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Small volatile lipophilic
molecules induced belowground
by aphid attack elicit a defensive
response in neighbouring
un-infested plants
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In pioneering studies on plant-aphid interactions, we have observed that Vicia faba

plants infested by aphids can transmit signals via the rhizosphere that induce

aboveground defence in intact, neighbouring plants. The aphid parasitoid Aphidius

ervi is significantly attracted towards intact broad bean plants grown in a hydroponic

solution previously harbouring Acyrtosiphon pisum-infested plants. To identify the

rhizosphere signal(s) possibly mediating this belowground plant-plant

communication, root exudates were collected using Solid-Phase Extraction (SPE)

from 10-day old A. pisum-infested and un-infested Vicia faba plants hydroponically

grown. To verify the ability of these root exudates to trigger defence mechanisms

against the aphids we added them to V. fabae plants grown in hydroponic solution,

and tested these plants in the wind-tunnel bioassay to assess their attractiveness

towards the aphids’ parasitoids A. ervi. We identified three small volatile lipophilic

molecules as plant defence elicitors: 1-octen-3-ol, sulcatone and sulcatol, in SPE

extracts ofA. pisum-infested broad bean plants. Inwind tunnel assays, we recorded a

significant increase in the attractiveness towards A. ervi of V. faba plants grown in

hydroponic solution treated with these compounds, compared to plants grown in

hydroponic treated with ethanol (control). Both 1-octen-3-ol and sulcatol have

asymmetrically substituted carbon atoms at positions 3 and 2, respectively. Hence,

we tested both their enantiomers alone or in mixture. We highlighted a synergistic

effect on the level of attractiveness towards the parasitoid when testing the three

compounds together in respect to the response recorded against them singly

tested. These behavioural responses were supported by the characterization of

headspace volatiles released by tested plants. These results shed new light on the

mechanisms underlying plant-plant communication belowground and prompt the

use of bio-derived semiochemicals for a sustainable protection of agricultural crops.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1154587/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1154587/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1154587/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1154587/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1154587/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1154587&domain=pdf&date_stamp=2023-06-23
mailto:emilio.guerrieri@ipsp.cnr.it
https://doi.org/10.3389/fpls.2023.1154587
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1154587
https://www.frontiersin.org/journals/plant-science


Cascone et al. 10.3389/fpls.2023.1154587
1 Introduction

For a long time, public and private organizations, the scientific

community and society as a whole have called for sustainable

agricultural practices that ensure food security for the growing

human population while protecting biodiversity and the

environment (UE, 2009). However, most pest management

programs still rely consistently on the repeated application of

synthetic pesticides. Without finding suitable alternatives, pest

control will result in increased pesticide use with all associated

drawbacks on human health and on the environment.

Plants communicate with other living organisms via chemical

signals, which can be produced constitutively, or can be induced in

response to abiotic and biotic stresses. These signals travel through

the air and the soil and regulate the interactions between plants and

all other organisms (Bruin and Dicke, 2001; Karban et al., 2014; Erb

et al., 2015). The rhizosphere, which is the area of soil in close

proximity to plant roots, is a site of significant chemical signalling,

as roots release substances such as enzymes, mucilage, and various

metabolites into the soil (Rovira, 1969). These substances, known as

root exudates (Bais et al., 2003; Walker et al., 2003; Biedrzycki et al.,

2010), contain both high molecular weight compounds, such as

polysaccharides and proteins, and low molecular weight

compounds, which can be further classified as primary

metabolites (e.g. sugars, amino acids, and organic acids) and

secondary metabolites (e.g. terpenes, flavonoids, glucosinolates

and alkaloids) (Bais et al., 2003; Canarini et al., 2019; Ehlers et al.,

2020; Chai and Schachtman, 2022).

Belowground, these compounds play critical roles in various

biological processes (Badri and Vivanco, 2009; Weir et al., 2010),

and regulate the interactions between plants and microbes (Weir

et al., 2010), plants and animals (Johnson and Rasmann, 2015) and

between plants (Bais et al., 2006). Research has also provided

evidence that root exudates are a sort of “wireless” signals in

cross-plant communication (Sharifi and Ryu, 2021), as they

persist in the soil for extended periods and affect neighbouring

plants as well as future generations by altering soil properties

(referred to as plant-soil feedback). In addition to water-soluble

molecules, roots also release lipophilic volatile organic compounds

(VOCs) that diffuse through the gaseous medium, and also interact

with substrate particles and moisture in the substrate pore spaces

(Som et al., 2017). There is evidence that belowground plant-plant

communication can be used to warn the neighbouring conspecifics

about the presence of an insect herbivore, and to give them the

opportunity to respond promptly and effectively to the pests

(Cascone et al., 2023). This type of communication is regulated

by the release of elicitor/s by the roots of infested plants that are

adsorbed and systemically translocated by neighbouring

conspecifics. It is hypothesized that plants produce unique blends

of molecules in response to insect herbivory that could elicit specific

responses in neighbours whilst travelling through the soil matrix

(Baetz and Martinoia, 2014; Haichar et al., 2014).

VOCs emitted by plants, primarily studied as aboveground

chemical signals, are receiving increasing attention. In fact, a

growing body of research has recently shown that VOCs also play

an important role in belowground plant-plant interactions
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(Rasmann and Turlings, 2016; Gfeller et al., 2019; Rasmann and

Hiltpold, 2022). Root-emitted VOCs have been shown to impact the

belowground microbial community (Weisskopf et al., 2016), soil

nematodes (Rasmann et al., 2005) as well as the behaviour of

herbivorous insects (Robert et al., 2012).

In some systems, positive intraspecific (Chamberlain et al.,

2001; Guerrieri et al., 2002) and interspecific (Li et al., 2016; Liu

et al., 2017; Li et al., 2021) plant-plant belowground interactions

have been demonstrated. For instance, it has been shown that un-

infested broad bean (Vicia faba) plants that are grown in close

proximity to aphid-infested plants become more attractive to aphid

parasitoids than plants grown with healthy plants (Guerrieri et al.,

2002). This increased attractiveness was not observed when the root

contact was prevented, suggesting that the communication occurred

belowground (Guerrieri et al., 2002). These findings were confirmed

using hydroponic growing conditions, where un-infested V. faba

plants placed in a hydroponic solution previously used to grow

aphid-infested plants became attractive to parasitoids, while those

placed in a hydroponic solution previously used to grow healthy

plants did not change in attractiveness (Guerrieri et al., 2002).

Similarly, an interspecific positive interaction has been studied

highlighting how maize root exudates enhance broad bean

nodulation and nitrogen fixation (Li et al., 2016; Liu et al., 2017;

Li et al., 2021).

Although several lines of evidence suggest that V. faba plants

are able to communicate through radical exudates, to the best of our

knowledge, only one compound has been discovered to elicit a

defence mechanism in neighbouring plants (Cascone et al., 2023).

In a series of plant-plant communication experiments, it was found

that the non-protein amino acid L-DOPA was one of the

hydrophilic elicitors released by the roots of aphid-damaged V.

faba plants. When treated with L-DOPA, healthy plants had altered

aboveground VOC profiles and attracted more aphid parasitoids

than untreated plants. This research emphasized the discovery of

hydrophilic root signals that plants use to communicate with each

other, but it may also be important to pay attention to Small

Volatile Lipophilic Molecules (SVMLs) that are frequently found

amongst the secondary metabolites released by plants (Birkett and

Pickett, 2014). Hence, we here studied the possible role of SVMLs

released by aphid-infested broad bean plants in plant-plant

communication belowground that could be exploited for the

sustainable protection of agricultural crops.

Aphids (Hemiptera: Aphidoidea), the most abundant

invertebrate phloem-feeders, cause significant economic damage

either by directly consuming plant sap or indirectly by transmitting

phytopathogenic viruses (van Emden et al., 2007). Currently, the

fight against these pests mainly relies on insecticides which still

represent the most effective and cheapest method to fight them. But

today, it has become essential to identify ecologically sustainable

alternatives, with lower impact on the environment. In this regard,

chemicals that are found to induce defence responses in intact

plants can be used as new plant activators to trigger defence

mechanisms when pest control is needed. For instance, SVMLs

affecting the behaviour of insect parasitoids can be profitably

exploited for the sustainable protection of crops by attracting the

natural antagonists of insect pests (Pickett et al., 2013).
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Here, we have identified three SVMLs released by V. faba

roots upon aphid attack: 1-octen-3-ol, sulcatone and sulcatol.

Both 1-octen-3-ol and sulcatol. Both 1-Octen-3-ol and Sulcatol

have asymmetrically substituted carbon atoms at positions 3 and

2, respectively. Therefore, the enantiomers of each compound

were tested individually and in racemic mixtures to assess their

effect on plant attractiveness towards the aphid parasitoid

Aphidius ervi (Hymenoptera: Braconidae). Finally, the most

active compounds were tested in combination with each other

to investigate any potential synergistic effect. The VOCs released

aboveground by treated and control plants, potentially serving as

attractant for the parasitoids, were also characterized.
2 Materials and methods

2.1 Insects

The parasitoid A. ervi was reared on its natural host, the pea

aphid Acyrthosiphon pisum maintained on potted broad bean (V.

faba) plants, cv. Aquadulce (Guerrieri et al., 1993). Aphid and

parasitoid cultures were kept in separate environmental chambers

at 20 ± 1°C, 75 ± 5% relative humidity and 18L: 6D photoperiod.

Insect parasitoids used in the bioassays were reared as synchronized

cohorts by exposing heavily infested plants for 24hr to 1-day old

mated females; after a week, the resultant mummies were clipped

from the plant and isolated in glass test tubes (60 × 8 mm) plugged

with cotton wool. Experimental females were used within the first

day after emergence, mated, and fed with a 50% honey solution. All

experiments were conducted 3 hr from the onset of the photophase.
2.2 Plants

All bioassays were run using plants grown in hydroponic

solution. V. faba seeds were soaked in water for 24 h, then potted

in vermiculite and kept in a controlled environment room at 20°C.

After 5 days, the seedlings were gently removed from the

vermiculite, the seed coat discarded and the roots rinsed with

water, carefully removing any vermiculite residue. Two seedlings

were then placed in a glass beaker containing hydroponic solution

made with Murashige and Skoog basal salt mixture (2 g L-1,

Duchefa Biochemies, The Netherlands) and placed in a

glasshouse (20°C, L:D 16:8 hr). Each beaker was wrapped in

aluminium foil to hold the plants in position and to prevent the

light from reaching the roots. The hydroponic solution was renewed

every 2-3 days.
2.3 SVLMs chemical identification

To isolate potential SVLMs elicitors from roots, plants were

grown as above. At the age of 11-12 days, at least 100 A. pisum of

mixed age were placed onto each plant couple for the infested

plants, and infested and non-infested plants were kept in separate

rooms under the same climatic conditions (n=8). After 3 days, the
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hydroponic solution from the beakers was pooled separately for

infested and non-infested plants in large bottles, which were

connected through PTFE (polytetrafluoroethylene) tubing to 6

mL glass SPE cartridges containing C2/ENV+ sorbent used for

trapping small polar and lipophilic compounds from water

(Biotage, 941-0070-L). Cartridges were attached to vacuum

pumps and conditioned by passing 2 column length of each of

HPLC methanol then HPLC water through. PTFE tubing was

washed with HPLC water. Hydroponic solution was added to the

cartridges, which were connected to the holding bottles through

PTFE tubing. After all the hydroponic solution has been passed

through the cartridge columns by vacuum, each of them was flushed

with HPLC water then left to run dry for 2 min. A column length of

redistilled ether was pulled through each cartridge by vacuum and

collected in vials. Ether extracts were dried with magnesium

sulphate, filtered and concentrated to 500 mL under a stream of

nitrogen. Samples were stored at -20°C until analysis. Extracts were

analysed on an Agilent 6890A gas chromatograph (GC) equipped

with a cool on-column injector, a flame ionization detector and a 30

m × 0.32 mm ID, 0.5 mm film thickness DB-WAX column (Agilent,

Santa Clara, CA, USA). The oven temperature was maintained at

30°C for 1 min, then programmed at 5°C/min to 150°C and held for

0.1 min, then programmed at 10°C/min to 250°C and held for 20

min. Quantification of compounds was achieved by the single-point

external standard method with a series of C7-C22 alkanes, where

the amount of an analyte was estimated using the peak area of the

nearest alkane peak, the amount of which was known. GC-MS

analysis was done on a Micromass Autospec Ultima magnetic

sector mass spectrometer (Waters, Milford, MA). The GC

(Agilent 6890 N) was fitted with a 30 m × 0.32 mm i.d. × 0.5 mm
film thickness DB-WAX column (Agilent, Santa Clara, CA, USA).

Ionization was by electron impact (70 eV, 220°C). The GC oven

temperature was maintained at 30°C for 5 min and then

programmed to increase at 5°C/min to 250°C, with a 70-min run

time. The identity of peaks was confirmed by comparison of their

GC and MS properties with those of authentic standards and by GC

peak enhancement using authentic samples [Sigma-Aldrich UK:

sulcatone >99%, (S)-1-octen-3-ol >95%, BOC Sciences: (R)-1-

octen-3-ol 98%, (R)-sulcatol >90%, Alfa Chemistry: (S)-

sulcatol 96%.
2.4 Wind tunnel bioassays on plants
treated with SVLMs

For assessing the effect of SVLMs on the indirect defence, 20 ml
of each SVLM: (a) R-sulcatol, (b) S-sulcatol, (c) sulcatone, (d) R-1-

octen-3-oI, (e) S-1-octen-3-ol, their racemic mixtures (a+b, d+e)

and their combination a+c+d were added to beakers with 200 ml of
clean hydroponic solution. Two seedlings were transferred into it

and kept as described above for 24hr before testing them in the

wind-tunnel. Plants treated with 20 ml of Ethanol were used as

relative control. For each elicitor and their combinations, a total of

ten plants grown in hydroponic solution were used and tested in a

wind-tunnel (see Guerrieri et al., 1999 for details) daily in a random

order to reduce any bias related to the time of the experiments. One
frontiersin.org

https://doi.org/10.3389/fpls.2023.1154587
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cascone et al. 10.3389/fpls.2023.1154587
hundred Parasitoid females were tested singly for each target in no-

choice experiments, and observed for a maximum of 5 min. The

percentage of response (oriented flights, landings on the target) to

each target plant was calculated. The parameters of the bioassay

were set as follows: temperature, 20 ± 1°C; 65 ± 5% RH; wind speed,

25 ± 5 cm s-1; distance between releasing vial and target with 50 cm

at releasing point, ligh: 700 μmol m2 s-1.
2.5 Air entrainment of plants
treated with SVLM

After broad bean plants were grown in hydroponic solution for

10 days, the hydroponic solution was replaced and treated with

SVLM solutions or their combinations (20 μL) or ethanol (control,

20 μL) (n=4 replicates/treatment). After 24 h, the bean plants were

e n c l o s e d i n Mu l t i - P u r p o s e C o o k i n g B a g s [ p o l y

(ethyleneterephthalate)] or PET, volume 3.2 L, ~12.5 μm

thickness, max. 200°C, Sainsbury’s Supermarkets Ltd., London,

UK]. The bottom of the bag was enclosed around the top of the

beaker containing the hydroponic solution. The inlet was fitted to

the open end of the bag, and the outlet was fitted to a corner of the

bag after cutting off with scissors. Air that had been purified by

passage through an activated charcoal filter (BDH, 10-14 mesh, 50

g) was pushed into (750 mL/min) and pulled (700 mL/min) out of

the bags. Volatiles were trapped onto Tenax (50 mg; Supelco,

Bellefonte, USA) held in glass tubing (5 mm outer diameter) by

two plugs of silanised glass wool. The Tenax tubes were conditioned

by washing with dichloromethane (2 mL), followed by redistilled

diethyl ether (2 mL) and heating at 132°C for 2 h under a stream of

purified nitrogen. After 24 h sampling, the Tenax tubes were sealed

in glass ampoules in an atmosphere of nitrogen and stored at -20°C

until analysis. For VOC sample analysis, the Tenax tubes were

inserted into the OPTIC PTV unit of a GC (30->250°C ballistically

at a rate of 16°C/s) connected to a Micromass Autospec Ultima

magnetic sector mass spectrometer (Waters, Milford, MA). The GC

(Agilent 6890 N) was fitted with a 50 m × 0.32 mm i.d. × 0.52 mm
film thickness HP-1 column (Agilent, Santa Clara, CA, USA).

Ionization was done by electron impact (70 eV, 220°C). The GC

oven temperature was maintained at 30°C for 5 min and then

programmed to increase at 5°C/min to 250°C, with a 70 min run

time. The identity of peaks was confirmed by comparison of their

GC and GC–MS properties with those of authentic standards (see

Sasso et al., 2007 for details), and by GC peak enhancement using

authentic samples.
2.6 Statistical analyses

We used R4.2.2 (R Core Team, 2022) for all statistical analyses.

To investigate whether aphid infestation can influence the emission

of SVLMs by root plant we have analysed their amount by ANOVA

followed by post-hoc Tukey’s multiple comparison test. To

investigate whether treatments can affect the emission VOCs, we

analysed the amount of each VOC using a Dirichlet regression and

the R package “DirichletReg” (Maier, 2014). We analysed the
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proportion of each VOC peak area in relation to total peak areas

as the dependent variable and treatments as independent variable. A

Dirichlet regression is a type of compositional analysis based on the

Dirichlet distribution and does not assume a multivariate normal

distribution or homoscedasticity of the data (Douma and Weedon,

2019). Dirichlet regression, being a compositional analysis, uses a

logarithmic link function of the compositional variable. This

transformation overcomes potential problems with non-

independence of proportional data (Douma and Weedon, 2019).

Because of this transformation, it is not possible to have zeros in the

data, therefore we replaced them by a small value using the DR_data

function (Maier, 2014). The volatile emission patterns, measured as

peak areas, were analysed through multivariate data analysis using

PSL-DA (Projection to Latent Structures Discriminant Analysis)

using the R package “ropls” (Thévenot et al., 2015). To investigate

whether treatments can influence the behavioural response of the A.

ervi females towards broad bean plant in the Wind-Tunnel assay,

we used the R pa”kage " Agr”colae” (de Mendiburu, 2021). To

determine if the proportions between: females make oriented flight

towards plant vs un-oriented, and females landed on plant vs total

vary with treatments, we used the Chi-square test followed by

Ryan’s multiple range test (Fukushima et al., 2021).
3 Results

3.1 Sulcatone, sulcatol and 1-octen-3-ol
are released as SVLM after aphid
infestation in Vicia faba

A preliminary ether extraction of V. faba hydroponic

solution showed Sulcatone (KI 1346), 1-octen-3-ol (KI 1449) and

sulcatol (KI 1465) peaks were increased by aphid infestation

(Supplementary Figure S1). This assay was replicated 9 times

highlighting that the above-cited SVLMs were produced in higher

significant amounts in infested V. faba plant compared to the un-

infested ones (Table 1). Sulcatone is released 6-times more by root

of infested V. faba plants compared to un-infested (Anova, df =1,

F=120.007, P<0.001). Similarly, 1-octen-3-ol (Anova, df=1,

f=12.3208, P=0.004) and sulcatol (Anova, df=1, f= 89.571,

p<0.001) are released 9-times and 11-times more by infested V.

faba roots, respectively (Table 1).
TABLE 1 SVLMs identified.

SVLM Uninfested
(n=8)

Infested by aphids
(n=8)

(µg ± SE)

sulcatone 0.033 ± 0.003a 0.189 ± 0.013b

1-octen-3-ol 0.025 ± 0.045a 0.220 ± 0.034b

sulcatol 0.046 ± 0.031a 0.519 ± 0.038b
Mean of compound (μg ± SE) released by Vicia fabae roots in hydroponic culture. Letters were
assigned by ANOVA and Tukey’s multiple comparison test (P ≤ 0.05).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1154587
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cascone et al. 10.3389/fpls.2023.1154587
3.2 Sulcatone, sulcatol and 1-octen-3-ol
induce indirect defence in Vicia faba

Using wind-tunnel bioassays, we show that all identified root

SVLMs and their combinations can induce an indirect defence

response (Figure 1) in treated plants in terms of parasitoid oriented

flights (chi-square test, c²=65.000 df = 6, p-value < 0.001) and

landings on source (chi-square test, c²=66.022, df = 6, p-value <

0.001). The SVLM (R)-1-octen-3-ol and (R)-sulcatol elicited a

statistically significant higher response in terms of oriented flights

(7 and 15 times more than ethanol, respectively) and landings on

source (9 and 27 times more that ethanol, respectively) by A. ervi in

respect of ethanol (control) and respective the two (S)-enantiomers.

The treatment with sulcatone was statistically significant compared

to the control only for the oriented flights (4 times more than

ethanol) of the parasitoid. The racemic mixtures of sulcatol a+b and

1-octen-3-ol d+e elicited a statistically higher response in A. ervi

compared with the control in terms of oriented flights (14 and 6

times more than ethanol, respectively) and landings (27 and 10

more than ethanol, respectively), but not different from the

respective R-enantiomers.

Following the results with single compounds and racemic

mixtures we tested the 3-compounds mixture comprising only the

respective active (R)-enantiomers and sulcatone. The mixture of

(R)-1-octen-3-ol, (R)-sulcatol and sulcatone caused an average of 5-

fold significant increase in parasitoid oriented flight response

compared to the single compounds. Similarly, a synergistic effect

of the 3-compound mixture has been observed in respect of single
Frontiers in Plant Science 05
compounds for landings on plant, causing an average of 2.5-fold

significant increase.
3.3 Sulcatone, sulcatol and 1-octen-3-ol
impact on VOCs release

A comparison of the proportion of the leaf VOCs emitted by V.

faba subjected to several treatments, with the proportion of VOCs

emitted by relative control plants using Dirichlet regression

(Figure 2), showed that (R)-sulcatol increased the release of octanal

(b = 2.145, z = 2.34, df = 33, p = 0.019), and sulcatone treatment

induced a higher release of (E)-ocimene (b = 2.405, z = 2.447, df = 33,

p = 0.014) compared to the control. (R)-1-octen-3-ol induced an

increased emission of octanal (b = 2.03, z = 2.192, df = 33, p = 0.028),

whereas the 3-compound mixture induce a higher release of (E)-

ocimene (b = 3.292, z = 3.358, df = 33, p = 0.001) compared to

treatments with single compounds.

Three models were built on VOCs data emitted by broad

bean plants with Partial Least-Squares-Discriminant Analysis

(PLS-DA), using presence and absence as dependent categorical

variable (y) and VOC emission as independent variable (x).

Models for each treatment with SVLM [(R)-sulcatol, sulcatone

and (R)-1-octen-3-ol] are shown in Figures 3A–C. Using (R)-

sulcatol as dependent variable, the model explains 53% of

the total variability and gives a clear separation between

treatments (Figure 3A), with one component being significant

(R²X = 0.296, R²Y = 0.594, Q² = 0.119), while the other is
FIGURE 1

Wind tunnel bioassays. Different treatments with individual SVLMs (Small Volatiles Lipophilic Molecules) and their combinations in hydroponic culture
of Vicia fabae are reported on x-axis. Percentage of Aphidius ervi females showing oriented flight and landing on source (plant) are reported on the
y-axis. Different letters above bars indicate a significant difference between values (Ryan’s multiple range test for proportions after c2 test, p < 0.05)
(n = 10 for each).
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shownfor representational purposes (R²X = 0.228, R²Y = 0.172,

Q² = 0.022). A similar separation between treatment is shown by

the model using sulcatone as dependent variable. The variability

explained is 52% with one significant component (R²X = 0.21,

R²Y = 0.791, Q² = 0.297) and the other is shown for

representational purposes (R²X = 0.306, R²Y = 0.059, Q² =

-0.19). Using (R)-1-Octen-3-ol as dependent variable

(Figure 3C), no significant components were found, hence this
Frontiers in Plant Science 06
SVLM is not suitable to distinguish the VOC profile of treated

plants from untreated plants.
4 Discussion

Aphids are oligophagous insects that feed on plants and cause

damage to shoots and leaves, making them major pests across
FIGURE 2

Relative amounts of VOCs emitted by Vicia faba plants. Different treatments with different V. faba SVLMs (Small Volatiles Lipophilic Molecules) and
their combinations are reported on the x-axis and percentage of each VOC respect of the total VOC emission are reported on y-axis. Asterisks
indicate significant difference between ethanol (control) and treatment (Dirichlet regression; *p < 0.05, ***p< 0.001).
A B C

FIGURE 3

Partial Least Squares-Discriminant Analyses on VOC data. PLS-DA was performed for the VOCs emitted by V. faba plants using the presence (green
points) or the absence (red points) of the treatment by the following Small Volatiles Lipophilic Molecules: (A) (a) R-sulcatol, (B) (c) sulcatone and (C)
(d) R-1-octen-3-ol as a dependent categorical variable and VOC emission as an independent variable (n=9). Asterisk indicates a significant
component (p<0.05).
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several agricultural systems, being also efficient vectors of

phytopathogenic viruses (Dampc et al., 2021). As sessile

organisms, plants had to evolve ways to defend themselves

against herbivores (Walling, 2000), or, when in oligo-cultures,

also to develop ways of transmitting signals to each other and use

these signals for enhancing collective resistance (Rasmann et al.,

2005; Cascone et al., 2023). From an applied perspective, the most

efficient, economic and used option for protecting crops against the

aphids is the repeated application of the insecticides (Schulz et al.,

2021). Particularly, Imidacloprid ®, belonging to the class of

insecticides called neonicotinoids, has been widely used since

1991 for the control of sucking insects such as aphids (Yuan

et al., 2020; Verheggen et al., 2022). Due to adverse effects on

non-target organisms, particularly on pollinators (Lu et al., 2020),

the European Commission banned the outdoor use of

neonicotinoids in 2018, limiting their use to permanent

greenhouses (European Food Safety Authority, 2018). Therefore,

an alternative to synthetic systemic formulations to control

efficiently aphid pests is needed to hamper the environmental risks.

Our study tries to fill this gap, by testing alternative means of

insect control. Accordingly, we took advantage of the fact that

previous research has shown that different chemical elicitors can

boost the innate immunity of plants, which also include the

attraction of natural enemies of the herbivores near the site of

wounding. Recently, we have discovered the role of a hydrophilic

molecule (L-DOPA) as an anti-herbivore signal released in the

aqueous phase by aphid infested broad bean plants and maybe

translocated as an internal signal. Here, we have shown that three

SVLMs can be similarly translocated within the rhizosphere and in

the air phase contributing to plant defence (Figures 1, 2), as already

reported for other Volati le Organic Compounds (e.g .

Caryophyllene) (Rasmann et al., 2005). Specifically, we hoped to

find novel low molecular weight elicitors that would trigger defence

responses (i.e., VOCs production from leaves) on yet-to-be attacked

plants. With this aim, we started to characterize root signals

released upon aphid infestation that could be exchanged

belowground and alert neighbouring un-infested conspecifics to

activate a defence response before the occurrence of aphid attack

(Coppola et al., 2017; Takabayashi and Shiojiri, 2019).

By sampling root exudates of aphid-damaged plants, we

identified three SVLMs released by A. pisum infested plants

(Table 1) that are able to trigger the emission of VOCs (Figure 2)

involved in the attraction of the aphid parasitoid A. ervi to

uninfested plants (Figure 1). We have recorded the highest

attraction of A. ervi when broad bean plants were treated with a

mixture of sulcatone, sulcatol and 1-octen-3-ol. These three SVLMs

are released upon aphid infestation in different plant–aphid

complexes including V. faba. (Quiroz et al., 1997; Liu et al., 2009;

Markovic et al., 2014; Dong et al., 2015; Takemoto and Takabayashi,

2015; Lin et al., 2017; Ismail et al., 2021; Higashida et al., 2022).

Three results of the behavioural bioassay can be considered

important: the indication of the active enantiomers of two

identified SVLM (sulcatol, octen-ol); each SLVM elicited a

significant higher response in terms of attraction of the natural

enemy in respect of control (and non-active enantiomers); a

synergistic effect was recorded when adding all 3 SVLMs.
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To our knowledge, and with only two exceptions (Liu et al.,

2009; Takemoto and Takabayashi, 2015), the three compounds

tested in this study have been exclusively isolated from

aboveground parts of the plants. All previous characterizations

referred to collection that included the soil (Quiroz et al., 1997;

Markovic et al., 2014; Dong et al., 2015; Lin et al., 2017; Ismail et al.,

2021; Higashida et al., 2022). Hence, so far, it was not yet clearly

demonstrated that sulcatone, sulcatol and 1-octen-3-ol can be

released by the roots of broad bean plants, particularly in

response to aphid attack, and also that they can elicit a defensive

response acting belowground modifying the blend of the VOC

emitted (Figure 2).

These three molecules were able to affect both individual VOCs

and the entire volatile profile of conditioned plants. Specifically, the

treatments with sulcatone and sulcatol resulted in different VOC

blends, as highlighted by the PLS-DA (Figure 3) and supported by

the behavioral observations. Conversely, R-octen-3-ol did not

induce significant differences in the VOC blend (Figure 3), but it

did in respect of the percentage of octanal (Figure 2).

In V. faba, Sulcatone (also known as 6-methyl-5-hepten-2-one)

appeared in the volatile blend during the first day after A. pisum

infestation and increased in concentration with the duration of

aphid feeding (Du et al., 1998). This semiochemical is known to be

biosynthesised oxidatively from the isoprenoid geraniol

(Demyttenaere and De Pooter, 1996), and is probably produced

through the stimulated oxidation by aphid feeding. sulcatone has

been found to be a key compound in the attraction of the parasitoid

A. ervi to plants infested by A. pisum (Du et al., 1998; Powell et al.,

1998) and Aphidius avenae (Liu et al., 2001). Hence, we can here

hypothesize that this compound can be actually released by both

above- and belowground plant tissues. Hence, we here propose that

SVLMs, when released belowground could be adsorbed by the roots

of neighbouring plants, eliciting a defensive response. In support of

this hypothesis, our results clearly highlighted the role played by

sulcatone in triggering the release of a specific blend of VOCs, some

of which are reported to be involved in the attraction of A. ervi.We

refer in particular to the emission of (E)-ocimene, a strong

attractant for A. ervi (Sasso et al., 2007; Cascone et al., 2015;

Takemoto and Takabayashi, 2015), whose release is strictly

correlated with the treatment with sulcatone as shown in Figure 2.

The presence of sulcatone in the volatile emissions of aphid-

infested plants seems to be context-dependent, and varies

depending on the herbivore identity. For example, the release of

sulcatone was not induced by Macrosiphum euphorbiae feeding on

tomato, although aphid-infested tomato plants were more attractive

towards A. ervi than un-infested ones (Sasso et al., 2007). In field

experiments on wheat, it was found that the rate of parasitism of the

aphid Sitobion avenae by Aphidius avenae was significantly higher

on plants that were sprayed with a mixture of Sulcatol and

Sulcatone, compared to parasitism on plants that were sprayed

with hexane (control) or not sprayed at all (Liu et al., 2009). These

studies are in line with our results, where V. faba plants treated with

Sulcatone were more attractive towards A. ervi. In the same way that

cis-jasmone has been found to increase the attractiveness of broad

bean plants towards the parasitoid A. ervi and to activate defence

genes in broad bean plant (Birkett et al., 2000), we believe that
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sulcatone plays a crucial role in mediating parasitoid attraction,

hence as an elicitor of parasitoid attractiveness.

Liu and collaborators (2009) showed that the parasitism level of

A. avenae increased when the wheat plants were treated with

sulcatone. Our behavioural bioassays were run 24 hours after the

treatments with the SVLMs identified. Hence, the attraction of the

A. ervi could have been influenced by the release of this compounds

from the hydroponic solution. In fact, it is reasonable to exclude a

direct effect of tested SVLMs on the behaviour of parasitoid A. ervi

because we did not find it in the volatile releases of the

treated plants.

Since both 1-octen-3-ol and sulcatol have asymmetrically

substituted carbon atoms at positions 3 and 2 respectively, we

have tested for each of both enantiomers. In fact, the link between

the absolute arrangement and biological activity can vary. As an

example, neither the (R) or (S) version of Sulcatol, which is a

pheromone used by the ambrosia beetle Gnathotrichus sulcatus, has

any biological activity on its own. However, when both enantiomers

are combined, they produce an active mixture (Borden et al., 1976).

The third SVLM identified in the hydroponic solution of aphid-

infested plants was 1-octen-3-ol, traditionally known for its

mushroom-like fragrance (Wang and Zhao, 2023). This compound

has been identified in the headspace of various leguminous plants

(Takabayashi et al., 1991; Bendera et al., 2015; Sobhy et al., 2018).

Recently, it has been identified as a key volatile compound in V. faba

flours (Frati et al., 2017; Lu et al., 2019; Akkad et al., 2022; Duan et al.,

2022). These findings are consistent with our results demonstrating

that 1-octen-3-ol, a compound produced by the roots of V. faba, is

responsible for the induction of indirect defence mechanisms against

aphids. In tobacco and Arabidopsis, the exposure to synthetic 1-octen-

3-ol has been shown to activate defence responses against

Pseudomonas syringae and Botrytis cinerea, respectively (Kishimoto

et al., 2007; Song et al., 2022). Theory suggests that phytopathogens and

sap feeders tend to elicit similar defence responses in plants (Walling,

2000). Our findings on the role of 1-octen-3-ol reinforces this theory

and reinforces the idea that this compound prompts multiple indirect

defence responses (Tabata et al., 2011; Li et al., 2014; Fuchs and

Krauss, 2019).

(R)-1-octen-3-ol is synthesized from fatty acids in cellular

membranes. Since organisms need to break down intact cellular

structures to produce such VOCs, there is likely a selective pressure

on plants to recognize these volatiles as “danger signals” or

damage-associated molecular patterns (Heil and Land, 2014;

Duran-Flores and Heil, 2016) that could support the role of (R)-

1-octen-3-ol as defence elicitor. We observed a significant

behavioural response in A. ervi only towards plants treated with

the R-enantiomer of both 1-Octen-3-ol and sulcatol (Figure 1). For

these reasons, we have collected the VOCs from V. faba plants

treated with R-enantiomers (Figure 2 a+b) and in combination with

the other SVLM (Figure a+c+d). For both plants treated with (R)-

sulcatol and (R)-1-octen-3-ol, we have recorded a significant

emission of Octanal compared to control plants, that can explain

their attractiveness for A. ervi. Octanal is a specific VOC emitted by

broad bean plants infested by A. pisum aphids and is highly

attractive to A. ervi (Takemoto and Takabayashi, 2015).
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5 Conclusion

Further bioassays in soil and open field are required to confirm

the specificity of the defensive activation by SVLMs and then

propose them as a sustainable alternative to synthetic insecticides.

Moreover, it is crucial before proposing them, to study their

persistence in the soil, which can be affected by abiotic (e.g.

moisture and pH) and biotic factors (e.g. microbial degradation)

(Som et al., 2017). Nonetheless, adding these compounds to the

list of plant elicitors of direct and indirect defences will broaden

the solution panel for reducing the pesticide-dependency of

modern agriculture. Even if agronomic studies are needed to

evaluate the putative fitness costs of the plants due to the

application of these SVLMs, the application of these

semiochemicals could become in the near future what has been

the use of sexual pheromones for mating disruption from the late

1990s onward.
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