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Editorial on the Research Topic
The role of calcium and calcium binding proteins in cell physiology and
disease

Ca2+ is possibly the most versatile and universal signalling agent in cell physiology. It
controls several biological processes: it triggers life at fertilization, and controls the
proliferation, development and differentiation of cells, as well as regulating diverse
processes such as secretion, metabolism, muscle contraction, neuronal excitability,
learning and memory, and cell death (Berridge et al., 2000). To coordinate all of these
functions, Ca2+ signals need to be flexible yet precisely regulated in time and space. This is
achieved by a variety of ion channels, pumps, transporters and Ca2+ binding proteins. This
results in complex, dynamic signals that can be easily measured using chemical dyes
(Grynkiewicz et al., 1985) when changes are of a global nature, but when they are more
localised (i.e., Ca2+ signalling micro or even nanodomains (Bootman and Bultynck, 2020),
they become more difficult to quantify by standard methods.

In their review, Nugues et al. discuss this in the context of Ca2+ signals that regulate the
process of mitosis. Detection of these short-lived, spatially limited signals was only made
possible due to the development of genetically encoded Ca2+ indicators. These probes
capitalise on the Ca2+-binding properties of calmodulin (CaM), together with green-
fluorescent protein-based fluorophores and can be targeted to specific organelles or
cellular compartments to measure localised Ca2+ changes (Heim and Tsien, 1996;
Miyawaki et al., 1997). The review describes how these reporters could be used to
pinpoint Ca2+ sensitive processes in mitosis, such as when GCaMP6 tethered to actin,
nucleated at centrosomes and detected Ca2+ signals thought to play a role in orienting the
mitotic spindle (Farina et al., 2016; Helassa et al., 2019; Lagos-Cabre et al., 2020). The authors
also emphasise the importance of Ca2+ binding proteins in mitosis, dysregulation of which
may affect protein kinase activation (Lee et al., 2014; Zhou et al., 2019), altered gene
expression and ultimately oncogenesis and the development of anti-cancer drugs which
target Ca2+ signalling components is a burgeoning field of therapeutics (Roderick and Cook,
2008; Monteith et al., 2017).

The process of store-operated Ca2+ entry (SOCE), where depletion of intracellular Ca2+

stores—sensed and communicated by stromal interaction molecules (STIMs)—triggers Ca2+
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influx via Orai channels, is a fundamental mechanism in
maintaining cellular Ca2+ homeostasis. In this Research Topic,
Manning et al. review the role of SOCE in skin physiology and
pathophysiology. In the skin, SOCE regulates the processes of
proliferation, differentiation, melanogenesis and sweat secretion
(Vandenberghe et al., 2013; Stanisz et al., 2016; Evans et al.,
2018) and changes to the molecular components of SOCE can
lead to pathological outcomes, e.g., psoriasis, anhidrosis and
potentially melanoma (Leuner et al., 2011; Hooper et al., 2015;
Concepcion et al., 2016). In their brief research report Manning et al.
describe the clustering of TRPC1 (Transient Receptor Potential
Cation Channel Subfamily C Member 1) channels, which
mediate the Ca2+ influx that drives the differentiation of
keratinocytes (Fatherazi et al., 2007; Beck et al., 2008; Müller
et al., 2008). Using immunogold transmission electron
microscopy of keratinocyte plasma membrane sheets, they
showed evidence that during store depletion/SOCE, TRPC and
Orai1 subunits form separate clusters that move towards each
other. The authors suggest that the grouping of TRPC channel
subunits supports the theory that STIM interacts with TRPC1 to
initiate this current, with the formation of Orai-TRPC-STIM
complexes and the insertion of constitutively active TRPC
channels being less likely mechanisms of activation.

The second brief research report in this Research Topic concerns
the discovery that ryanodine receptor Ca2+ release channel
dysfunction in a neuromuscular disorder [malignant
hyperthermia (MH)] and a cardiac arrhythmia syndrome
[catecholaminergic polymorphic ventricular tachycardia (CPVT)],
result from similar molecular mechanisms. Using chemical cross-
linking reactions, Zhang et al. demonstrated intra-subunit
interactions within the tetrameric structure of the channel are
disrupted as a result of mutation which causes amino acid
substitution in the N-terminus of the protein [R163C in the
skeletal muscle isoform, RyR1 (Quane et al., 1993) and R169Q in
the cardiac isoform, RyR2 (Hsueh et al., 2006)]. This interaction is
thought to be critical in maintaining the closed state of the channel,
and when disrupted leads to a ‘Ca2+ leak’, culminating in a
pathological outcome in both disorders (Tung et al., 2010;
Zissimopoulos et al., 2013; Zissimopoulos et al., 2014). Moreover,
they also showed that it was the positive charge of the substituted
amino acid that was instrumental in maintaining that interaction,
since the introduction of other positively charged amino acids at the
subunit interface allowed domain tetramerization to occur as
normal. This evidence lends credibility to the cryo-electron
microscopy structures used to map the subunit interfaces (des
Georges et al., 2016; Peng et al., 2016), and also suggests that the
development of pharmacological tools that targets this interaction
may be beneficial therapeutically.

RyR2 dysfunction is a known arrhythmia trigger and Hamilton
and Terentyev discuss how endoplasmic reticulum (ER) stress can
affect this phenomenon, as well as regulation of sarco (SR)/
endoplasmic reticulum Ca2+ store homeostasis in general. It

seems logical that, since the SR/ER is the site of protein
processing, stress-responses in this organelle can have a profound
and ultimately pro-arrhythmic effect on Ca2+ handling proteins and
ion channels. The unfolded protein response (UPR) is a signal
transduction system that upregulates various stress-response
proteins (e.g., chaperones) in response to conditions (e.g.,
ischaemia, changes in SR Ca2+ levels) that impact the efficiency
of protein folding in the rough ER (Glembotski, 2008). While in the
short term this response increases protein folding capacity, chronic
ER stress can mean that the UPR results in excessive production of
reactive oxygen species (ROS), that can in turn modify SR/ER
proteins, including RyR2 and the SR Ca2+ ATPase pump, thereby
altering SR Ca2+ homeostasis (Chin et al., 2011). This can be
achieved directly, via redox modification of cysteines (Lancel
et al., 2009; Cooper et al., 2013; Hobai et al., 2013)—which in
turn can also affect accessory protein mediated regulation of
function (Nikolaienko et al., 2020; Hamilton et al., 2022), or by
aberrant regulation via ROS-activated protein kinases (Liu et al.,
2014; Hegyi et al., 2021). Given that such UPR-dependent changes
have been shown to contribute to cardiomyopathy, heart failure and
ischaemic injury as well as arrhythmogenesis (Glembotski, 2008; Liu
et al., 2014; Wiersma et al., 2017; Liu et al., 2021), it will be essential
to study further the relationship between Ca2+ handling and SR/ER
stress proteins may be when developing new therapeutic approaches
for cardiovascular disease.

The articles included in this Research Topic reinforce that Ca2+

signalling remains a growing area of research with still much scope
for the development of both diagnostic and therapeutic tools that
target its component parts.
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