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A B S T R A C T   

Wind speed forecasting is the basis of wind farm operation, which provides a reference for the future operation 
status evaluation of wind farms. For the wind speed forecast of wind turbines in the whole wind farm, a strategy 
combining unified forecast and single site error correction is proposed in this paper. The unified forecast 
framework is composed of a unified forecast model and multiple single site error correction models, which 
combines the forecasted grids of numerical weather prediction (NWP) with the monitoring data of wind farms. 
The proposed unified forecast model is called spatiotemporal conversion deep predictive network (STC-DPN), 
which is composed of temporal convolution network (TCN) and 2D convolution long short-term memory 
network (ConvLSTM). Firstly, the NWP forecasted grids are interpolated to the fan location, and the sequence 
matrix is composed of the NWP data and the monitored data of each wind turbine according to the time series, 
which is entered into the TCN network for time sequence feature extraction. Then, the output of the TCN network 
is converted into a regular spatio-temporal data matrix, which is entered into the ConvLSTM network for joint 
learning of spatio-temporal features to obtain the wind speed sequence forecasted in the whole wind farm. 
Finally, an independent TCN-LSTM error correction model is added for each site. Variational modal decompo
sition (VMD) is used to process data series, and different processing methods are adopted in unified forecast and 
single site error correction. In the 96 steps forecast test of a wind farm from Jining City, China, the proposed 
method is superior to several baseline methods and has important practical application value.   

1. Introduction 

With the continuous growth of global energy demand and the 
aggravation of fossil energy pollution, the world pays great attention to 
the application of renewable energy [1]. As an important clean energy, 
wind energy has developed rapidly. However, the reliability of wind 
power generation is low, and the daily operation of wind farms is very 
dependent on accurate wind speed forecast (WPF) [2]. Accurate and 
efficient wind speed forecast can improve the reliability and safety of 
wind power grid connection [3], while reducing system operating costs 
[4]. Multi-step wind speed forecast can provide more information for 
wind farms [5], and more specifically show the development trend of 
wind speed in the future [6]. Therefore, this paper focuses on providing 
multi-step wind speed forecasting for the entire wind farm. 

1.1. Current methods to forecast wind speed 

After decades of development, wind speed forecast methods mainly 
form three categories: statistical methods, machine learning and phys
ical methods [7]. 

Statistical methods generally make forecasts based on the historical 
wind speed [8], and are mostly used for short-term WPF within a few 
hours [9]. Traditional statistical models include auto-regressive moving 
average (ARMA) [10], auto-regressive integrated moving average 
(ARIMA) [11], persistence method (PM) [12], Kalman filter (KF) [13], 
principal component analysis (PCA) [14], etc. These statistical methods 
require low computing resources and have obvious advantages in 
short-term forecasting [15]. However, statistical models are mainly 
aimed at linear time series and are suitable for forecasting work with 
obvious stationary and linear features [16]. Current research points out 
that the development of wind speed is highly volatile, with obvious 
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nonlinear and non-stationary characteristics [17], so it is difficult for 
statistical models to meet the existing prediction accuracy requirements. 

Machine learning (ML) method has developed rapidly in recent 
years, and many researchers have begun to use it for wind speed forecast 
[18]. ML can effectively fit the complex nonlinearity and uncertainty of 
wind speed time series through a large number of historical data training 
[19]. In wind speed forecast, the common ML models include artificial 
neural network (ANN) [20,21], support regression vector machine 
(SVR) [22], extreme learning machine (ELM) [23], etc. With the 
development of neural networks, many neural networks with special 
architectures have also been applied to wind speed prediction [24], such 
as Elman neural network (ENN) [23], adaptive wavelet neural network 
[25], recurrent neural network (RNN) for temporal features [26], long 
short-term memory network (LSTM) [27], convolutional neural network 
(CNN) for spatial feature extraction [28]. Liu et al. [29] used the two 
bidirectional short-term memory (BiLSTM) network as the basic pre
diction model to provide 10 step forecast results. Bai et al. [24] provided 
a double-layer staged training echo state network (D-ESN) as a forecast 
model, showing superior performance in six data sets. Although the 
performance of machine learning is generally better than that of statis
tical methods, under the condition of relying only on historical data, the 
performance declines significantly with the extension of the forecast 
horizon, which is generally limited to 1–4 h [30]. 

The physical method carries out modeling according to the 
geographical environment and atmospheric movement, takes into ac
count the coupling effect of multiple influence factors, and can realize 
numerical weather prediction (NWP) of meteorological elements 
including wind speed, temperature and pressure at the same time [31]. 
Physical methods can achieve 24 h or longer forecast in advance [32]. 
The common physical numerical models include high-resolution limited 
area model (HIRLAM) [31,33], the fifth generation mesoscale model 
(MM5) [34], and weather research and forecasting (WRF) [32,35]. 
However, the initialization of the physical model has done a lot of 
approximate processing for the real atmosphere simulation [36], plus 
the uncertainty in the selection of the simulation scheme, and the de
viation between the predicted wind speed and the actual wind speed is 
always large [37]. Although the data assimilation technology [38] in
troduces local observation data for model initialization, due to the in
fluence of observation technology and geographical environment [39], 
the accuracy of physical model in ultra short term prediction is still 
unsatisfactory. In addition, meteorological simulation based on physical 
model requires high computing resources, which also makes it difficult 
for the forecast frequency to meet the needs of ultra short term predic
tion [40]. 

1.2. Efforts to improve forecasting accuracy 

In order to make up for the defects of a single method and improve 
the accuracy of wind speed forecast, the current research has proposed 
many combined methods, including combining the forecast results of 
multiple models [41], modifying the NWP forecast wind speed [37,39], 
using the decomposition method to process the input data [42], and 
adding the error correction (EC) model [29]. Niu et al. [43] used the 
complementary ensemble empirical mode decomposition (CEEMD) to 
decompose the historical wind speed, reconstructed the wind speed 
sequence after removing the high-frequency components, and combined 
the forecast output of four neural network models and one linear model, 
which significantly reduced the forecast uncertainty. Zhang et al. [23] 
used variational modal decomposition (VMD) to decompose the his
torical wind speed into multiple components, and then integrated nine 
sub models for prediction. Yan et al. [37] used the complete ensemble 
empirical mode decomposition with adaptive noise (CEEMDAN) to 
process the historical data and the prediction sequence given by the 
WRF model, and then used the CNN- BiLSTM hybrid model for correc
tion, which significantly improved the wind speed prediction accuracy 
of the WRF model. Wang et al. [30] proposed a NWP wind speed 

sequence transfer correction algorithm. In the input of the correction 
model, the monitoring wind speed at time t is also introduced as the 
input variable, and the sequence relationship with the wind speed at 
time t+1 of NWP is established, which improves the forecast accuracy of 
NWP ultra short term and short term time scales. Li et al. [44] used VMD 
to decompose historical wind speed, the low-frequency component is 
used for basic forecast, and the high-frequency component is used to 
train a special error correction model. The above research involves the 
combination of multiple models and the re-optimization of forecast re
sults, which poses a challenge to the combination scheme and parameter 
optimization strategy [45]. 

The evolution trend of wind speed is determined by the regional 
atmospheric movement. Introducing more reference data into the model 
can also reduce the uncertainty of wind speed forecast [46]. Khodayar 
et al. [47] considered 145 wind stations located in the northern states of 
the United States and achieved 24h wind speed forecast for the whole 
region. Du [46] relies on the NWP in Texas and hundreds of weather 
stations to provide wind speed forecast 3h in advance for wind farms in 
the region, which can effectively warn of large-scale wind decline 
events. However, in practice, it is very difficult to obtain a large number 
of wind speed information and station information in different regions in 
real time. Spatial information and time delay information will lead to 
the complexity of the wind forecast process [43]. Liu et al. [48] used 
wind speeds of 26 × 12 and 20 × 20 wind turbines in a single wind farm, 
combined ConvGRU and 3D CNN to construct a spatiotemporal neural 
network (STNN), and completed 3-step forecast 3 h ahead. Zhu et al. 
[49] proposed a predictive spatiotemporal network (PSTN) based on 2D 
CNN and LSTM, which was respectively used in a wind farm in Wyoming 
and California for 10 × 10, and the results show that the forecast is 
better than NWP within 6h in advance. However, the methods proposed 
in Refs. [48,49] are only applicable to the regular wind turbine array 
matrix, and have not been extended to the wind speed forecast of the 
whole wind farm. 

1.3. Summary of main contributions 

Based on the analysis above, a multi-step wind speed forecast strat
egy combining unified forecast and single site error correction is pro
posed in this paper. The model used for unified forecast is called 
spatiotemporal conversion deep predictive network (STC-DPN), which 
is composed of temporal convolution network (TCN) and 2D ConvLSTM. 
TCN network is used to extract the temporal characteristics of wind farm 
monitoring data and NWP wind speed forecast data, and transform them 
into regular spatio-temporal data matrix. Then 2D ConvLSTM performs 
joint learning of spatiotemporal features to obtain the forecast wind 
speed sequence of all fan sites. The proposed unified forecast model is 
not affected by the arrangement of fans [48,49], and the data acquisition 
from the same supervisory control and data acquisition (SCADA) avoids 
the delay of information [46,47]. Considering the difference of wake 
effects at different fan sites, forecast sequence for each fan site is cor
rected by an independent TCN-LSTM model. The sequence error 
correction takes into account the change of wind speed over a longer 
period of time, reducing the randomness of single point wind speed [30, 
37]. In addition to being used to reduce noise for monitor wind speed 
[43], VMD extracts the high-frequency components of NWP wind speed 
for single site error correction to alleviate the over smoothing of forecast 
sequence caused by conservative forecast [39]. The main contributions 
of this study are as follows:  

(1) For a single wind farm, a forecast strategy combining unified 
forecast and single site error correction is proposed. The 
proposed strategy takes into account the integrity of wind speed 
changes in the wind farm area and the differences of each fan site, 
which can effectively improve the performance of wind speed 
forecast. 
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(2) The proposed STC-DPN unified forecast model has good 
versatility. STC-DPN overcomes the influence of complex terrain 
of wind farm on the arrangement of wind turbines, and realizes 
the joint learning of space-time characteristics in the form of 
virtual wind farm.  

(3) An independent TCN-LSTM hybrid model is used for single 
site error correction. In the error correction test, TCN-LSTM 
considers the continuity of error sequence, which effectively re
duces the probability of large error.  

(4) VMD is used for the noise reduction of monitor wind speed 
sequence, and extract the high-frequency components of 
NWP wind speed for error correction. The experimental results 
show that the two data processing strategies based on VMD 
reduce the uncertainty of forecast in unified forecast and error 
correction.  

(5) The effectiveness of the proposed method is verified in a 
wind farm located in a hilly area of Jining City, China. In the 
96 steps wind speed forecast test for future 24 h, the proposed 
method is superior to all comparison models. 

The rest of this paper is structured as follows: section 2 introduces the 
relevant methods used. section 3 gives the prediction process of the 
proposed method. section 4 is a case study to verify the effectiveness of 
the proposed method. In section 5, the simulation results are further 
discussed. Finally, section 6 gives the conclusion. 

2. Theoretical basis of methods 

The proposed forecast methods include the WRF model, various 
neural network architectures, and VMD decomposition algorithm. This 
section gives the parameter settings of the WRF model, the basic theories 
of TCN and 2D ConvLSTM, and the decomposition principle of VMD. 

2.1. WRF model parameter setting 

WRF model is a new generation of mesoscale numerical prediction 
model developed by National Center for Atmospheric Research, Na
tional Centers for Environmental Prediction and other research in
stitutions [37]. This model adopts highly modular, parallel and 
hierarchical design technology, and integrates the research results in 
mesoscale so far. The model provides a variety of physical process 
schemes for meteorological simulation of real weather, which can meet 
the multi-scale wind speed prediction needs of wind farms. 

In this paper, the WRF model is used to provide NWP for a wind farm 
in Jining City, Shandong Province, China. Three nested grids are set to 
100 × 100(18 km),100 × 100(6 km),121 × 121 (2 km), including 35 
vertical layers. The location and simulation domain of the selected wind 
farm are given in section 3.1. Initialize every 6 h according to the global 
forecast system (GFS) forecast data, and obtain the NWP grid within the 
range of the target wind farm from the output, including wind speed, 
wind direction and other simulation variables. Based on the above 
nested grid division, the sensitivity test of physical parameters of the 
WRF model is carried out, and the simulation scheme is selected ac
cording to the wind speed prediction effect. Detailed physical parameter 
settings are given in appendix A Table A1. 

2.2. Temporal convolutional networks 

TCN is stacked by multi-layer 1-D CNN to extract features from time 
series [50]. TCN has two remarkable characteristics: 1) when perform
ing convolution operation, the future information acquisition only de
pends on the past information; 2) the input can be a sequence of any 
length and can be mapped to an output sequence of the same length. 

Fig. 1 shows a TCN architecture case. The convolution operation of 
upper layer features and lower layer features has time causality. Causal 
convolution can ensure that the output at time t is only related to the 

input information at time t and before, and strictly follow the forward 
flow of feature information along the time series. In order to ensure that 
the length of the input and output sequences is consistent, a 1-D full CNN 
structure is used. Before the input sequence, a zero value with a length of 
k − 1 is filled, and k is the size of the convolution kernel. A single-layer 1- 
D causal convolution layer is defined as follows: 

F(s)= (x ∗ f )(s)=
∑k− 1

j=0
f (j)x(s − j) (1) 

x ∈ RX is the input. f is a filter. {0, ⋯, k − 1}→R, F( ⋅) represents a 
convolution operation. 

For the problem of increasing the training cost of the depth layer, 
TCN adds dilated convolution and introduces an dilation factor d. The 
receptive field of each layer is (k − 1)d, and the convolution method is as 
shown in formula (2). In order to ensure that the filter in the deep 
network obtains a very large effective history without input omission, 
the selection of d in the r-th hidden layer is generally 2r− 1. 

F(s)= (x ∗ f )(s)=
∑k− 1

j=0
f (j)x(s − dj) (2) 

The residual network [51] is used for layer hopping to connect the 
depth network to solve the gradient optimization problem [52], and the 
specific residual block design process references [50]. 

2.3. ConvLSTM 

LSTM is specially designed for time series [53] and performs well in 
time series related prediction tasks. However, the input of LSTM only 
considers the time dimension and feature dimension, so ConvLSTM [54] 
was proposed to conduct joint learning of time and space features at the 
same time. The input array of a 2D ConvLSTM cell (Fig. 2) is length ×
width × channel. The number of cells in 2D convlstm layer is equal to 
the time sequence length. The specific calculation process is as follows: 

it = σ(Wxi ∗ Xt +Whi ∗ Ht− 1 +Wci ∘ Ct− 1 + bi)

ft = σ
(
Wxf ∗ Xt +Whf ∗ Ht− 1 +Wcf ∘ Ct− 1 + bf

)

ot = σ(Woi ∗ Xt +Who ∗ Ht− 1 +Wco ∘ Ct− 1 + bo)

Ct = ft ∘ Ct− 1 + it∘tanh(Wxc ∗ Xt +Whc ∗ Ht− 1 + bc)

Ht = ot∘tanh(Ct) (3)  

where * represents convolution operation and ∘ represents dot product 
operation; Xt is the input sequence at time t; Ht is the output of the 
hidden layer; Ct is the preliminary information transmitted to the unit 

Fig. 1. Four layer 1-D convolution TCN architecture case with k = 2, d 
= 1,2,4,8. 
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layer; it is the input gate, which controls the amount of information input 
to the current unit state; ft is the forgetting gate, which is responsible for 
the selective forgetting of the last unit status information; ot stands for 
output gate, which can select how much information of current time unit 
status is adopted as output; σ and tanh are activation functions; W and b 
are the weights and deviations between neurons in each cell, 
respectively. 

2.4. Variational modal decomposition 

VMD [55] is an adaptive and completely non recursive modal vari
ation and signal processing method, which decomposes the original 
signal into a set of discrete intrinsic mode functions (IMF). The detailed 
decomposition steps are as follows: 

min
{uk}{wk}

{
∑

k

⃦
⃦
⃦
⃦∂t

[(

δ(t)+
j

πt

)

uk(t)
]

e− jwk t
⃦
⃦2

2

}

s.t.
∑

k
uk(t) = f (t) (4)  

where uk(t) is the modal function of the input signal; {uk}represents 
modal set; wk is the center frequency corresponding to the k-th mode of 
the input signal; (wk) represents a group of center frequencies corre
sponding to the decomposed modes; f(t) is the input signal; δ(t) is the 
unit pulse function. 

By introducing Lagrange multiplier λ and quadratic penalty factor α, 
equation (4) can be rewritten as: 

L({uk}, {wk}, λ) = α
∑

k

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
j

πt

)

uk(t)
]

e− jwk t
⃦
⃦2

2

‖f (t)−
∑

k
uk(t)‖2

2 + 〈λ(t), f (t) −
∑

k
uk(t)〉

(5) 

Using the alternating direction method of multiplication algorithm 
to solve (5), a group of modal components and their respective center 
frequencies are obtained. Each mode can be estimated from the solution 
in the frequency domain, expressed as: 

ûn+1
k (w)=

f̂ (w) −
∑k− 1

i=1
ûn+1

i (w) −
∑k

i=k+1
ûn

i (w) +
λ̂

n
(w)
2

1 + 2α(w − wn
k)

2 (6)  

where n is the number of iterations; f̂ (w), ûn+1
i (w), ûn

i (w) and λ̂
n
(w) are 

Fourier transformed forms. 
In equation (6), the mode in Fourier domain is directly updated. In 

addition, these modes can be obtained in the time domain by extracting 
the real part of the inverse Fourier transform of the filtered analysis 
signal. 

wn+1
k =

∫∞
0 w

⃒
⃒ûn+1

i (w)|2dw
∫∞

0

⃒
⃒ûn+1

i (w)|2dw
(7) 

Using equation (7), the center frequency wn+1
k of the modes can be 

obtained, which indicates that the new center frequency is placed at the 
center of gravity of the power spectrum of their respective modes. 

3. Proposed forecasting strategy 

As mentioned in the introduction, this study combines ML method 
and physical method, and proposes a wind speed forecast strategy of 
unified forecast and single site error correction to enhance the forecast 
accuracy of wind speed in the whole wind farm. The forecast process can 
be divided into three parts: the model input data organization frame
work, the unified forecast based on STC-DPN and the single site error 
correction of TCN-LSTM. Next, the forecast process is introduced in 
detail, and the forecast evaluation indicators are given. 

3.1. Data organization framework 

Fig. 3 shows the data acquisition, processing and final data shape. 
The data includes the forecast grid provided by WRF model, and the 
SCADA system provides the recorded data of each monitoring station. 

First, the NWP of wind field is realized by using the forecast grid of 
the innermost layer of WRF. The case wind field is from Jining City, 
Shandong Province, which is located in the hilly area. The size of the 
wind farm is about 8 × 10 km, 33 fans and 1 wind measuring tower are 
arranged irregularly due to the influence of hilly terrain. The inverse 
distance weighting method (IDW) is used to interpolate the four forecast 
grid points around the station to the height of the fan hub (80m), and the 
formula is as follows: 

z =

∑q

i

zi
(Di)

p

∑q

i

1
(Di)

p

(8) 

z is the final NWP forecast value of the site, zi is the forecast value of 
WRF grid points, q is the number of grid points participating in inter
polation, Di is the distance between the difference point and the i-th site, 
and p is the power of the distance, which can be adjusted according to 
the interpolation effect. After the interpolation is completed, the NWP 
forecast sequence of 34 sites in the next 96 steps can be obtained. 

During the real-time operation of the wind farm, the SCADA system 
can collect the recorded data of the station according to a certain fre
quency, including wind speed, wind direction and other meteorological 
elements. However, the wind speed has strong randomness, which 
makes the recorded data series show obvious volatility. The obvious 
high-frequency components are regarded as noise, VMD is used to 
decompose the recorded wind speed sequence into k IMF components, 
and then reconstruct after removing the high-frequency components. 
The trend of reconstructed wind speed series is obviously flat, which can 
reduce the negative impact of random volatility on model training and 
prediction. It should be noted that we only process the recorded wind 
speed sequence as the model input with VMD, and do not process the 
real wind speed used to evaluate the prediction effect. 

After obtaining NWP forecast data of all sites and monitoring data of 
SCADA system, and then data splicing needs to be completed. In Fig. 3, x 
represents the input value and y represents the output value; s represents 
the number of variable sequences, which is determined by the number of 
sites and the type of selected variables; t represents the current time, and 

Fig. 2. 2DConvLSTM unit of one time step.  
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T is the time interval; n represents the sequence length of intercepting 
SCADA system monitoring variables, and m represents the sequence 
length of NWP forecast and final wind speed forecast. After data orga
nization, 96 step forecast sequence of all sites can be obtained through 
unified forecast and single site error correction. 

3.2. Unified forecast and single site correction 

The data organization of the forecast model is completed in section 
3.1. Next, based on the case wind farm Fig. 4 shows the detailed process 
of unified forecast and single site correction. Wind speed and direction 
are regarded as input variables. T in the data set is 15 min. The sequence 
length of SCADA system monitoring variables is n = 16, and the 
sequence length of NWP forecast and final wind speed forecast is m = 96. 

First, the TCN network is used to extract the time series features of 
the wind speed and wind direction sequence matrices respectively. The 
input dimensions are the sequence length and the sequence number 
(112 × 34). The TCN network does not change the sequence length of 
the input. By setting the number of filters, the number of features is 
increased after the feature extraction is completed. By adjusting the size 
of the convolution kernel, it is suitable for feature learning of short 

sequences. In order to convert the output of TCN into a regular spatio
temporal matrix, the number of output features of TCN is set to 256. 
After the feature extraction is completed, two 112 × 256 feature 
matrices can be obtained and converted into a 112 × 16 × 16 × 1 four- 
dimensional matrix to meet the input requirements of the 2D ConvLSTM 
network layer. Finally, the two matrices are merged according to the 
channel dimension, and the input type into the 2D ConvLSTM network 
layer is 112 × 16 × 16 × 2. 

After completing the spatiotemporal transformation of the input 
data, a three-layer encoding-forecasting architecture is completed based 
on the 2D ConvLSTM to generate the forecast of the virtual wind speed 
map. A 2 × 2 max-pooling operation is used after each ConvLSTM layer, 
and the output size of the ConvLSTM unit before pooling is recorded as 
an index for de-encoding in the forecast stage. In the encoding stage, the 
array dimension is finally 112 × 4 × 4 × 128, and it is restored to the 
original array shape in the forecast stage, and finally the output is 
converted into a 112 × 34 forecasted wind speed matrix. In the data flow 
of STC-DPN, end-to-end [56] training of the same loss function for the 
entire architecture can be achieved without changing the time length 
during the process. 

After the unified prediction is completed, 96 step prediction 

Fig. 3. Data organization process based on WRF mode and SCADA system.  
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sequence can be obtained for each position, and then correct its error. 
After the model training, the error sequence can be calculated based on 
the predicted sequence and the real sequence. VMD is used to decom
pose the NWP wind speed sequence of the station. After retaining the 
high-frequency components, we use it and the single point prediction 
sequence obtained from the unified prediction as the input of the TCN- 
LSTM correction model, and the prediction error sequence as the output. 
After the error prediction of this position is realized by the modified 
model, combined with the unified wind speed sequence, the 96 step 
prediction of this point can be obtained. 

In the forecast framework, the selection of model super parameters is 
combined with references and trial and error method, and the settings 
are shown in appendix A Table A2. 

3.3. Evaluation indices 

MAE and RMSE are widely used in the error evaluation of point 
forecast, which can reflect the long-term forecast reliability of the 
model. The formula is as follows: 

MAE=
1
K
∑K

i=1

⃒
⃒ŷ(i)t+τ − y(i)t+τ

⃒
⃒ (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
K

∑K

i=1

(
ŷ(i)t+τ − y(i)t+τ

)2

)√
√
√
√ (10) 

ŷ(i)t+τ and y(i)t+τ are the forecasted wind speed and real wind speed, t 
is the current time, τ is the forecast baseline, and K is the number of 
samples in the test set. 

COR =
COV(Ŷ t+τ,Yt+τ)

σŶt+τ σYt+τ

(11) 

COV(A,B) represents the covariance of A and B, σA and σB represent 
the standard deviation of A and B, Ŷ t+τ represents the predicted wind 
speed sequence, and Yt+τ represents the real wind speed sequence of the 
test set. The larger the COR, the closer the change trend of the predicted 
wind speed series to the real wind speed series. 

Fig. 4. Unified forecasting and single site error correction framework.  
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In order to comprehensively evaluate the forecast effect of different 
methods, a comprehensive improvement index (CII) is proposed based 
on MAE, RMSE and COR, which is defined as: 

CII =
1
N
∑N

i=1

⃒
⃒
⃒
⃒
Î i − Ii

Ii

⃒
⃒
⃒
⃒ (12) 

N represents the number of indicators, ̂I i is the ith indicator value of a 
method, and Î i represents the i-th indicator value of the baseline 
algorithm. 

The forecast of high wind speed is more difficult than that of low 
wind speed [47], especially in the high wind speed range with large 
fluctuations. With reference to the forecast interval coverage rate (PICP) 
[44] in the probability forecast, the hit rate (HR) is used as the evalu
ation index of different wind speed intervals for auxiliary error analysis, 
which is defined as follows: 

HR=
1
Q
∑Q

i=1
Hi,Hi =

{
1,
⃒
⃒ŷ(i)t+τ − y(i)t+τ

⃒
⃒ ≤ W

0,
⃒
⃒ŷ(i)t+τ − y(i)t+τ

⃒
⃒ > W

(13) 

W represents the threshold value set by HR, and Hi indicates whether 
the predicted absolute value error meets the condition of less than W. A 
relatively loose w will be set for the high wind speed range, and a strict w 
will be required for the low wind speed range. Q represents the number 
of samples in the wind speed range. 

4. Case study 

This section shows in detail the forecast performance of the proposed 
method in the case wind farm, provides the comparison of multiple 
baseline methods, and carries out error analysis. 

4.1. Data set 

The time range of collected data is from January 1, 2019 to 
December 31, 2020, with a total of 70176 time points. The data set in
cludes wind speed and direction recorded for 15min at 80m height of 33 
wind turbines and a wind measuring tower in the whole wind farm, as 
well as NWP forecast data with the same time resolution. Fig. 5 shows 
the annual statistical distribution of wind speed and direction, which 
can reflect the actual wind energy characteristics of the wind farm. The 
recorded wind speed and NWP wind speed are basically between 0 and 
15 m/s, but the trend of NWP frequency fitting curve is smoother, and 
the wind direction shows the characteristics of higher south wind 
frequency. 

4.2. Baseline algorithms 

In order to reflect the advantages of the method proposed in this 
paper, considering the shape of input data, SVR [22]，ANN [20]，RNN 
[26] and LSTM [27] are used as single site forecast models, which are 
compared with unified forecast. TCN-3DCNN [48] is used as a unified 
forecast model to reflect the advantages of STC-DPN space-time joint 
learning. SVR, TCN, LSTM and TCN-LSTM are used as single site error 
correction models to compare the error correction effects. 

As an application of SVM to regression problem, SVR can realize 
forecast task. ANN is composed of basic full connection layer, which can 
extract explicit information and nonlinear relationship between input 
and output data. The design of RNN and LSTM has the ability to capture 
time series features, and the learning performance of the evolution trend 
of temporal data is better. The combination of TCN and 3DCNN can deal 
with the four-dimensional data matrix after TCN output conversion. All 
models are implemented in Python. 

Fig. 5. Annual statistical distribution frequency of wind speed and direction.  
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(1) SVR is tested in four parameter kernel functions: linear, poly, 
sigmoid and rbf. The penalty factor C is adjusted in steps of 0.1 
based on the default 1.0. Implemented by Python’s sklearn 
package. 

(2) For ANN, RNN and LSTM neural network models, the optimiza
tion setting standard for the number of layers and neurons is to 
gradually increase the number of network layers. Before the 
output layer, the number of neurons in each layer increases 
exponentially by2. Python’s keras package implementation is 
used. 

(3) TCN performs grid optimization for expansion factor d, convo
lution kernel size and number of neurons, which is also imple
mented by Python’s keras package.  

(4) 3DCNN and 2DConvLSTM in STC-DPN are the same three-layer 
coding forecast architecture, which is implemented using keras 
package. 

In this paper, all models are trained and tested on the same com
puter. The hardware includes i7-12700h CPU, NVIDIA geforce RTX 
3060 GPU and 16gb memory. The python package includes tensorflow 
1.13.1, keras 2.2.4, and sklearn 0.23.2. The training and test data are 
divided by 4:1. Table 1 gives the case number of models(34 sites), 
training information, training time, model loading time and the time for 
doing1000 forecasts. Obviously, SVR has the highest training efficiency 
in forecast and error correction, and the time used is much lower than 
other models. In the forecast model, the training time of ANN, RNN and 
LSTM models for single site forecast is also higher than that of the two 
unified forecast models. Moreover, the training time of STC-DPN plus 
modified model is also lower than that of RNN and LSTM. In the time 
statistics of model loading and 1000 forecasts, the completion time of all 
models is less than 1 min, and the model loading time is greater than the 
forecast time. This shows that in the actual forecast, the main time for 
completing a rolling forecast is to load the forecast model, and a higher 
forecast frequency can be achieved by increasing the frequency of data 
acquisition. 

4.3. Performance comparison 

Using the 10 methods presented in section 4.2, 96 steps point fore
cast for comparison is completed. Tables 2–4 give the statistics of MAE, 
RMSE and COR which including 6 time point forecasts (indicators sta
tistics at a certain time point) and 3 segmented range average forecasts 
(average indicators statistics within 6 h). 

Among the four models for single site forecast, the forecast results of 
SVR and ANN are poor, which is predictable. The reason is that the input 
historical monitoring data and NWP forecast data have strong time 
correlation. LSTM and RNN have the ability to learn time series char
acteristics, which are more suitable for the wind speed forecast task in 
this paper. LSTM demonstrates better forecast performance than RNN, 
which has been verified many times in other literatures [27,49]. This is 
because the unique working mechanism of LSTM has better sequence 
feature learning ability, and also solves the optimization problem of 
RNN gradient training. Unified forecast is significantly better than single 
site forecast. Considering that the inputs of TCN-3DCNN and STC-DPN 
models include the information of the whole wind farm, this reduces 
the impact of the randomness of data collection at a single site to a 
certain extent. Obviously, using more location data can more effectively 
forecast the future wind speed changes of the wind farm. STC-DPN 
achieves better forecast results than TCN-3DCNN. The difference be
tween the two models comes from the processing of the time dimension 
of the data matrix. 2DConvLSTM has the time sequence learning ability 
of LSTM, and can convolute the two-dimensional matrix at each time. 
The data dimensions of 3DCNN convolution include length, width and 
height. In the actual data organization, the time dimension can only be 
used as the height dimension for model training. After adding the error 
correction model, even SVR correction can significantly reduce the 
forecast error and improve the correlation of the forecasted wind speed 
series. This shows that the error correction strategy is very effective after 
the unified forecast is completed. Among the four correction models, 
TCN-LSTM obtained the best correction effect. TCN can control the 
amount of historical information contained in the output sequence at 
each time by adjusting the convolution kernel size and dilation factor d, 
and the LSTM layer can realize the long-term evolution feature learning 
of the whole sequence. The combination of the two architectures is more 
suitable for the forecast of wind speed error series. 

With the extension of the forecast horizon, the change characteristics 
of the forecast performance are interesting. In the first 6h, the forecast 
effect decreased significantly at any time, and the 15min forecast error 
of all models was less than 60% of that of 6h. In terms of the average 
forecast performance after 6h, the change of each index is no more than 
5%. This is worthy of our further error analysis. 

Fig. 6 shows the forecast curve and error scatter distribution of 200 
continuous wind speed points at the anemometer tower, which are 
forecasted in advance from different forecast horizons. The forecast 
curve given by NWP is smoother than the real wind speed curve, and the 
unified forecast trend does not deviate much during this period. It can be 
seen that there are obvious large error points, especially when the real 
wind speed fluctuates rapidly, the trend will also lag or advance. 
Monitoring data and initial NWP forecast data are used as inputs to the 
model proposed in this paper, and 96 steps 15min rolling forecast can be 
realized on the basis of NWP. After the big data training, the forecast 
curves of the proposed model with 15min and 30min in advance are very 
close to the real wind speed curve. Not only the absolute error is limited 
within 1 m/s, but also the trend fitting is achieved in the peak range of 
150–175. With the extension of the forecast horizon, the distribution of 
error points is gradually dispersed, and obvious outliers will appear first 
in the large fluctuation region. The trend following ability of the forecast 
curve to the real wind speed gradually decreases and the curve gradually 
smoothes from 6h in advance. 

Figs. 7 and 8 show the error distribution box diagram of NWP and the 
proposed method, including the error distribution change in 96 
consecutive steps. The box chart gives the distribution statistics of errors 

Table 1 
Test information statistics.  

Forecast 
model 

EC 
model 

Number 
of case 

Training 
parameter 
setting 

Training 
time(min) 

Loading 
time and 
forecast time 
(1000 times) 
(s) 

SVR – 34 The kernel is 
rbf; the penalty 
parameter C is 
1.2 

48.2 7.4 + 0.4 

ANN – 34 Adam 
100epochs 

508.1 15.7 + 3.3 

RNN – 34 Adam 
100epochs 

1277.4 21.7 + 6.8 

LSTM – 34 Adam 
100epochs 

1942.9 31.6 + 9.7 

TCN- 
3DCNN 

– 1 Adam 
100epochs 

124.8 3.9 + 1.9 

STC-DPN – 1 Adam 
100epochs 

168.2 5.4 + 2.6 

STC-DPN SVR 1 + 34 Adam 
100epochs/ 
Same as 
forecast model 

168.2 +
32.6 

12.3 + 3.6 

STC-DPN TCN 1 + 34 Adam 
100epochs 

168.2 +
427.6 

24.6 + 12.3 

STC-DPN LSTM 1 + 34 Adam 
100epochs 

168.2 +
809.7 

32.8 + 16.7 

STC-DPN TCN- 
LSTM 

1 + 34 Adam 
100epochs 

168.2 +
637.2 

28.3 + 13.9  
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of 25%, 50% and 75%, as well as the position of the average value and 
the distribution of outliers, and enlarges the range of 25%–75%. Obvi
ously, the performance of NWP does not decline significantly with the 
extension of the forecast horizon within 24h, but the error in the 0–6h 
ultra short term forecast cannot meet the actual demand. Alse based on 
the outlier discrimination rule of box graph, when the absolute error 
value is greater than 4 m/s, it will be judged as outliers, and even the 
outlier discrimination condition is greater than 7 m/s. In addition to the 
loose criteria for outliers, the distribution of outliers also shows the in
adequacy of NWP forecast performance. A large number of outliers are 
not near the critical line, but are randomly distributed in a larger error 
range, and even there is a forecast error of more than 15 m/s. In the 96 
step error statistics of the proposed method, compared with the original 
NWP, many aspects have been significantly improved. First, the interval 
absolute value of 25% and 75% loci in 0–6h forecast is limited to 2 m/s, 
and does not exceed 3 m/s in 6–24h forecast. The criterion of outliers is 
more strict, and the distribution of outliers is more concentrated on the 
critical line. 

Based on the analysis in Figs. 6–8, it can be believed that the results 
reflect the respective characteristics of ML method and physical method. 

ML method can achieve small forecast error depending on the persis
tence of wind speed in the near forecast, but it is difficult to effectively 
predict the wind speed after a few hours. Due to the lack of accuracy of 
modeling data, the forecast error of physical methods in the first few 
hours is too large, but it can be robust in the longer-term forecast. 

4.4. Error analysis 

Ten models are used for forecast experiment in section 4.3, and MAE, 
RMSE and COR were compared. Some subgraphs in Fig. 6 show that the 
error performance has trend lag [15], the forecast sequence is exces
sively smooth [39], and the forecast between high and low wind speeds 
is conservative [30]. In this section, with the help of CII and HR, we take 
the forecasted wind speed of the original NWP as the baseline to conduct 
auxiliary analysis on the errors of different models. 

Table 5 shows the MAE, RMSE and COR segment statistics of the four 
initial NWP ranges. In Table 6, in addition to the CII of the original ten 
models for NWP, the impact of the wind speed recorded in the VMD 
processing model input on the forecast effect is also evaluated. Among 
the four ranges, 0–6h forecast has the greatest improvement effect, and 

Table 2 
MAE wind speed (m/s) statistics of 10 models.  

Forecast model EC model Forecast horizon 

15min 30min 1h 2h 4h 6h 6–12h 12–18h 18–24h 

SVR – 0.939 1.045 1.186 1.358 1.516 1.655 1.673 1.696 1.715 
ANN – 0.919 1.031 1.172 1.339 1.495 1.635 1.653 1.683 1.694 
RNN – 0.904 1.026 1.166 1.328 1.491 1.626 1.644 1.676 1.695 
LSTM – 0.882 1.002 1.124 1.306 1.453 1.594 1.612 1.643 1.662 
TCN-3DCNN – 0.793 0.915 1.028 1.206 1.335 1.477 1.493 1.523 1.539 
STC-DPN – 0.771 0.891 1.016 1.157 1.307 1.451 1.472 1.479 1.502 
STC-DPN SVR 0.703 0.786 0.896 1.055 1.179 1.309 1.374 1.389 1.418 
STC-DPN TCN 0.714 0.798 0.910 1.071 1.197 1.329 1.395 1.410 1.440 
STC-DPN LSTM 0.682 0.763 0.870 1.023 1.145 1.271 1.334 1.349 1.377 
STC-DPN TCN-LSTM 0.669 0.749 0.854 1.004 1.124 1.248 1.312 1.324 1.352  

Table 3 
RMSE statistics of 10 models (m/s).  

Forecast model EC model Forecast horizon 

15min 30min 1h 2h 4h 6h 6–12h 12–18h 18–24h 

SVR – 1.258 1.405 1.589 1.819 2.031 2.217 2.241 2.267 2.298 
ANN – 1.231 1.381 1.570 1.794 2.003 2.190 2.215 2.259 2.269 
RNN – 1.211 1.375 1.562 1.779 1.997 2.178 2.202 2.245 2.271 
LSTM – 1.182 1.342 1.506 1.750 1.947 2.135 2.160 2.201 2.227 
TCN-3DCNN – 1.062 1.226 1.377 1.616 1.788 1.979 2.013 2.040 2.052 
STC-DPN – 1.033 1.194 1.361 1.550 1.751 1.944 1.962 1.997 2.026 
STC-DPN SVR 0.942 1.053 1.200 1.413 1.580 1.754 1.841 1.861 1.893 
STC-DPN TCN 0.957 1.069 1.219 1.435 1.604 1.780 1.869 1.889 1.929 
STC-DPN LSTM 0.914 1.022 1.166 1.371 1.534 1.703 1.787 1.807 1.845 
STC-DPN TCN-LSTM 0.896 1.003 1.144 1.345 1.506 1.672 1.758 1.774 1.811  

Table 4 
COR statistics of 10 models.  

Forecast model EC model Forecast horizon 

15min 30min 1h 2h 4h 6h 6–12h 12–18h 18–24h 

SVR – 0.850 0.790 0.766 0.732 0.645 0.598 0.586 0.575 0.573 
ANN – 0.869 0.801 0.771 0.738 0.651 0.602 0.590 0.581 0.576 
RNN – 0.873 0.808 0.779 0.742 0.659 0.604 0.592 0.586 0.578 
LSTM – 0.875 0.814 0.782 0.746 0.662 0.608 0.596 0.590 0.582 
TCN-3DCNN – 0.903 0.831 0.806 0.759 0.685 0.611 0.599 0.593 0.585 
STC-DPN – 0.908 0.835 0.809 0.765 0.694 0.618 0.606 0.598 0.591 
STC-DPN SVR 0.927 0.853 0.822 0.781 0.712 0.636 0.623 0.617 0.609 
STC-DPN TCN 0.922 0.848 0.817 0.777 0.709 0.629 0.616 0.613 0.602 
STC-DPN LSTM 0.931 0.857 0.833 0.785 0.718 0.641 0.628 0.622 0.614 
STC-DPN TCN-LSTM 0.938 0.863 0.839 0.790 0.724 0.647 0.634 0.628 0.619  
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only SVR is used in the forecast model to obtain more than 20% CII 
improvement effect. In the other three time ranges, it also achieved an 
increase of more than 8%. By ranking the forecast results of the model, it 
can be seen that there have been three obvious performance improve
ments: (1) from single site forecast to unified forecast, the improvement 
performance of the four ranges is about 6%; (2) After adding the EC 
model, the increase range reached 7%; (3) After the recorded wind speed 
is treated with VMD, the improvement performance of 0–6h is nearly 
6%, but the forecast effect of 6–24h is hardly affected. Under the same 
conditions, it is difficult to achieve a 5% improvement by model 
replacement alone, which shows that the application of the new strategy 
is more effective than the simple model replacement. 

Fig. 9 presents the NWP and the proposed method forecasted-real 
wind speed distribution. The wind speed points are near the central 
axis, and the degree of divergence can reflect the forecast effect. The 
divergence degree of wind speed points given by NWP is obviously 
higher than that of the proposed method, and there are a large number 
of outliers. The proposed method performs well in the interval of 0–6h, 
and the degree of divergence gradually increases with the extension of 
the forecast horizon. Compared with NWP, the proposed method can 

significantly correct some large error points. It is worth noting that the 
outliers in the NWP mainly come from the higher wind speed range. 
Moreover, in the high wind speed range, there are many samples with 
the predicted wind speed lower than the actual wind speed. The forecast 
given by the proposed method also has the same problem in 6–24h, at 
least it can be shown that in the high wind speed range, the conservative 
wind speed forecast is a factor that causes large errors. 

Based on the above considerations, according to the annual distri
bution frequency of the real wind speed (Fig. 5), it is divided into three 
wind speed ranges of 0–5 m/s, 5–10 m/s, and above 10 m/s to calculate 
HR, and W is set to 1 m/s, 2 m/s, 3 m/s. Fig. 10 shows the error dis
tribution statistics of the three wind speed intervals of the NWP. In the 
high wind speed range above 10 m/s, the central axis of the error is 
about 2 m/s, indicating that the high wind speed interval is easy to give 
a smaller predicted wind speed. In the small wind speed range of 0–5 m/ 
s, the central axis of the error is about -1 m/s, indicating that the small 
wind speed range is easy to give a larger forecasted wind speed. Refer
ence [30] divides the NWP forecast wind speed into ranges and analyzes 
the error distribution. The results are the same as in this paper, in the 
high-low wind speed range, the wind speed forecast will tend to be 

Fig. 6. NWP and the proposed method for continuous 200 point forecast curve and error distribution.  
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conservative. 
Fig. 11 presents the detailed error statistics of NWP, STC-DPN and 

STC-DPN-EC in three wind speed ranges. It can be seen from the bar 
chart that even if a loose W is set in the wind speed range above 10 m/s, 
the HR is still less than the HR of 0–5 m/s, which also verifies the 
argument that the error and difficulty of high wind speed forecast are 
greater [47,49]. In different wind speed ranges, with NWP as the base
line, after unified forecast by STC-DPN and error correction, the 

Fig. 7. Statistics of NWP 96 steps forecast error distribution based on box diagram.  

Fig. 8. Statistics of proposed method 96 steps forecast error distribution based on box diagram.  

Table 5 
Segment statistics of NWP forecast wind speed performance.  

Indicator Forecast horizon 

0–6h 6–12h 12–18h 18–24h 

MAE 1.997 2.032 2.044 2.071 
RMSE 2.413 2.418 2.422 2.431 
COR 0.590 0.582 0.571 0.568  
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following characteristics are presented:  

(1) In 0–6h, after STC-DPN unified forecast and error correction, HR 
is significantly improved compared to NWP. Especially in the 
15min-advanced forecast, the HR of 0–5 m/s and above 10 m/s is 
better than NWP by more than 30%. With the extension of the 
forecast horizon, the HR performance in the 5–10 m/s range is the 

most stable, with the smallest decrease, and the ratio of the 
15min-advanced forecast is no more than 20%.  

(2) With the extension of the forecast horizon, the HR of the proposed 
method decreased significantly in the two ranges above 0–5 m/s 
and 10 m/s. Especially in the range above 10 m/s, the STC-DPN 
decreased by 40% in the comparison between 6h and 15min. In 
the analysis of Fig. 9, this is because the model makes the forecast 
more conservative in order to reduce the average error in the 
forecast of the high and low wind speed ranges.  

(3) After the unified forecast of STC-DPN, compared with the HR of 
NWP, the two ranges above 0–5 m/s and 10 m/s did not get 
significant improvement in the forecast of 6–18h, and the 
improvement rate was only about 2%. This phenomenon shows 
that although STC-DPN can reduce the large error amplitude of 
NWP, it is still difficult to reduce to below 3 m/s in the high wind 
speed range, and the improvement degree in the low wind speed 
range is also limited. Due to the regularity of error generation, 
after adding the error correction model, the HR is improved by 
about 6% in the 6–18h forecast. This shows that the revised 
model can improve the forecast effect in the high and low wind 
speed range. 

5. Further discussions 

In the simulation results of the case wind farm, the unified forecast 

Table 6 
Models CII statistics based on NWP.  

Forecast 
model 

EC model Forecast horizon 

0–6h 6–12h 12–18h 18–24h 

SVR – 20.73 8.56 8.31 8.14 
ANN – 21.57 9.47 9.19 9.01 
RNN – 22.22 10.06 9.76 9.56 
LSTM – 23.09 11.25 10.91 10.69 
TCN-3DCNN – 29.38 17.40 16.88 16.54 
STC-DPN – 32.41 18.85 18.28 17.91 
STC-DPN SVR 38.60 26.10 25.32 24.81 
STC-DPN TCN 37.93 25.97 25.19 24.69 
STC-DPN LSTM 40.92 27.78 26.95 26.41 
STC-DPN TCN-LSTM 42.79 29.89 28.93 28.35 
STC-DPN TCN-LSTM(without 

VMD) 
36.84 28.93 28.87 28.32  

Fig. 9. NWP and Proposed method forecast - real wind speed distribution.  

Fig. 10. Frequency step of NWP wind speed prediction error in different wind speed ranges.  
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combined with the single site error correction forecast strategy proposed 
in this paper achieved the best forecast results. In order to gain a deep 
understanding of the effectiveness of the proposed method for wind 
speed forecasting in the whole area of wind farms, this section will 
discuss the following aspects. 

5.1. Advantages of the STC-DPN-EC: combination of ML and physics 
model，NWP and monitoring data 

As mentioned in the introduction, the unified forecaste model STC- 
DPN combines ML and physical models. The ML model can be trained 
using a large amount of historical data, and a small average error can be 
achieved in the prediction within 6 h, which guarantees the prediction 
performance of STC-DPN in the first 6 h. The WRF-based physical model 
provides a grid of NWP forecasts for the next 24 h as part of the input to 
STC-DPN. Due to the rough initial modeling data, the physical model has 
insufficient near-prediction accuracy and may have obvious spatial and 
temporal deviations. However, the calculation of the physical model 
considers a wide range of atmospheric motions, and it still has stable 
prediction performance after 6 h, which effectively improves the pre
diction performance of the ML model that only relies on historical data. 

The forecast grid of NWP and the wind turbine monitoring data of 
the whole wind farm have obvious spatiotemporal characteristics, and 
STC-DPN effectively combines them in the process of data preprocessing 
and model training. In Fig. 3, the WRF mode divides the NWP grid in a 
regular manner, and the grid and geographic resolution size can be 
adjusted by parameter settings. However, the distribution of wind tur
bines is affected by hilly terrain, and the locations of wind speed 
monitoring points are extremely irregular. After obtaining the NWP grid 
interpolation wind speed sequence, it cannot be directly entered into 
ConvLSTM for joint learning of spatiotemporal features. The use of TCN 

solves the problems of data combination and dimension conversion. 
Monitoring data and NWP grid data are spliced into an input matrix 
according to time series, and the number of features is increased through 
TCN to convert into a regular four-dimensional space time series matrix. 
It can be believed that this establishes a virtual wind farm that satisfies 
the ConvLSTM model’s requirements for data shape and is not affected 
by the arrangement of fans in the wind farm. 

5.2. Consideration on error cause and correction 

After realizing the unified wind speed forecast of the wind farm, this 
paper provides an independent error correction model for the forecasted 
wind speed of each wind turbine site. Analyzing the error is helpful to 
adopt a targeted correction strategy. However, it can only reduce the 
size of the error and the influence of the wind speed forecast error on the 
operation of the wind farm. 

The historical monitoring data used as input has obvious volatility 
during the collection process, especially the rapid change of wind speed. 
The input of STC-DPN includes the monitoring data of all wind turbine 
positions, which reduces the influence of randomness of data collection 
to a certain extent, and better reflects the wind speed change trend of the 
wind farm over a period of time. However, the acquisition frequency of 
15 min affects the continuity of the data sequence, and an excessively 
high acquisition frequency will increase storage and computing costs. 
This paper uses VMD to process historical wind speed data, aiming to 
reduce the stochastic volatility of recorded wind speeds. For the NWP 
provided by the physical model, the defect of insufficient initial 
modeling accuracy is unavoidable. In practice, various methods is tried 
to improve the accuracy of the initial NWP wind speed forecast, 
including optimizing the combination of physical parameters, adjusting 
the grid size and the near-surface vertical layer height. However, after 

Fig. 11. HR statistics for NWP, STC-DPN and STC-DPN-EC.  
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STC-DPN forecast and error correction, the error will always have a 
larger decrease. Therefore, it can be believed that for the wind speed 
forecast of a certain wind farm, the forecast error of NWP is specific, and 
the forecast model can be trained by combining this large amount of 
historical data to improve the forecast effect. 

6. Conclusions 

Aiming at the wind speed forecast of the entire wind farm, this paper 
proposes a strategy combining unified forecast and single site error 
correction. A unified forecasting framework of STC-DPN is proposed, 
which combines the historical monitoring data and the forecasting grid 
of NWP, and corrects the forecasting error of each forecasting site 
individually, providing a more accurate multi-step wind speed fore
casting. In data processing, VMD is used to denoise the recorded wind 
speed, and the high frequency components of NWP forecast wind speed 
are retained to participate in single-point error correction. Compared 
with the baseline methods, the proposed method shows better forecast 
performance in an actual operating wind farm. The proposed method 
has good versatility and is suitable for wind speed forecast in complex 
wind farm terrain such as hills, without being affected by the arrange
ment of wind turbines. The main conclusions are summarized as follows:  

1) The STC-DPN architecture is very flexible. Combined with the 
monitoring data and the NWP forecast grids, on the basis of the 
original NWP forecast wind speed, multi-step high-frequency rolling 
wind speed forecast can be achieved. On the basis of STC-DPN, ac
cording to the size of the wind farm, the arrangement of wind tur
bines and the forecast demand, the forecast wind speed can be 
obtained by adjusting the forecast horizon and the TCN output data 
conversion dimension.  

2) The error generated by the forecast model has obvious regularity, 
and adding the error correction model can effectively reduce the 
uncertainty of the forecasted wind speed. After completing the error 
correction in this paper, the performance of the CII index has been 
improved by more than 10%, and the HR index has been improved in 
different wind speed ranges, especially in the high wind speed range. 
The increase in the HR index indicates that error correction reduces 
the probability of large errors.  

3) When the data input and processing methods are the same, compared 
with the replacement of the forecast model, adding a new forecast 
strategy can greatly reduce the forecast error. In the case study, 

taking NWP as the baseline, single site forecasting, unified fore
casting, adding error correction, and processing of VMD all signifi
cantly reduce forecasting errors. Among them, only replacing the 
forecast model, the CII index increases by less than 3%, while adding 
new forecast strategies can increase by more than 5%. 

4) On the basis of NWP, the proposed method improves the compre
hensive forecast performance of the 0–6h by more than 40%, and the 
comprehensive forecast performance of the 6–24h by nearly 30%. 
Also it can achieve high-frequency rolling forecast, and simulta
neously perform ultra-short-term forecast within a few hours and 
short-term forecast within a day, which provides a reliable reference 
for the real-time grid connection and scheduling tasks of wind farms. 

In the future research, we plan to apply the strategies and models 
proposed in this paper to more research fields, such as wind power 
forecast or wind turbine fault early warning. According to the actual 
situation of the wind field, taking into account the temperature, air 
pressure, humidity and other factors, the TCN model can be introduced 
into the 2D ConvLSTM model to jointly predict the wind speed by 
increasing the number of channels, so as to further improve the accuracy 
of wind speed forecast. In the future research, it needs more actual wind 
fields to verify the effectiveness and superiority of the proposed method. 
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Appendix A  

Table A1 
Adopted physical parameter scheme of WRF model.  

Physical scheme Mode scheme selection 

Microphysics Goddard microphysics scheme 
Longwave radiation New Goddard scheme 
Shortwave radiation Dudhia scheme 
Surface layer MM5 scheme 
Land surface 5-layer thermal diffusion 
Planetary boundary layer Shin-Hong scheme 
Cumulus parameterization Grell-Freitas scheme   

Table A2 
Parameter setting of the proposed forecast framework.  

Model parameter 

VMD [16] (data processing) Process monitoring data sequence k = 9, α = 1000, Reconstruction sequence retention IMF1-6 
Process NWP wind speed sequence k = 5, α = 1000, Reconstruction sequence retention IMF3-5 

STC-DPN (unified forecast) TCN [50] d = [1,2,4,8,16,32], number of kernels and kernel size are 256 and 3 

(continued on next page) 
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Table A2 (continued ) 

Model parameter 

ConvLSTM [54] ConvLSTM layer (1,2,3): number of kernels and kernel size are (8, 32,128) and (3 × 3, 3 × 3,3 × 3) 
TCN-LSTM (single site correction) TCN d = [1,2,4,8], number of kernels and kernel size are 32 and 3 

LSTM [49] LSTM layer (1,2): number of neurons is (32, 64)  
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