
Citation: Amhamed, A.I.;

Shuibul Qarnain, S.; Hewlett, S.;

Sodiq, A.; Abdellatif, Y.; Isaifan, R.J.;

Alrebei, O.F. Ammonia Production

Plants—A Review. Fuels 2022, 3,

408–435. https://doi.org/10.3390/

fuels3030026

Academic Editor: Martin Olazar

Received: 5 June 2022

Accepted: 1 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Ammonia Production Plants—A Review
Abdulkarem I. Amhamed 1,* , Syed Shuibul Qarnain 2, Sally Hewlett 3, Ahmed Sodiq 1 , Yasser Abdellatif 1,
Rima J. Isaifan 4 and Odi Fawwaz Alrebei 1,*

1 Energy Center, Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University,
Doha P.O. Box 34110, Qatar; asodiq@hbku.edu.qa (A.S.); yabdellatif@hbku.edu.qa (Y.A.)

2 Qatar General Electricity and Water Corporation, Kahramaa, Doha P.O. Box 41, Qatar; sqarnain@km.qa
3 School of Engineering, Queen’s Buildings, Cardiff University, 14-17 The Parade, Cardiff CF24 3AA, UK;

hewlettsg@gmail.com
4 College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;

risaifan@hbku.edu.qa
* Correspondence: aamhamed@hbku.edu.qa (A.I.A.); oalrebei@hbku.edu.qa (O.F.A.)

Abstract: Considering the global scientific and industrial effort to utilize ammonia as an alternative
to natural gas combustion to run power plants, it is crucial to objectively assess the literature before
adjusting or proposing new and advancing techniques in ammonia plants while considering a variety
of factors. As a result, this paper assesses the global effort to improve existing ammonia plants and
identifies progress by evaluating the currently available dataset to identify knowledge gaps and
highlight aspects that have yet to be addressed. Based on the literature reviewed in this study, it was
found that the majority of the efforts to advance ammonia plants mainly focus on reducing energy
consumption, implementing alternative methods to extract the necessary hydrogen and nitrogen in
the process, and changing the cycle arrangement and operating conditions to make the industrial
plants more compact. However, regarding carbon reduction in the ammonia production process, it is
clear that the effort is less significant when compared to the global scientific and industrial progress
in other areas.
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1. Introduction
1.1. The Importance of Ammonia

Ammonia (NH3) is a fundamental manufacturing component and the cheapest com-
pound combining nitrogen with raw elements, utilized in more than 76% of all nitrogen-
based products (Figure 1) [1]. Figure 1 shows the main categories of ammonia applications
(i.e., producing ammonium bicarbonate, ammonium nitrate, ammonium sulphate, calcium
ammonium nitrate, urea, urea ammonium nitrate (UAN) fertilizers, di-ammonium phos-
phate (DAP) fertilizers, monoammonium phosphate (MAP) fertilizers and other direct
non-fertilizer uses). A translucent product with a distinctive strong odor, NH3 is mainly
produced through the “harsh” reaction of N2 and H2 at high temperatures and under com-
pression in the presence of a proper catalyst. When created by this process, it is known as
synthetic ammonia. NH3 is also obtained as a byproduct in coal coking; however, this type
of NH3, referred to as byproduct ammonia, is generated in considerably lower amounts
than the former type (synthetic ammonia) [2]. The Haber and Bosch technique is the most
commonly used worldwide; however, it is also the most expensive. van Rooij [3] devised
several improvements to the Haber and Bosch technique (including the operating condi-
tions, catalysts, hydrogen and nitrogen generation, and storage). The nitrogen required for
ammonia production mainly comes from the atmosphere, whereas the required hydrogen
primarily comes from natural gas through steam-methane reformations.
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Figure 1. The applications of ammonia, reproduced from Reference [1]. 

Another consideration is that ammonia facilities are constructed by converting facil-
ities, since both CH3OH and NH3 may generate similar facilities [4]. As shown in Figure 
1, NH3 is primarily employed to produce fertilizers (urea ammonium nitrate (UAN), di-
ammonium phosphate (DAP), monoammonium phosphate (MAP) fertilizers). In addi-
tion, NH3 is used as an energy vector in power plants, for utilization as a zero-carbon fuel 
[4–10]. Reference [10] studied the potential to blend hydrogen with ammonia for utiliza-
tion as fuel in a simple-cycle gas turbine and found that cycle efficiency could be increased 
compared to methane-powered gas turbines under lean combustion conditions (i.e., at an 
equivalence ratio of 0.75). This shows the potential to promote ammonia–hydrogen gas 
turbines to the power generation industry, demonstrating them to be efficient and sus-
tainable. However, NOx emissions should be carefully monitored and mitigated using 
cooling and dilution approaches [10]. 

In the commercial refrigeration industry, liquid ammonia is the most widely used 
refrigerant due to its low price and high thermal performance [5]. Liquified ammonia has 
been used as an inexpensive alkali in the stiffening of some steel-based materials [6], and 
in water purification [7–10]. Given the global scientific and industrial effort to use ammo-
nia as a fuel to run power plants instead of natural gas, it is critical to objectively assess 
the literature before adjusting or proposing new techniques in ammonia plants, consider-
ing a variety of factors. As a result, this paper evaluates the global effort to improve exist-
ing ammonia plants and identifies progress by evaluating the currently available datasets 
to identify knowledge gaps and highlight aspects that remain unresolved. This was con-
ducted in the four sections of this paper. Section 1 provides the reader with the essential 
background of ammonia plants, and covers aspects related to the modern ammonia pro-
duction plants and presents the latest patents in the field of ammonia production. Section 
2 provides a detailed description of one of the most widely used configurations of ammo-
nia plant (Kellogg Brown and Root (KBR)). Section 3 evaluates the efforts to advance KBR 
models and presents a critical comparison between KBR plants and the Linde–Ammonia-
Concept (LAC) plant. Section 4 addresses the safety issues related to ammonia production. 

In addition, by evaluating the global scientific effort in advancing ammonia plants in 
terms of its contribution to enhancing ammonia production. The effort to advance ammo-
nia plants is classified into six main categories in this paper: (1) reducing ammonia-pro-
duction-related energy consumption through renewable and sustainable approaches; (2) 
techno-economics of ammonia production; (3) proposing alternative approaches to sup-
ply nitrogen and hydrogen for the process; (4) advancing ammonia production catalysts; 
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Figure 1. The applications of ammonia, reproduced from Reference [1].

Another consideration is that ammonia facilities are constructed by converting facili-
ties, since both CH3OH and NH3 may generate similar facilities [4]. As shown in Figure 1,
NH3 is primarily employed to produce fertilizers (urea ammonium nitrate (UAN), di-
ammonium phosphate (DAP), monoammonium phosphate (MAP) fertilizers). In addition,
NH3 is used as an energy vector in power plants, for utilization as a zero-carbon fuel [4–10].
Reference [10] studied the potential to blend hydrogen with ammonia for utilization as fuel
in a simple-cycle gas turbine and found that cycle efficiency could be increased compared
to methane-powered gas turbines under lean combustion conditions (i.e., at an equivalence
ratio of 0.75). This shows the potential to promote ammonia–hydrogen gas turbines to the
power generation industry, demonstrating them to be efficient and sustainable. However,
NOx emissions should be carefully monitored and mitigated using cooling and dilution
approaches [10].

In the commercial refrigeration industry, liquid ammonia is the most widely used
refrigerant due to its low price and high thermal performance [5]. Liquified ammonia has
been used as an inexpensive alkali in the stiffening of some steel-based materials [6], and in
water purification [7–10]. Given the global scientific and industrial effort to use ammonia as
a fuel to run power plants instead of natural gas, it is critical to objectively assess the litera-
ture before adjusting or proposing new techniques in ammonia plants, considering a variety
of factors. As a result, this paper evaluates the global effort to improve existing ammonia
plants and identifies progress by evaluating the currently available datasets to identify
knowledge gaps and highlight aspects that remain unresolved. This was conducted in the
four sections of this paper. Section 1 provides the reader with the essential background of
ammonia plants, and covers aspects related to the modern ammonia production plants
and presents the latest patents in the field of ammonia production. Section 2 provides
a detailed description of one of the most widely used configurations of ammonia plant
(Kellogg Brown and Root (KBR)). Section 3 evaluates the efforts to advance KBR models
and presents a critical comparison between KBR plants and the Linde–Ammonia-Concept
(LAC) plant. Section 4 addresses the safety issues related to ammonia production.

In addition, by evaluating the global scientific effort in advancing ammonia plants
in terms of its contribution to enhancing ammonia production. The effort to advance
ammonia plants is classified into six main categories in this paper: (1) reducing ammonia-
production-related energy consumption through renewable and sustainable approaches;
(2) techno-economics of ammonia production; (3) proposing alternative approaches to
supply nitrogen and hydrogen for the process; (4) advancing ammonia production catalysts;
(5) altering the cycle configuration (design or/and operating conditions); (6) environmental
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aspects and ammonia-production-related carbon reduction. These categories were observed
by evaluating the aims and the objectives of 130 research articles, published between 2015
and 2022.

1.2. Modern Ammonia Production Plants

To produce anhydrous ammonia, new NH3-producing facilities supply H2 to the
process with steam-methane-reforming (SMR) methods to react with N2 under harsh
temperature and pressure (730 K, 20 MPa) conditions, and is accompanied by the presence
of a catalyst to synthesize the compound, as shown in Figure 2 [8,9]. The Haber–Bosch (HB)
process is the concept used to describe this stage. Currently, fossil fuels, air, and water are
the stream supplies required to produce ammonia. Natural gas is the most commonly used
fossil-fuel energy source, accounting for about 76% of all NH3 power-generated globally.
Coal-based power plants account for 24% of total capacity.
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partial combustion of the gas to complete the endothermic process. 

Almost all CH4 is adiabatically transformed in standard plants as it passes through 
the catalytic material, leaving an unreacted concentration below 0.6% [10,11]. All carbon 
oxides must be eliminated from the mixture to fulfill the criteria for NH3 synthesis fuel. 

Figure 2. Block diagram of conventional NH3 production, reproduced from the reference [8].
(A) Desulfurization (B) Primary Reformer (C) Secondary Reformer (D) CO shift (E) CO2 removal
(F) Methanation (G) NH3 loop (H) Refrigeration (I) NH3 Loop.

To prepare natural gas for the SMR process, it is blended with a relatively small portion
of H2~ and then preheated to approximately 730 K either within the built-in reforming
furnace or within an external source of heat (heat exchangers, heaters, etc.). It is necessary
to purify the preheated gas mixture of any sulfur-based contents (H2S and organic sulfur
compounds) to below 1% of molar fraction in a single or double-reactor series. The first of
these contains a cobalt molybdenum (Co-Mo) catalyst and the second contains zinc oxide
(ZnO) adsorbent to eliminate any poisoning of the nickel-based catalyst in the latter. It is
possible to divide the reformer unit into two stages. The primary reformer is a sub-unit
of a methane-reforming plant, in which a heated steam–methane blend (1:4 by a molar
fraction) is supplied through radiation-heated channels with a nickel-based reforming
catalyst and partially converted to H2, CO, and CO2 (typically, 66% of the initial methane
supply) [10]. The necessary heat for the first reformer is produced by gas-fueled burners,
categorized as side-fired, top-fired, or bottom-fired burners. A convection bank is used to
recycle the wasted heat produced in the furnace box (heat content of the flue gas) for use
in other operations (such as supercritical steam heating and preheating process air). The
partly converted gas is sent into the secondary reformer, where it is mixed with a regulated
quantity of air (which has been warmed and compressed to 790 K and 4 million pounds
per square inch). The temperature is increased from 1050 K to about 1490 K by partial
combustion of the gas to complete the endothermic process.

Almost all CH4 is adiabatically transformed in standard plants as it passes through
the catalytic material, leaving an unreacted concentration below 0.6% [10,11]. All carbon
oxides must be eliminated from the mixture to fulfill the criteria for NH3 synthesis fuel.
Traditionally, the water–gas-shift reaction has been used to transform CO into a form that
can be removed from the atmosphere. To utilize the wasted heat used to increase the
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temperature of the superheated steam, the temperature of the gas products from the second
reformer is reduced by heat exchange.

The superheated steam is then supplied to the high-temperature-shift reactor, filled
with Fe2O3 and Cr2O3. At 600 K, the CO reacts with surplus H2O to form H2 and CO2, with
a 310 K-equilibrium approach to the reaction. A sufficient amount of H2O is essential for
this process to eliminate the Boudouard reaction (which is prevented using efficient Fischer–
Tropsh catalysts) [11]. If a conventional plant is used, the reformer must have an S/C ratio
of 3.0 at the very least to meet the high-temperature shift (HTS) requirements. A 2% or
less of CO2 content is achieved at the outlet of the high-temperature-shift reactor; thus, the
usage of the low-temperature-shift (LTS) reactor is necessary to transform the residual CO
in the synthesis gas at 490 K. The water–gas shift (WGS) produces a large amount of CO2
as its feed output. To effectively dissolve CO2 at high pressure, the utilization of a solvent
is common. Many different solvents are available at present, and they are classified as
physical-based or chemical-based solvents depending on the amount of CO2 that is present
in the input stream. Chemical solvents, which are mostly generated from alkanolamine, are
used in the ammonia synthesis pathway because they provide a high-mass CO2 transfer
while also requiring a high-energy input for regeneration.

The monoethanolamine (MEA) system consists of regeneration stripping columns
and HP absorption columns, which are typically approximately 5.3 MPa, with pressure
losses of 3 KPa between each stage. Whether or not a reboiler is used, the total number of
steps is generally between 10 and 15 [10]. One downside to the system is that carbonate
salts build in the absorption solution, which is quite caustic. Newly discovered solvent
additives, such as liquid NH3- and Ca-based solvents that may prevent the production
of carbonates, are being employed in the industry to reduce carbonate formation. It is
necessary to perform final purification in the ammonia synthesis, since residuals range
between 0.2–0.5% mol. of CO and 0.005–0.2% mol. of CO2. The copper-based scrubbing
approach was extensively used in early plants but has become obsolete due to the high
energy consumption. Moreover, it is deemed ecologically unfavorable when the remaining
carbon is removed. Methanation is the most common approach to lowering carbon content
levels to below 10 parts per million. At the same time, the exothermic process is used
to recover energy and recycle it back into the system. The reaction occurs on a nickel-
containing catalyst at from 2.5 to 3.5 MPa [12]. When the immediate exothermic reaction
occurs, temperatures may rise to between 500 and 1040 K. The Steam Rankine Cycle (SRK)
uses the rejected heat to generate electricity for power regeneration. It is necessary to
remove H2 and CO2 residuals from the gas produced by methanation by running the
outputs in a drying process (i.e., pressure-swing-adsorption, cryogenic separation). It
should be noted that most techniques are utilized to increase the purity of the H2 and
N2 required for ammonia production. The synthesis of ammonia only occurs in the last
block of the reaction. At this point, N2 and H2 are routed as a set of compression stages
that are powered by steam turbines to complete the process. While centrifugal-based
compression has a cheap initial investment, low maintenance costs, and good dependability,
it has a lower efficiency than reciprocating compressors [13], which should be considered.
Preheating and increasing the synthesis gas pressure to 15–25 MPa are performed before
the requisite synthesis temperature is reached.

The converter where NH3 production takes place is at the core of the synthesis system.
The converter’s response rate and operational parameters impact the converter’s overall
performance. When the pressure is raised, the ammonia yield dramatically rises due to
the favorable equilibrium reaction and the reaction rate itself. The synthesis pressure
in contemporary ammonia facilities varies between 15,000 and 25,000 kPa. In addition,
maintaining the required temperature is critical because the pace of the production process
varies dramatically as the temperature changes. The H2:N2 ratio in the incoming synthesis
gas and the feed stream speed impact the converter’s performance when combined with
the previously listed factors. The best conversion is achieved when the space velocity is
high, and the H2:N2 ratio is two. On its way through the catalyst, the synthesis undergoes
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a partial conversion of 25–35%, according to [14]. After that, the ammonia that is created
is separated from the unreacted gas before being returned to the converter. A variety of
synthesis loop designs are feasible, and the position of the NH3 condensation determines
which one is used. The separation of ammonia from the unreacted gas occurs in all
contemporary facilities using refrigerated chilling. Ordinarily, the temperature is lowered
to around 25 K, and the liquefied NH3 in the elevated-pressure separators is flashed at
2000 kPa. Then, the key individual steps involved in ammonia production are summarized.

1.3. Ammonia Synthesis Patents

Several patents were granted in ammonia synthesis, as summarized in Table 1. Haber
and Bosch [15] patented the NH3 production process in 1916 (U.S. patent-1202995). Many
other patents have been obtained for ammonia synthesis since then. Wright and colleagues [16]
developed a set of equipment for ammonia synthesis, which consisted of two catalytic
converters and was patented (U.S. patent-3721532). Several heat-exchanging means are
linked to the converters’ intake and output ports on both sides of the system. The second
converter’s input discharges a supply stream into the heat-exchanging means to be cooled.
The patent describes the implementation of a support platform for the converters and the
heat-exchanging means. To develop a new process, it is necessary to operate within a
pressure of 10–31.3 MPa, while maintaining the temperature in the range of 477–320 K.

Table 1. Ammonia synthesis patents.

Title of Invention Summary Patent
Number/(Year) Reference

Ammonia
synthesis system

An integration of equipment and
processes for the production of NH3,
consisting of two catalyst synthesis
converters and numerous means of
exchange, has been developed.
Conditions from 10,000 to 31,300 kPa
pressure, and from 770 to 610 K,
should be met.

U.S.-3721532
(1973) [16]

Process for
the production
of ammonia

The synthesis of hydrogen and
nitrogen results in the production of
ammonia. A high-pressure
electrolyzer was used in the
generation of hydrogen. The primary
compressor is removed from the
equation. The pressure is 20,000 kPa,
and the temperature is 650 K.

U.S.-4107277
(1976) [17]

Low energy ammonia
synthesis process

Synthesis of ammonia at low
pressures, ranging between 2 and
10 MPa, and temperatures ranging
between 610 and 715 K. The separation
of ammonia occurs by absorption in a
liquid solution.

U.S.-4148866
(1978) [18]

Preparation of
ammonia synthesis

The use of autothermal reformation to
produce NH3 from hydrocarbon fuel
is described, with pressure and
temperature conditions ranging from
2500 to 5000 kPa and
740 to 1000 K, respectively.

U.S.-4479925
(1983) [19]

Ammonia synthesis
process

NH3 synthesis based on varying
pressure and temperature condition
ranges from 4000 to 12,000 kPa and
590 to 740 K, respectively.

U.S.-4695442
(1993) [20]
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Da Rosa [17] used high-pressure electrolysis to produce H2 without the need for
compression, which was a breakthrough in the field (U.S. patent 4107277). The concept
also used oxygen at elevated pressures to liquefy ammonia in the refrigeration subsystem,
which was the first in the industry. The exothermic nature of the ammonia synthesis
process means that the steam recovered from the reactor may be utilized to produce energy,
which can then be used to power the electrolyzer. The procedure was carried out at a
pressure of 200 atm and temperatures ranging from 370 to 650 K. Becker registered a patent
(U.S. 4148866) for the manufacture of ammonia with minimal energy usage, which was
issued to Colman L. Becker [18].

It is necessary to initiate the ammonia production process at low pressure levels rang-
ing between 2 and 10 MPa. A liquid–water-based combination separates the synthesized
ammonia from the residual gases through absorption and stripping. A gas-based ammonia
synthesis system (U.S.-patent-4479925) was designed by Shires et al. [19]. The syngas is
then combined with H2O, a reforming reactor, where it undergoes an endothermic pro-
cess, resulting in hydrogen production. The effluent gas is then combined with air in an
autothermal reformer before being sent into the synthesis converter for further processing.
High temperatures ranging from 990 to 1190 K and low pressures ranging from 2500 to
5000 kPa are necessary for this procedure. The majority of ammonia-producing facilities
at present depend on fossil fuels and natural gas for their energy. These facilities have a
single train of gigantic reactors. Before the nitrogen and hydrogen can be introduced into
the synthesis converter, the raw gas must pass through a purification process. As a result,
many patents have been issued in connection with the purifying methods used for the
natural gas supply. In the patent (U.S.-4695442), the adsorption characteristics of gases
that are occupied throughout an acceptable range of raw gas composition are described
in detail [20]. Carbon dioxide and hydrogen are present in sufficient quantities to bring
the boiling point of N2 into balance. N2 and H2 are then combined and supplied into
the convertor, resulting in the production of ammonia gas with a high yield of hydrogen
recovery while minimizing the need for additional adsorption bed volume and purge gas.
This procedure operates at temperatures ranging from 640 to 790 K and pressures ranging
from 2500 to 5000 kPa.

1.4. State-of-the-Art Ammonia Production

This section includes a survey of the literature on subjects and research related to
the generation of ammonia. The section also provides an overview of the contemporary
ammonia-related technologies that are used worldwide.

1.4.1. Casale Small Ammonia Plant Concepts

Casale presents two concepts for micro-NH3 plants: the A-60, which has a capac-
ity of up to 3000 ton/month, and the A-600, with a capacity that ranges from 9000 to
30,000 ton/month. The synthesis loops of these two plant models vary to accomplish their
designated production targets. The synthesizing loop operates at high pressure in the A-60
concept, which primarily reduces the number of equipment items (above 20,000 kPa). Con-
sequently, ammonia is created in high concentrations and readily condenses using H2O or
atmospheric air. As a result, the refrigeration unit is omitted. The A-600 concept envisions
a low-pressure synthesizing loop instead of the A500 concept. With this design, the goal is
to make the production facility simpler while maintaining the primary compression stage.
When using a low-pressure synthesis loop, the mass flow rate in the compression stage
increases, which allows for the employment of a more dependable centrifugal machine. As
seen in Figures 3 and 4, Casale’s ammonia plant designs depend on methane as an input
supply to the plant. They are also applicable to alternate feedstock sources such as biomass
fuel supply extracted from waste and H2 produced through electrolyzers [21].
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1.4.2. Casale NH3 Plants with Biomass Feedstocks

Bio-methane is a biomass fuel supply that can be produced from renewable energy
sources such as biofuel. The first-generation (organic waste) [22], second-generation (lig-
nocellulosic biomass) [23], and third-generation (micro-algae) biofuels all depend on the
organic matter used as the starting point [24]. Only a few energy-based and environmental-
based research projects on NH3 synthesis from biofuel gasification have been conducted
in the literature. Andersson et al. carried out a techno-economic study on NH3 synthesis
by implementing a biofuel gasification of the leftover wood generated in pulp- and paper-
production plants [25]. The study findings revealed that combining the pulp-production
and paper-production plans improves economic sustainability and leads to a 9% boost in
the performance of the cycle when compared to a standalone ammonia plant.

The price of the generated ammonia, on the other hand, is higher than the current
market pricing for ammonia. Tock et al. conducted a thermo-environmental optimization
evaluation of ammonia production using wood-based gasification using an energy inte-
gration approach, which they found to be effective [26]. The integration used CO2 capture
and storage technology to limit CO2 emissions to the atmosphere. However, the research
findings indicated that energy efficiency decreased due to the expensive CO2-compression
stage. Additionally, the plant’s energy efficiency was evaluated to be 51% and 1.78 ton
CO2/ton NH3 through the biofuel produced by the crop.

In contrast, the system’s energy efficiency in natural gas-based ammonia production
was rated at 65% and 0.78 ton CO2/ton NH3. According to [27], the authors investigated
the feasibility of NH3 synthesis using wood-based gasification for a system capable of
producing 1200 tons NH3/day. According to the study’s findings, up to 66% of the gas that
contributes to global warming (CO2, CO, NOx) reductions were accomplished.

The economically sustainable dry-based biomass gasification (61 USD/ton) con-
tributed to reducing the cost of NH3 synthesis to 501 USD/ton. Biomethane may be
converted to syngas in a practical manner by utilizing Casale’s A-60 or A-600 NH3 plant
designs, depending on their required capacity. In the Casale A-60 design, the fuel supply
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is processed in a patented, partially oxidized (POX) reactor, which was developed by the
company. Based on Casale’s sophisticated burner technology, Partial Oxidization (POX)
enables soot-free operation at a low H2O/C ratio when the feed gas composition varied.
Furthermore, POX has a meager minimum turndown ratio, allowing for steady functioning
in 21% of the average load without compromising performance. With these characteristics
of Casale POX, it is possible to reduce the plant’s overall size while maintaining excellent
durability, performance, and an extended life cycle. After being inspired by the notion that
the ammonia plant should be simplified and reduced to several units, the A-60 proposes
a single shift stage (at elevated temperature levels), followed by a purification stage. The
latter procedure is conducted in the Pressure Swing Adsorption (PSA) facility, which is
highly automated.

Furthermore, microbes such as cyanobacteria, which generate the enzymes responsible
for nitrogen fixation and ammonia production [28], should be noted. These enzymes
may also be used in conjunction with a chemical reaction to react and develop electron
transfer in the presence of low potential, which serves as the driving force in a biochemical
reactor [29,30]. Immobilizing enzymes on the electrode surface increases the biocatalytic
potential for nitrogen fixation and ammonium production.

1.4.3. ThyssenKrupp’s Green Ammonia Concept

ThyssenKrupp Industrial Solutions (TKIS) is popular in the fertilizer business due to
its Uhde NH3 Production Technology [31]. Energy, transportation, agricultural sectors, and
chemical industries are among the areas in which TKIS has created comprehensive and
environmentally beneficial methods [32]. The alkaline–water–electrolysis (AWE) technol-
ogy used by the company serves as the foundation for all these applications by supplying
hydrogen to downstream technologies. TKIS’s AWE and downstream processes to “green”
syngas, H2, CH3OH, and NH3 now allow for renewable energy, created from renewable
sources, to be stored, addressing the primary barrier and issues associated with renewable
energy: fluctuation. Ammonia may also be converted into nitrogen fertilizer solutions by
additional processing. As a result, a wide range of eco-friendly technology is accessible
today. Unlike a traditional NH3 plant, which generates H2 via the SMR units, the AWE
generates H2 using electrolyzers. An Air-Separation Unit (ASU) generates the N2 necessary
for NH3 synthesis in the concept proposed here. When developing its NH3-production
approach, TKIS concluded that having a standardized and modularized concept, without
spending time and resources on tailormade engineering, was a critical prerequisite for pro-
viding possible clients with optimized solutions. The modularization and standardization
of the green ammonia concept are required to increase the viability of this concept and
make it more feasible.

Although the AWE and ASU sections of the plant were already modularized, TKIS
had to undergo additional work to modularize the NH3 synthesis section, which resulted
in a comprehensive concept being developed from a single source (see Figure 5). When
modularizing the green ammonia plant, it is beneficial to have both hydrogen and nitrogen
accessible at the same time under the same circumstances. Furthermore, from modulariza-
tion, it is helpful to retain capabilities at a lower level to maintain facilities at a compact size.
According to the evaluation of the TKIS report by references [31,32], a significant propor-
tion of wind clients from offshore and onshore farms generally have at least 20,000 kW of
power. NH3 production of 1500 ton/month may be reached with a 20,000 kW input-power,
according to the manufacturer. The key objective of TKIS for this 50 ton/day concept was
to optimize the usage of economically sustainable equipment to avoid jeopardizing the
viability of the project.
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Moreover, TKIS has created a second concept based on a 120,000 kW of input power
that will produce 300 ton/day ammonia. Due to the scale of the plant, TKIS decided that,
to compete with traditional approaches, somewhat more emphasis should be placed on
the energy-efficiency of this particular concept. In addition, since the plant operates on a
higher economic scaling level, TKIS believes that it might be a realistic upgrading option
in existing NH3-production facilities, able to partially replace traditional NH3 production
with green ammonia production [8].

1.4.4. Electrolysis for Ammonia Production

The electrolysis of alkaline-water is based on the well-established Chlor-alkali electrode
technique [33]. Power and water are necessary for AWE-based hydrogen generation. In
contrast to the direct supply of electricity to AWE via a transformer rectifier, raw water
must be demineralized before it can be given to AWE.

The oxygen and hydrogen produced by the AWE process are the primary byproducts.
Both goods have been thoroughly cleaned. This procedure does not need oxygen, which
might be saved for use in other methods further downstream. The hydrogen produced by
AWE is compressed, deoxygenated, and dried before being used. The hydrogen has now
been prepared for use in the ammonia production process. To prepare the synthesis gas
that is to be fed into the synthesis gas compressor, the appropriate quantity of N2 is mixed
with H2 at a stoichiometric ratio. Nitrogen is created in a cryogenic air separation unit.
Figure 6 illustrates how the AWE approach is well adapted to the operating circumstances
of a green- NH3 plant, which might suffer from a shortage of power owing to fluctuations
in the supply of renewable energy [34].

The AWE can be set up in minutes and responds to load fluctuations in millisec-
onds. It is also very cost-effective. As a result, the AWE provides the necessary flexibility
from renewable energy sources. The ammonia synthesis portion is a crucial source of
concern. For this reason, intermittent hydrogen storage is being constructed upstream of
the synthesis gas compression to address the problem. The capacity of the intermittent
storage system may be adjusted in line with the availability of power resources. With these
safeguards in place, the NH3 synthesis unit will be capable of operating on a 24-h basis
without interruption.
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2. Kellogg Brown and Root (KBR) Ammonia Plant

The massive growth in ammonia demand between 1950 and 1980 led to the construc-
tion of bigger, more energy-saving factories. During those years, there was also a shift in
the design approach. Before then, an NH3-production plant was seen as a collection of
unconnected components, such as gas preparation, gas purification, gas compression, and
ammonia synthesis, which were connected.

With the help of new technologies and a unified design, process units were most
effectively and efficiently linked together. In the mid-1960s, the American Oil Company
built a single-converter NH3-production plant in Texas City, TX, which was designed by
M.W. Kellogg (MWK) and had a daily capacity of 544 metric tons (mt). Due to the single-
train design concept (Figure 7), this was awarded the Kirkpatrick Chemical Engineering
Achievement Award in 1967. It was necessary to increase the pressure of syngas to 153 bar
using a four-case centrifugal compressor, and the final compression to an operational
pressure of 323 bar was accomplished using a reciprocating-based compression stage within
the plant. A centrifugal compressor system for the synthesizing loop and refrigeration
units was also installed, which considerably reduced the company’s expenses.

Compared to previous ammonia plants, the MWK process incorporated the following
innovations: using a centrifugal-based compression stage as part of the synthesis gas
compression process, optimizing heat recovery generated by the process, and generating
steam from the waste heat for the usage in steam turbines. The refrigeration compressor
was also utilized for rundown and atmospheric refrigeration. An integrated system was
implemented throughout the factory, which matched energy consumption with energy
output, and equipment size with catalyst volumes. From 1963 to 1993, the majority of plants
were massive single-train designs capable of producing synthesis gas and NH3 at 26–36 and
151–201 bar pressure, respectively. Another variant, developed by KBR, made only minor
alterations to the fundamental concept. Primary reformers at low output temperatures and
a high CH4 leak were used in the KBR Purifier process plants to minimize the size and
expense of the reformer while maintaining the same performance. To lower the methane
concentration of the primary reformer output stream to 1–3%, more air was introduced
into the secondary reformer. When removing excess N2 contaminants in the methanation,
taking advantage of the relatively clean synthesis gas, two axial-flow NH3 converters
were utilized to obtain a high ammonia conversion rate. Some newly constructed plants’
synthesis gas-generating systems only have a single reformer (without use of a second
reforming reactor), a PSA system for hydrogen purification, and an ASU to supply the
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necessary nitrogen. Design advancements, such as radial and horizontal catalyst beds,
internal heat exchangers, and synthesis gas treatment, have assisted in increasing the NH3
contents leaving the synthesis converter from around 13% to 20%–22%. Energy consump-
tion was further lowered due to the increased conversion per pass and more advanced
compressors and turbines. Carbon-capturing techniques, such as potassium carbonate and
methyldiethanolamine (MDEA), have significantly improved energy efficiency. A typical
contemporary plant may create NH3 with an energy expenditure of 28,000 MJ for every
metric ton of nitrogen that is produced.

Fuels 2022, 3, FOR PEER REVIEW 11 
 

 

 
Figure 7. KBR design of the first single-train (large-capacity ammonia plant (A) Compressor, heat 
recovery section (B) Steam Drum (Da) Power turbine (E) Secondary reformer (F) CO convertor (G) 
First stage high-temperature synthesis (H) Second stage low-temperature synthesis (I) BFW heat 
recovery (J) Condensation (K) CO2 stripper (M) Methanator (N) NH3 Converter (O) Compression 
(P) Separator, reproduced from References [35,36]. 

Compared to previous ammonia plants, the MWK process incorporated the follow-
ing innovations: using a centrifugal-based compression stage as part of the synthesis gas 
compression process, optimizing heat recovery generated by the process, and generating 
steam from the waste heat for the usage in steam turbines. The refrigeration compressor 
was also utilized for rundown and atmospheric refrigeration. An integrated system was 
implemented throughout the factory, which matched energy consumption with energy 
output, and equipment size with catalyst volumes. From 1963 to 1993, the majority of 
plants were massive single-train designs capable of producing synthesis gas and NH3 at 
26–36 and 151–201 bar pressure, respectively. Another variant, developed by KBR, made 
only minor alterations to the fundamental concept. Primary reformers at low output tem-
peratures and a high CH4 leak were used in the KBR Purifier process plants to minimize 
the size and expense of the reformer while maintaining the same performance. To lower 
the methane concentration of the primary reformer output stream to 1–3%, more air was 
introduced into the secondary reformer. When removing excess N2 contaminants in the 
methanation, taking advantage of the relatively clean synthesis gas, two axial-flow NH3 
converters were utilized to obtain a high ammonia conversion rate. Some newly con-
structed plants’ synthesis gas-generating systems only have a single reformer (without 
use of a second reforming reactor), a PSA system for hydrogen purification, and an ASU 
to supply the necessary nitrogen. Design advancements, such as radial and horizontal 
catalyst beds, internal heat exchangers, and synthesis gas treatment, have assisted in in-
creasing the NH3 contents leaving the synthesis converter from around 13% to 20%–22%. 
Energy consumption was further lowered due to the increased conversion per pass and 
more advanced compressors and turbines. Carbon-capturing techniques, such as potas-
sium carbonate and methyldiethanolamine (MDEA), have significantly improved energy 
efficiency. A typical contemporary plant may create NH3 with an energy expenditure of 
28,000 MJ for every metric ton of nitrogen that is produced. 

Additionally, during this period, significant advancements in design, mechanical, 
and metallurgical aspects were achieved, and the operating pressure of the synthesis loop 
was significantly lowered. A high-pressure synthesis loop was installed in the first single-
train facility constructed in the 1960s. A request for proposals from Imperial Chemical 

Figure 7. KBR design of the first single-train (large-capacity ammonia plant (A) Compressor, heat
recovery section (B) Steam Drum (D) Power turbine (E) Secondary reformer (F) CO convertor
(G) First stage high-temperature synthesis (H) Second stage low-temperature synthesis (I) BFW heat
recovery (J) Condensation (K) CO2 absorber (L) CO2 stripper (M) Methanator (N) NH3 Converter
(O) Compression (P) Separator, reproduced from References [35,36].

Additionally, during this period, significant advancements in design, mechanical, and
metallurgical aspects were achieved, and the operating pressure of the synthesis loop was
significantly lowered. A high-pressure synthesis loop was installed in the first single-train
facility constructed in the 1960s. A request for proposals from Imperial Chemical Industries
(ICI) for a 544-metric-ton-per-day facility at their Severnside location was received by MWK
in 1962, and the company responded positively. Instead of a 323-bar synthesizing loop,
MWK offered a 152-bar synthesizing loop.

MWK approached HaldorTopsoe for assistance, since developing kinetic data for the
NH3 reaction at 154 bar could take more time than the company can afford to reply to the
ICI inquiry. HaldorTopsoe was able to provide the necessary help. Topsoe had data that
covered the whole pressure range in which MWK was interested. A computer program
was also available to determine the amount of catalyst that was needed at the decreased
operating pressure. ICI developed a single-train ammonia plant with the help of Bechtel
as the design firm. The flowsheet for a 544-metric-ton-per-day design with centrifugal
compressors and a low-pressure synthesis loop was successfully developed by MWK,
which was considered the most significant event in the development of the single-train
ammonia plant. At 152 bar, about twice as much catalyst was needed than at 324 bar. A
considerable increase seemed to be economically possible. Although the converter may
need double the capacity, the reduced working pressure would minimize the thickness of
the required pressure shell.

Consequently, the total weight of metal needed for the converter and catalyst remained
almost the same. As a result of the lower-pressure synthesis loop, centrifugal compressors
were able to replace reciprocating compressors in specific applications. The recovery of
heat to create high-pressure steam for steam turbine drives was another advancement.
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3. KBR Sub Technology
3.1. KBR Ammonia Plant

The developers of the most spared plants, Kellogg, Braun and Root (KBR), provided
a variety of flowsheet alternatives for both the front end and the synthesis loop. Table 2
summarizes the possibilities considered in a study given in 1999 and is detailed in the
following paragraphs.

Table 2. KBR ammonia plant flow sheet options.

Front End Synthesis Loop

Conventional Magnetite
Purifier KAAP
KRES -

KRES + Purifier -

The conventional front-end flowsheet uses the conventional process stages of primary
reforming, secondary reforming, shift conversion, carbon dioxide removal, methanation,
and shift conversion, with a stoichiometric amount of process air. Dryers may or may not
be included in a conventional flowsheet. A total of 50% of the extra air from the purifier
front end is used in the secondary reformer. In a cryogenic purification stage that follows
methanation, the excess air and methane and most of the argon are captured and removed.

The radiating part of the primary reformer is replaced by a shell and tube heat ex-
changer in the KBR Reforming Exchange System (KRES). It is essential to employ either
oxygen-enriched process air or extra process air in the secondary reformer to generate the
necessary driving power for heat transfer in the KRES exchanger. Due to the high cost of
installing an air separation plant, KBR provides KRES for new plants in conjunction with
their purifier technology to provide the most cost-effective design possible. The synthesis
loop may be either magnetite or a KBR-Advanced-Ammonia-Processing (KAAP) loop,
which are both considered viable solutions. Magnetite loop refers to the classic design that
dates back to Haber and Bosch, around one hundred years ago, and employs a magnetite
catalyst at relatively high pressure instead of the modern design. A KAAP loop makes
use of a well-established, highly active ruthenium catalyst. Consequently, it is possible to
reduce the synthesis pressure to around 90 bar. It is worth noting that, even at this lower
pressure, the amount of KAAP catalyst needed is substantially lower than the amount
of magnetite catalyst required at the typically greater synthesis loop pressure. Table 3
displays the number of plants that were developed, employing each component of the KBR
ammonia technology.

Table 3. KBR design experience with technology options.

Technology Number of Plants

Conventional Magnetite
Conventional 190

Purifier 17
KRES 2

Magnetite 200
KAAP 6

KBR explored the maximum capacity of its horizontal magnetite converter while
retaining the synthesis gas compressor as a two-case machine as part of ongoing efforts
to improve efficiency. The maximum capacity that can be achieved is somewhat higher
than 3000 metric tons per day (MTPD). The KBR developers then considered the possibility
of installing a second converter downstream. The capacity may be increased to around
3500 MTPD. However, to obtain high ammonia conversions, the amount of magnetite
synthesis catalyst in the second converter must be considerably increased.
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The situation is significantly different in the case of a KAAP synthesis loop. The
KAAP reactor, which has been shown to produce 1850 MTPD, includes four beds in a
single vessel. The first layer is magnetite, and the shell has a diameter of 3.8 m. The second
bed is quartz. In the lowest half of the reactor, which contains the KAAP catalyst, the
diameter measures 3.4 m in circumference, scaling up to 4000 MTPD results in a reactor
with diameters of 5.5 and 5.0 m, which is not a huge vessel according to nuclear reactor
standards. In addition, the presence of a KAAP loop ensures that the synthesis pressure will
be low, at around 90 bars. Due to the low pressure, the cost of loop equipment is reduced,
and only a single-stage synthesis compressor is required. There is a reduction in both
capital and operational costs. In light of these considerations, the KAAP loop was selected.
As a consequence of the catalyst’s high activity, the reactor has a relatively small diameter.

A conventional purifier and KRES with purifier are the options for the front end of
the ammonia plant. The purifier flow plan minimizes the size of the primary reformer by
utilizing extra process air, which transfers the reforming duties to the secondary reformer,
resulting in a smaller primary reformer. As the inert content of the makeup gas is much
lower than that of a traditional front-end design, it also results in a reduction in the size
of the synthesis loop equipment and the volume of the synthesis catalyst. Due to these
considerations, the purifier technology for the front-end flow scheme was chosen.

The last alternative is to employ a steam methane reformer or KRES, KBR’s reforming
exchanger system, which is currently under development. A preliminary assessment of the
steam-methane reformer option found that around 375 radiant tubes would be needed for a
facility with 4000 MTPD. This is around the same number of tubes as certain 1970s-vintage
reformers built for 1000 MTPD, which is not enormous. In addition, KBR has constructed
reformers with more than 900 radiant tubes. As seen above, an appropriate option for
large-scale ammonia factories is a fired reformer. From a purely technological and economic
standpoint, KRES is an option for overhauling the energy industry.

When it comes to reforming, KRES is the recommended option. It reduces construction,
maintenance, and operating expenses, and is simpler to run. One of the biggest KRES units
in operation is at Pacific Ammonia in Canada, where it has been in operation since 1994
and produces 350 MTPD. Another well-known KRES facility is in China, with a capacity
of 1100 MTPD, which began operations in 2003. This is part of a larger project to renovate
Liaohe’s ammonia factory. To establish whether KRES would be relevant to mega-ammonia
plants, KBR previously created designs for the reforming exchanger with greater capacities
to determine whether KRES would be appropriate for mega-ammonia plants. The outcomes
of the designs for 2000 and 4500 MTPD are summarized in Table 4, and compared with the
results of the designs for the two KRES projects.

Table 4. Comparison of KRES designs for different capacities.

Design Number of Tubes Tube Internal Diameter
[mm]

Shell Internal Diameter
[mm]

PAI 220 50 1900
Liaohe 1400 25 2000

2000 t/d 2100 25 2200
4500 t/d 5700 25 3300

PAI 220 50 1900

The maximum diameter of the tube sheet used in the fabrication of the KRES exchanger
served as the fabrication limit. The maximum length of the KBR design and construction
materials was 3550 mm. This implies that a single-train KRES unit with a capacity of
more than 5000 MTPD is feasible. However, to maintain caution in the design of the
4000 MTPD plant, the KBR developers elected to provide a conventional reformer as the
default configuration. As an alternative, KBR was willing to propose a design that included
two parallel KRES exchangers, each with 2000 MTPD. Hence, it was necessary to scale up



Fuels 2022, 3 421

from the Liaohe design (which began operations in 2003) from two to one to achieve this
alternative design; however, this was a reasonable next step in advancing KRES technology.

Figure 8 depicts the flow diagram for KBR’s proposal of an ammonia plant with a
capacity of 4000 MTPD. The system shown in this figure includes a fired-reformer, a purifier,
and a KAAP loop, among other components. Mild primary reforming, secondary reforming
with around 50% surplus process air, cryogenic removal of the excess nitrogen, methane,
and most of the argon to provide a pure synthesis makeup gas, and synthesis in an AAP
loop are all features of both methods. Figure 9 illustrates the KAAPplus process, which
substitutes a reforming exchanger for the fired reformer.
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3.2. KBR vs. Linde–Ammonia-Concept (LAC) Plant

This section compares and contrasts the LAC ammonia plant with the KBR purifier
ammonia plant. As stated in the preceding section, the KBR purifier method [35] depicted
in Figure 10A comprises a Fired Tubular Reformer (FTR) and an ATR unit, generating
N2 via combusting syngases. A double-stage WGS unit increases hydrogen production,
followed by a carbon capture phase, which results in a clean carbon dioxide stream that
may be used or stored. Afterward, a cryogenic purification unit optimizes the composition
of the makeup syngas and eliminates any inert elements.
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The 2nd reference process is the Linde–Ammonia-Concept (LAC) [36–40], which is
briefly represented in Figure 10B. The method differs from the KBR process because it only
uses a single reformer, while the nitrogen required for the process is yielded in a specialized
cryogenic-generating unit. A PSA unit purifies the syngas produced by the reformer after
undergoing an isothermal water–gas shift (i-WGS) and after carbon dioxide is removed by
absorption in the reformer. Consequently, the new syngas used for the ammonia loop in
the LAC concept is highly filtered.

3.2.1. KBR Purifier NH3 Process

The necessary energy for the reforming reaction is supplied by an external source
by the combustion of hydrocarbon fuels at a stoichiometric condition in ammonia plants,
composed of H2-generation units that include desulphurization steps followed by an FTR,
maintaining an H2O/C ratio of 2.8 to prevent CO2 buildup in the nickel-based catalyst
inside the reformer’s tubes. Nitrogen is injected with air in the succeeding ATR, resulting
in a CH4 fraction of approximately 4 as an output in the KBR Purifier ammonia process.
The compression of the air supply is driven by a turbine, whose high-temperature flue gas
is fed into the primary reformer’s furnace, resulting in the highest possible heat integration.
As air is injected at higher rate than the ATR’s capacity, it is supplied to the second reformer,
resulting in an FTR temperature output of around 1000 K. Following heat recovery from the
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syngas stream exit of the ATR, which results in the generation of a high-pressure (HP) steam,
a downstream water–gas-shift train optimizes the amount of hydrogen that is produced.
The heat generated by the exothermic WGS process produces additional steam and reduces
the amount of water that is consumed. This is optimized for integration with the NH3 loop
heat-exchanging means. The superheated steam, of 840 K and 11,000 kPa at the production
time, is expanded in the steam turbine to generate power. Both intermediate-pressure (IP)
and low-pressure (LP) steam extractions from the turbine are present: an IP of 3.4 MPa
is used to achieve the C/S inlet to the SMR, and the other is used under low-pressure
conditiosn (i.e., 0.3 MPa) to provide thermal energy for amine regeneration. The stripper’s
columns elevated to high-pressure condition in a 4-stage internally cooled compression
(i.e., 15 MPa).

Around 99% of the carbon dioxide is absorbed in the methyldiethanolamine phase
of absorption. After that, it is sent to a methanation reactor, where the residual carbon
monoxide and carbon dioxide convert to methane, lowering the hazardous contents. It is
necessary to route the reactor effluent through a cryogenic purification unit before com-
pressing and adding syngas to the loop. In this unit, the N2/H2 proportion is calibrated to
the stoichiometry. Meanwhile, CH4 and Ar residuals are lowered to 0.3% molecular weight.
This is utilized as fuel for both the primary SMR and the ATR, which contains the majority
of methane, surplus N2, and a small amount of hydrogen. This undergoes compression
to 150 bar before being combined with the recycling from the ammonia production loop,
which will be discussed in more depth in the following sections.

3.2.2. Linde–Ammonia Concept

Compared to the standard Kellogg Brown and Root concept, the Linde–Ammonia
Concept is devoid of an ATR, which would have provided N2 for the synthesis step. A Fired
Tubular Reformer with a steam-to-carbon ratio of 2.8 is used to produce hydrogen; after
that, IS is used, where an intermediate-pressure (IP) steam is produced and fed to the
reformer with the natural gas feedstock. A high recovery ratio is achieved after cooling
down the water from the shifted syngas stream in the absorption column with MDEA.
The hydrogen-rich syngas is supplied to a pressure swing adsorption unit, resulting in a
hydrogen stream with low level of residual for use in the synthesis loop after removing 99%
of the CO2. The off-gas from the PSA, which contains unconverted methane, carbon dioxide,
and a small amount of hydrogen, is utilized to run the reformation process. The reaction
requires nitrogen, provided under stoichiometric conditions using a nitrogen-generating
facility. The application range of this facility may change based on whether producing pure
oxygen is necessary; then, a complete-scope air separation unit (ASU) is incorporated into
the NH3-production process. If an application for pure O2 output is available, the scope
of this unit might change. If only nitrogen is needed, the cryogenic unit may significantly
reduce in complexity. This method is followed in the present design. The scope consists of
a single-stage air compressor and distillation columns, with the ability to recover around
60% of the nitrogen with a low level of residuals. The remainder of the enhanced air
(38%) is utilized in the PRF to produce molten carbon. A very tiny purge percentage is
needed because the hydrogen and nitrogen streams’ high purity comprises the makeup
syngas to the synthesis loop. This slight purge and the off-gas from the pressure swing
adsorption unit meet the main reformer duty requirements. When the syngas cooling from
the reformer is combined with the heat recovery from the reactor intercoolers, it results in a
highly integrated system that delivers HP steam at 840 K and 11 MPa to a steam-power
cycle. This is a similar setup to the Kellogg Brown and Root design in that two steam
extractions from the steam turbine are provided to achieve a high steam-to-carbon ratio in
the supply and facilitate amine regeneration at IP and LP levels.

3.2.3. Linde Ammonia Concept Subcategories

Using a nitrogen production loop that is free of inertion, Linde’s Ammonia Concept
(LAC) minimizes loop size while eliminating recovery and cleaning facilities for purge
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gas, resulting in a smaller overall system footprint. It is theoretically possible to feed the
ammonia loop a mixture combination consisting of pure N2 and H2.

The production of hydrogen is conducted through SMR. Alternatively, hydrogen is
produced from heavy feedstocks through gasification. If carbon dioxide is necessary, the
process may be modified to meet the requisite ammonia and carbon dioxide portions [34].
Producing NH3 from H-rich off-gas feeds (LAC.L3) in Figure 11, which arise from chemical
plants, is the most straightforward approach to ammonia production since it involves the
use and adaptation of key stages of the Linde ammonia concept categories.
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This technique has been executed and achieved the highest possible technoeconomic
figures since it did not require the use of a separate syngas-producing unit. In Figure 11, a
simplified comparison of the primary process stages of the Linde–Ammonia Concept for
light feedstocks is presented, as well as the process setup of an average ammonia plant.
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The LAC for light-hydrocarbon feeds (LAC.L.1) mainly consists of an H2-production
unit with a one-stage ISR, PSA, conventional N2-production unit, and NH3 loop, as depicted
in Figure 11. Following the treatment of the feed, a highly efficient, top-fired Linde PR
is used to convert hydrocarbons into syngas, which is mainly composed of N2 and CO.
Compared to a traditional ammonia process, the concept eliminates the introduction of
air to the process; however, the ability to limit the inert level to a bare minimum is solely
dependent on the supply feed composition. This minimizes the size of the syngas-cooling
facility. It is preferable to supply pure N2 from the nitrogen-generating unit straight
upstream of the ammonia syngas loop rather than via the syngas generation plant to
prevent overloading [34].

A one-step reactor, Linde’s coil-wrapped IR, is used to boost the hydrogen production
by isothermally shifting the CO in the syngas. This reduces the catalyst volume, which re-
sults in a higher hydrogen yield. This eliminates the necessity of using a process condensate
treatment unit.

An adsorption system that uses pressure swings to remove the O2 contents and
methane from the system eliminates the need for energy-extensive carbon dioxide removal
and catalysis-based methanation, which is less time-consuming and more economically
sustainable. Afterward, the pure hydrogen is combined with pure nitrogen upstream the
NH3 loop to produce ammonia. A purge-free loop may be used, since the purity has been
altered; therefore, the need for a specific purge gas separation unit for the recovery of H2 is
no longer necessary. It is easy to adjust the ammonia synthesis loop to various feedstocks
based on what is available at a particular location, since only clean hydrogen and nitrogen
are required. As inert-free gas generation allows for the production of additional products
from syngas, polygeneration schemes are intrinsically simple to implement.

4. Ammonia Health and Safety Considerations

The corrosive and toxic nature of ammonia makes it potentially dangerous to life.
Although it is a colourless gas (and liquid), making it difficult to detect visually, ammonia
has a strong pungent odour that is detectable by humans at concentrations between 5 and
53 ppm (depending on the individual), helping to mitigate dangerous exposure levels [41].

4.1. Exposure Limits

The reference [41] outlines the acute exposure guideline levels (AEGLs) for a variety of
concentrations and durations, along with their respective consequences to health, Table 5.

Table 5. Ammonia acute exposure guideline levels—effects on health [41].

Duration of Exposure and Concentrations (ppm)

Classification Description of the Effect 10 min 30 min 1 h 4 h 8 h

AEGL-1 Mild irritation
(non-disabling) 30 30 30 30 30

AEGL-2 Irritation of eyes and throat,
urge to cough (disabling) 220 220 160 110 110

AEGL-3 Lethal 2700 1600 1100 550 390

Ammonia is hygroscopic, reacting exothermically with moisture to produce a caustic
solution on moist areas of the body, such as the eyes, nose, throat, and skin, resulting in
severe chemical burns at high concentrations. Workplace exposure limits in the UK are
25 ppm and 35 ppm of NH3 for 8 h and 15 min, respectively [42].

4.2. Behavior on Release to the Environment

Although the density of ammonia vapour is approximately half that of air (under
ambient conditions), in the event of spillage, dispersal of the toxic gas is hindered by
its high vaporization heat. As the liquid evaporates, it tends to ‘hug the ground’, so its
dispersal is not as rapid as its gaseous density would suggest.
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Once in the atmosphere, NH3 can rapidly return to the ground as NH3 (dry deposition)
or react with acid gases to form NH4

+, a fine inorganic aerosol that can persist across
international boundaries. This aerosol contributes to PM 2.5 (particulate matter <2.5 µm
diameter) concentrations, with negative consequences for respiratory health. Like NH3,
the aerosol also eventually returns to the ground via precipitation (wet deposition). Once
returned to the ground (as NH3 or NH4

+), it can cause eutrophication in water bodies,
threatening aquatic life and impacting biodiversity [43]. Deposited NH3 (and NH4

+) is
transformed by microbes to a range of other compounds, including NO, N2O (a greenhouse
gas) and molecular nitrogen, depending on soil conditions [44].

4.3. Materials Selection

Ammonia is especially corrosive towards copper and zinc, necessitating the careful
selection of materials [45]. For metals’ selection, both stainless steel (type 304), cast iron and
aluminum have excellent corrosion resistance, although aluminum’s rating is restricted
to <22 ◦C [46]. For seals etc., ethylene propylene diene monomer (EDPM) rubber and
polytetrafluoroethylene (PTFE) are also rated as excellent, but both natural and fluorocarbon
rubber (i.e., FKM, commonly known as Viton) perform poorly, and so must be avoided [46].

4.4. Flammability Risk

Ammonia has recently gained significant interest as a potential low-carbon fuel; how-
ever, it carries a far lower flammability risk than other fuels. It has a relatively high
minimum ignition energy (MIE) and high autoignition temperature. Its MIE is ~8 mJ [47],
compared with 0.28 mJ [48] for methane, and its autoignition temperature is 130 K higher
than that of methane [49]. Ammonia’s flammability range is from 15 to 29% fuel in air,
compared with from 5 to 15% for methane and 4 to 75% for hydrogen (all values are for
298 K and 1 atm [50].

5. Discussion

The literature review shows that the patented efforts to advance ammonia plants were
initiated in 1916 with Haber and Bosch’s NH3 production process (U.S. Patent 1202995) [15].
Since then, many more ammonia synthesis patents have been issued. Wright and col-
leagues [16] developed an ammonia synthesis equipment with two catalytic converters
(U.S. patent 3721532). On both sides of the system, heat exchangers connected the con-
verters’ intake and output ports. A supply stream is discharged into this to cool the
second converter’s input. The patent described a support platform for converters and
heat exchangers.

The reference [17] used high-pressure electrolysis to produce H2 without compression
in what was considered the first field implementation (U.S patent 4107277). The concept
used high-pressure oxygen to liquefy ammonia in the refrigeration subsystem that was first
used in the industry.

At present, most ammonia plants run on fossil fuels and natural gas. The raw gas
must be purified before being fed into the synthesis converter with nitrogen and hydrogen.
As a result, many patents have been issued for the purifying processes used for raw gas
supply. The adsorption characteristics of gases occupying an acceptable range of raw gas
composition [20] are detailed in the patent (US-4695442).

Finally, by evaluating the global scientific effort to advance ammonia plants in terms
of its contribution to enhancing ammonia production, it could be concluded that the
effort can be categorized into six main categories: (1) reducing ammonia-production-
related energy consumption through renewable and sustainable approaches; (2) techno-
economics of ammonia production; (3) proposing alternative approaches to supply nitrogen
and hydrogen to the process; (4) advancing ammonia production catalysts; (5) altering
the cycle configuration (design or/and operating conditions); (6) environmental aspects
and ammonia-production-related carbon reduction. Those categories were observed by
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evaluating the aims and the objectives of 130 research articles [51–180] published between
2015 and 2022, as summarized in Table 6 and Figure 12.

Table 6. Categories of advancing ammonia plants.

Category References

(1) Reducing ammonia-production-related energy consumption through
renewable and sustainable approaches. [51–76]

(2) Techno-economics of ammonia production. [77–96]
(3) Proposing alternative approaches to supply nitrogen and hydrogen to
the process. [97–118]

(4) Advancing ammonia production catalysts. [119–143]
(5) Altering the cycle configuration (design or/and operating conditions). [144–168]
(6) Environmental aspects and ammonia-production-related carbon reduction. [169–180]
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Figure 12. The scientific trend of advancing ammonia plants (in% with respect to the total number of
the evaluated literature [51–180]).

As shown in Figure 12, driven by the industrial support for enhancing techno-
economic sustainability, increasing profitability, reducing energy consumption and ac-
celerating the ammonia production process, the research categories (1–5) received and
attracted the most scientific effort and interest. Within the evaluated references [77–96],
the highest potential to enhance the techno-economic sustainability of producing am-
monia could be found in green-ammonia production processes using green hydrogen
and integrating biomass gasification to ammonia plants (namely biomass- and power-to-
ammonia). As reported by Reference [181], the bio-mass-to-ammonia ratio reached above
450 USD/ton ammonia production cost with a payback time of over 6 years, higher than
those of methane-to-ammonia (400 USD/ton, 5 years).

On the other hand, advances in ammonia in category 6 (the environmental aspects
and ammonia-production-related carbon reduction) received the least interest.

6. Conclusions

As a preliminary stage when adjusting or proposing new techniques for ammonia
plants, it is crucial to critically assess the literature while considering a variety of aspects (in-
cluding energy consumption, economically sustainable methods of extracting the necessary
hydrogen and nitrogen, the plant’s arrangement and operating conditions and efforts to
reduce the process-related carbon emissions). Hence, this paper evaluates the global effort
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to enhance ammonia plants and looks at the progress, particularly regarding these aspects.
This paper assesses the currently available datasets to find the gap in the knowledge and
highlight aspects which have not yet been addressed. Within the literature evaluated in
this study, the majority of the efforts to advance ammonia plants focused on reducing the
energy consumption, implementing alternative methods to extract the necessary hydrogen
and nitrogen, and altering the cycle arrangement and operating conditions to increase
the plants’ compactness and lifetime. However, regarding carbon reductions within the
ammonia production process, efforts remain minimal compared to the global scientific and
industrial efforts in other operating aspects.
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Nomenclature

ASU Air Separation Unit
ATR Autothermal Reformer
AWE Alkaline–water electrolysis
BWF Boiler Water Feed
FTR Fired Tubular Reformer
HB Haber–Bosch
HP High-Pressure
HTS High-Temperature-Shift
ICI Imperial Chemical Industries
IP Intermediate pressure
IS Isothermal Shift
i-WGS Isothermal water gas shift
KAAP KBR Advanced Ammonia Processing
KBR Kellogg Brown and Root
KRES KBR Reforming Exchanger System
LAC Linde–Ammonia Concept
LTS Low-Temperature Shift
MDEA Methyldiethanolamine
MEA Monoethanolamine
MTPD Metric Tons Per Day
MTS Medium-Temperature Shift
MWK M.W. Kellogg
POX Partial oxidation
PRF Primary reformer furnace
PSA Pressure swing adsorption
SMR Steam–Methane-Reforming
SNG Syngas
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SRKC Steam Rankine Cycle
SYN Synthesis
TKIS ThyssenKrupp Industrial Solutions
WGS Water Gas Shift
SMR Steam–Methane-Reforming
HP High-Pressure
BWF Boiler Water Feed
HB Haber–Bosch
HTS High-Temperature Shift
LTS Low-Temperature Shift
WGS Water–Gas Shift
MDEA Methyldiethanolamine
MTPD Metric Tons Per Day
MEA Monoethanolamine
SRKC Steam Rankine Cycle
POX Partial oxidation
SYN Synthesis
ATR Autothermal Reformer
MTS Medium-Temperature Shift
PSA Pressure swing adsorption
TKIS ThyssenKrupp Industrial Solutions
AWE Alkaline–water electrolysis
ASU Air Separation Unit
SNG Syngas
KBR Kellogg Brown and Root
MWK M.W. Kellogg
ICI Imperial Chemical Industries
KRES KBR Reforming Exchanger System
KAAP KBR Advanced Ammonia Processing
MTPD Metric Tons Per Day
LAC Linde–Ammonia Concept
FTR Fired Tubular Reformer
i-WGS Isothermal water gas shift
IP Intermediate pressure
IS Isothermal Shift
PRF Primary reformer furnace
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