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A B S T R A C T   

Damage or flaws in aeronautical structures compromise performance and safety; therefore, it is very important to 
identify approaches that can be used for damage detection. In this paper, a composite laminated plate with 
bonded aluminium stiffeners, which is part of a representative wing structure, is analysed using the finite 
element method. Debonding is assumed to exist in the connection between the plate and one stiffener, an area 
found to be critical in previous numerical and experimental static analyses, and several dynamic analyses are 
carried out. First, it is found that the modes of vibration are only marginally affected by the debonds considered. 
Then loads that vary harmonically in time are applied to the stiffened panel and contact restrictions between 
damaged surfaces are imposed. Time histories, phase plane plots, frequency spectra and Poincaré sections of the 
response in diverse points are extracted. It is verified that these non-linear dynamics based tools allow for the 
detection of detachments in the connection between stiffeners and composite laminated plates. The response is 
analysed at several points to see if any are better suited to detect detachment. Different excitation frequencies are 
attempted and it is shown that excitation at half a resonance frequency has advantages.   

1. Introduction 

Composite laminated panels with stiffeners are often applied in en
gineering, due to their large resistance to buckling, high specific stiffness 
and strength [1–4]. Flaws, which can be produced during the 
manufacturing process or the service life [5], compromise the integrity 
of these structures. In the framework of the Optimised Design for In
spection (ODIN) action [6] of the European Cooperation in Science and 
Technology (COST) [7], a structure that represents an airplane wing 
component was designed, manufactured and tested [8]. Numerical and 
experimental analyses of this structure indicate that the bonded con
nections between flat composite panels and aluminium stiffeners are 
critical regions [8,9]. One of these laminated composite panel reinforced 
with partially debonded aluminium stiffeners is numerically analysed in 
the present paper. It is intended to understand if the non-linear dynamic 
behaviour due to this type of flaw is useful for vibration-based structural 
health monitoring (VSHM). 

VSHM technologies have the potential to detect flaws and enable 
online inspection [10–12]. Some VSHM methods are based on the fact 
that the local reduction of stiffness caused by damage modifies modal 

parameters [13–16]. However, the natural frequencies of vibration may 
lack sensitivity to damage [11,17–19], since damage starts as a local 
phenomenon that does not significantly affect global stiffness. Accord
ing to a review by Tsyfansky and Beresnevich [20], a damaged area of 
15–20% on the cross section of a component may lead to a reduction of 
the natural frequencies smaller than 1.5%. The mode shapes of vibration 
are more sensitive to damage than natural frequencies, but are more 
difficult to obtain due to the need for many sensors. Progress has been 
made to solve this problem by using contactless instrumentation, such as 
a scanning laser Doppler vibrometer [21]. Alternative methods, that do 
not rely directly on modal data, have been developed, as in [22], where 
the mutual information between two signals measured on a vibrating 
structure is suggested as a delamination detection method. 

Modal based VSHM approaches require initial undamaged data as a 
reference for comparison, that may not be available [15], and are usu
ally based on linear models. However, yielding, cracks, delaminations 
and friction lead to non-linear dynamic behaviour in damaged structures 
[14,15,18,20,21,23–25,63]. 

Response-based methods are generally based on the comparison of 
measured vibration signals from the undamaged and the damaged 
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structures. If the undamaged system is linear, the undamaged results 
may not even be needed. In comparison with modal-based methods, 
response-based methods have the additional benefit of being more 
sensitive to small flaws and less affected by noise, operational and 
environmental conditions [15,24]. Tools to analyse motions [26] that 
can be used to detect damage are addressed in the next paragraphs. 

Time histories of the response of undamaged and damaged structures 
can be compared. Alternatively, the response can be compared with the 
input signal, using the fact that flaw induced non-linearities lead to the 
appearance of harmonics in the response to harmonic inputs [14]. Dis
placements are frequently shown in numerical analysis, but accelera
tions, which are more sensitive than displacements to the presence of 
harmonics, because the displacement amplitude of each harmonic is 
multiplied by the square of the respective frequency [25], are often 
measured in experimental testing and can be advantageously employed. 

Trajectory projections in a phase plane, typically in a displacement 
versus velocity graphic, can also be used. Phase space trajectories can be 
complex but provide relevant information. Reaching steady state, the 
trajectories converge to an invariant subspace, the attractor, which is 
easier to characterise than the full response. A comparison between the 
results of the undamaged and the damaged structure allows conclusions 
to be drawn [24]; invariants of the attractors, as Lyapunov exponents 
and state space dimensions can be employed. In statistical approaches, 
the statistical distribution of the attractor’s points is used to extract 
damage sensitive features. For instance, the skewness and the variance 
have shown sensitivity to damage [27,28]. 

A Poincaré section is a projection of the phase space response in a 
lower dimensional space. Often, the Poincaré section contains a 
sequence of points at moments in time t, equally spaced, with t a mul
tiple of the forcing periodic function’s period T. If the response is 
characterised by a period nT, the section contains n different points, if it 
is quasi-periodic, it defines a line and if it is chaotic an infinite number of 
points [14,29]. Poincaré sections can be quite sensitive to changes in the 
system and contain far fewer data than phase plane plots or time his
tories. To profit from this, Manoach and co-workers developed damage 
indexes based on Poincaré sections [21,24,30]. 

Finite element models provide a means to test the applicability of 
structural health monitoring methods to specific structures. Cho and 
Kim [31] applied a higher-order zig-zag theory to analyse the effect of 
delamination on natural frequencies and buckling loads. Hu et al. [32], 
employed a higher-order shear deformation theory to investigate how 
modal properties are affected by delamination. Kim et al. [33] resorted 
to a layerwise theory for a similar purpose. Burlayenko and Sadowski 
[34–39] analysed in detail linear and non-linear vibrations of sandwich 
plates with debonded layers using Abaqus®. Natural frequencies, fre
quency response curves, phase plane plots and Poincaré sections were 
extracted from the time history signals. In [40] and [41] non-linearities 
due to large displacements and to contact were taken into account. 

In addition to [8,9], several experimental and numerical studies have 
found that stiffened panels are prone to debonding between the stiffener 
and the panel, e.g. [15,42–47]. In [42] a fracture mechanics analysis of 
skin-stiffener debonding is carried out using shell finite elements. In 

[44] numerical and experimental investigations are performed on the 
detection of defects in composite T-stiffened panels using vibration 
modal analysis. The mode shape curvature was found to be a more useful 
damage indicator than the actual mode shapes. An experimental study 
on the damage evolution under fatigue load and on the shear-after- 
impact-fatigue behaviour of stiffened composite panels is presented in 
[45]. One of the main types of failure found was debonding between the 
stiffeners and the skin. In [48], a semi-analytical approach to analyse the 
consequences of skin-stiffener bonding flaws on the linear buckling and 
vibration behaviours of T-stiffened is presented. Large debonding de
fects significantly affect the critical linear buckling load and the first 
natural frequency, but the same is not true for debondings of smaller 
areas. The progressive separation of the skin and stringer in stiffened 
CFRP panels under compression is analysed in [46]. Tan et al. [47] also 
found skin/stiffener interface debonding in their investigation of T- 
stiffened composite panels subjected to impacts. Low-velocity impact 
tests and compression after impact tests were conducted on a composite 
stiffened panel in [49]; debonding between the stiffener and the skin 
panel was one of the failure mechanisms found. Carminati and Ricci 
[15] analyse an aluminium rectangular plate with five T-shaped stiff
eners reinforcing the longitudinal direction. Three damaged scenarios 
are recreated by the absence of connections between one stiffener and 
the base plate. 

To the best of the authors’ knowledge, a published analysis of the 
non-linear dynamics of stiffened plate with partially debonded stiffeners 
– the goal of this work – does not exist. 

The structure analysed in this paper is presented in Section 2. The 
theoretical assumptions adopted in the implementation of the finite 
element model in Abaqus® are justified in Section 3. Then, in Section 4, 
modal and response-based analysis are applied, namely resorting to 
natural frequencies, mode shapes, time histories, phase plane plots, 
Poincaré sections and frequency spectra. Section 5 concludes the paper 
with a summary of the findings that can be useful to detect damage in 
stiffened composite panels. 

2. Structure to analyse 

The panel analysed is a rectangular plate, reinforced with T shaped 
stiffeners as represented in Fig. 1. The plate has 18 stacked plies 
(-45◦,0◦,45◦,0◦,90◦,0◦,-45◦,0◦,45◦)s of transversely isotropic carbon 
fibre-epoxy with reference USN150B [50]; all plies have the same 
thickness. The five stiffeners are in aluminium 6063A T6. Araldite® 420 
A/B is used to bond the stiffeners to the panels. 

A linear elastic constitutive material relation is assumed. The elastic 
properties and density of the aluminium alloy and of Araldite® 420 A/B 

Fig. 1. (a) Stiffened panel; (b) plate and stiffener cross section (not to scale). Dimensions in mm.  

Table 1 
Material properties of aluminium alloy and of Araldite® 420 A/B.  

Material E(MPa) ν ρ(g.cm− 3)

Aluminium 6063AT6 70000  0.33  2.70 
Araldite® 420 A/B 1850  0.3  1.2  
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are summarised in Table 1. E stands for Young’s modulus, ν for Poisson’s 
ratio and ρ for mass density. The properties of aluminium are from [51] 
and the ones of Araldite® 420 A/B are from [52] and [53]. Both ma
terials are considered isotropic. 

Not all the necessary properties of USN150B were found in manu
facturer datasheets; however, a detailed datasheet of a very similar 
composite, USN150A, was. Knowing that USN150A and USN150B only 
differ in the fibre content, the missing mechanical properties of 
USN150B were inferred using micromechanics-based models. Details on 
these deductions are provided in [9]; the values of the diverse properties 
are given in Table 2. Eii and Gij represent, respectively, the Young’s 
modulus and shear modulus related to directions i and j; these are: the 
fibre direction, 1; the direction perpendicular to the fibre, in-plane (2); 
the direction perpendicular to the fibre, out-of-plane (3). These prop
erties were compared with the existing literature and with tests carried 
out in the framework of COST action 18,203 [6,9]. 

Numerical and experimental static analysis were carried out on the 
whole representative wing structure and on the composite panel with 
stiffeners, with the goal of identifying regions of the panel where dam
age is likely to occur [8,9]. These analyses indicate that the adhesive 
connection between the composite plate and the stiffener is a critical 
region, due to debonding at the Araldite® 420 A/B layer. The fragility of 
this region is due to the large mismatch bending that results from the 
large difference in the stiffness of each part. Thus, although other types 
of damage may appear, depending on loads and boundary conditions, 
we will here focus on debonding between the composite plate and the 
stiffeners. 

3. Finite element model and solution of equations of motion 

Abaqus®/Standard code [54] was used to represent the stiffened 
panel. The composite plate was discretised by reduced integrated 8-node 
continuum shell elements SC8R, the stiffeners by 8-node hexahedral 

continuum solid elements with incompatible modes C3D8I. The latter 
elements have the advantage of eliminating shear locking and allevi
ating volumetric locking. The meshes are conformal. Reference [54] 
provides more information on these finite elements, as well as on the 
methods employed to consider contact and to solve the equations of 
motion, which are briefly described in the following paragraphs. 

Since we are interested in understanding the differences introduced 
by debonding in the dynamic behaviour of stiffness panels, it is impor
tant to consider contact between debonded surfaces. A brief description 
of the contact kinematics and contact conditions of interest to the pre
sent analysis is provided here. A comprehensive theoretical background 
is given in [55–57]. Damage progress is not addressed because it is not 
part of the objectives of this analysis. 

A typical general formulation is employed, where contact in
teractions between two deformable bodies, Ωs, Ωm ∈ R3, Fig. 2, are 
assumed. Index m indicates the so-called master body, whilst index s 
corresponds to the slave body. 

The boundaries of the two bodies, ∂Ωi, i = m,s, are divided into three 
disjoint subsets 

∂Ωi = Γu,i +Γσ,i +Γc,i (1)  

where Γu,i stands for the Dirichlet boundary where the displacements u 
are imposed, Γσ,i for the Neumann boundary where the tractions t are 
applied and Γc,i for the potential contact surface. A characteristic of 
contact problems is that the active contact surface Γa,i ∈ Γc,i is unknown, 
may change over time and thus must be determined as a part of the 
solution process. 

To measure the proximity, potential contact, and penetration of the 
two bodies, a geometric measure named gap function is introduced. It 
can be defined as 

gn(xs, t) = − nc • [xs − x̂m((xs, t) ) ]. (2) 

In it, x̂m is the contact point on the master surface associated with 
each point xs of the slave surface and nc is its contact normal unit vector. 
The identification of the contact point on the master surface may be 
performed by a closest point projection 

x̂m = arg min
xm ∈ Γc,m

‖xs − xm‖. (3) 

The argminf(x) function provides the input x that results in the 
minimum of f(x). So, in this context, the previous equation returns the 
point xm, from the potential contact master surface, closest to point xs of 
the slave surface. The Euclidean norm is employed in (3). 

Neglecting any tangential interactions in the contact (frictionless 
contact), the contact traction on the slave surface tc,s can be written by 

tc,s = pnnc, (4)  

where pn is the normal contact pressure. Due to the action-reaction 
principle on the contact interface, the contact traction on the master 
surface is tc,m = − tc,s. 

For the normal contact constraints, the Karush–Kuhn–Tucker (KKT) 
conditions are used 

gn
(
x0, t

)
≥ 0, (5)  

pn
(
x0, t

)
≤ 0, (6)  

pn
(
x0, t

)
gn
(
x0, t

)
= 0. (7) 

These define a non-adhesive and frictionless contact. Equation (5) 
represents the geometric constraint of non-penetration and Equation (6) 
implies that only compressive stresses are allowed in the contact zone. In 
conjunction with the former equations, Equation (7) forces the gap to be 
closed when contact pressure is not zero (contact occurs) and the contact 
pressure to be zero when there is no contact (gap is open); it also allows 
for the transition case where both the pressure and the gap are null. 

Table 2 
USN150B’s material properties.  

E11 (GPa) E22 =

E33(GPa) 
G12 =

G13(GPa) 
G23(GPa) ν12 =

ν13 

ν23 ρc(g⋅cm− 3)  

131.0  8.0  4.5  3.5  0.29  0.47  1.544  

Fig. 2. Contact between two bodies, Ωs and Ωm, and respective nomenclature.  

B. da Silva Henriques et al.                                                                                                                                                                                                                   



Composite Structures 321 (2023) 117233

4

In the context of contact dynamics, the following persistency con
dition must be considered 

pn
(
x0, t

)
ġn
(
x0, t

)
= 0, (8)  

where ġn
(
x0, t

)
is the material time derivative of the gap function. 

In the present model, the constraints are enforced using the Lagrange 
multiplier method [57], with the Lagrange multipliers forming vector λ. 

Using the interpolations of displacements [9] and assembling the 
contributions from all elements, the final equation of motion can be 
written as 

Md̈+Fint(d) = Fext(t) − Fc(d, λ). (9)  

where M is the global mass matrix, Fint is the global vector of internal 
elastic forces, Fext is the global vector of external forces and Fc is the 
global vector of the contact forces. d̈ and d are global vectors of nodal 
values of accelerations and displacements (generalised coordinates), 
respectively. 

To take energy dissipation into account, a global damping matrix C is 
introduced in Equation (9) 

Md̈+Cḋ+Fint(d) = Fext(t) − Fc(d, λ). (10)  

where ḋ is the global vector with nodal values of velocities. As the other 
matrices, the global damping matrix can be obtained by assembling the 
contribution from each elemental damping matrix Ce. Using a Rayleigh- 
type damping, these are a linear combination of the elemental mass 
matrix Me and the elemental initial tangent stiffness matrix [58] for each 
element Kinit

e 

Ce = αeMe + βeKinit
e , (11)  

where αe and βe are proportional damping constants of each element. 
Equation (10) denotes a system of nnod × ne non-linear ordinary dif

ferential equations. These must be subjected to initial conditions, to 
boundary conditions on Γu,h and to impenetrability conditions, equa
tions (5)-(7), on Γc,h, with subscript h standing for ‘finite element 
approximation’. 

The discretisation of the contact interface is accomplished by the 
contact algorithm, responsible for the discretisation of the virtual work 
and for the enforcement of the contact constraints. In this paper, a 
surface-to-surface contact algorithm was applied. Compared to node-to- 
surface discretisation, surface-to-surface discretisation provides more 
accurate stress and pressure results and is less sensitive to master and 
slave surface designations. However, it has a larger computational cost 
[54]. 

The Hilber-Hughes-Taylor (HHT) temporal integrator [59] is 
employed so solve the equations of motion. This implicit scheme is 
second order accurate, unconditionally stable and with controllable 
numerical damping. The α -dissipation is introduced in the integration 
by shifting the evaluation of the internal, damping and contact forces to 
a generalised midpoint tn+αHHT , with αHHT ≤ 0, so that Equation (10) is 
replaced by [37] 

Md̈n+1 +Cḋn+αHHT +Fint(dn+αHHT ) = Fext,n+αHHT − Fc(dn+αHHT , λn+αHHT ), (12)  

with the initial conditions d0 = d̂ and ḋ0 =
˙̂d, given displacement 

boundary conditions and boundary conditions updated due to devel
oping contact. 

4. Analysis of the reinforced composite panel dynamics 

4.1. Introduction 

In this section, dynamic analyses are performed on the healthy and 
damaged reinforced composite panel. First, section 4.2, the modes of 

vibration are obtained. Then, damping parameters are established in 
section 4.3. Lastly, section 4.4, the influences of the flaw size, the 
measurement location and the excitation frequency on non-linear dy
namics of the structure are evaluated. 

4.2. Modal analysis 

The flaw is inserted in the central region of the structure, between 
the composite panel and the stiffener. This is implemented by not tying 
this region as presented in Fig. 3; contact is not considered in this sec
tion, so this analysis only provides an indication to the effect of 
debonding in the modes of vibration. 

Flaws are quantified by 

γ =
damaged area

total stiffeners area
× 100 =

lin

25
. (13) 

The boundary conditions are as in Fig. 4, where the structure is 
sustained on two roller supports along its width and has pinned points in 
the middle of edges parallel to the x and y directions to avoid a rigid 
body motion in the y and x direction, respectively. Lanczos method 
[54,60] is applied to compute the eigenvalues. 

Table 3 lists the first six natural frequencies for simulations with 

Fig. 3. Tie interaction between the composite panel and the stiffeners. In pink 
the slave surface and in red the master one; the central damaged region, length 
lin, is not tied. The black dots mark points of interest for the analysis of sec
tion 4.4. 

Fig. 4. Boundary conditions in the modal analysis of the structure.  

Table 3 
First six natural frequencies obtained for different flaw sizes.  

ωi(rad.s− 1) γ = 0% γ = 0.4% γ = 2% γ = 4% γ = 8% 

i = 1  1298.8  1298.8  1298.8  1298.8  1298.4 
i = 2  1298.9  1298.9  1298.9  1298.9  1298.6 
i = 3  1357.5  1357.5  1357.2  1355.6  1333.6 
i = 4  1425.2  1425.1  1425.0  1424.2  1418.6 
i = 5  1567.6  1567.6  1567.5  1566.6  1556.3 
i = 6  1777.0  1777.0  1777.0  1777.0  1776.9  
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different flaws. 
The natural frequencies of the undamaged (γ = 0%) structure are the 

largest, because flaws cause a loss of the structure’s stiffness. However, 
even the largest of the flaws considered has an extremely small influence 
on most natural frequencies of vibration. The difference between the 
values of the first natural frequency with a flaw defined by γ = 8% and 
without flaw is only 0.031%. With lower sized flaws, the values of some 
natural frequencies of vibration are, at least up to the 5th digit, equal to 
the ones of the undamaged structure. In engineering practice, it would 
be nearly impossible to detect flaws from the majority of the natural 
frequencies on Table 3. 

Only the third natural frequency of the structure with γ = 8% differs 
more than 1% from the respective frequency of the undamaged struc
ture. The reason for this distinction is that larger displacement ampli
tudes are attained in the damaged region when the stiffened panel 
vibrates in the third mode of vibration, Fig. 5 (this figure only contains 
the mode shapes of vibration of the undamaged structure; the mode 
shapes obtained for the damaged structure are similar). This indicates 
that one can use the combined information from natural frequencies and 
natural mode shapes of vibration to estimate damage location. Still, the 
third natural frequencies of less damaged structures (from γ = 0.4% to 
γ = 4%) differ very little or not at all (within five digits) from the ones of 
the undamaged panel, being the difference lower than 0.15%. 

4.3. Damping parameters 

In the absence of experimental modal analysis on the structure, 
values determined from experiments on similar materials were used to 
establish a first approach for proportional damping constants α and β of 
equation (11). The initial values of α and β for the USN150B composite 
plate come from experimental modal analysis on a carbon-epoxy 

composite plate [61]. The ones for the stiffeners in aluminium 6063AT6 
are calculated using experimental data from an aluminium beam [62]. 
We are here interested in analysing steady-state oscillations and 
increasing damping decreases the computational time required to ach
ieve these. Therefore, after verifying in a few simulations that the 
essential outcomes of this work would not be affected by such decision, 
the values of the proportional damping constants were doubled. The 
parameters employed are listed in Table 4. 

Fig. 5. ith mode shape of vibration: (a) i = 1; (b) i = 2; (c) i = 3; (d) i = 4; (e) i = 5; (f) i = 6.  

Table 4 
Proportional damping parameters.  

Material α(rad.s− 1) β(s.rad− 1)

USN150B  7.54 6.78× 10− 6 

Aluminium 6063AT6  30.28 0  

Fig. 6. Harmonic loading applied on the central region in the structure.  
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4.4. Dynamic response of damaged reinforced panel 

4.4.1. Load, boundary conditions and solver parameters 
Now, a harmonic load is applied in the central region of the com

posite panel – Fig. 6. The amplitude is 50 N, the frequency is defined in 
each of the following sub-sections. The boundary conditions are the ones 
of the modal analysis (Fig. 4). 

The parameters used in the HHT time integrator, Table 5, are the 

Table 5 
Parameters for the HHT integrator used in the dynamic analysis of the structure.  

αHHT βN γN  

− 0.41421  0.5  0.91421  

Fig. 7. Time histories, excitation at ω = 500 rad.s− 1, top central point, flaws: (a) γ = 0.4%; (b) γ = 2%; (c) γ = 4%; (d) γ = 8%.  

Fig. 8. Phase plane plots, excitation at ω = 500 rad.s− 1 flaws: a) γ = 0.4%; b) γ = 2%; c) γ = 4%; d) γ = 8%.  
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ones suggested by Abaqus® for contact situations, benefitting from 
“numerical dissipation to damp out any spurious participation of the 
higher modes” [54,59]. Geometrical non-linearities are neglected, 
because large displacements are not achieved. 

Convergence tests were carried out to estimate adequate time in
crements, Δt. Different numbers of points per excitation wave were 
considered and applied in the following equation: 

Δt =
2π

ω • nr points
. (14) 

Then, a Δt that appeared to be smaller than necessary was employed, 
to assure accuracy. In the undamaged structure case, 40 points per 
excitation cycle provided an accurate and smooth description of the 
response, with a reasonable simulation time. Contact between surfaces 

Fig. 9. Frequency spectra of responses to excitation at ω = 500 rad.s− 1 with flaw: a) γ = 0.4%; b) γ = 2%; c) γ = 4%; d) γ = 8%.  

Fig. 10. Poincaré sections, excitation ω = 500 rad • s− 1, γ = 0%; flaws: a) γ = 0.4%; b) γ = 2%; c) γ = 4%; d) γ = 8%.  
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of the damaged reinforced panel introduces higher-order harmonics 
Hence, the number of points per cycle used in each time simulation 
increases with the flaw size: 120 points for γ = 0.4%, 160 points for γ =

2%, 200 points for γ = 4% and 240 points for γ = 8%. Furthermore, it 
was verified that the duration of each simulation is enough for the dy
namic response to reach the steady-state stage. 

4.4.2. Numerical results of the dynamic analysis on the structure –damage 
size influence 

Multiple simulations with different flaws, characterised by param
eter γ, Equation (13), were run: γ = 0.4%, γ = 2%, γ = 4% and γ = 8%. 
Contact interactions were considered between the composite panel and 
the central stiffener where a flaw exists – Fig. 3. The simulation hence 
mimics interaction between the detached surfaces, without interpene
tration. Particular interest will be paid to the displacements and veloc
ities in two points in the centre of the detached area. The latter two 
points are represented by black dots in Fig. 3. 

Figs. 7-10 display the time histories, phase plane plots, frequency 
spectra and Poincaré sections in the top central point of the composite 
panel. The damaged structure plots are represented together with the 
ones from the undamaged structure. 

Several conclusions may be drawn from the time histories (Fig. 7): 
irrespective of the flaw size, the response remains periodic with the 

period of the excitation; 
damage introduces an asymmetry in the response, in relation to the 

static equilibrium configuration; this occurs because when displace
ments are positive the plate and the stiffener separate and the 
displacement of the plate achieves large magnitudes; 

in the part of the cycle where displacements are negative, the be
haviours of the damaged and undamaged structure are quite similar; the 
plate and the stiffener appear –we will see in other analyses that it is not 
always so - to remain in contact, as if the flaw was not there; 

damage leads to responses that are not harmonic, as more evidently 
happens when γ = 8%; 

the two previous findings are due to the non-linearity of the damaged 
structure. The greater the flaw, the more important the non-linearity, 
increasing the difference between the responses. Hence, with smaller 
damaged areas it is only possible to perceive the asymmetry of the 
response, but for larger damaged areas it is also noticeable that the wave 
loses its sinusoidal shape. 

The phase plane trajectory (Fig. 8) corresponding to the undamaged 
structure is a perfect ellipse, centred at the origin: a linear response. 
With the introduction of damage, the biggest differences in the phase 
plane plot occur for positive displacements due to the discrepant stiff
nesses of the components, which detach in part of the cycle. In some 
phase plots, differences between the undamaged and damaged structure 
in the negative displacement part of the cycle are also visible. In com
parison to the displacement time histories, the introduction of velocity 
in the analysis amplifies the importance of higher harmonics, turning 
flaws more conspicuous. 

Regarding the importance of the flaw size in the phase plane plots, 
for a small damaged area (here represented by the γ = 0.4% case) the 
difference to the undamaged results is visible but discreet. For larger 
damaged areas, the phase plane plot becomes more complex and the 
asymmetry with respect to the axis defined by null velocity increases. 
The asymmetry occurs because when velocities are positive the two 
parts of the structure detach, whilst when the velocity is negative, the 
two parts collide and then reattach or very nearly so. The impacts lead to 
abrupt variations in velocity, observable in all phase plane plots but 
which become more patent as the flaw size increases. 

To obtain the frequency spectra of Fig. 9, the time histories calcu
lated are processed by using the Fast Fourier Transform (FFT) within the 
MATLAB® software environment. The frequency axis is normalised, by 
dividing frequencies by the excitation frequency ω = 500rad.s− 1. 

The response of the undamaged structure is harmonic. In the simu
lations with damage, the fundamental harmonic is still the most 

important, but higher-order harmonics that are multiples of the excita
tion frequency exist. As the flawed area increases, so does the contri
bution of higher harmonics. These have two physical explanations: (1) 
the variation of stiffness along a cycle of vibration, as detachment/ 
reattachment occurs; (2) the collisions between the detached surfaces. 

In the γ = 0.4% simulation the amplitudes of higher-order harmonics 
are very small. In the γ = 2% and γ = 4% simulations, higher-order 
harmonics start to stand out, especially the 2nd one. Finally, in the γ =

8% simulation, the contributions of the 2nd and 4th harmonics are 
important, but many other harmonics are visible. The appearance of 
even harmonics in the response is consistent with the – flaw induced – 
absence of symmetry in this dynamic system. 

Lastly, the Poincaré sections are constructed, Fig. 10, by registering 
the displacement and velocity near the maximum positive displacement, 
separated by period T [26] 

T =
2π
ω . (15) 

Since the periodicity of all the responses is one (i.e., the period is the 
one of the excitation) only one point is visible in the images. The loca
tion of points in each Poincaré section increasingly differs as damage 
increases. This can be used to establish damage indexes [21,30]. 

Fig. 11 displays the displacement of the two points represented by 
black dots in Fig. 3, for a damage of γ = 8%. The contact constraints are 
properly implemented, since there is no interpenetration. The detached 
parts come into contact once every excitation period and remain in 
contact for about half a cycle, when the displacement is negative. The 
thin composite plate is more flexible than the aluminium stiffener: when 
the displacement is negative, the rigid stiffener limits the displacement 
of the composite panel, so the two parts tend to reattach. 

4.4.3. Response location influence 
In this section, the previous analysis with a flaw of γ = 8% is repli

cated, but outputs are registered at twelve distinct points, shown in 
Fig. 12. It is intended to inspect how response signals change with 
location. Six points are in the line of symmetry and the other six lie 
75 mm to the side. Points number 2, 4, 6, 8, 10 and 12 are located above 
the stiffeners; the others are between them. 

In Fig. 13 and Fig. 14, the time history of each of the twelve points is 
represented. From these figures, some important observations can be 
highlighted: 

the fact that the structure is damaged is easily detected in all points, 
because the oscillations are not harmonic; 

in the undamaged structure, the displacements of points further 
away from the loading point attain lower magnitudes; in the damaged 
structure an exception to this apparent rule occurs in point 1, with a 
stronger excitation of at least one higher harmonic; 

higher-order harmonics are dominant in the responses of points 1, 2, 

Fig. 11. Time histories of the detached parts, flaw of γ = 8%, excitation fre
quency ω = 500rad.s− 1. 
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3, 7, 8 and 9 (located closer to the composite panel’s free extremity and 
away from the loading point); 

generally, responses of points in the symmetry line are qualitatively 

similar to the ones of points in the 75 mm offsetted line; the differences 
observed are mostly due to the larger distance to the loading point, 
which result in slightly lower amplitudes in the second case; 

Fig. 12. Location of the twelve measurement points.  

Fig. 13. Time histories, excitation at = 500 rad.s− 1, no flaw and flaw γ = 8% points: (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; (f) 6.  
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damage affects the response of point 12 much less than the response 
of other points, a reminder that measurements should always be per
formed in more than one point. 

To better illustrate the harmonic content of these responses, Fig. 15 
contains the frequency spectra of the responses of points 1 and 4. The 
spectra extend the findings of Fig. 9 to the other locations of the panel: 

the interaction between the detached parts leads to higher-order har
monics. It is worthy of note that higher-order harmonics stand out in the 
spectrum of point 1 (as it does in the spectra of points 2, 3, 7, 8 and 9, not 
shown), because the contribution of the fundamental harmonic is small. 

Poincaré sections of the response in these points were also defined 
[9], but are not shown here, for conciseness sake. As transpires from the 

Fig. 14. Time histories, excitation at ω = 500 rad.s− 1, no flaw and flaw γ = 8% points: (a) 7; (b) 8; (c) 9; (d) 10; (e) 11; (f) 12.  

Fig. 15. Frequency spectra of responses in points 1 (a) and 4 (b) without and with flaw (γ = 8%), excitation at ω = 500 rad.s− 1.  
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phase plane plots and frequency spectra, the responses are always pe
riodic with the period of the excitation; therefore, a single point was 
obtained in each Poincaré section. Debonding led to a change in the 
location of points in Poincaré sections, qualitatively similar to what can 
be seen in Fig. 9. 

4.4.4. Excitation frequency influence 
Simulations were carried out at two additional excitation fre

quencies: ω = 1000 rad⋅s− 1 and ω = 650 rad⋅s− 1. The former is closer to 
the first resonance frequency, where the response amplitude increases. 
The latter is about half the first resonance frequency. This case is 
interesting because, as verified in the previous sections, the damage- 
induced non-linearity introduces the second harmonic in the response 
and the second harmonic of 650 rad⋅s− 1 is close to the first natural 
frequency (Table 3). An excitation frequency equal to the first natural 
frequency was also attempted, but this test case was not concluded, 
because it was computationally challenging to achieve steady state by 
numerical integration so near resonance, in this lightly damped, multi- 
degree-of-freedom, non-linear system. 

Convergence with the number of discretisation points per wave was 
again verified [9]. 

Excitation frequency ω = 1000 rad⋅s− 1. 
Fig. 16 displays the time histories of the response without, γ = 0%, 

and with damage, γ = 8%, excitation frequency ω = 1000 rad⋅s− 1. In the 
flaw case, the time histories of the detached parts, i.e. top and bottom, 
are shown. Here and in the following figure, Fig. 17, results are from the 
central point of the composite panel (Fig. 3). 

The non-linearities introduced by the flaw clearly show in the 
response. As with the lower excitation frequency, the intact structure 
and the detached parts oscillate with the period of the excitation. 
Because the response amplitude is larger for ω = 1000 rad • s− 1 than for 
ω = 500 rad • s− 1, damage leads to a greater variation in the response 
when ω = 1000 rad • s− 1. Furthermore, now, even when the displace
ment is negative, the response is not the one of the undamaged structure. 
The frequency spectrum of the displacement when ω = 1000 rad • s− 1 

confirms that the most important harmonics are the first, the second and 
the fourth [9]. 

Fig. 17 represents the phase plane plot corresponding to ω =

1000 rad • s− 1. The difference between the response with and without 
damage is plain. Not only the plot of the damaged response is not 
symmetric with respect to any of the reference axes, but also it is very far 
from elliptical, confirming that many harmonics are excited. Both when 
the two parts of the damaged structure detach (positive velocity) and 
reattach (negative velocity), spikes appear in the phase plot. These are 
very pronounced in the reattachment case, due to the impacts. 

It is concluded that, due to the larger response magnitudes attained, 
an excitation frequency closer to resonance results in a more noticeable 
effect of flaws in the response than a frequency that has no relation with 
resonance frequencies. 

Excitation frequency ω = 650 rad⋅s− 1. 
Fig. 18 shows time histories of the responses at diverse points of the 

structure with, γ = 8%, and without damage, when the excitation fre
quency is approximately half the first resonance frequency. 

The difference between the dynamics of the sound and damaged 
stiffened panels is remarkable, turning this the most interesting of the 
excitation frequencies attempted. Higher harmonics are important in the 
displacement of all points. As occurred with the other excitation fre
quencies, but more pronounced now, debonding turns the magnitude of 
the response larger. In points 1 and 7, where the first mode shape attains 
large amplitudes, oscillations barely occur without damage, but they 
became large with debonding; this impact of debonding was not so 
notorious with the previously attempted excitation frequencies. 

The phase plots - Fig. 19 - confirm the remarkable (and larger than 
with the other excitation frequencies) impact of the debond when the 
structure is excited at about half its first resonance frequency. In addi
tion to the extraordinary differences in magnitude, the higher harmonics 
turn some plots rather complicated. Loops before a plot closes on itself 
are plain; nonetheless, the response is still periodic 

5. Conclusion 

A composite panel reinforced with aluminium stiffeners, connected 
by an adhesive layer of Araldite® 420 A/B was analysed. Debonds were 
considered in the latter connection, which had been identified as sen
sitive in previous works. 

A simplified model – contact was not accounted for – was employed 
to estimate the modes of vibration. It was found that the latter are only 
slightly affected by flaws, both in what concerns the frequencies and the 
natural mode shapes. The differences between the modes of the 
damaged and sound structures are imperceptible, except for modes of 
vibration with large deflection in an area where the flaw is. The latter 
feature may be useful to estimate the damage location. 

It was verified that the steady-state response to harmonic forces can 
be employed to detect damage. Debonding between the aluminium 
stiffener and the composite plate led to non-harmonic and non- 
symmetric responses, which affected time histories, phase plane plots, 
frequency spectra and Poincaré sections. The greater the flaw, the 
greater the effect on the dynamics; very small flaws, in this particular 

Fig. 16. Time histories of the displacement due to excitation at ω =

1000 rad.s− 1: top point, no flaw ; bottom point flaw γ = 8% , top point 
flaw γ = 8% . 

Fig. 17. Phase plane plot of the top point response without (γ = 0%, ) 
and with a flaw (γ = 8%, ), ω = 1000 rad⋅s− 1. 
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study represented by a ratio between the debonded area and the total 
glued area equal to 0.4%, barely affect the response. Variations in ve
locities and accelerations are more significant and more likely to be 
noticed than alterations in displacements. The change in the response 
due to the flaw also varies with the point where measurements are taken. 
Higher-order harmonics – a sign that debonding occurred – are more 
pronounced in the oscillations of some points (e.g., in the extremities of 
the composite panel) than in other, depending also on the excitation 
frequency. 

Exciting the structure close to resonance increases the amplitude of 
the oscillations and, hence, the difference between the damaged and 
undamaged responses. But a more promising strategy is to employ an 
excitation frequency that is a sub-harmonic of the fundamental natural 
frequency (natural and resonance frequencies are close, due to low 
damping). The appearance of a higher-order harmonic that coincides 
with the fundamental natural frequency leads to very noticeable dif
ferences between the response of the damaged (non-linear) and the 
undamaged (linear) structure. Excitations at half the resonance fre
quency appear to be in particular promising, because damaged led to 
symmetry breaking. 

In summary, the time histories, phase plane plots and frequency 
spectra are very useful in practical non-destructive VSHM on structures 
that behave linearly without defects. Those tools do not need a 

comparative response and allow to detect the presence of damage simply 
by exhibiting non-linearities. Poincaré sections also show the presence 
of damage, but – in the cases here analysed – require knowledge on the 
response of the undamaged structure. Therefore, methods based on 
Poincaré sections appear to be less practical. However, they should not 
be despised, because they use a smaller amount of data and permit 
defining quantitative indexes. A promising procedure, to employ in 
practical non-destructive VSHM on structures that behave linearly 
without defects, is to apply a single-frequency excitation at half a 
resonance frequency and obtain response spectra, preferably of accel
erations. A second harmonic with significant amplitude is likely to be 
conspicuous in the response if a defect exists. This procedure should be 
repeated at several half-resonance frequencies for two reasons. One is to 
avoid that a defect goes unnoticed for being near a nodal line. A second 
reason is to obtain an indication of the position of the flaw: the response 
will be dominated by one mode in each resonance, if the flaw is in a 
position that undergoes large amplitude oscillations when this specific 
mode is excited, then its effects are more prone to appear in the 
response. Measurements should be taken at several points, again 
because mode shapes experience larger amplitudes in some points. 

Data Availability Statement 
The raw/processed data required to reproduce these findings cannot 

be shared at this time due to technical or time limitations. 

Fig. 18. Time histories due to excitation at ω = 650 rad.s− 1; without flaw, γ = 0%, and with flaw γ = 8%, points: a) 1; b) 2; c) 3; d) 4; e) 5; f) 7.  
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