inhomo-
geneities mentioned above. The aim will be to understand
not only the clinical heterogeneity of AD, but also the
underlying genetic architecture, and to relate specific bio-
logical mechanisms (e.g., described by genetic pathways)
to specific subphenotypes. Some subphenotypes may be
predicted with aid of disease risk GWAS, whereas others
may require phenotype specific GWAS. For example, for
Huntington’s disease, which is caused by a CAG repeat
expansion in the Huntingtin gene, HTT, genome-wide
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association studies of Huntington’s disease progression
(Moss et al., 2017) and age at onset of motor signs (Correia
et al., 2015) have reported novel genetic variants associ-
ated with the disease subphenotypes rather than overall
risk. Similarly, it has been observed that the rate of cog-
nitive decline in AD is often reported as not associated
to APOE (Katzourou et al., 2021), however no powerful
GWAS of rate of decline in AD exist as yet to generate a
PRS for rate of decline prediction. PRS derived from GWAS
using biomarkers of neurodegeneration such as amyloid
positron emission tomography (amyloid-beta PET) (Yan
et al., 2021) or plasma biomarkers (Bradley et al., 2023;
Stevenson-Hoare et al., 2022) may have more useful appli-
cations for treatment, especially as newer therapies are
developed which have very specific mechanisms of action
(e.g., anti-amyloid antibodies).

Utilization of subphenotype-specific pathways is also
limited as the pathways are not well defined and their
definitions usually rely on literature biased toward pos-
itive results and hypothesis driven analyses (Sierksma
et al., 2020). Therefore, novel experiments are required
to underpin the refined definition or even redefinition of
gene-networks and pathways.

Finally, the disease diagnosis needs to be improved and
agreed upon. Today biomarkers may aid in the diagnosis of
subtypes of the disease, some more accurately than others
(Stevenson-Hoare et al., 2022). A combination of genetics,
biomarkers, brain imaging and other clinical information
will provide more accurate analyses, eventually moving
away from generic dementia prediction toward a predic-
tion of a specific type of dementia such as Alzheimer’s
disease, frontotemporal dementia, dementia with Lewy
bodies, vascular dementia, etc., and the related pheno-
types, for example, age at onset, disease progression, and
rate of decline.
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