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Abstract

Computational modelling of heterogeneous materials with complex microstruc-
tures is challenging due to their multiscale nature. While direct numerical simula-
tions lead to accurate results, it is not tractable for large-scale models. Therefore,
in this thesis, two novel concurrent multiscale frameworks have been developed for
tractable simulation of 2D/3D highly heterogeneous materials, including compos-
ites and trabecular bone materials. The difficulty of discretising such materials with
complex microstructure is circumvented by using the cut finite element method (Cut-
FEM). Then, two efficient zooming techniques are proposed for coupling micro and
macroscale models. In our multiscale frameworks, the CutFEM technique is utilised
to discretise the corresponding micro/macro interface besides the microstructure.

In the first framework, the smooth transition concurrent multiscale method, the
two models are blended in a transition region and discretised over a single fixed
computational mesh. While in the second framework, the two models have different
meshes and are coupled over a sharp interface using Nitsche’s method. In both frame-
works, the CutFEM technology has been used for discretisation purposes that permits
representing the microstructure and micro/macro interfaces in a mesh-independent
fashion. This feature of CutFEM allows to (re)locate the zooming region(s) (the
region(s) we require microscopic analysis) over a fixed background mesh arbitrarily,
thus improving the robustness of multiscale modelling and analysis. In chapter 3, the
efficiency and robustness of the smoothed concurrent multiscale method is demon-
strated for 2D and 3D linear elasticity problems. Then, in chapter 5, the performance
of the second concurrent multiscale framework with a sharp interface is tested for
2D linear elasticity and plasticity materials.
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In chapter 4, the smoothed concurrent multiscale method developed in chapter 3
is extended for brittle fracture problems, which are a prevalent example of multiscale
phenomena. According to the literature, fracture initiation starts in microscopic
length scales by an accumulation of micro cracks in a process zone that eventually
leads to the creation of macro cracks. In this thesis, the phase field model has
been adopted for the fracture problem, which considers the fracture in a diffusive
way. Since phase field models suffer from demanding extremely refined meshes to
represent cracks, an efficient numerical framework is essential to balance accuracy and
computational costs. In chapter 4, we show that our smoothed concurrent multiscale
framework is a suitable choice for such problems.
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Introduction

Motivation. Highly heterogeneous structures, such as composites and porous me-
dia, are commonly used in many engineering fields due to their high efficiency and
performance. Accurately predicting the behaviour of these structures is essential
for advancing or optimising their engineering analysis and design. However, due
to the multiscale nature and rapid spatial variations in material properties of such
structures, their computational modelling poses a significant challenge. For instance,
composites are commonly used in aerospace engineering to reduce weight and improve
the performance of aircraft structures. However, designing advanced composites re-
quires a deep understanding of their behaviour at different length scales. Similarly,
the application of porous materials such as soil and concrete in civil engineering
requires accounting for behaviours at more than one length scale because of their
complex properties.

Direct numerical simulation methods for modelling and analysis of such struc-
tures are computationally expensive and may not be tractable when dealing with
large-scale structures. Homogenisation methods, which pass data from small to large
length scales to obtain the properties of such materials, have been widely used to
overcome this challenge. However, these methods suffer from drawbacks, including
macroscopic uniformity and RVE periodicity assumptions. The uniformity assump-
tion is not satisfied in critical regions of high gradients like interfaces, complex geome-
tries with sharp angles, and severe plasticity and softening regions. The periodicity
assumption is also not fulfilled when the material’s microstructure is nonuniform.

Concurrent multiscale methods [2, 3, 4] have been developed to overcome the
limitations of homogenisation methods and enable efficient computational modelling
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of highly heterogeneous structures by bridging the microstructural and homogenised
macroscale descriptions efficiently. These methods divide the computational domain
into separate sub-domains, where each sub-domain requires different levels of dis-
cretisation resolution and/or different length-scale constitutive models. The primary
motivation of concurrent multiscale modelling is (i) to adopt a localised complex
model for the regions of interest undergoing critical phenomena (such as plasticity,
fracture, complex microstructure, etc.) and not the entire domain; (ii) to employ
different discretisation space for the regions of interest (ROI) and the surrounding
region; (iii) to avoid creating a complex large scale model, which is a time-consuming
task.

This thesis advocates utilising concurrent multiscale analysis based on CutFEM
technology [5]. We aim to extend the CutFEM technology, as a fictitious domain
method, for concurrent multiscale modelling of the heterogeneous structures under-
going linear elasticity, plasticity and fracture behaviours. Herein, the motivation is
(i) to emulate the main advantage of the CutFEM in seamless and mesh-independent
modelling of complex geometries within our microscale region and then employ a ho-
mogenised FEM model in the macroscale region; (ii) to adopt different discretisation
space for the micro and macroscale regions, and investigate the CutFEM framework
performance for the micro/macro concurrent coupling.

State of the art. One of the main challenges of the concurrent multiscale methods
is choosing an appropriate coupling technique for linking the corresponding sub-
domains. In the literature, several types of concurrent multiscale methods have
been proposed that are mainly distinct in terms of their coupling approaches. We
categorise these approaches into two groups of overlapping and non-overlapping. As
shown in Figure 1, in non-overlapping approaches, two sub-domains (the microscale
and macroscale sub-domains are denoted by Ωm and ΩM, respectively) are connected
via a sharp interface Γ, while in overlapping approaches, the two sub-domains are
partly overlapped and coupled over ΩT (shown by yellow colour).

In non-overlapping techniques, also referred to as interface coupling, the coupling
operators are implemented across the interface Γ, which is typically done by Lagrange
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multipliers or Nitsche’s method to enforce the continuity and compatibility conditions
over the interface. In the Lagrange multipliers approach, extra unknowns are added
to the system of equations associated with the Lagrange multipliers that increases
the computational efforts [6]. The Nitsche’s method, on the other hand, introduces
a symmetric formulation that stabilises the bilinear form using a penalty term that
must be sufficiently large and imposes the interface conditions weakly [7, 8]. The
s-method [9] and the mortar method [10] are popular examples of non-overlapping
coupling techniques that have demonstrated acceptable precision and efficiency in
coupling various models with similar or different length scales.

The overlapping techniques, on the other hand, employ a surface coupling in-
stead of the interface coupling to connect the different sub-domains, which is shown
to reduce oscillatory irregular numerical solutions fields in their transition region
ΩT . These oscillations are ubiquitous when linking subdomains with different length
scales such as continuum-atomistic [11, 12, 13] and continuum-molecular [14, 15].
However, this technique has also been demonstrated to be efficient for continuum-
continuum problems [16]. The well-known examples of overlapping methods are
the Arlequin method [17, 18], the bridging domain method [19, 20] and the works
developed by [21, 22, 23].

Another challenge in concurrent multiscale methods is the discretisation of the
computational domain, including the inside of sub-domains and the interface sepa-
rating the sub-domains. This is crucial in particular when

• one deals with structures that own complex microstructures,

• the ROI is non-stationary or time-dependent, and the corresponding Γ or ΩT

alters during the simulation.

An efficient and robust approach for the discretisation of such problems is utilising
a non-conforming method. Non-conforming or unfitted discretisation techniques in-
tend to decouple meshing from geometry for problems involving embedded interfaces
or complex geometries. This feature alleviates the remeshing necessity, which is a
common issue in the context of fitted methods such as the finite element method
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(a)

(b)

Figure 1: Various coupling techniques in concurrent multiscale methods: (a) non-overlapping tech-
nique and (b) overlapping technique. The microscale and macroscale models defined over Ωm and
ΩM, respectively, are coupled either across an interface Γ with non-overlapping techniques or over
a overlapping region ΩT with overlapping techniques.

(FEM). However, the majority of previous concurrent multiscale methods were de-
veloped within fitted discretisation techniques.

In general, interface problems are covered by two categories of unfitted discretisa-
tion methods. The first group deals with embedded interfaces, such as cracks, while
the second group focuses on immersed boundary modelling that aims to treat complex
geometries in an arbitrary way. The extended finite element method (XFEM) [24]
is probably the most well-known example of the first group that adds extra degrees
of freedom for the intersected elements and employs suitable enrichment functions
(such as Heaviside function) within the partition of unity method to account for
discontinuities implicitly, in the solution field (instead of modelling the geometry of
discontinuity explicitly, as done in the FEM). The XFEM has been applied to a wide
range of problems in computational mechanics, including different types of fracture
problems in full scales. But in the context of concurrent multiscale analysis, it has
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been mainly used to represent cracks inside local sub-domains, see for instance [25].

Later on, authors in [5] proposed the CutFEM, which is considered as a gener-
alisation of the XFEM for immersed boundary modelling. However, the enrichment
technique in the CutFEM is different from the one used in the XFEM. In the Cut-
FEM, an extra element is added to the element cut by interface; where each of the
double elements represents different sides of the interface. Then, the overlapped
elements are glued together with the Nitsche’s method. Unlike the XFEM, which
struggles with singularity issues when the interface intersects an element by being
very close to its node(s), the CutFEM can handle such cases smoothly. This is
due to the regularisation terms [26] that CutFEM implements in the formulation of
cut elements. It is worth mentioning that the CutFEM without regularisation was
originally proposed by [27] for linear elasticity problems.

The literature on CutFEM, similar to XFEM, is vast. Here, we will solely focus on
the area of domain decomposition and multiscale modelling, as a thorough literature
review is done in chapter 1. One of the most relevant works in this area is carried
out by authors in [28], who developed a multi-mesh framework based on CutFEM
for multi-component structures. In their methodology, each component of the large
structure is meshed separately while each mesh is allowed to overlap the CutFEM
fixed background mesh arbitrarily. Their method allows the CutFEM background
mesh to be intersected by more than one interface (corresponding to the overlapped
meshes) simultaneously. They use Nitche’s method to enforce interface conditions in
the intersected elements. In the context of concurrent multiscale modelling, however,
to the author’s best knowledge, there are no published papers by other authors using
the CutFEM technique.

This thesis aims to extend the CutFEM for concurrent multiscale modelling of
heterogeneous materials. The CutFEM represents the microscale geometry, which
can be expressed in terms of an analytical distance function or a given surface mesh.
In this thesis, we present two novel concurrent multiscale methods; each one features
a novel coupling strategy for linking microscale and macroscale models.

In the first strategy, we adopt a mixing technique over a single computational
mesh, which is refined in the ROI and coarse elsewhere. The mixing technique al-
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lows us to mix or couple the microscale and macroscale models in their transition
region ΩT (a region where the two models are overlapped). This type of coupling
strategy belongs to the class of smoothened overlapping methods, such as Arlequin or
the Bridging Domain Method. In this technique, we intend to avoid the two common
challenges mentioned previously associated with the concurrent multiscale modelling.
To do so, we perform the glueing procedure "naturally", using a smoothening weight
function to take an average of the microscale and macroscale models in their ΩT ,
which we refer it as a smooth interface. In our multiscale framework, the smooth
mixing strategy is inspired by the Arlequin method. However, contrary to the Ar-
lequin mixing strategy, we do not cross and glue a high resolution mesh to the
underlying mesh. Instead, we use a level set function over a single background mesh
to define the ΩT . Then, we blend the two scales in the elements inside the ΩT . We
demonstrate the efficiency of our framework for linear elasticity (chapter 3) and for
phase-field fracture (chapter 4) problems.

In the second strategy, we propose another concurrent multiscale framework com-
prised of microscale and macroscale models that are separated with a sharp interface
(instead of the smoothed interface in the first strategy). Here, we deal with two
types of interfaces, including the interface representing the microstructure geometry,
and the second interface separates the microscale model with microstructure from
the surrounding homogenised macroscale. In this multiscale framework, we use Cut-
FEM for two outstanding purposes. First, we represent the microstructure in Ωm

using CutFEM. Second, we discretise the micro-macro interface with CutFEM, which
allows it to intersect the background mesh and microstructure interface arbitrarily.
We treat the stability of the corresponding intersected elements by ghost penalty
regularisation. This framework has been applied to problems with linear elastic and
elasto-plastic behaviours.

Outline of the thesis. The structure of the thesis is as follows: Chapter 1 presents
a literature review for the implicit frameworks for solving interface problems including
unfitted domains and embedded interfaces.

Chapter 2 discusses different types of homogenisation techniques and domain
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decomposition methods available in the literature of computational mechanics.
Chapter 3 shows the smoothed concurrent multiscale algorithm for 2D and 3D

heterogeneous structures and presents the numerical results at the end of chapter.
Chapter 4 is comprised of two parts. The first part applies the proposed smoothed

concurrent multiscale framework for phase-field fracture problems. In the second
part, within an inverse problem framework, different homogenisation aspects of the
phase-field problems are investigated.

Chapter 5 presents a novel multiresolution formulation based on CutFEM for
concurrent multiscale modelling and the corresponding numerical results.

Chapter 6 summarises the main contributions proposed in the thesis and suggests
future studies.
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Chapter 1

Implicit interface PDEs solvers

1.1 Introduction

Many complex physical phenomena in scientific and engineering problems can
be described through Partial Differential Equations (PDEs), such as structural and
material behaviours, fluid-structure interaction and multiphysics diffusion problems.
Finite element method (FEM) is deemed a robust numerical tool for solving PDEs.
In the FEM, the governing PDE is discretised over the computational domain with
elements that have a simple shape. The classical version of FEM requires a mesh
that conforms or fits to the geometry of the physical body and small elements in
the regions where the solution is less smooth. A schematic presentation for the
conforming (fitted) FEM is shown in Figure 1.1a.

Constructing an accurate geometry and the corresponding meshing for prob-
lems with complex architecture and/or moving interface is a time-consuming task
and makes the modelling stage with the classical FEM more cumbersome. For in-
stance, crack propagation, laser ablation and tumour growth are the common time-
dependent problems that need to update the initial mesh configuration during the
simulation. Recent advances in high resolution imaging techniques have provided
an invaluable tool for explicitly modelling problems mentioned above. They propose
a simulation framework comprised of high resolution volumetric images embedded
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(a) (b)

Figure 1.1: Computational meshes; a) fitted FEM and b) unfitted FEM.

in the FEM, which take into account the actual architecture during the simulation.
Within this context, Voxel-Based FEM (VBFEM) is considered a common approach
proposed by [29] that generates conforming (fitted) finite element meshes with re-
spect to the pixel values. VBFEM is applied successfully for problems in biome-
chanics [29, 30], material science [31], and solid mechanics [32]. Using VBFEM has
the advantage of straightforward construction and bypassing the image segmentation
stage [33, 34]. However, all these advantages are still subject to high computational
costs (due to the fine mesh usage and remeshing), which limits the robustness and
tractability of the approach when dealing with large-scale structures.

Despite the advantages of fitted FEMs in handling a wide range of problems
with complex geometries and boundary conditions, alternative approaches are also
available in the context of unfitted FEMs. Figure 1.1b illustrates a typical compu-
tational mesh used for arbitrary domains with unfitted FEMs. Unlike fitted FEMs
(shown in 1.1a) where the mesh conforms to the actual physical geometry during
the simulation, the unfitted FEM allows interfaces representing the geometry to cut
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the elements in an arbitrary way. However, the cut elements in the unfitted FEMs
require advanced numerical techniques, which will be discussed in the remainder of
this chapter.

This chapter deals with a literature review on various unfitted FEMs that cover
two categories of problems: (1) unfitted domains and (2) embedded interfaces. In
section 1.2, we will discuss the well-known unfitted FEMs for the unfitted domain
problems, namely the cut finite element method (CuFEM) [5], finite cell method
(FCM) [35], cartesian grid finite element method (cgFEM) [36]. For the second
category, in section 1.3, we will have a review of the extended finite element method
(XFEM) [24], strong discontinuity method (SDM) [37, 38] and CutFEM. Besides,
in the last section (1.4), we will review briefly a popular implicit fracture approach
called the phase field method (PFM) [39, 40].

1.2 Unfitted FEMs for arbitrary domains

Due to the limitations and lack of flexibility of fitted FEMs in modelling time-
dependent and complex geometries that require time-consuming geometry construc-
tion procedures, several unfitted FEMs have been proposed to handle these issues
during the last few decades. As shown in Figure 1.1b, an immersed boundary mod-
elling is the main feature of unfitted FEMs that are intended for such problems.
In all unfitted FEMs, the aim is to decouple geometry construction from meshing.
However, within unfitted approaches, the elements intersected with the boundaries
require more versatile numerical algorithms to guarantee the accuracy of the solution
field and robustness of the numerical method. The following will discuss the well-
known unfitted FEMs for arbitrary domains, including CutFEM, FCM and cgFEM.

1.2.1 Cut Finite Element Method

CutFEM, as a fictitious domain method, aims to facilitate the computations
of complex and evolving geometries [41, 5, 42]. The method is originated from the
unfitted FEMs that are based on Nitsche’s method and boundary stabilisation terms,
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see for instance [6, 43, 41, 27, 44, 45]. The CutFEM presents the computational
domain over a fixed background mesh, letting the interface corresponding to the
domain cut through the mesh freely. In other words, it decouples the geometry of
the physical problem from the finite element spaces and the background mesh. The
main idea behind this method is to define the PDE and the geometry by the FE
variational form. It is worth noting that the idea of computation and updating the
geometry in the discretised formulation tremendously reduces the preprocessing costs
of the meshing.

In CutFEM, a common interface tracking approach employed is the Level Set
Method (LSM) which has been developed for several complex problems in the compu-
tational mechanics community, including laser ablation [46], neuro-cell morphologies
[47], contact problems [48] and two-phase fluids [49]. There are also other track-
ing methods have also shown promising results when coupled with the CutFEM,
including boundary meshes [50] and fast marching method [46].

The level set functions let us compute the intersection of the fixed background
mesh with the interface Γ(t) in a straightforward manner. This allows CutFEM to
accurately track moving complex boundaries/interfaces without stability issues in
2D and 3D simulations. A schematic representation of Γ(t) is shown in Figure 1.2.

In the LSM, a function φ(x, t) is applied to the space where the interface exists,
where x denotes a point in the space and t is time. Signed distance function is a
common type of function used in the LSM, in particular to ensure that ψ is not too
flat or too steep near Γ. The signed distance function is defined as

φ(x) = ‖x− xΓ‖ sign(nΓ · (x− xΓ)) (1.1)

where xΓ is the closest point projection of x onto the discontinuity Γ, and nΓ is
the normal vector to the interface at point xΓ. In this definition, ‖‖ denotes the
Euclidean norm, where ‖x−xΓ‖ specifies the distance of point x to the discontinuity
Γ. By using the signed distance function in our LSM, the interface Γ(t) is defined by
φ(x, t) = 0, while the exterior and interior points are given respectively by φ(x, t) > 0

and φ(x, t) < 0.
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Figure 1.2: Schematic presentation of 2D level set functions at various times over the fixed back-
ground mesh Ωh.

Aside from the efficient geometry description, the method ensures the stability
of its discretisation technique by implementing ghost penalty regularisation terms
in cut elements [26]. The terms are acted on the jumps of functions over the cut
elements’ edges. Authors in [51] show that similar stability as for the ghost penalty
can be achieved with optimal approximation properties. This technique modifies the
finite element space close to the boundary and extends it from the stable interior
elements over the boundary in a stable way.

The enrichment strategy in CutFEM is based on an overlapping technique applied
to intersected elements. In this enrichment method, for every element intersected by
the interface, an extra element is added that overlaps the original element, and they
represent two different solution fields from different sides of the interface. In this
way of enrichment, the degrees of freedom in the cut elements are doubled. Any
form of discontinuity in the solution field, including jumps and kinks, occurs without
directly changing the stiffness matrix. Authors in [52] show that such enrichment
can be reproduced with another well-known unfitted FEM called XFEM. CutFEM
conventionally uses Nitsche’s method for glueing together the overlapped domains
and enforcing boundary conditions.

The Nitsche’s method proposed originally by [53] is a variationally consistent
method for enforcing Dirichlet boundary conditions weakly and has been used ex-
tensively for interface problems over the last two decades. It proposes a symmetric
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formulation and stabilises the bilinear form using a penalty term that must be suf-
ficiently large. Recently, [54] employed a nonsymmetric version of Nitsche’s method
for elliptic interface problems. They showed that their technique does not require
sufficiently large parameters to guarantee stability, unlike the symmetric Nitsche
method. However, in this thesis, we will use a symmetric version of the Nitsche for
enforcing the interface conditions.

The CutFEM technology is applied for a range of weak discontinuity problems,
such as unilateral contact [48], multiphysics phenomena [55, 56, 46], porous media
flow [57], and fiber-reinforced composites [58]. It has also been recently developed for
modelling multi-component structures using different meshes for each component by
[59, 60], where multiple meshes can overlap over a fixed background mesh arbitrar-
ily, and the intersected elements are regularised with the ghost penalty technique.
CutFEM for fluid-structure interaction problems is another main application of the
method that significantly reduces the burdensome of generating high quality meshes
required with conventional methods such as arbitrary Lagrangian-Eulerian (ALE);
see for instance, the work done by [61].

1.2.2 Finite Cell Method

The initial FCM proposed by [35] can be interpreted as a combination of a ficti-
tious domain approach with high order finite element methods. The method employs
high order elements for the cut elements with interfaces, which are decomposed into
adaptive sub-elements. A large number of quadrature points are aggregated around
the immersed boundary, allowing to resolve the discontinuity in the integrands of the
variational formulation. Similar to the CutFEM, the physical domain is embedded
in a geometrically larger domain that is discretised with structured mesh. However,
the method has also been tested successfully with unstructured tetrahedral [62, 63]
and polygonal meshes [64].

In FCM, the fictitious part of the computational domain is considered as a soft
material which makes the discretisation of the embedding domain with standard
FEM possible. The fast convergence to an accurate result, however, is due to the
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fact that a high order Ansatz space is used [65]. The dense distribution of integration
points serves to capture the boundary, as in level sets, and to increase the accuracy of
integration over cells independent of the physical domain. The stabilisation analysis
of FCM with Neumann and weakly forced Dirichlet conditions are carried out by [66]
and [67], respectively.

The method has successfully been applied to a wide variety of applications, for
instance, in solid mechanics [68], structural analysis [69], and fluid-structure interac-
tion [70].

1.2.3 Cartesian Grid Finite Element Method

The cgFEM is another so-called unfitted FEM introduced for solving elasticity
problems with arbitrary domains over a mesh made up of regular quadrilateral ele-
ments in 2D [36] or regular hexahedral elements in 3D problems [71]. This way of
discretisation, which employs similar elements in the mesh, yields several computa-
tional advantages. Firstly, the similarity of elements helps to use the same integrand
for the integrals of all elements by only scaling the obtained ones in a reference
element. Secondly, in this method, using h-refinement leads to less computational
costs as the projection of information between different mesh sizes is practical and
straightforward.

Another main advantage of cgFEM is that it can consider the computer aided
design (CAD) geometry for numerical integration. This makes cgFEM a suitable
method to improve the gap measures. For instance, see [72, 73] for the application
of the cgFEM in image-based structural analysis. The cgFEM is applied successfully
for various problems in computational mechanics, including contact mechanics [74],
plasticity [75], large deformation [76], and optimisation [36].

Similar to the FCM and the CutFEM, cgFEM deals with a fixed background
mesh over Ωh and a computational domain over Ω in which the mesh does not need
to conform the geometry under the following condition: Ωh ⊂ Ω. However, unlike
classical versions of the FCM and the CutFEM that use triangular elements, the
cgFEM employs quadrilateral elements in the background mesh [36]. As shown in
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Figure 1.3, they apply distinct discretisation techniques for dealing with the arbitrary
domains. In the CutFEM (1.3a), the cut elements are stabilised by the ghost penalty
regularisation, particularly when the interface is close to a node and only a tiny
portion of the cut element is left. In the FCM (1.3b), the cut elements are enriched
with higher order elements where a softer stiffness is employed for the fictitious part
of the domain to maintain the accuracy of the method. In the cgFEM (1.3c), the
cut elements are hierarchically refined if the true geometry is not embedded in the
Cartesian grid.
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Figure 1.3: Schematic presentation of domain discretisation for different unfitted FEMs; a) Cut-
FEM, b) FCM and c) cgFEM.
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1.3 Unfitted FEMs for embedded interfaces

In recent decades, we have seen the development of classical FEM to geometri-
cally unfitted FEMs, which cover problems with embedded interfaces such as cracks
and shear bands. XFEM and SDM are well-known examples of such developments
[37, 38]. These methods aim at decoupling geometry from meshing by enriching the
solution field when required. Therefore, the conventional way of modelling any form
of discontinuity (e.g. jumps or kinks) in the mesh in an explicit way is replaced
with an implicit approach where the solution field is enriched with suitable enrich-
ment functions over a fixed mesh. From a computational standpoint, the unfitted
approaches permit an accurate description of the solution fields while saving a large
number of degrees of freedom in comparison to the standard low order boundary-
fitted techniques. These certainly explain their current popularity in the computa-
tional mechanics community for analysing complex problems.

The idea of enrichment technique was originally proposed by [77] that was able
to deal successfully with the strong discontinuity with FEM. The method, which is
assumed in the class of embedded elements, captures strong discontinuities in FE
to improve the resolution of shear band localisation. In their method, additional
DOF, due to localised deformation modes, are eliminated at the element level by
static condensation. Based on this idea, [78] proposed a method to model strain
localisation by imposing two parallel weak discontinuity lines in a single element
so that the element was able to contain the band of localised strain. One of the
distinct differences between these two methods is that the width of the localised
band is smaller than the mesh size in the method proposed by [78]. In contrast, the
localisation bandwidth is of the same size as the mesh size in the method by [77], and
a very fine mesh was required to resolve the localisation band. In further work, [79]
proposed a method based on displacement interpolated embedded localisation lines,
which was insensitive to mesh size and distortions. This method was much more
flexible than schemes that allow discontinuities only at element interfaces and was
used easily to model the crack growth without remeshing. The idea was similar to the
XFEM, which was developed a decade later by [80]; in fact, the embedded elements
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introduce additional unknowns into the variational formulation. The XFEM has
been proposed in modelling strong discontinuities from the earliest studies of the
technique by [24, 81].

Another innovative method was also proposed by Hansbo and Hansbo [27] for
modelling strong discontinuities, where the approximation was constructed from two
different fields. In their method, the crack kinematics was obtained by overlapping
elements instead of introducing additional degrees of freedom. The idea was based
on the superposition of an additional element to the element cut by the disconti-
nuity in order to construct the enriched displacement field. [82] presented that the
Hansbo–Hansbo method can be derived from the standard XFEM technique by using
a linear combination of the XFEM basis.

In the following, a review of the XFEM, SDM and CutFEM as popular unfit-
ted FEMs for modelling discrete cracks will be presented. Then, the well-known
phase field method as an implicit approach for modelling fracture problems will be
introduced.

1.3.1 Extended Finite Element Method

The XFEM was initially introduced by [80, 24] for fracture problems. The method
was developed based on the mathematical basis of the partition of unity finite ele-
ment method (PUFEM) proposed by [83] that allows new capabilities while keeping
the main advantages of FEM. In fact, with XFEM, we can model discontinuities or
singularities in the solution field by introducing an appropriate set of enrichment
shape functions while preserving the original geometry and mesh configuration. The
conventional FEM requires a suitable mesh to preserve the accuracy when disconti-
nuity or singularity happens in the solution field, for instance, the crack propagation
in three dimensions, which is an arduous task. However, the XFEM can handle these
situations over a fixed mesh using an appropriate enrichment function.

XFEM augments the FEM space with enrichment functions within the framework
of the partition of unity method (PUM). The method adds additional degrees of free-
dom to the nodes close to the strong discontinuities and singularities and implements
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enrichment functions locally to the conventional FEM approximation space [84]. The
jump in the solution field is conventionally referred to as the strong discontinuity that
can be considered a crack.

Apart from the extensive applications for fracture analysis (involving cracks en-
forcing strong discontinuity and singularities in the solution field), XFEM has also
been successfully applied for arbitrary/moving domains. For instance, Sukumar et
al. [85] developed new enrichment functions for modelling holes and inclusions and
Chessa and Belytschko in [86] applied XFEM for two-phase flow with surface tension
effects.

Coupling the computational methods related to tracking moving boundaries, such
as the LSM, with the XFEM has created a powerful tool for simulating complex
time-dependent geometries. The XFEM lets us represent the geometry in a mesh-
independent fashion, and the level set technique simplifies the selection of enriching
nodes and their implementation.

The first implementation of coupled XFEM and LSM in the modelling of voids
and inclusions was performed in [85], where the LSM is used to represent the location
of voids, inclusions, and material interfaces. Later, [87] used this technique to model
micro structures with complex geometries and to present the capability of the model
for the homogenisation of periodic basic cells. The method has also been applied for
nano-materials by [88] to calculate the overall elastic properties of nano-materials
with nano-scale interface effects and to determine the size-dependent effective elastic
moduli of nano-composites with randomly distributed nano-pores. According to [89],
the coupled XFEM and LSM technique has proven to be a suitable framework for the
numerical homogenisation of heterogeneous materials with complex microstructures.

In the last two decades, the XFEM has been applied to a wide range of problems
in computational mechanics, including contact mechanics [90], cracking [91], shear
bands [92, 93, 94], damage [95, 96], multiscale [97, 98] and multiphysics [99, 100, 101].
The efficiency and popularity of the XFEM led it to be used in industrial problems
as well, which has been implemented by famous companies such as LS-DYNA and
ABAQUS.
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1.3.2 Strong Discontinuity Method

Authors in [102] proposed an assumed enhanced strain (AES) framework to en-
hance the strain field for the elements showing locking due to their lack of bulk
incompressibility and bending. The main motivation for the invention of AES was
to treat elements with localised deformation. This framework was the basis of devel-
oping the strong discontinuity method (SDM), which is now considered as a popular
unfitted FEM for interface problems.

The SDM was presented by Simo, Oliver and Armero [37] for modelling strong
(displacement) discontinuity by taking into account the softening constitutive law
and the interface traction-separation relation. Here, the displacement field is com-
prised of regular and enhanced components, while the enhanced term leads to a jump
along the discontinuity interface. The SDM adds no additional degrees of freedom to
the localised elements, which is achieved by the static condensation technique. The
static condensation is used to eliminate the need for the element enhancement before
the global assembly; therefore, no additional degrees of freedom are introduced into
the global equation system. Moreover, the application of the static condensation for
the constant strain triangular elements led to the well-known Galerkin embedded
strong discontinuity method by [103].

The differences between the XFEM and SDM have been investigated by the
[104, 105, 1]. The main distinction originates from their enrichment methods, where
the XFEM enriches the nodes while the SDM enriches the element. The schematic
presentation of the two methods of enrichment is presented in Figure 1.4. We can
conclude that the enrichment in the SDM leads to fixed global unknowns, while the
XFEM yields increasing global unknowns.

The SDM has gained considerable attention in the last two decades for modelling
weak and strong discontinuities. Different fracture mechanisms have been developed
within the SDM, including traction-opening [106], traction-sliding [107] and traction-
closure [108]. The method has also shown promising results for various 2D and 3D
simulations under quasi-static, dynamic, cycling and impact loading regimes, see for
instance [109, 110].
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Figure 1.4: Schematic presentation of enrichment methods by the SDM (a) and the XFEM (b)
reprinted from [1].

1.3.3 Cut Finite Element Method

CutFEM, as a generalisation of the XFEM, aims to handle not only arbitrary
domain problems but also problems with sharp interfaces such as cracks. As discussed
earlier, unfitted FEMs use enrichment techniques to apply the interface conditions
for the intersected elements. Within the CutFEM enrichment, an extra element
is added for the elements intersected by the crack interface, leading to a doubled
degree of freedom in the cut elements. Then, the interface condition is enforced by
Nitsche’s method for the overlapped elements. Here, proposing an extra element for
the cut element (each element representing different sides of the interface) leads to
the enrichment of the solution field. This differs from the other popular unfitted
FEMs, such as XFEM, where an enrichment function, such as the Heaviside step
function, is typically employed for the intersected element to capture the jump (i.e.
crack opening) in the field.

The CutFEM has been applied for the fracture problems in [5, 27], limited to
the linear elasticity. Recently, [111] developed the CutFEM for cracks and contact
problems within a large deformation regime. However, the CutFEM is still under-
developed for complex interface problems. For instance, it can be developed for
other fracture mechanisms, such as crack closure and sliding and weak discontinuity
problems, such as strain localisation.
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1.4 Phase Field Fracture Method

The computational modelling of fracture constructs a framework not only to
predict the failure of cracking structures but also to explain the fracture nature in
different materials. Brittle and ductile fractures are two prevalent failure mecha-
nisms studied in computational mechanics. Ductile fractures are characterised by
large plastic deformations, while in brittle fractures, little or no plastic deformations
are perceived, and failure occurs rapidly [112]. In this thesis, we focus on the com-
putational modelling of brittle fracture as a predominant failure mechanism in many
heterogeneous media such as concrete, bone, or composites.

In the literature, there are two main approaches available for modelling the brittle
fracture; a discrete crack approach and a smeared crack approach. In the former, the
crack is interpreted as a sharp interface, and its fundamental theory was presented by
Griffith [113] and Irwin [114] for linear elastic fracture mechanics (LEFM). The sim-
ulation of discrete crack initiation and propagation is carried out explicitly by several
unfitted FEMs such as XFEM [24], generalised finite element method (GFEM) [115],
extended isogeometric analysis (XIGA) [116], cohesive zone method (CZM) [117],
and SDM [102]. In the second approach, the crack surface is treated as a diffuse
entity through a scalar variable named as damage field. Here, the cracked material
is considered a continuum that undergoes a strain-softening phenomenon. While
discrete crack approaches provide a physically appealing way to introduce fracture
in numerical simulations, the complications that arise when describing phenomena
like crack branching, coalescence, and curved crack boundaries tend to favour the use
of the smeared crack approaches. The main limitation of the smeared approaches is
their pathological mesh size dependency, which can be alleviated by enhancing their
constitutive models, for instance, with enhanced gradient terms [118].

Phase field fracture models, sometimes referred to as smeared crack/damage mod-
els, consider the initiation and evolution of crack interface through a PDE defined
in terms of the phase field parameter. This scalar parameter can vary from 0 to
1, where the value 0 represents an intact region and the value 1 is a fully cracked
material. The application of the phase field for fracture problems was proposed for
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the first time by Francfort and Marigo [119], who developed a variational framework
to approximate the classical Griffith theory of energy used in brittle fractures. Later,
[120, 121, 39, 40] regularised the variational formulation of Griffith energy introduc-
ing length scales to address the mesh dependency issues and called it the phase field
method.

The main advantages of the phase-field method over previous methods are its
ability to capture crack initiation without the necessity of additional ad-hoc crite-
ria and simulate complex crack propagation with branching and coalescence. The
phase-field method gains these advantages by translating the discrete problem with
constraints into a continuous problem that can be solved through PDEs using con-
ventional FEM. Therefore, it requires less implementation burdensome in comparison
to the other methods. For further information on various implementation techniques
for the phase field method, we refer to the recent review paper by [122].

The phase field method that was initially applied for brittle fractures has subse-
quently been tested for other types of fractures, including ductile [123, 124], cohesive
[125, 126, 127] and dynamic fractures [128, 129].

1.4.1 Phase field modelling of brittle fractures

In the context of brittle fractures, different phase field models have been devel-
oped. The well-known and widely implemented second-order phase field models are
AT1 [130], AT2 [121, 40] and phase field-cohesive zone model (PF-CZM)[131]. AT1
and AT2 models use a simple quadratic degradation function that are applicable for
brittle fracture, while PF-CZM employs a rational degradation function with mul-
tiple user-defined parameters to calibrate a traction-separation law. Moreover, the
PF-CZM can be used for both brittle and cohesive fractures.

AT1, AT2, and PF-CZM are the well-known phase field fracture models that
have been used for not only brittle fracture but also more complicated cases, such as
dynamic brittle [132], anisotropic fracture [133], multiphysics fracture [134].
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1.4.2 Adaptive meshing techniques for phase field fracture

A major bottleneck of the phase field method is its huge computational costs
when dealing with large-scale real-world fracture problems. This is mainly due to
the steep gradient of the damage profile produced by the phase field method, which
naturally demands refined elements to obtain a spatially converged solution. A
common approach for breaking this bottleneck is to refine mesh adaptively in the
cracked regions. However, because of the progressive nature of the fracture problems,
the mesh adaptivity has to be based on a sophisticated algorithm.

In the literature, there are several mesh-adaptivity techniques have been pro-
posed for phase field fracture models. According to [135], the adaptive phase-field
approaches are categorised into global and local. In the global methods, prior knowl-
edge of the crack path is required to refine the mesh before computations, while in
the local methods, the crack path is not known, and the refinement is carried out
during the crack evolution [136]. Within the local methods, a damage-based error es-
timate algorithm is a common approach employed by [137]. However, this approach
requires a non-zero damage value to initiate the mesh refinement, which is considered
error-prone.

Authors in [138, 139] developed the idea of goal-oriented error estimates for mesh
adaptivity [140] for phase field fracture models. They showed that the error estimate
based on a local quantity of interest is an effective choice for phase field problems.
[141] developed a hybrid multi-level mesh adaptivity to avoid hanging nodes by
adding triangular elements to the quadrilateral mesh. However, their approach is
difficult in terms of implementation and not efficient due to its huge computations.
[142] constructed a local adaptive mesh refinement approach within a multiscale finite
element framework.

1.5 Conclusion

In conclusion, this chapter has provided a comprehensive literature review on
various unfitted FEMs, which have been developed to address the challenges of com-
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plex geometry and moving interfaces. These methods aim to decouple the geometry
construction from meshing, and they permit an accurate description of the solution
fields while saving a large number of degrees of freedom compared to explicit ap-
proaches. The well-known unfitted FEMs for arbitrary domains include CutFEM,
FCM, and cgFEM, while XFEM and SDM are examples of unfitted FEMs for em-
bedded interfaces. The discussion of these methods highlights the importance of
versatile numerical algorithms to guarantee the accuracy of the solution field and
the stability and robustness of the numerical method.

Furthermore, this chapter has presented the phase field fracture method as a re-
cently developed numerical framework for modelling fracture mechanics implicitly.
This method offers several advantages over previous approaches, including the abil-
ity to capture crack initiation without the need for additional criteria and simulate
complex crack propagation with branching and coalescence. Moreover, it requires
less implementation burden compared to other methods. Therefore, the phase field
fracture method has the potential to become a valuable tool for predicting and un-
derstanding the nature of fractures in different materials.

Overall, this chapter provides insights into various types of advanced discreti-
sation techniques for solving PDEs corresponding complex problems in the field of
computational mechanics, highlighting their strengths and limitations, and paves the
way for future research in this area.
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Chapter 2

Multiscale methods for
heterogeneous structures

2.1 Introduction

Some materials in engineering and biology, such as composites, cements, bones
and tissues, possess highly heterogeneous structures at certain length scales. While
employing direct numerical simulations at a fine scale provides accurate and detailed
results, they are expensive to measure and not tractable for large scale problems
due to their costly, complex computations. One common solution is the multiscale
simulations that enable us to take into account the essential length scales features
and behaviours with affordable computational costs and without compromising on
accuracy. In the multiscale methods, the microscale and macroscale models are
bridged in an appropriate way to take advantage of the macroscale models’ efficiency
and the microscale models’ high accuracy.

In problems where there is a strong coupling between different scales (wherein
the behaviour at one scale depends strongly on the behaviour of the other scales),
the microscale and macroscale models are typically solved simultaneously in an in-
tegrated model. Two primary classes of multiscale methods have been developed for
such cases: hierarchical methods and domain decomposition methods (DDMs).
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Hierarchical methods, also known as homogenisation methods, aim to incorporate
the microscale behaviours into the macroscale solution across the entire domain.
These methods establish a connection between the two scales at the same location
within the domain. By integrating the microscale behaviours in the macroscale model
all over the domain, the hierarchical approach ensures a comprehensive representation
of the structure’s behaviour.

On the other hand, in DDMs, the communication between the two scales is car-
ried out with some type of handshake approach. In this approach, the heterogeneous
structure is divided into two subdomains. One subdomain, typically exhibiting homo-
geneity, is discretised with a coarse mesh, while the remaining subdomain accurately
captures the microstructure and microscale behaviour using a fine mesh.

In this chapter, our aim is to provide a comprehensive review of the prominent
multiscale modelling strategies applicable to continuum mechanics and fracture pro-
cesses. We begin by delving into the homogenisation technique, which forms the
basis of our discussion in section 2.2. In section 2.3.1, we explore the DDM within
the context of sub-modelling techniques. In the subsequent section (2.3.2), we delve
into another category of DDMs known as concurrent multiscale methods. Here, we
focus on an in-depth exploration of conforming (fitted) and non-conforming (unfit-
ted) discretisation techniques within the concurrent multiscale modelling. Lastly, in
section 2.4, we review multiscale methods specifically tailored for fracture problems.

2.2 Homogenisation techniques

Over the last decades, a large body of literature on homogenisation techniques
has been developed to measure the effective/macroscopic properties of materials with
different microstructures. The microstructure characteristics can be identified based
on the type of micro inclusions, regularity of microstructure and the constitutive
behaviour. [143] proposed a self-consistent approach to calculate the effective prop-
erties of the microstructures that are comprised of a matrix and spheroidal inclusions.
The extensions of the self-consistent approach can be found in [144] for reinforced
composites, and [145, 146] for nonlinear material behaviours. For other types of mi-
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crostructures, whether regular or irregular, the effective properties can be calculated
via unit cells or representative volume elements (RVEs) with appropriate boundary
conditions.

Nevertheless, in the case of highly irregular microstructure, it is challenging to de-
termine the effective properties by the RVEs. For this reason, Voigt [147] and Reuss
[148] introduced a range of possible effective properties in terms of bounds. They
related the effective properties with the volume fraction parameter. Their frame-
works were later extended with the variational framework of Hashin and Shtrikman
[149], the mean-field homogenisation framework by Mori-Tanaka [150] and interface
problems by Babuska [151].

Another class of the computational homogenisation method is called FE2 [152,
153] where the constitutive relation in the macroscale is governed point by point
by solving an RVE of the microscale. It is called FE2 because it employs the FEM
to discretise both macro and micro scale boundary value problems. A fundamen-
tal assumption for the computational homogenisation methods is the separation of
scales. According to this principle, the scale of microstructural fluctuation in the
heterogeneous material (lµ) needs to be smaller than the scale of the RVE (lm) and
again much smaller than the macroscopic solution field fluctuation lM. We show the
corresponding schematic Figure in 2.1 and formulation as,

lµ < lm � lM. (2.1)

The assumption mentioned above, however, is hardly satisfied for highly nonlin-
ear problems within the first order homogenisation. Regions of a high gradient of
deformation, strain localisation and damage are the common cases where the scale
separation is violated in the corresponding RVE. A common way out of this issue is
to apply enhancement techniques for the first order homogenisation to capture the
related softening phenomenon at the RVE level. Prevalent examples of such enhance-
ments are introducing additional degrees of freedom or high gradient terms in weak
formulation [154, 155]. Another common approach for such nonlinear problems is a
second order extension of the computational homogenisation, which is based on the

21



Chapter 2 – Multiscale methods for heterogeneous structures

strain localisation band

A

B

x
A B

C

C

Figure 2.1: Schematic presentation of different length scales for a 2D rectangular domain under
compressive load, with a strain localised band. εp denotes the effective plastic strain which is
accumulated in the grey zone.

assumption of the gradient of the deformation gradient. This extension was initially
introduced by [156] for moderate strain localised problems, then modified by [157] to
account for severe strain localisation using a new formulation for the macroscale de-
formation gradient tensor. Since then, several techniques have been proposed based
on the second order homogenisation discussing different ways for applying macroscale
kinematic variable on the RVE undergoing softening, see for instance [158, 159, 160].

2.3 Domain decomposition methods

Domain decomposition methods (DDMs) tackle the modelling challenges of large
structures undergoing complex phenomena in a different way [161]. The basic idea
of applying DDMs for structures made of heterogeneous materials is to divide the
computational domain into two subdomains: one subdomain (discretised by a coarse
mesh) response is usually homogeneous and elastic, and the other subdomain (dis-
cretised by a fine mesh), the response is typically nonlinear exhibiting intense plastic
deformations and/or fracturing processing.
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The DDMs are not necessarily related to multiscale analysis, but they are utilised
for modelling large scale problems that often own complex heterogeneous properties.
For the interface between the subdomains, the condition of either displacement con-
tinuity ([162]) or traction continuity ([163]) is imposed.

In the following two categories of DDM are discussed: Sub-modelling method
and concurrent multiscale method, which are mainly distinguished in terms of the
method of solution of the subdomains.

2.3.1 Sub-modelling methods

In the context of DDMs, Zohdi et al. [3, 164, 2, 165] proposed a sub-modelling
method for the analysis of heterogeneous structures. This approach separates the
computational domain into macroscale and microscale subdomains while using the
macroscale solution as a boundary condition for the microscale subdomain. This
communication between scales is one-way and occurs from macroscale to microscale.
The subdomain problem’s boundary conditions can take the form of either displace-
ment or traction, which are computed by solving an inexpensive auxiliary boundary
value problem on a regularised microstructure.

A similar methodology, known as the LATIN method, was introduced by Ladeveze
et al. [166, 167]. Operating on a non-incremental iterative strategy, the microscale
solution is updated through a macroscale linear problem, and by means of interface
conditions. According to the LATIN method, it is required to solve the macroscale
problem over the entire domain at each iteration, along with the microscale problem
in the subdomain region. The approach relies on an appropriate search direction to
guarantee and expedite the global convergence.

However, when considering nonlinear constitutive behaviours and mechanisms,
the application of the sub-modelling method, where macroscale behaviour is im-
posed as an interface condition, can introduce inaccuracies into the solution of the
multiscale system. This becomes particularly challenging when dealing with the non-
linear phenomena extended to the interface, which makes the convergence of such
problems a difficult task. As a consequence, many researchers over the past two
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decades have focused on developing more flexible and versatile coupling techniques
between the two scales. One prominent development in this field is the use of con-
current solvers. In the literature, this group of DDMs is referred to as "concurrent
multiscale methods", and we will discuss them in detail in the following section.

2.3.2 Concurrent multiscale methods

According to [168], when modelling heterogeneous materials with domain decom-
position methods, the main computational challenges that we encounter are

• utilising an appropriate coupling technique for linking the two sub-domains
with the same or different length scales,

• performing the spatial discretisation of the interface separating the two sub-
domains.

Here, we initially discuss various techniques to deal with the first challenge mentioned
above using concurrent multiscale solvers. The majority of these techniques were
introduced within conforming discretisation methods in their early developments. In
the following, we will also discuss the challenges and available methods for discretising
concurrent multiscale methods in a non-conforming fashion.

2.3.2.1 Conforming concurrent multiscale methods

Since the early development of the domain decomposition methods within sub-
modelling techniques, several concurrent solvers have been invented for coupling the
models with the same or different scales. In concurrent multiscale methods, we do
not, however, pass information between models. Instead, we couple the fundamental
quantities in the solution of each model, such as the displacement field.

The concurrent multiscale methods are categorised into two main groups based on
their coupling techniques: (1) overlapping and (2) non-overlapping. In the overlap-
ping concurrent multiscale methods, the two models with either the same or different
length scales are allowed to coexist in a finite overlapping region. Figure 1b shows
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a typical overlapping region in concurrent multiscale methods, which is also referred
to as a transition region. This handshake technique shows acceptable efficiency for
coupling multiple models such as continuum-continuum [16], continuum-atomistic
[11, 12, 13] and continuum-molecular [14, 15], which is demonstrated to reduce the
oscillatory irregular numerical solution fields over the transition region. The well-
known examples of overlapping methods are the Arlequin method [17, 18], the bridg-
ing domain method [19, 20] and the works developed by [21, 22, 23].

The non-overlapping techniques, in contrast, link the two models along a sharp
interface, also referred to as interface coupling [14, 169] (see Figure 1a). Therefore,
here, the coupling between the two models happens along an interface rather than
over an overlapped region. The s-method [9] and the mortar method [10] are popu-
lar non-overlapping coupling techniques that have demonstrated acceptable precision
for coupling various models with the same and different length scales. It is worth
mentioning that for both overlapping and non-overlapping approaches, the inter-
face conditions are implemented in a framework of coupling operators, such as the
Lagrange multiplier approach [6] that is extensively used in the Arlequin method
[16, 170] and Nitsche’s approach [7, 8], which imposes interface conditions weakly.

In contrast to the mentioned coupling techniques that are all intrusive, Gendre
et al. [171] introduced a non-intrusive strategy for coupling global and local models.
In this approach, the local model is superposed over the global model without mod-
ifying it. All the computations for both models are performed with standard FEMs
and communicated with each other using an iterative algorithm. Recently, [172] em-
ployed second-order homogenisation kinematics to improve the iterative algorithm
for highly localised problems. This approach has been successfully applied for various
global/local problems with crack propagation [173, 174], localised deformations [175]
as well as multiscale analysis in time and space [25, 176]. We also mention another
family of non-intrusive techniques based on hierarchical enrichment algorithm using
GFEM [177]. Both families are computationally efficient for large-scale problems
with nonlinear phenomena occurring locally in small portions of the total domain.

25



Chapter 2 – Multiscale methods for heterogeneous structures

2.3.2.2 Non-conforming concurrent multiscale methods

The conventional conforming discretisation methods for concurrent multiscale
models impose outstanding computational costs in the pre-processing meshing stage,
in particular, when

• the heterogeneous material owns complex microstructure,

• the phenomenon occurring is progressive (such as crack propagation), which
requires the microscopic region (zoom) to be updated during the simulation.

These restricting factors can be easily tackled by employing suitable non-conforming
discretisation techniques. In the non-conforming concurrent multiscale methods,
the aim is to bypass the meshing of heterogeneous materials requiring local high
resolution fine scale models in the region(s) of interest (e.g. regions with cracks, strain
localisation) and low resolution coarse scale models elsewhere. Unlike conforming
methods, the computational mesh is decoupled from the geometry of the multiscale
model that is comprised of two types of interfaces: (1) the microstructure interface
for representing the microscopic inclusions and (2) the interface between two models
or micro-macro-interface.

This has several practical advantages. Firstly, the zoom interface that separates
the two models is not required to be meshed or aligned with the elements’ edges. This
helps to locate the zooms in the desired locations easily and facilitates their relocation
during the simulation, which is typical for time dependant problems. Secondly, the
geometry inside the zoom regions that usually possess heterogeneous properties with
complex microstructures is not meshed explicitly. These prominent advantages can
be utilised for stationary and moving zooms.

The early work of non-conforming meshes or interfaces is related to a domain de-
composition method proposed by [178]. In this framework, the two meshes are linked
together over a non-matching interface based on the idea of employing elements with
modified basis functions that satisfy the interface discontinuity conditions. Later,
authors in [179] developed for the first time a non-conforming version of the non-
intrusive global/local models [171]. They introduced a virtual interface framework
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based on radial basis functions interpolation and localised Lagrange multiplier that
demonstrated to effectively link global coarse meshes and local fine meshes in a non-
conforming way. On the other hand, [180] also introduced an overlapping technique
for the non-intrusive global/local models that could handle non-conforming meshes.
The fine local model comprises two sub-regions in their overlapping technique. The
first sub-region represents the region of interest where the local phenomenon hap-
pens, and the second sub-domain introduces an overlapping region responsible for
linking the two models in a non-conforming fashion. In the case of multi-component
structures, [59, 28] recently developed a non-conforming multi-mesh framework based
on the CutFEM, wherein each component is allowed to possess a separate mesh. The
framework allows a simultaneous overlapping of three or more meshes over a fixed
background mesh.

2.4 Multiscale methods for fracture problems

A fundamental understanding of fracture and failure phenomena requires small
length-scale simulations at dislocation cores and crack fronts, particularly when deal-
ing with heterogeneous materials. The fracture behaviour in these materials is typ-
ically dominated by the underlying microscale features, including the type of mi-
crostructure constituents. Besides, computational models at the macroscale with ho-
mogenised properties often result in inaccurate predictions of the fracture behaviour,
which accentuates the necessity of analysing such problems at the microscale level.
Nevertheless, as discussed earlier, employing a direct numerical simulation to such
heterogeneous structures with complex behaviours, including the fracture process at
the microscale, is not affordable in terms of computational costs.

For instance, in the case of the phase field fracture model, these costs may be far
beyond the capacity of computing machines. Compared with discrete crack mod-
els, the phase field method suffers from demanding extremely refined meshes in the
regions where the crack happens to resolve high damage gradients and maintain accu-
racy. Also, in brittle fracturing, where discrete cracks are prevalent, we require highly
refined elements to recover them through phase-field models, which creates a high
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computational burden, particularly in large models with engineering applications.

In view of this situation, a common approach to tackle the computational costs
of phase-field modelling is the multiscale frameworks [181, 182]. Computational ho-
mogenisation is one of the primary multiscale methods that has been applied for
several fracture and damage problems in recent decades. However, due to the lack
of scale separation and high deformation gradient in the cracked/damaged regions,
the standard computational homogenisation is not a suitable choice. Later, [183]
proposed a second-order homogenisation method to relax the scale separation as-
sumption in the critical regions by considering a linear variation of the deformation
field in the RVE. Their strategy can account for the size effects of microstructure
and allow for moderate localisation of macroscale deformations [184, 185]. However,
it is still inappropriate for fracture problems with high localised deformations.

The multiscale methods mentioned above are valid until two assumptions are
satisfied: (1) the separation of scales is prominent, and (2) an RVE can be well-
defined. Following these assumptions, an accurate homogeneous description of the
microstructures is inevitable. Despite that, when the microstructure is highly het-
erogeneous (the microstructure heterogeneities are not homogeneous), the effective
description is expected to be impacted by a coupled behaviour of the damage and
the microstructure. This restrains the above methods from accurately up-scaling the
information. Moreover, in the context of non-separated scales, a proper setup and
interpretation of fracture phase-field models in the presence of holes and inclusions
are still challenging and under-developing research topics. Recently, [186] proposed a
computational homogenisation framework to provide a more in-depth interpretation
of this topic. They follow the work by [187] to identify the different parameters of the
homogenised phase-field model by fitting a typical force-displacement response on a
heterogeneous model. In other words, they construct an inverse problem based on
microscale and macroscale phase-field models and then predict the macroscopic frac-
ture energy release rate. Their results show that the captured homogenised models
can correctly reproduce the crack path and force curve.

Apart from homogenisation techniques developed for the phase-field models, the
concurrent multiscale method is another family of multiscale methods that can deal
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with the high computational costs and tackle the above-mentioned homogenisation
barriers. The concurrent multiscale method is particularly appealing for problems
where the fracture occurs in a small portion of the domain. The method divides
the computational domain into macroscale and microscale subdomains. This way,
the scale separation assumption will no longer be needed as the critical regions are
modelled directly (explicitly) with a microscopic model. Recently, [188] proposed a
concurrent multiscale method based on the s-version coupling technique for phase-
field modelling of structures with complex microstructures. They solved localised
phase-field problems with prior knowledge of the crack path and showed that the
s-version of concurrent multiscale modelling is accurate as long as the crack is kept
inside the microscale region.

2.5 Conclusion

In conclusion, this chapter provides a literature review on hierarchical multi-
scale modelling techniques for heterogeneous structures, with a particular focus on
homogenisation techniques and concurrent multiscale methods. The homogenisa-
tion techniques discussed in this chapter aim to calculate the effective properties of
materials by considering the characteristics of the microstructure. Self-consistent
approaches, unit cells, and representative volume elements are commonly employed
to determine these effective properties. Additionally, the computational homogenisa-
tion method is another famous technique which utilises the FEM to solve both macro
and microscale boundary value problems. However, these techniques face challenges
when applied to highly nonlinear problems with critical regions, such as localised
deformations, plasticity, damage, and fracture. To address these issues within ho-
mogenisation methods, enhancements are proposed such as second-order extensions
of computational homogenisation that has demonstrated to capture such complex
softening phenomena accurately.

Conversely, concurrent multiscale methods, a popular class of domain decomposi-
tion methods, offer an alternative approach to address the modelling of complex and
highly nonlinear problems. These methods partition the computational domain into
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macro and microscale regions, in contrast to homogenisation techniques that aim to
compute effective properties throughout the entire domain. By directly modelling
(or explicitly considering) the regions experiencing local intense nonlinear mechani-
cal phenomena, such as strain localisation, within the microscale region, concurrent
multiscale methods allow the remaining regions to be modelled using less computa-
tionally expensive macroscopic models. Furthermore, these methods can adaptively
update the size and location of microscale regions to capture progressive phenomena,
such as fracture propagation. However, selecting the appropriate microscale region in
concurrent multiscale methods can be challenging and may require robust techniques
for optimisation purposes.

In summary, each category of multiscale techniques has its own advantages and
drawbacks. The selection of the most suitable method should be based on the un-
derlying mechanical mechanisms, scale of the problem, and computational capacity
limitations. By understanding the strengths and limitations of these multiscale tech-
niques, researchers and engineers can effectively address the challenges posed by het-
erogeneous structures and highly nonlinear phenomena in computational mechanics.
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Chapter 3

Concurrent multiscale analysis with
smoothed micro-macro interface

3.1 Introduction

3.1.1 Motivation

As discussed in chapter 1, classical FEM is not efficient for problems with time-
dependent and complex geometries, which are prevalent features in microscale mod-
els. For such problems, we require mesh refinement and regeneration to maintain
the accuracy of solutions within the FEM. Nevertheless, it still might be problem-
atic when modelling large-scale problems due to the limited computational resources.
One common remedy is to replace FEM with fictitious domain methods such as the
CutFEM. As explained in chapter 1, in CutFEM, the geometry is decoupled from
the finite element mesh (background mesh), which facilitates the discretisation of the
problems with varying geometry and complex architectures. Then, the geometry is
defined in terms of an analytical signed distance function or a given surface mesh.
When dealing with large-scale structures, the signed distance function or surface
mesh of the model is projected over a multiresolution background mesh to gain a
balance between computational costs and accuracy. A refined mesh is adopted in the
regions where the microscale phenomena occur, which is also referred to as regions of

31



Chapter 3 – Concurrent multiscale analysis with smoothed micro-macro interface

interest (ROI) or "zooming regions", while a coarse mesh is used for the surrounding
region.

Using an adapted background mesh, however, is not always sufficient in the con-
text of CutFEM. In fact, a straightforward projection of the singed distance functions
over the adapted background mesh can give rise to the random appearance of geomet-
rical artefacts in the coarse mesh area. These geometrical artefacts with jagged edges
can create unrealistic stress singularity. Thus, in this chapter, the main motivation
is to alleviate this issue by developing a multiscale CutFEM framework.

In our multiscale framework, we replace the signed distance function description
in the coarse region with a homogenised domain. Then, we introduce a smooth
mixing technique to couple the fine microscale region (as the ROI) with the coarse
macroscale region. We use a smoothed interface instead of a sharp interface because
the arbitrary intersection of the porous domain by a sharp zooming interface can
result in bad conditioning for the assembled system matrix. Our smooth coupling
technique is based on a decaying weighted average function that takes the average
of the two models in their smooth interface.

In the following, we first discuss the drawbacks of the CutFEM with multireso-
lution meshes. Subsequently, we propose our concurrent multiscale framework that
has already been published in [189].

3.1.2 Introduction of the multiresolution level-set-based Cut-

FEM

This section provides a brief illustrative two-dimensional analysis of the CutFEM
formulation with a multiresolution background mesh for modelling heterogeneous
structures. Here, the CutFEM formulation begins with the definitions: domain par-
titioning of heterogeneous structures, strong and weak form of governing equations
for the linear elasticity problem and the corresponding discretised formulation.

Let Ω be the computational domain of a micro porous heterogeneous medium
comprised of a matrix subdomain Ω1 and a pore subdomain Ω2, as illustrated in
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Figure 3.1: Domain partitioning for heterogeneous domain Ω partitioned into matrix subdomain
Ω1 and pore subdomain Ω2 (Ω = Ω1 ∪ Ω2) with interface Γ1

Figure 3.1 and
Ωi ⊂ Rd, i = 1, 2, d = 2, (3.1)

where the interface between Ω1 and Ω2 is determined by a continuous level set func-
tion φ1 defined as follows

φ1(x) =


> 0 x ∈ Ω2,

= 0 x ∈ Γ1,

< 0 x ∈ Ω1.

(3.2)

The normal vector in x ∈ Γ1, pointing from Ω1 to Ω2, is given by

n1 =
∇φ1(x)

‖∇φ1(x)‖
. (3.3)

In the previous definition, ‖x‖ denotes the Euclidean norm ‖x‖ =
√
x · x.

We consider linear elastic behaviour for Ω and look for the deformation field
u : Ω→ Rd which satisfies

divσ + f = 0 in Ω, with σ(u) := D : ∇su (3.4)

where f is the volume source term, ∇s. = 1
2
(∇. + (∇.)T ) is the symmetric gradient
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operator, and D ∈ (Rd)4 is the fourth order Hooke tensor of isotropic linear elastic
material defined as

D : ∇s. = λTr(∇s.)I + 2µ∇s. (3.5)

where Tr is the tensor trace operator, λ = Eν
(1+ν)(1−2ν)

, µ = E
2(1+ν)

are the Lamé
parameters expressed by the Young’s module E and the Poisson’s ratio ν.

We define the corresponding variational equation to find u : Ω→ Rd, u ∈ H1(Ω),
satisfying ∫

Ω

σ(u) : ∇sv dx =

∫
Ω

f · v dx+

∫
∂Ωt

τ · v dx , (3.6)

for all test functions v : Ω→ Rd, v ∈ H1
0 (Ω) which satisfy the homogeneous Dirichlet

boundary condition v = 0 on Ωu. In the previous equation, τ is the traction applied
at the Neumann boundary.

We introduce triangulation T for the background domain Ω and then define the
corresponding finite element space of continuous linear function as

Qh := {w ∈ C0(Ω) : w|K ∈ P1(K) ,∀K ∈ T }, (3.7)

where K represents the individual elements or triangles in the triangulation T and
P1(K) refers to the space of piecewise linear polynomial functions defined on each
element K. Here, the related physical domain, Ωh is approximated as

Ωh = {x ∈ Ω|φh(x) ≥ 0}, (3.8)

Now we can present the approximate interface Γh

Γh = {x ∈ Ωh |φh(x) = 0}. (3.9)

Here, we will not provide details on definitions of the fictitious domain and the
stabilisation technique corresponding the CutFEM technique (for such details see the
study by Burman et al. [5]). Instead, we will focus on numerical results to highlight
the issue regarding the discretised Γh over coarse mesh regions.
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Figure 3.2: (a) Schematic depiction of 2D rectangular domain with a quasi-uniform distribution
of micro pores. (b) CutFEM full high resolution discretisation (h = hmin = 0.054). (c) CutFEM
multi-resolution discretisation (hmin/hmax = 0.015).
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(a) (b)

Figure 3.3: Displacement component uy for a) uniformly refined background mesh and b) adaptive
background mesh.

Hence, we consider the heterogeneous structure shown in Figure 3.2a to carry out
a compressive mechanical test. We restrict the displacement at the bottom edge and
prescribe the traction τ = (0,−0.01) along the top edge of the domain. We assume
the corresponding mechanical properties as following: E = 1 and ν = 0.3.

Here, we define the geometry by a piecewise linear signed distance function over
two types of background meshes. As depicted in Figure 3.2b,c, the first background
mesh, as a reference model is uniform and fine everywhere; however, the second
background mesh is fine only in regions of interest and coarse elsewhere, and the
corresponding adaptive mesh refinement scale is s = 1/4. The zero level set function
Γh represents the pore interfaces which intersect the background mesh arbitrarily. For
both mesh configurations, the mesh size is defined as h = hx = hy with hmin = 0.005.

We perform a mechanical compression test and consider the model with the uni-
form fine mesh as a reference. As shown in Figure 3.2c, using the signed distance
function in the coarse domain leads to the random appearance of geometrical arte-
facts. The comparison of the displacement field component uy in Figure 3.3 shows
that the response in the fine mesh region of CutFEM is acceptable; however, in the
coarse mesh region, the geometrical artefacts impose unrealistic additional stiffness.
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3.1.3 Outline of the chapter

The remainder of the chapter is structured as follows: Section 3.2 introduces the
governing equations of the concurrent multiscale method with a smoothed micro-
macro interface. In this section, we first define our domain partitioning approach
and then present the strong and weak forms of the equations for the concurrent
multiscale model. Then, in section 3.3, we derive the discretised formulations, where
the microscale model is discretised with CutFEM and the macroscale model with
FEM.

In the last section (3.4), we present the numerical results of the concurrent mul-
tiscale framework. We first test the performance of the proposed smooth mixing ap-
proach in a simplified multiscale problem, with micropores distributed locally in the
domain, thus, homogenisation is not essential outside of the ROI. Then, we demon-
strate the efficacy and robustness of our smoothed concurrent multiscale framework
for 2D and 3D elasticity problems that require a homogenised model outside of the
ROI. In our 2D simulations, we use an analytical signed distance function to define
the geometry. In contrast, in our 3D case study, we use a mesh surface derived from
micro-CT image data to describe the geometry of a trabecular bone with a complex
microstructure.

3.2 Governing equations of the concurrent multi-

scale method with smoothed micro-macro model

3.2.1 Domain partitioning

Let Ω be the computational domain of a micro porous heterogeneous medium
comprised of a matrix subdomain Ω1 and a pore subdomain Ω2, as defined in the
introduction (section 3.1.2) and illustrated in Figure 3.1.

In this section, we define the microscale zoom region Ω̂z for our multiscale analysis
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Figure 3.4: Domain partitioning for the smoothed concurrent multiscale method: computational
domain Ω is partitioned into macro subdomain Ω̂M and micro subdomain Ω̂z (Ω = Ω̂M ∪ Ω̂z).
Here, Ω̂m = Ω̂z \ Ω2 denotes the porous micro domain.

by a continuous level set function φ2 given by

φ2(x) =

{ > 0 x ∈ Ω̂M,

= 0 x ∈ Γ2,

< 0 x ∈ Ω̂z,

(3.10)

whose zero isoline defines the boundary of the zoom. The macro domain, denoted
by Ω̂M, is the domain outside of the zoom. For an illustration see Figure 3.4, with
Ω̂z shown as the shaded area. Furthermore, the normal vector on the interface Γ2

pointing from Ω̂z to Ω̂M is given by

n2 =
∇φ2(x)

‖∇φ2(x)‖
. (3.11)

Furthermore, let Ω̂m = Ω̂z \Ω2 = Ω̂z ∩Ω1, denote the microscale region without the
pores. The porous microscale domain can be expressed by a combination of the two
level set functions

Ω̂m = {x ∈ Ω : φ1(x) < 0 and φ2(x) < 0}. (3.12)
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3.2.2 The boundary-value problem

Let us consider linear elastic behaviour for the macro domain Ω̂M and the porous
micro domain Ω̂m. In our multi-model, we are seeking the deformation field u :

Ω̂M × Ω̂m → Rd × Rd which satisfies

divσM + f = 0 in Ω̂M, (3.13a)

divσm + f = 0 in Ω̂m, (3.13b)

where

σM(u) := DM : ∇su (3.14a)

σm(u) := Dm : ∇su (3.14b)

The boundary of the background domain Ω is partitioned into ∂Ωu and ∂Ωt

(∂Ω = ∂Ωt ∪ ∂Ωu), where ∂Ωu is the part where the body is clamped and ∂Ωt is the
part where traction t is applied with ∂Ωt ∩ ∂Ωu = ∅.

In the expressions above, f is the volume source term, ∇s. = 1
2
(∇. + (∇.)T ) is

the symmetric gradient operator, and D ∈ (Rd)4 is the fourth order Hooke tensor of
isotropic linear elastic material defined previously in equation 3.5.

On the zooming interface, Γ2, between micro and macro model, the traction is
required to satisfy the following coupling condition

σm · n2 = σM · n2 on Γ2. (3.15)

Integrating governing equations (3.13a)-(3.13b) over the given domains, i.e. macro
domain Ω̂M and micro domain Ω̂m, the weak form of the multiscale elasticity prob-
lem is given as follows. We seek a displacement field u : Ω̂M × Ω̂m → Rd × Rd,
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u ∈ H1(ΩM)×H1(Ωm), satisfying∫
Ω̂M

σM(u) : ∇sv dx+

∫
Ω̂m

σm(u) : ∇sv dx =

∫
Ω̂M

f · v dx+∫
Ω̂m

f · v dx+

∫
∂Ωt

τ · v dx ,
(3.16)

for all test functions v : Ω̂M × Ω̂m → Rd ×Rd, v ∈ H1
0 (ΩM)×H1

0 (Ωm) which satisfy
the homogeneous Dirichlet boundary condition

v = 0 on ∂Ωu. (3.17)

3.3 Discretisation for smoothed concurrent multi-

scale problems

In this Section, we introduce a CutFEM-based approximation scheme of the mul-
tiscale elasticity problem proposed in Section 3.2 using a novel smoothed cut finite
element approach. The arbitrary intersection of the porous domain by the sharp
zooming interface, Γ2, can result in bad conditioning for the assembled system matrix.
To alleviate this problem, we introduce a mixing strategy between the macroscale
and microscale regions. In this smoothed approach, we create an overlap between
the two models. We refer to the overlapping domain as "transition domain", as
highlighted in Figure 3.5a in yellow.

For mixing purposes, we extend the macro and micro domains defined in the
previous Section into the transition region. First we extend the macro domain by
ΩM := Ω̂M∪ΩT . Then we extend the micro domain inside zoom to Ωm := Ω̂m∪ΩT ,
where ΩT is the transition domain. In this framework, ΩM and Ωm are overlapping in
the transition domain. The transition domain is determined by the level set function
φ2, which is the signed distance function to Γ2. We set the width of the transition
region to 2ε, which is given by the signed distance from −ε to +ε. We define a
smooth weight function α for the mixing, as shown in Figure 3.5b, and express it in
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(a) (b)

Figure 3.5: Transition domain in the smoothed multiscale method (a) and the distance dependent
weight function, α, in the transition domain (b).

terms of φ2 by

α(x) =

{ 0 if φ2(x) ≤ −ε,
S if − ε < φ2(x) < ε,

1 if φ2(x) ≥ ε.

(3.18)

In the previous expression, S is a smooth function varying from 0 to 1 inside the
transition zone, and as shown in Figure 3.5b, −ε and +ε are the lower and upper
bounds of ΩT inside micro and macro domains, respectively. We will blend and mix
the macro and micro models using the weights α and 1− α.

3.3.1 Multiscale finite element space

Here we discretise the weak form (3.16) of the multiscale model, which locally
modifies a global problem by using only one mesh, unlike other similar methods such
as the Arlequin method [16] and multi-mesh CutFEM [60] that superimpose a high
resolution mesh onto a coarse background mesh. In our framework, we introduce
triangulation T for the background domain Ω and then define the corresponding
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finite element space of continuous linear function as

Qh := {w ∈ C0(Ω) : w|K ∈ P1(K) ,∀K ∈ T }, (3.19)

where the corresponding smoothed multiscale model physical domains, Ωh
M and Ωh

m

are approximated as

Ωh
M = {x ∈ Ω|φh2(x) ≥ −ε}, (3.20)

Ωh
m = {x ∈ Ω|φh1(x) ≤ 0 and φh2(x) ≤ ε}. (3.21)

Furthermore, we approximate the transition domain Ωh
T as

Ωh
T = {x ∈ Ω| − ε ≤ φh2(x) ≤ ε}. (3.22)

In (3.20) and (3.21), φh1(x) ∈ Qh is the piecewise linear approximation of the
level set function φ1 and φh2(x) ∈ Qh is the piecewise linear approximation of level
set function φ2. By using these level set functions, we define the position of the
microscale features and pores over a single fixed mesh arbitrarily (in a nonconforming
manner). Now we can present the approximate interface Γh1

Γh1 = {x ∈ Ωh
M |φh1(x) = 0}. (3.23)

The pores with arbitrary geometries can have non-zero intersection with either
macro or micro domains, where all the elements of T intersected by Γh1 will be
grouped in set

T h1 := {K ∈ T : K ∩ Γh1 6= ∅}, (3.24)

where the corresponding domain is defined as TH1 =
⋃
K∈Th

1
K.

Furthermore, let THp denote the set of all elements, which are fully inside the pores,
i.e. φh1 > 0 in all vertices of the element.
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Figure 3.6: Schematic presentation of the discretised domain for the smoothed multiscale method.

3.3.2 Fictitious domain

First, we define a set of all elements in the background mesh T which have a
non-zero intersection with Ωh

M or Ωh
m

Th := {K ∈ T : K ∩ (Ωh
M ∪ Ωh

m) 6= ∅}. (3.25)

Note that, this fictitious domain mesh consists of all elements in the background
mesh except for the elements fully inside the pores outside of the transition region
(elements shown in white in Figure 3.6). The domain associated with this set of
elements is called fictitious domain and is denoted by ΩT :=

⋃
K∈(Ωh

M∪Ωh
m) K.

Notably, all elements inside the pores in the transition region are contained in
the fictitious domain mesh. These elements are not integrated over in the micro
domain and therefore yield a zero contribution in the system matrix. Therefore,
these elements rely mainly on the stiffness of the macro domain. However, if almost
the full weight is on the micro domain, i.e. α ≈ 0, in the transition region there
is very little contribution from the macro domain inside the pores and this yields
ill-conditioning.
In addition to this source of ill-conditioning, we can obtain ill-conditioned matrix
entries through the integration of elements which lie almost entirely in the pores in
the micro region and therefore contain very little material from the micro domain.
We address these two sources of ill-conditioning by introducing two ghost penalty
regularisation terms. The first one is used for the elements intersected by Γh1 in the
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microscale region Ωh
m, and is applied to the elements edges (shown in red in Figure

3.6) given by

FG := {F = K ∩K ′ : K ∈ Th and K ′ ∈ Th, F ∩ TH1 6= ∅}. (3.26)

The second ghost penalty regularisation term is applied to the edges of elements
in the transition region Ωh

T that are intersected by Γh1 or are inside the pores. These
ghost penalty terms extend the solution of the micro domain into the pores. It
gives the elements in the pores a stiffness, which alleviates ill-conditioning, while
maintaining the consistency and accuracy of the solution (i.e. terms vanish with
optimal rate with mesh refinement and continuity of the solution). The corresponding
edges are shown schematically in Figure 3.6 in purple and are defined as

FGT
:= {F = K ∩K ′ : K ∈ Th and K ′ ∈ Th, F ∩ (TH1 ∪ TH2 ) 6= ∅}, (3.27)

where TH2 is the domain related to the set of all elements of T intersected by pores
in the transition domain defined as TH2 =

⋃
K∈Th

2
K, where the set of elements T h2 is

given by,

T h2 := {K ∈ T : K ∩ Ωh
T 6= ∅ and (K ∈ TH1 or K ∈ THp )}. (3.28)

In this contribution, since we use one adapted background mesh for the multiscale
problem, the displacement field is continuous throughout the whole domain. For its
discretistion, we choose the vector-valued continuous piecewise linear space

Uh := {u ∈ C0(ΩT ) : u|K ∈ Ps,1(K) ∀K ∈ Th}, (3.29)

where s denotes the spatial dimension, s = 2, 3.

44



Chapter 3 – Concurrent multiscale analysis with smoothed micro-macro interface

3.3.3 Stabilised multiscale formulation

The mixed finite element formulation for the proposed multiscale method is the
following: find uh ∈ Uh, such that

aM(uh, vh) + am(uh, vh) = lM(vh) + lm(vh) (3.30)

for any vh ∈ Uh satisfying homogeneous Dirichlet boundary conditions. The bilinear
form aM and linear form lM of the macro model are given by

aM(uh, vh) =

∫
Ωh

M

αhDM∇su
h∇sv

h dx, (3.31)

lM(vh) =

∫
Ωh

M

αhf · vh dx+

∫
∂Ωh

t

αhτ · vh ds. (3.32)

where αh is the discretised form of weight function α. In the previous problem
statement, the regularised bilinear form am is defined for the micro scale model as

am(uh, vh) =

∫
Ωh

m

(1− αh)Dm∇su
h∇sv

h dx +

∑
F∈FG

(∫
F

(1− αh)βh
Em

JDm∇su
hKJDm∇sv

hK dS
)
.

(3.33)

Here, the second term, called ghost-penalty, ensures a uniformly bounded condition
number for the system matrix and JxK denotes the normal jump of quantity x over
the facet F , and β denotes the Ghost Penalty stabilization parameter that needs
to be large enough to guarantee the coerciveness of bilinear form am [5, 7] on the
fictitious domain. The linear form of the microscale model is given by

lm(vh) =

∫
Ωh

m

(1− αh)f · vh dx. (3.34)
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3.4 Numerical results

This section has two objectives: (1) to verify the applicability of the proposed
smooth mixing framework, (2) to demonstrate the capability of the proposed smoothed
concurrent multiscale framework for 2D and 3D linear elasticity problems. For the
first objective, we choose a heterogeneous structure with a local distribution of micro
pores, which is a simplified case due to it’s homogeneous microstructure outside of
the ROI. For the second objective, we adopt more complex heterogeneous structures
(2D and 3D) where due to the distribution of micro pore over the entire domain,
homogenisation outside of the ROI is required to improve the accuracy of results.

3.4.1 Smooth mixing approach adopted for a 2D locally porous

medium

Here, we investigate the performance of the proposed smooth mixing approach
in a 2D locally porous medium, shown schematically in Figure 3.7. This structure
is a simple case for multiscale modelling, as homogenisation is not essential in the
coarse domain due to the local distribution of micro pores.

.

Figure 3.7: Schematic presentation of 2D rectangular domain with locally distributed pores.

We define the rectangular domain as Ω = [0, 12] × [0, 10], comprised of matrix
domain Ω1 = Ω\Ω2 and pore domain Ω2. We block the displacement at the bottom
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edge and insert displacement u = (0,−0.1) along the top edge of the domain. Then,
we set the macro and microscale mechanical properties to EM = Em = 1 and
νM = νm = 0.3.

We test three structured background meshes consisting of one uniform and two
adaptively refined meshes generated independently of the pore and zoom interfaces.
We employ linear Langrangian elements, with a uniform background mesh size h =

hx = hy and the regularisation parameter set to β = 0.005. The corresponding
discretisations of the physical domain Ω1 are shown in Figure 3.8. The zero level set
functions of Γh1 (shown as black lines) and Γh2 (shown as red line) represent the micro
pore and the zooming regions, respectively. The corresponding discretised domains
in Figure 3.8 show the arbitrary intersection of the interfaces with the elements,
where the zooming interface determines the middle of the transition region ΩT and
the mesh is refined inside the zoom.

(a) (b) (c)

Figure 3.8: Computational mesh for the physical domain of the 2D model with locally distributed
pores a) uniform meshing, b) adaptive meshing type-1, c) adaptive meshing type-2.

In this thesis, we choose the following smooth weight function to mix the two
models inside transition region ΩT ,

S =
1

2
(1 + sin(

π

2ε
φ(x))). (3.35)

Here, the function S needs to possess infinite differentiability (C∞) when at-
tempting to utilise small blending lengths. The reason for this requirement is that
a higher degree of smoothness ensures a more gradual transition between the mul-
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tiscale and homogenised regions, minimising any abrupt changes or artifacts in the
solution. While functions with lower smoothness properties, such as C1 or C2, may
be sufficient in certain cases, employing a C∞ function offers greater flexibility and
control over the blending process. It allows for a smoother transition, resulting in
improved accuracy and reduced numerical errors associated with the blending effects.

Figure 3.9 illustrates how the scalar function αh is distributed in the discretised
physical domain with different mixing lengths. Note that our multiscale mixing
approach operates over a single mesh, and its mixing length is defined in a mesh-
independent manner. The displacement field component uy for two smooth mixing
lengths 2ε = 0.1, 1 and the finest adaptive mesh with hmin = 0.2 are shown in
Figure 3.10c, d. We choose standard FEM and unfitted CutFEM as reference models
and present the corresponding uy in Figure 3.10a, b. As expected, we find that
our CutFEM displacement field converges to the FEM displacement field, verifying
our single-scale unfitted method. For the smoothed multiscale model, uy inside the
zoom is similar to the corresponding references and exhibits smooth behaviour in the
transition domain ΩT .

(a) (b) (c)

Figure 3.9: Smoothing weight function α contour over finest adaptive mesh, a) ε = 0.1, b) ε = 0.4
and c) ε = 1.

The energy distribution inside ΩT is the average of the FEM macroscale and the
CutFEM microscale model. Next, we will investigate how the mixing approach via
the weight function (3.35) impacts the stress field in the physical and the fictitious
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(a) (b)

(c) (d)

Figure 3.10: Displacement component uy contours for different methods: a) FEM, b) CutFEM, c)
smoothed multiscale model with 2ε = 0.1, d) smoothed multiscale model with 2ε = 1.

domains. The stress field is given by

σmix(x) =

{ σm if x in Ωm\ΩT ,

σM if x in ΩM\ΩT ,

(1− αh(x))σm + αh(x)σM if x in ΩT .

(3.36)

As shown in Figure 3.11a,b, the stress component σyy in CutFEM converges to
its FEM counterpart. We compute σmix given in (3.36) for two smoothing lengths
over the physical and fictitious domains in Figure 3.11c-3.11f. Our results show that
σmix in ΩT is smooth and without oscillations.

For the purpose of quantitative comparison, we evaluate the σyy at two distinct
points within the zoom region and compare them to the corresponding values ob-
tained from the reference model. The first point, denoted as A and located at
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coordinates (6,6.4), resides inside the zoom area and aligns with the larger circular
pore. The second point, referred to as B and positioned at coordinates (7.9,4.5), is
also within the zoom region and lies exactly between the larger and smaller circular
pores.

At point A, the values of the mixed stress component, σmix,yy, for the smoothed
multiscale model with 2ε set to 0.1 and 1, are−2.8×10−4 and−4.0×10−4 respectively.
In comparison, the corresponding value of σyy for the full FEM (serving as the
reference model) is −3.05 × 10−4. The comparison of these results reveals a more
satisfactory level of agreement for the sharp smoothing length (2ε = 0.1), while the
wider smoothing length results are adversely affected by the blending effects of the
homogenized model. A similar quantitative comparison is performed for point B.
The computed σmix,yy values, with 2ε equal to 0.1 and 1, are -0.0245 and -0.0232
respectively, with the corresponding reference value being -0.0261. The results at
point B exhibit a satisfactory agreement for both smoothing lengths. The higher
errors observed for 2ε in both cases can be attributed to the smoothing effects within
the transition region. Overall, the quantitative comparisons yield satisfactory results,
confirming the accuracy of our approach in capturing the desired response.

To enhance the stability of our multiscale framework, in the microscale model,
we regularise the elements inside the porous domain in addition to the intersected
elements by Γh1 . Then we compute the condition number of the multiscale system
matrix to investigate the stability by using SLEPc [190] which finds the ratio of the
maximum to the minimum eigenvalue of the system matrix (i.e. λmax/λmin). We
use a sequence of uniform and adaptive meshes with different mixing lengths and
then compare them with the CutFEM reference model. In Figure 3.12a, we find
that the behaviour of our smoothed approach with different mixing lengths is well
conditioned and similar to the standard CutFEM approach. In Figure 3.12b, we
investigate the impact of extending the ghost-penalty regularisation to the inside of
the pores (in addition to the cut elements by the pore interfaces) on the condition
number of the multiscale system matrix. As expected, this technique improves the
condition number effectively. Also, we find that the corresponding behaviour with
respect to mesh refinement for our smoothed approach is proportional to h−2 for
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Stress component σyy contours, a) FEM model, b) CutFEM model, c) smoothed
multiscale model in physical domain with 2ε = 0.1, d) smoothed multiscale model in physical
domain with 2ε = 1, e) smoothed multiscale model in fictitious domain with 2ε = 0.1, f) smoothed
multiscale model in fictitious domain with 2ε = 1.

both regularisation approaches, which are very close to the "pure" CutFEM results.
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(a) (b)

Figure 3.12: The condition number of the system matrix versus mesh size, for different mixing
lengths: a) ghost penalty regularisation is applied to cut elements only, b) ghost penalty regular-
isation is applied to every element inside the porous domain in addition to cut elements. In both
cases, the regularisation parameter is chosen as β = 0.005.

3.4.2 The smoothed multiscale method for a 2D quasi-uniform

porous medium

In this section, we consider the quasi-uniform porous domain given in Figure
3.2 for our smoothed multiscale analysis. As discussed in section 4.1, structures
with uniform heterogeneity require homogenisation in the coarse domain to avoid
geometrical artefacts which yield unrealistic stiffness and stress singularities. Hence,
here, we replace the signed distance function in the coarse domain with a homogenised
domain and use the smooth mixing approach to couple the fine and coarse scale
domains.

In our smoothed multiscale framework, we construct the homogenised model by
using the modified Mori-Tanaka technique (MMTT) approach [191] to reproduce
the effects of micropores in the homogenised macro model. Employing the MMTT
homogenisation approach for ΩM with n circular pores of different radii, the effective
Young’s modulus will be computed as follows.

Ei
M = (1− φ̄i)Ei−1

M (φ̄iLi + (1− φ̄i)I)−1, i = 1, ..., n, (3.37)
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where Ei
M and Ei−1

M are the homogenised Young’s modulus with inclusion of ith and
(i− 1)th circular pores, respectively, and φ̄i is the ith porosity parameter defined as

φ̄i = V i
v /Vt, (3.38)

where V i
v is the void volume with i number of pores and Vt is the total volume. Li is

the Eshelby parameter given for circular inclusions in [192]. To calculate the effective
elastic modulus of a domain with n pores, we add the inclusions one by one, and
in each step number i; we update Equation 3.37. For more details regarding the
MMTT, see [191].

3.4.2.1 The smoothed multiscale with one arbitrary zoom

Here, we use the smoothed multiscale framework with one zoom and compare
it with the equivalent adaptive CutFEM approach discussed in Section 4.1. The
zooming interface is projected over the background mesh and shown with a red line
in Figure 3.13. The material properties and boundary conditions are the same as
in the adaptive CutFEM model from Section 4.1. To compute the homogenised
material properties, we consider the pores in the entire domain Ω. We use Equation
3.37 for this purpose and then calculate the corresponding effective Young’s modulus
as EM = 0.78.

Figure 3.13: Background mesh with projected pores and zooming interfaces of the smoothed mul-
tiscale method.
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We test two length sizes for the transition region, 2ε = 0.2, 0.8. The displacement
field component uy for both ε is shown in Figure 3.14. When compared to the
full microscale model as a reference, shown in Figure 3.3a, the smoothed multiscale
method with homogenisation is much closer to the reference solution in comparison to
the adaptive CutFEM approach, shown in Figure 3.3b. Therefore, using homogenised
models in the coarse domains is necessary when the signed distance functions fail to
detect the microstructure precisely.

(a) (b)

Figure 3.14: Displacement component uy for a) smoothed multiscale, 2ε = 0.2, and b) smoothed
multiscale, 2ε = 0.8.

3.4.2.2 The smoothed multiscale with two arbitrary zooms

Next, we investigate the efficiency of our smoothed multiscale approach for the
same quasi-uniform porous domain (see Figure 3.2a) using two separate zooms. The
displacement at the bottom edge is blocked and u = (0,−0.1) is applied along the top
edge of the domain. We consider the following microscale material properties: Em =

1 and νm = 0.3, while for the macro scale, we derive effective material properties by
using homogenisation Equation 3.37. Like in the previous Section, we compute the
effective Young’s modulus based on the pores in the entire domain Ω as EM = 0.78.

For this example, we employ the same background meshes as for the locally
porous domain (Figure 3.7) and show the corresponding discretised domain and
generated interfaces in Figure 3.15. The smooth indicator function with three lengths
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is computed for the finest adaptive mesh in Figure 3.16. In Figures 3.15 and 3.16,
we observe the independency of the microstructure, zooming geometry and mixing
length to the computational mesh, which creates a straightforward preprocessing
pipeline and saves mesh regeneration costs.

(a) (b)

(c)

Figure 3.15: Computational mesh for physical domain of 2D model with quasi-uniform distributed
pores, a) uniform meshing, b) adaptive meshing type 1, c) adaptive meshing type 2.

We compute displacement field component uy for two smoothing lengths 2ε =

{0.1, 1}, and show the corresponding results over the physical and the fictitious
domains in Figure 3.17c-f. The results prove a high relevance of the multiscale
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(a) (b) (c)

Figure 3.16: Smooth weight function field αh over finest adaptive mesh with a) ε = 0.1 b) ε = 0.4
c) ε = 1.

framework in the microscale domain to the corresponding reference models (depicted
in Figure 3.17a,b). In the transition regions, uy as a global response is smooth for
both mixing lengths and outside the zooms (homogenised domain) the trend is similar
to the references.

Next, we inspect the distribution of the smoothed stress field for two zooming
problems. The results obtained for stress field component σyy for two smoothing
lengths and over physical and fictitious domains are given in Figure 3.18. The com-
parison with reference models (see Figure 3.18) shows that the stress does not suffer
from any oscillations neither in cut elements nor in the transition area. The ghost
penalty regularisation, which extends the solution from the physical domain to the
fictitious domain alleviates the oscillations successfully while ensuring an accurate
stress solution.

The condition number of the multiscale system matrix for different mesh con-
figurations and smoothing lengths are compared with the counterpart CutFEM mi-
croscale model in Figure 3.19a. The comparison shows that our multiscale assembled
matrix is well-conditioned under various smoothing lengths and mesh sizes and con-
verges proportional to h−2 that is similar to the CutFEM convergence.
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(a) (b)

(c) (d)

Figure 3.17: Displacement field component uy, a) FEM model, b) CutFEM model, c) smoothed
multiscale model with ε = 0.1, d) smoothed multiscale model with ε = 1.

3.4.3 3D smoothed multiscale modelling of trabecular bone

This numerical example illustrates the efficacy of the proposed smoothed mul-
tiscale framework in 3D simulations. We use a 3D bone sample with a trabecular
microstructure which is transferred directly from a micro-CT medical image. The
corresponding 3D reconstructed micro-CT image is presented in Figure 3.20. We use
the 3D reconstructed image to compute a surface mesh (STL mesh data) which will
be converted into a level set function. For more information on the digital pipeline
that we have used to convert STL mesh data into a level set function, see [55]. Using
our proposed zooming technique, we select the zoom region and apply the mixing
scheme to the bone as shown in Figure 3.21. The red and black lines represent the
zoom surface and the upper/lower bounds of the mixing regions, respectively. The
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bone microstructure is defined by the zero level set function Γh1 and the corresponding
surface meshing and the CutFEM cell subtesselation are depicted in Figures 3.21a
and 3.21b, respectively.

We employ the MMTT to compute the macroscale effective material properties.
The mixing approach uses the level-set-based indicator function αh, defined in Equa-
tion (3.35), as shown in Figure 3.22. For the homogenisation, we obtain the volume
fractions of trabecular bone from [193], where the bone volume fraction is reported
as Bv = 0.192. Assuming the microscale properties as Em = 1 and νm = 0.3, we
derive the homogenised properties as EM = 0.15 and νM = 0.3.

We perform a compression test for a full microscale FEM (as reference) and the
smoothed multiscale method with one zooming region in an arbitrary location. The
displacement field component uy of these computations is shown in Figure 3.23. For
the smoothed multiscale approach, the 3D simulations are carried out for two dif-
ferent smoothing lengths (2ε = 0.01, 0.1) to study the mixing technique’s stability
for both sharp and wide transition regions. The comparison between full microscale
and multiscale results shows that our level-set-based multiscale method can be suc-
cessfully applied for 3D complex problems, in a mesh independent manner, and the
mixing technique is stable for both types of transition regions.

To further investigate the accuracy of numerical results, we show the variation
of stress component σyy for two smoothing lengths in Figure 3.24. The results show
that the response inside the zoom is consistent with the corresponding FEM reference
model.

We also study the condition number of the 3D smoothed multiscale system matrix
for different smoothing lengths and element sizes. The results in Figure 3.25 show
that the condition numbers stay stable for various smoothing lengths and mesh sizes.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Stress component σyy contours, a) FEM model, b) CutFEM model, c) physical domain
for the smoothed multiscale model with ε = 0.1, d) physical domain for the smoothed multiscale
model with ε = 1, e) fictitious domain for the smoothed multiscale model with ε = 0.1 and f)
fictitious domain for the smoothed multiscale model with ε = 1.

59



Chapter 3 – Concurrent multiscale analysis with smoothed micro-macro interface

Figure 3.19: Condition numbers for CutFEM model and smoothed multiscale method for different
smoothing lengths and mesh configurations. The regularisation parameter is chosen as β = 0.005.

(a) (b)

Figure 3.20: 3D trabecular bone with zoom: (a) Micro-CT image 3D reconstruction, (b) CutFEM
interface.
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(a) (b)

Figure 3.21: 3-D trabecular bone mesh with zoom: (a) surface mesh of micro-CT image, (b)
CutFEM surface subtesselation for h = 0.036.

(a) (b)

Figure 3.22: Smoothing weight function αh used for the 3D bone example with a) 2ε = 0.01 and b)
2ε = 0.1.
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(a) (b)

(c) (d)

(e)

Figure 3.23: 3D and 2D representations of FEM and smoothed multiscale displacement field com-
ponent uy, a) 3D FEM reference model, b) 2ε = 0.1, c) 2ε = 0.01, d) 2ε = 0.1 and e) 2ε = 0.01.
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(a) (b)

(c)

Figure 3.24: Stress component σyy, a) FEM with h = 0.036, b) smoothed multiscale model-A with
hmin = 0.036, ε = 0.01 and only cut elements regularised, and c) smoothed multiscale model-B
with hmin = 0.036, ε = 0.01, cut and porous elements are regularised.

Figure 3.25: Condition numbers for smoothed multiscale models with various mesh sizes and
smoothing lengths.

63



Chapter 3 – Concurrent multiscale analysis with smoothed micro-macro interface

3.5 Conclusion

In this chapter, a framework was proposed to construct an unfitted concurrent
multiscale model for heterogeneous structures. In our methodology, we proposed a
mixing strategy using a single background mesh to couple micro and macro scale
models. Unlike domain decomposition methods where an interface condition is re-
quired between macro and microscale models, the interface constraint is not needed
in our mixing technique.

We demonstrated the validity of our smoothed concurrent multiscale framework
for linear elasticity in 2D and 3D. We first tested the idea of a functional description
of the whole heterogeneous structure by projecting it onto a fixed background mesh
which is fine in ROI and coarse outside. The projection of the functional description
onto an adapted background mesh was carried out successfully by CutFEM, where
the geometry was approximated by a piecewise linear signed distance function in
each background mesh element. We showed that the accuracy of results in the fine
regions is acceptable. However, the very coarse elements outside of the ROI give
rise to the random appearance of geometrical artefacts in the coarse region, yielding
stress singularities. Next, we tested the same problem within the concurrent multi-
scale framework where an equivalent homogenised domain was adopted in the coarse
region. The results showed that employing the multiscale approach improves the
results in the coarse domain. We extended our framework to 3D elasticity problems,
where a given surface mesh of trabecular bone was used to define the microscale
geometry. The obtained results show a good agreement with the corresponding ref-
erence model in terms of global and local responses. Moreover, the corresponding
multiscale system matrix remains well-conditioned under various transition region
sizes.
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CutFEM-based multiscale techniques
for phase field fracture problems

4.1 Introduction

4.1.1 Motivation and objectives

The phase field method has shown two outstanding advantages over discrete crack
models. First, it can reproduce arbitrary cracks geometry without using enrichment
techniques or explicit functions. Second, it is straightforward to implement, particu-
larly when one desires to simulate complex fracturing processes. However, compared
with discrete crack models, the phase field method suffers from demanding extremely
refined meshes in the regions where the crack happens to resolve high damage gra-
dients and maintain accuracy. This is due to the length-scale-based regularisation
of the phase field method that regularises steep damage gradient within bands. As
discussed in chapter 2, several techniques are available to reduce the computational
costs of the phase field methods, including adaptive meshing and multiscale mod-
elling. In this chapter, we focus on multiscale techniques to address the issue.

The chapter is divided into two parts: the first part discusses the extension of the
concurrent multiscale method developed in chapter 3 for phase field problems, while
in the second part, further investigations are carried out for the homogenisation of
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phase field models. The second part of the chapter extends the recent homogeni-
sation framework based on inverse problem analysis by [186] to study the effects of
different factors on homogenisation, such as the mesh-size, microstructure and error
functional.

4.1.2 Introduction of the phase field approximation for quasi-

static brittle fractures

(a) (b)

Figure 4.1: Schematic presentation of fracture problems: original discrete problem (a) and phase
field approximation (b).

Here, we cover the fundamental formulations of the phase field approach for brittle
fracturing that will be extended for multiscale techniques in the following sections.

Let Ω be an arbitrary domain, shown in Figure 4.1a, including a pre-existing crack
Γ with corresponding crack surfaces. Within the framework of thermodynamics, the
variation of the total energy Π is a function of the elastic strain energy density Ψ

and the energy W necessary for the formation of two new surfaces. We propose the
variation of the total energy in the absence of external forces as follows:

dΠ

dA
=
dΨ

dA
+
dW

dA
= 0 (4.1)

where the second term is defined in terms of the critical energy release rate g and is
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a positive parameter. [120, 121] represented the previous equation in a variational
form as follows

Π =

∫
Ω

Ψ(ε)dV +

∫
Γ

gdΓ (4.2)

here, the crack surface Γ is unknown, which imposes difficulties in the calculation
of the second term of equation. In the phase field approach, we approximate the
sharp geometry of discontinuity in a diffusive manner (see Figure 4.1.b). We define
the phase field variable d ∈ [0, 1], with d = 0 as the undamaged region, and d = 1

as a full damaged region. The diffusive approximation involves regions owning the
following property: 0 ≤ d ≤ 1. The phase field approach replaces the second term
of equation 4.2 integrated over surface Γ with a term that is integrated over the all
computational domain Ω. Thus, equation 4.2 can be rewritten as

Πd =

∫
Ω

Ψd(ε, d)dV +

∫
Ω

Γd(d,∇d)dV (4.3)

where Ψd(ε, d) is the damaged/cracked solid strain energy function and defined as
follows

Ψd(ε, d) = (1− d)2Ψ(ε) (4.4)

where (1− d)2 is the degradation function applied to the Ψ(ε), which is denoted as

Ψ(ε) =
1

2
λ(tr(ε))2 + µ(ε : ε) (4.5)

where λ and µ are the Lame’s constants.

In equation 4.3, the term Γd is defined as the crack density function and given by

Γd(d,∇d) =
1

2`
d2 +

`

2
|∇d|2 (4.6)

Here, ` is the length scale parameter representing the width of the phase field re-
gion. This equation plays a critical role in modelling of crack propagation, which is
contingent upon the phase field d and its spatial gradient ∇d.
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According to the phase field algorithm, we minimise the total energy (4.3) with
respect to the displacement field u and phase field d. Equation 4.3 can be written
as a coupled system of equations where we look for displacement field u and phase
field d,

∇ · σd(u, d) = 0 , where σd(u, d) = (1− d)2σ(u) (4.7)

g
(d
`
− `∆d

)
+ 2(1− d)H̄ = 0 (4.8)

Here, equation 4.7 is the linear momentum equilibrium equation for the cracked
body Ω and equation 4.8 refers to the corresponding phase field equation. In above
equations (4.7 and 4.8), σ denotes the Cauchy stress tensor and ∆d indicates the
Laplacian operator. For a traction τ , the natural boundary conditions readily follow
as

(1− d)2σ · n = τ on ∂Ω (4.9a)

∇d · n = 0 on ∂Ω (4.9b)

where n denotes the outward normal to the boundary ∂Ω.

In equation 4.8, the condition of
(
d
`
− `∆d

)
≥ 0 must always be satisfied that

makes the phase field model thermodynamically consistent. Moreover, the term H̄
refers to the history field function which is a positive parameter related to the crack
driving force and needs to be updated at each time step when the crack grows. We
define H̄ as follows:

H̄ = max
t∈[0,T ]

Ψ+(ε(t)) (4.10)

Ψ+(ε) in equation above is given by

Ψ+(ε) =
1

2
K〈tr(ε)〉2+ + µ(εdev : εdev) (4.11)
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where 〈a〉+ = 1
2
(a+ |a|) and K is the bulk modulus.

4.2 Concurrent multiscale governing equations for

phase field fractures

In this section, we apply the concurrent multiscale method proposed in the pre-
vious chapter for the phase field brittle fracturing. Within our concurrent multi-
scale context, we will use a fixed single background mesh for the discretisation of
the domain and let the phase fields evolve over micro and macroscale regions in a
fully mesh-independent fashion. In the following, we will define the related domain
partitioning and derive the strong and weak forms of governing equations and the
discretised formulation.

4.2.1 Domain partitioning

The domain partitioning for the concurrent multiscale phase field model is carried
out similarly to the previous chapter, using genuine microstructure inside the zooms
and a homogenised model elsewhere.

Following the previous chapter notation, we define a heterogeneous material with
computational domain Ω that has a matrix subdomain Ω1 and a pore subdomain Ω2.
The corresponding boundary of Ω is denoted by ∂Ω which is given as ∂Ω = ∂tΩ∪∂uΩ
and ∂tΩ ∩ ∂uΩ = ∅. The corresponding homogenised domain for the heterogeneous
domain Ω is denoted by Ω3 and shown in Figure 4.2b.

Now, we separate the computational domain into two subdomains, including
the microscale region Ω̂m and the macroscale homogenised region Ω̂M. A schematic
presentation of the subdomains is shown in Figure 4.2c, where the phase field fracture
has occurred over both subdomains.
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(a) (b)

(c)

Figure 4.2: Schematic presentation of the phase field fracturing and the corresponding domain
partitioning: heterogeneous domain Ω comprised of matrix subdomain Ω1 and pore subdomain Ω2

(a), homogeneous domain Ω3 (b) and partition of domain Ω into macro homogenised subdomain
Ω̂M and micro heterogeneous subdomain Ω̂m.

4.2.2 Field equations: strong and weak forms

This section presents the strong and weak forms of the governing equations for
the phase field fracture problems in the context of the proposed concurrent multiscale
framework in chapter 3.
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4.2.2.1 Multiscale phase field problem: strong form

We look for displacement field u : Ω̂M × Ω̂m → Rd × Rd and phase fields dm :

Ω → Rd and dM : Ω3 → Rd satisfying the following equilibrium equations. The
corresponding linear momentum equilibrium equation for the cracked heterogeneous
structure is defined as follows:

∇ · σd,m(u, dm) = 0 in Ω̂m (4.12a)

∇ · σd,M(u, dM) = 0 in Ω̂M (4.12b)

where

σd,m(u, dm) = (1− dm)2σm(u), σm(u) := Dm : ∇su (4.13a)

σd,M(u, dM) = (1− dM)2σM(u), σM(u) := DM : ∇su (4.13b)

The corresponding micro and macroscale phase field equations are given respec-
tively as,

gm
(dm
`m
− `m∆dm

)
+ 2(1− dm)Hm = 0 in Ω (4.14)

gM
(dM
`M
− `M∆dM

)
+ 2(1− dM)HM = 0 in Ω3 (4.15)

In above-mentioned equations, the subscriptsm andM denote the micro and macroscale,
respectively. The corresponding parameters are defined as follows: g is the critical
energy release rate, ` is the length scale parameter andH is the history field function.

4.2.2.2 Multiscale phase field problem: weak form

Now, we derive the weak form of momentum balance equation 4.7 by integrating
over the micro and macroscale subdomains. Like the concurrent multiscale elasticity
problem introduced in the previous chapter, we look for the continuous displacement
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field u : Ω̂m × Ω̂M → Rd × Rd and u ∈ H1(Ω̂m)×H1(Ω̂M) (H1 denotes the Sobolev
space of order one), satisfying

∫
Ω̂m

σd,m(u, dm) : ∇sv dx+

∫
Ω̂M

σd,M(u, dM) : ∇sv dx =

∫
Ω̂m

fb · v dx+∫
Ω̂M

fb · v dx+

∫
∂Ωt

τ · v dx ,
(4.16)

for all test functions v : Ω̂m × Ω̂M → Rd ×Rd, v ∈ H1
0 (Ω̂m)×H1

0 (Ω̂M) which satisfy
the homogeneous Dirichlet boundary condition v = 0 on ∂Ωu. In the previous
equation, the term fb denotes the body force acting over the macro and microscale
model.

The weak form of the phase field equations are also derived by integrating equa-
tions 4.15 and 4.14 over Ω and Ω3 as following: We look for microscale phase field
dm : Ω→ Rd, d ∈ H1(Ω) and macroscale phase field dM : Ω3 → Rd, d ∈ H1(Ω3) that
satisfy the following equations, respectively

∫
Ω

gm

(
dm
`m
− `m∆dm

)
q + 2(1− dm)Hmq, dx = 0 , ∀q ∈ H1

0 (Ω) (4.17)

∫
Ω3

gM

(
dM
`M
− `M∆dM

)
q + 2(1− dM)HMq, dx = 0 , ∀q ∈ H1

0 (Ω3) (4.18)

where ∇dM · n = 0 and ∇dm · n = 0 over ∂Ω, and dM = dm = 1 over Γ.

4.2.3 Discretised formulations

In the discretisation stage, like in chapter 3, we introduce a transition region ΩT

for coupling micro and macroscale models, as shown with a yellow colour in Figure
4.3. Herein, since we solve a coupled problem, we mix both of the solution fields in
the transition region, i.e. phase fields (dm and dM) and stress fields (σm and σM).
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Figure 4.3: Schematic presentation of the phase field fracturing in the context of concurrent multi-
scale analysis

For the concurrent multiscale phase field problem, we use the multiscale finite
element space and the fictitious domain proposed in sections 3.3.1 and 3.3.2 of chapter
3. In that case, we represent the vector-valued and scalar-valued continuous piecewise
linear spaces required to discretise displacement field and phase fields respectively,
as:

Uh := {u ∈ C0(ΩT ) : u|K ∈ Ps,1(K) ∀K ∈ Th}, (4.19)

and
Dh := {d ∈ C0(ΩT ) : u|K ∈ Ps,1(K) ∀K ∈ Th}, (4.20)

where s denotes the spatial dimension, s = 2.

The mixed (smoothed) finite element formulation for the proposed multiscale
phase field method is as following: find uh ∈ Uh, such that

auM(uh, vh) + aum(uh, vh) + sum(uh, vh) = luM(vh) + lum(vh) (4.21)

In Equation 4.21, we add the ghost penalty regularisation term sum for stabilisation
of cut elements. The corresponding discretised macro and micro bilinear forms are
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given respectively as following:

auM =

∫
Ωh

M

αh(1− dhM)2DM∇su
h∇sv

hdx (4.22)

aum =

∫
Ωh

m

(1− αh)(1− dhm)2Dm∇su
h∇sv

hdx (4.23)

sum =
∑

Γ∈FG

(∫
Γ

(1− αh)βh
Em

(1− dhm)2JDm∇su
hKJDm∇sv

hKdΓ

)
(4.24)

and the discretised linear forms are also defined as

luM =

∫
Ωh

M

αhfb · vhdx (4.25)

lum =

∫
Ωh

m

(1− αh)fb · vhdx (4.26)

In equation 4.24, the term β > 0 and represents the ghost penalty stabilisation
parameter.

As discussed in the previous section, the macroscale and microscale phase fields
are solved separately, over the entire computational domain. We discretise the mi-
croscale phase field equation (4.17) as following: find dhm ∈ Dh such that

adm(dhm, q
h) + sdm(dhm, q

h) = ldm(qh) (4.27)

In the above equation, the stabilisation term sdm is added on the edges of the cut
elements accounting the jump of stress in the normal direction, to ensure the stability
of these elements. Also, the bilinear form is defined as

adm(dhm, q) =

∫
Ωh

m∪Ωh
M

gm`m∇dhm∇qh +

(
gm
`m

+ 2(1− αh)Hm

)
dhmq

hdx (4.28)
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with the corresponding stabilisation term given by

sdm(dhm, q
h) =

∑
Γ∈FG

∫
Γ

β̄`mh JDm∇sd
h
mK JDm∇sq

hK dΓ (4.29)

and the linear form presented as

ldm(qh) =

∫
Ωh

m∪Ωh
M

2(1− αh)Hmq
h dx (4.30)

In equation 4.29, the term β̄ > 0 and represents the stabilisation parameter for
the phase field.

For the macroscale phase field equation (4.18), we also find dhM ∈ Dh, such that

adM(dhM, q
h) = ldM(qh) (4.31)

where the bilinear and linear forms are defined respectively as

adM(dhM, q
h) =

∫
Ωh

M∪Ωh
m

gM`M∇dhM∇qh +

(
gM
`M

+ 2αhHM

)
dhMq

h dx (4.32)

ldM(qh) =

∫
Ωh

M∪Ωh
m

2αhHMq
hdx (4.33)

The stabilisation terms, sum and sdm defined above, play crucial roles in stabilising
the cut elements and enhancing the stability of the concurrent multiscale model. The
arbitrary intersection of elements by the interfaces can introduce numerical instabil-
ities and inaccuracies, in particular when the cut is very close to the nodes. These
terms help mitigate the mentioned issues by penalising the cut elements. The ghost
penalty regularisation terms consist of a summation over the cut faces Γ belonging
to the set FG, which represents the interface between the cut elements and the rest
of the mesh.
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4.2.4 Numerical examples

In this section, we study two types of problems; (1) we only investigate the per-
formance of the smoothed concurrent multiscale modelling for phase field problems
and assume that the macro and microscale phase field parameters are predetermined,
while in (2), we assume that we do not have access to the macroscale fracture pa-
rameters besides the full microstructure. In the latter case, we construct an inverse
problem to identify the unknown macroscale phase field parameters. In the inverse
problem, we fit the force-displacement curves of the macroscale homogenised model
(with unknown properties) and the concurrent multiscale model (with the arbitrary
location of zoom).

4.2.4.1 Validation of the concurrent multiscale method for phase field
cracking

Here, we employ the concurrent multiscale method for numerical modelling of
periodic porous lattice, shown in Figure 4.4, with available microscale and macroscale
mechanical and fracture parameters. The microscale properties are as follows: Em =

2.1×105, νm = 0.3, gm = 2.7, `m = 0.04. The corresponding macroscale homogenised
material properties are computed by MTT and considered as EM = 0.51Em, νM =

0.3. We also assume that the macroscale fracture parameters are predetermined
and given as gM = 1.50, `M = 0.04. Moreover, the radius of micro circular-pores is
adopted as r = 0.02.

In order to accurately capture the phase field, which demands a fine mesh res-
olution, we perform mesh refinement in the regions expected to undergo cracking.
The meshing is performed using the CutFEM algorithm, where the smallest element
size is set to hmin = 0.007. The selection of mesh refinement areas is guided by prior
knowledge obtained from a full fine scale simulation, serving as our reference model.
Consequently, the mesh size of the reference model is adopted for the refined regions.
Figure 4.5 illustrates the discretised domains for both the full microscale CutFEM
and smoothed multiscale models, showcasing the refined mesh configuration.

Figure 4.6 presents the results obtained from the full microscale CutFEM (as a

76



Chapter 4 – CutFEM-based multiscale techniques for phase field fracture problems

Figure 4.4: Schematic presentation of the heterogeneous structure with periodic micro pores and
the corresponding boundary conditions.

(a) (b)

Figure 4.5: Computational meshes: a) full microscale CutFEM, b) smoothed concurrent multiscale
model.

reference model) and the smoothed concurrent multiscale method. The phase field
growth path for the multiscale model is in good agreement with the reference model.
The force-displacement curve in Figure 4.7 also depicts a similar trend in the global
responses between the two models. Moreover, we verify the results by examining the
maximum reaction force, which serves as an appropriate indicator for comparing the
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ultimate bearing capacity of the two models. We should also mention that the sharp
jumps observed in the curves are a result of the micro pores, which lead to sharp
unloading behaviours in the softening regime.

Finally, we proceed with a comparison of the computational costs associated with
the two models. The full microscale CutFEM requires approximately 22 minutes
of computational time, whereas the smoothed multiscale model completes within
19 minutes. This comparison clearly demonstrates the enhanced efficiency of our
smoothed multiscale approach in terms of computational costs. However, it is impor-
tant to note that the advantages of our approach become even more pronounced when
considering three-dimensional and larger structures. In such cases, the computations
become significantly more affordable, making our smoothed multiscale approach even
more appealing.

(a) (b)

Figure 4.6: Phase field contour in the last time step: (a) full microscale CutFEM (dm) and (b)
smoothed concurrent multiscale model (dm and dM).
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Figure 4.7: Force displacement curve.
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4.2.4.2 Identification test for the phase field parameter gM

Here, we intend to identify the fracture parameter gM for the heterogeneous
porous structure in the previous example (shown in Figure 4.4). This way, we can
illustrate whether the predetermined parameter has been selected correctly or not.
To do so, we follow the work by [186] to construct an inverse problem that aims to
fit the force-displacement curves in the full macroscale and full microscale models
while finding the optimised value of goptM . The corresponding computational meshes
for the full microscale CutFEM and full macroscale FEM are presented in Figures
4.8a,b, respectively.

The microscale material and fracture properties of the heterogeneous structure
are Em = 2.1 × 105, νm = 0.3, gm = 2.7, `m = 0.04. For the macroscale mechanical
properties, we employ MMTT and derive as following: EM = 0.51Em, νM = 0.3.
The macroscale length parameter is also considered as `M = 0.04.

We aim at identifying the optimised value for gM that minimises the following
error functional:

J =
1

2

∫ t

0

[
fm − fM

]2
dt (4.34)

where f is a force defined as an integral of normal traction along the of top edge of
structure projected in x direction. We use the BFGS (Broyden Fletcher Goldfarb
Shanno) search algorithm [194] for optimisation purposes from SciPy library. The
BFGS algorithm is a widely employed method for solving unconstrained optimisation
problems. It belongs to the class of quasi-Newton methods, which approximate the
Hessian matrix of the error functional without explicitly computing it. Instead, the
algorithm estimates the Hessian using gradients of the error functional. To calculate
the gradients, the BFGS algorithm utilises finite differences or automatic differen-
tiation techniques. In our implementation, we employed automatic differentiation
provided by the SciPy library, which efficiently computes the gradients numerically.
This approach avoids the need for manual derivation and coding of gradients, thereby
reducing the potential for errors and enhancing computational efficiency.

Figure 4.9 shows the J − gM curve and the corresponding optimised value is
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goptM = 1.52, while the microscale counterpart value was gm = 2.7. The corresponding
phase field contours for the last time step are shown in Figure 4.10a,b, respectively.
The results demonstrate the high accuracy of the macroscale phase field in terms of
thickness, growth direction and length. Additionally, the force-displacement curves
for the full microscale CutFEM and full macroscale FEM models are shown in Figure
4.11. The good agreement between the global responses shows that the derived
homogenised value for the gM is correct. Thus, we conclude that our predetermined
value for the gM in the previous example was accurate.

(a) (b)

Figure 4.8: Computational meshes: (a) full microscale CutFEM and (b) full macroscale FEM
model.
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Figure 4.9: J − gM curve for the periodic porous lattice structure shown in Figure 4.8.

(a) (b)

Figure 4.10: Phase fields: (a) full microscale CutFEM and (b) full macroscale FEM model
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Figure 4.11: Force-displacement curves: (a) full microscale CutFEM and (b) full macroscale FEM.
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4.2.5 A new self-consistent identification algorithm for macroscale

fracture parameters

When the macroscale phase field parameters are unknown, we follow the ho-
mogenisation technique proposed in [186] for identification purposes. However, when
we access only a small portion of the microstructure, we can not use the previous
methods, which require a full microscale domain as a reference model. Therefore, we
here propose a new self-consistent technique using a smoothed concurrent multiscale
method as our reference model. In this framework, our inverse problem aims at
fitting the force-displacement curve of the homogenised phase field model with the
corresponding concurrent multiscale model (as an exact solution). We perform the
optimisation problem by minimising the following error functional:

J =
1

2

∫ t

0

[
fz − fM

]2
dt (4.35)

where fz is the smoothed concurrent multiscale model force, and fM is the ho-
mogenised model force, defined as integrals of normal tractions along the top edge of
the structure projected in x direction. Furthermore, the macroscale fracture parame-
ters, e.g. gM in both models, are unknown. We use the BFGS search algorithm [194]
for optimisation purposes from the SciPy library and compare the corresponding
result with a direct search method in Figure 4.12.

In our self-consistent approach, we consider the same shear test for a porous
lattice in the previous example. A displacement ux = 0.025mm is applied at the top
edge of the plate while it is fixed at the bottom, in x and y directions. Unlike gM,
the rest material parameters are similar to the previous example.

We perform the optimisation problem for the equation 4.35, where in each iter-
ation gM is updated for both models, i.e., in full FEM and multiscale model. We
calculate the optimised homogenised energy release rate as gM = 1.50. This optimi-
sation problem is based on only one parameter for simplification purposes. However,
in the last part of this chapter, we will also study the effects of `M as an optimisation
parameter on the results.
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Figure 4.12: J − gM curve for the self-consistent simulation with two methods: BFGS and direct
search methods

The force-displacement curve, as well as the crack path in Figures 4.13 and 4.14
show that we can reproduce suitable results for both macroscale FEM and smoothed
multiscale model by only accessing the microscale features inside the zooming region.
This self-consistent strategy can be used to predict fracture behaviour, in particu-
lar, for large structures where only a small portion of microstructure is accessible.
However, the location and geometry of the zooming region in the multiscale model
can tremendously affect the accuracy of results and require further considerations in
more complex examples. When the zooming region has been selected in a proper
way, our new identification approach will leverage the computational efficiency of
the smoothed concurrent multiscale method. This is because the full microscale ref-
erence model in the conventional identification approach [186] is replaced with the
concurrent multiscale model, which requires less computational efforts.
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(a) (b)

Figure 4.13: Phase field contours for the last time step: (a) full macroscale FEM and (b) smoothed
concurrent multiscale model

Figure 4.14: Force versus displacement curves for the three models: blue curve represents the full
microscale CutFEM model as reference model, yellow curve represents the concurrent multiscale
and the grey curve depicts the full macroscale homogenised model.
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4.3 Further investigations on the homogenisation of

phase field parameters

The homogenisation of fracture properties is not straightforward in comparison
to the homogenisation of mechanical properties. This is mainly due to the intrinsic
non-linearity of the fracture parameters, which adds more complexity. One com-
mon approach for computing the homogenised fracture properties is to use inverse
problem frameworks that typically involve minimising a parametric cost function.
[186] constructed an inverse problem to study the role of microstructural features,
including different types of inclusions, in homogenising the fracture energy release
rate parameter. They showed that the parameter is a material-dependent property
and can be used for other problems with different settings but featuring the same
material.

In this part of the chapter, we perform further investigations following the work
by [186] to study the effects of other parameters on the homogenisation of fracture
properties (i.e. gM, `M). These parameters are as follows:

• Mesh-size: we investigate the effect of mesh coarsening on homogenisation results.

• Boundary conditions: we study the effect of boundary conditions on homogenised
fracture parameters.

• Microstructure: we discuss the impact of microstructural parameters onto ho-
mogenised fracture parameters.

• Error (Cost) functional: we test various types of error functionals for the ho-
mogenisation problem.

Investigations on these four factors will be complementary to the work done by
[186], and the corresponding conclusions can be employed directly in the concurrent
multiscale framework proposed in the previous section.
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4.3.1 Numerical results

In this section, we initially carry out identification tests to capture the unknown
homogenised fracture parameters using inverse-problem analysis. Then, we validate
the acquired homogenised parameters by testing them on a new problem with new
boundary conditions.

4.3.1.1 Effect of mesh coarsening on homogenisation

Identification test. In this section, we investigate and identify the effects of mesh
coarsening on the homogenisation of fracture parameters, i.e. `M and gM. A better
understanding of the relationship between the macroscale model mesh-size hM and
the homogenised fracture parameters can provide us with new perspectives regarding
the properties of the homogenised fracture parameters. This will also allow us to
obtain a range of values for the hM leading to accurate homogenised fracture models.
The large value of the hM will demonstrate to what extent we can perform the mesh
coarsening, which can still provide us with an accurate homogenised model.

The geometries and boundary conditions of the heterogeneous microscale and
the homogenised macroscale structures with initial cracks are shown in Figure 4.15.
The full microscale model, as a reference, is discretised by the CutFEM, as shown in
Figure 4.16a. For the homogenised model, we adopt five different meshes with differ-
ent mesh sizes; see Figure 4.16b-f. The microscale material and fracture properties,
besides the macroscale material properties, are the same as in section 4.2.4.1. Here,
we aim to determine `M and gM for each mesh configuration in the homogenised
macroscale model. The smallest element size of the mesh in the micro and macro
scale subdomains are denoted by hm,min and hM,min, respectively.

The inverse problem analysis is carried out between the microscale model and the
macroscale model with five different hmin. We find optimised values for the unknown
gM and `M by minimising the following error functional:

J =
1

2

∫ t

0

[
fm − fM

]2
dt (4.36)
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where fm is the full microscale model shear force, and fM is the macroscale shear force
along the top edge of the structure. The calculated gM and `M for the homogenised
model for each analysis is reported in table 4.1. The results reveal that the mesh
coarsening has slight effects on the value of gM, while for `M, a direct dependency
on the value of hM,min is obtained.

hM,min goptM `optM
0.007 (=hm,min) 1.50 0.038

0.014 1.50 0.053
0.028 1.48 0.073
0.035 1.46 0.082
0.047 1.45 0.092

Table 4.1: Optimised values for the gM and `M of inverse problem analysis between full microscale
and full macroscale models.

The corresponding phase fields for each set of optimised gM and `M besides the
reference model are shown in Figure 4.17. It can be seen that by mesh coarsening, the
structures become stiffer, and the phase field tends to propagate with less curvature.
When we compare the phase field contour of the reference model results with the
corresponding macroscale homogenised models, we observe that with a twice coars-
ening of the mesh, we can still reach acceptable results, which is shown in Figure
4.17c. With further coarsening, the phase field growth path tends to deviate from
the correct one, which is not acceptable. Therefore, an acceptable value for the hM
will be within the range of [hm − 2hm].
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(a) (b)

Figure 4.15: Schematic presentation of geometry and boundary conditions for the identification test
models: a) full microscale structure, b) full macroscale homogeneous structure.

90



Chapter 4 – CutFEM-based multiscale techniques for phase field fracture problems

(a) (b) (c)

(d) (e) (f)

Figure 4.16: Computational meshes: a) Full fine scale CutFEM reference model (hmin = 0.007),
b) Macroscale FEM with hmin = 0.007, c) Macroscale FEM with hmin = 0.014, d) Macroscale
FEM with hmin = 0.028, e) Macroscale FEM with hmin = 0.035 and f) Macroscale FEM with
hmin = 0.047.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Phase field contour for the last time step: a) Full fine scale CutFEM reference model
(hmin = 0.007), b) Macroscale FEM with hmin = 0.007, c) Macroscale FEM with hmin = 0.014,
d) Macroscale FEM with hmin = 0.028, e) Macroscale FEM with hmin = 0.035 and f) Macroscale
FEM with hmin = 0.047.
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Validation tests. Previously, we showed that the fracture parameter `M is highly
dependent on the macroscale mesh size (hM). However, we intend to carry our
further investigations over the relationship between hM and `M by using the derived
values of goptM and `optM in a new problem. This way, we can ensure that our results
are general and not problem-dependent. Therefore, here, we use the material and
fracture parameters from the previous example in a new problem shown schematically
in Figure 4.18a. This example has double initial cracks on each side of the structure
and is under tension loading over the top edge. Moreover, we keep the mesh sizes
similar to the identification tests (see Figure 4.19).

The mechanical tension tests are done for the reference and homogenised models
(shown in Figure 4.18a, b, respectively) with the fracture parameters captured from
identification tests. The corresponding phase field results in Figure 4.20b-d show that
the inputs goptM and `optM work effectively in the new sample, when they are compared
with the corresponding reference result in Figure 4.20a. We also achieve the same
level of accuracy in the force-displacement curves that are shown in Figure 4.21.
These results show that the derived values for the goptM and `optM from the previous
example can be employed for new examples, as long as the microstructure, properties
and hM,min (shown with hmin in the corresponding Figures) do not change. Thus, we
identify the parameters goptM and `optM as "material properties", which is also consistent
with results of authors in [186].
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(a) (b)

Figure 4.18: Schematic presentation for the verification test models: a) full microscale heterogeneous
structure and b) full macroscale homogeneous structure.
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(a) (b)

(c) (d)

Figure 4.19: Computational meshes used for validation tests: a) Full fine scale CutFEM reference
model with hmin = 0.007, b) macroscale FEM with hmin = 0.007, c) macroscale FEM with hmin =
0.014 and d) macroscale FEM with hmin = 0.028.
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(a) (b)

(c) (d)

Figure 4.20: Phase field contour for the last time step: a) Full fine scale CutFEM reference model
(hmin = 0.007), b) macroscale FEM with hmin = 0.007, c) macroscale FEM with hmin = 0.014 and
d) macroscale FEM with hmin = 0.028.
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(a)

(b)

(c)

Figure 4.21: Force-displacement curves of tension tests for different inverse problems analysis car-
ried out between heterogeneous and homogeneous structures. The homogeneous model properties
changes as following in each analysis: a) hmin = 0.007, goptM = 1.50, `optM = 0.038, b) hmin = 0.014,
goptM = 1.50, `optM = 0.053 and c) hmin = 0.028, goptM = 1.48 and `optM = 0.073.
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4.3.1.2 Effect of microstructure on homogenisation

In this section, we investigate the effect of microstructural morphology on the
homogenisation of the fracture parameters. The microstructure will change with re-
spect to the pores’ size (radius) while the structure’s porosity is kept unaltered. The
properties and boundary conditions are also the same as in the previous example.
The shear test is carried out for three different microstructures that own the following
radius of pores: r1 = 0.02, r2 = 0.03 and r3 = 0.04. The corresponding computa-
tional meshes for the three microscale models and the homogenised macroscale model
are shown in Figure 4.22, where the mesh size is the same for all samples.

The inverse problem analysis for each microscale model is carried out to find the
homogenised fracture parameters. We report the corresponding results in table 4.2.
The results show that the variation in the pore’s size does not affect the gM. On the
other hand, `M shows dependency and tends to increase for bigger pores.

The phase fields for the microscale and macroscale models are shown in Figure
4.23. In all three different microstructures, the trend of homogenised phase fields is
very similar to the corresponding microscale reference models.

r goptM `optM
0.02 1.50 0.038
0.03 1.51 0.056
0.04 1.54 0.092

Table 4.2: Optimised values for the gM and `M of inverse problem analysis between full microscale
and full macroscale models.
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(a) (b)

(c) (d)

Figure 4.22: Computational meshes for heterogeneous and homogeneous structures, with hmin =
0.007 for all cases: a) heterogeneous structure with r = 0.02, b) heterogeneous structure with
r = 0.03, c) heterogeneous structure with r = 0.04 and d) homogeneous structure.
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(a)

(b)

(c)

Figure 4.23: Phase fields for heterogeneous and homogenised models: a) r = 0.02, b) r = 0.03 and
c) r = 0.04.
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4.3.1.3 Effect of optimisation error functional on homogenisation

In the previous examples, the error functional used for the inverse problems was
defined as an integral functional during the whole simulation time. However, per-
forming a full-time simulation in each iteration of the inverse problem imposes high
computational costs. In this section, the intention is to reduce the mentioned costs
by replacing the previous error functional with a new functional that mainly de-
pends on the maximum stress and then investigate if we can reach the same level of
accuracy. The new error functional is defined as

J =

[
σmaxm − σmaxM

σmaxm

]2

+

[
um − uM

um

]2

(4.37)

where σmaxm and σmaxM are the maximum stresses for full microscale and homogenised
models, respectively. Also, um and uM are the microscale and macroscale displace-
ments corresponding the σmaxm and σmaxM , respectively.

For identification purposes, the heterogeneous structure introduced in section
4.2.4.1 will be employed here. The same boundary conditions and properties will be
used. Moreover, for mesh coarsening purposes, three different types of meshes are
adopted for the macroscale model.

The inverse problem analysis with mesh coarsening is carried out, and the corre-
sponding homogenisation results are shown in table 4.3.

hM,min goptM `optM
0.007 1.70 0.051
0.014 1.69 0.052
0.028 1.41 0.066
0.035 2.16 0.070

Table 4.3: Optimised values for the gM and `M of inverse problem analysis between full microscale
and full macroscale models.

For each set of optimised values of the gM and `M, the corresponding phase field
contour in the last time step of the simulation is reported in Figure 4.24. The results
show that the new cost functional can lead to accurate homogenised gM and `M,
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which is a more versatile approach in terms of computational costs.
For further analysis, a mesh coarsening for this cost functional is carried out.

When the results are compared with the results of section 4.3.1.1, we observe that
we can achieve a reasonable range of results up to four times in the mesh coarsening.
With the new error functional, the time required for the homogenisation of fracture
parameters reduces up to 60%, which is very satisfactory against about 10% com-
promise in the accuracy. The force-displacement curves for the heterogeneous and
homogeneous structures in Figure 4.25 illustrate that the captured optimised values
of gM and `M for different hM,min can also produce accurate global responses.
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(a) (b)

(c) (d)

Figure 4.24: Phase field contours for the last time step: a) Full fine scale CutFEM reference model
(hmin = 0.007), b) Macroscale FEM with hmin = 0.007, c) Macroscale FEM with hmin = 0.014, d)
Macroscale FEM with hmin = 0.028.
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(a) (b)

(c)

Figure 4.25: Force-displacement curves of shear tests for different inverse problems carried out
between heterogeneous and homogeneous structures. The heterogeneous model (as reference) has
the following properties for all of the inverse problems: hm,min = 0.007, gm = 2.7 and `m = 0.04.
The homogeneous model properties alters as following in each analysis: a) hM,min = 0.007, goptM =

1.7, `optM = 0.051, b) hM,min = 0.014, goptM = 1.69, `optM = 0.053 and c) hM,min = 0.028, goptM = 1.41

and `optM = 0.055

.
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4.4 Conclusion

This chapter explored two different categories of multiscale simulations for phase
field problems. In the first category, the smoothed concurrent multiscale framework
developed in chapter 3 was extended and validated for phase field problems with
predetermined homogenised fracture parameters. The framework was also extended
within a new self-consistent approach for predicting macroscale fracture parameters.
In the new self-consistent framework, an inverse problem was developed between
two models; (i) the concurrent multiscale model (as a reference model) and (ii) the
macroscale homogenised model. This framework allowed us to use only a small
portion of the microstructure and compute the homogenised values of the gM and
`M within acceptable accuracy. These two frameworks were successfully verified for
2D phase field problems.

In the second part of the chapter, additional investigations on the homogenisation
of fracture parameters were carried out following the work by [186]. Here, the effects
of various parameters (including mesh-coarsening and types of microstructure and
cost functional) over the homogenisation were studied. This investigation shed more
light on the properties of homogenised fracture parameters that can be used as an
input in domain decomposition methods. The investigations were carried out mainly
in two parts: the first part covered the identification tests for the goptM and `optM , where
an inverse problem analysis between two models of micro and macro scale was carried
out. The second part discussed the verification stage using the identified parameters
in a new problem and ensuring that they can still reproduce accurate results.

The results of the mesh-coarsening investigation showed that the value of hH in
the homogenised model has a large impact on the value of `M and negligible effect
on the value of gM. The results also proved that gM and `M are material properties
and can be used directly in new problems that own different settings or boundary
conditions. Regarding the effect of microstructure on the homogenisation values, our
results depicted that the changes in the pore’s size have no impact on the computed
gM. However, it largely affects the value of `M, where with an increase in the radius
of pores, `M also tends to increase. In the last section, we studied the effect of
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optimisation error functional on the homogenisation parameters. We showed that
the type of error functional has a huge impact on the computational costs of inverse
problems and should be considered carefully. Our new error functional reduced the
time required for the homogenisation of fracture parameters up to 60% by only
compromising 10% in the accuracy of results, which can be considered satisfactory.
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Chapter 5

Unfitted hierarchical multi-resolution
analysis based on CutFEM

5.1 Introduction

This chapter deals with another novel concurrent multiscale method based on
CutFEM. In this contribution, the microscale and macroscale subdomains are sep-
arated over a multi-resolution background mesh with a sharp interface which is not
meshed [195]. Like chapter 3, we use CutFEM to discretise inside zoom regions with
microscale features and to discretise the macroscale region, which is homogenised.
However, unlike chapter 3, where a smooth interface was proposed to separate the
two models, we employ a sharp interface and refine the elements inside the zooms
hierarchically. We present the microstructure and the zooming interfaces with two
sets of level set functions in the context of CutFEM. Then, the interfaces are allowed
to intersect the multiresolution background mesh arbitrarily. This gives us an ad-
vantage of geometrical flexibility and enables us to (re)locate the zooms in a fully
mesh-independent way.

The remainder of this chapter is structured as follows: Section 5.2 discusses the
governing equations of the concurrent multiscale method. Herein, we first define
the partitioned domain considered for our multiscale simulation framework. Then,
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we present the strong and weak forms of equations for the heterogeneous microscale
and the homogenised macroscale models. Eventually, we propose our concurrent
multiscale framework in the discretisation stage. In this stage, we employ CutFEM
to discretise the computational domain and then couple the micro and macro models
with the Nitsche technique.

In the last section (section 5.3), we present the numerical results of the concurrent
multiscale framework. We verify the performance of the framework with respect to
reference models and then test it for more complicated examples with linear elastic
and plastic materials.

5.2 Governing equations of the hierarchical multi-

scale CutFEM

5.2.1 Computational domain partitioning of multiscale anal-

ysis framework

(a) (b) (c)

Figure 5.1: Domain partitioning: (a) heterogeneous microscale model, (b) homogeneous macroscale
model and (c) multiscale model (the macroscale model enriched with a zoom including microscale
model)

Let us consider that we have a two-phase composite material occupying domain
Ω with boundary ∂Ω, which consists of a matrix-phase Ω1 and an inclusion phase Ω2

(see Figure 5.1a). Here, Ω1∪Ω2 = Ω and Ω1∩Ω2 = ∅. The interface between Ω1 and
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Ω2 is denoted by Γ1. Furthermore, let us assume that the two-phase composite can
be represented by a homogenised material, which we denote by Ω3 (see Figure 5.1b).
Now, let us introduce zooms in the homogenised domain into the two-phase composite
material. The zoom regions are denoted by Ωm = Ω̄1∪ Ω̄2, where Ω̄i, i = 1, 2, defines
the part of Ωi that lies inside the zoom regions (microscale domain). And ΩM = Ω3\
Ωm denotes the homogenised region without the zoom regions (macroscale domain).
The interface between the matrix phase of the zoom regions and the macroscale
domain is denoted by Γ2 = Ω̄1 ∩ ΩM and the interface between the inclusion phase
and the macroscale domain is denoted by Γ3 = Ω̄2 ∩ ΩM (see Figure 5.1c).

5.2.2 Heterogeneous elasticity problem: strong form

5.2.2.1 Semi-discrete boundary value problem

The semi-discrete problem of elasticity that we wish to solve is the following.
Time interval I = [0T ] into N equally spaced time intervals. At discrete times
in I∆T = {t1 = ∆T, t2 = 2∆T, ... , tN = N∆T = T}, we look for displacement
un := {un1 , un2} : Ω1 × Ω2 → RD × RD at nth time step satisfying,

∀ i ∈ {1, 2}, divσni (∇sui) + fnb = 0 inΩi . (5.1)

where σni (∇su
n
i ) is the stress tensor, which is a function of strain tensor ∇su

n
i , and

fnb is the corresponding body force.

The boundary conditions of the elasticity problem are

∀ i ∈ {1, 2}, uni = und over ∂Ωu ∩ ∂Ωi (5.2)

and

∀ i ∈ {1, 2}, σi(∇su
n
i ) · n∂Ω = τn over ∂Ωt ∩ ∂Ωi (5.3)

where τn denotes the traction vector and n∂Ω is the outer normal to the boundary.
Here, ∂Ω = ∂Ωt∪∂Ωu, ∂Ωt∩∂Ωu = ∅. The fields fnb , und and tnd are given time-discrete
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fields.

Linear elasticity If we assume that the two phases of the composite are linear
elastic, time-independent and homogeneous, the stress functions σni may be expressed
as

∀ i ∈ {1, 2}, σni (∇su
n
i ) := Di : ∇su

n
i inΩi , (5.4)

where ∇s . = 1
2
(∇ . +∇T . ) and Di is the fourth-order Hooke tensor of the material

occupying phase i. This tensor may be expressed as a function of the the Lamé
coefficients λi and µi as follows:

∀ i ∈ {1, 2}, Di : ∇s . = λiTr(∇s . )I + 2µi∇s . . (5.5)

von Mises Plasticity We consider the following von Mises plasticity model. The
stress s in the material is given by

s = D : (ε− ε) (5.6)

as a function of the strain ε (i.e. the symmetric part of the displacement gradient)
and the plastic strain εp. The yield surface is defined as

f(sD, q, p) =

√
3

2
(sD − q) : (sD − q)− (Y0 +R(p)) (5.7)

where sD denotes the deviatoric part of σ, p denotes the cumulative plastic strain and
q the back stress. In equation above, Y0 is a constant initial yield parameter, the term
R(p) = Ĥ p is the isotropic linear hardening function, where Ĥ is the corresponding
hardening modulus. Moreover, the plasticity flow rules are as follows:

λ ≥ 0 , λf(sD, q, p) = 0 , f(sD, q, p) ≤ 0 (5.8)
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ε̇p = λ

(
sD − q
‖sD − q‖

)
,

q̇ = λ

(
H̄ :

sD − q
‖sD − q‖

)
,

ṗ = λ .

(5.9)

where λ is the plastic multiplier and H̄ is a fourth-order kinematic hardening tensor.
In our examples, H̄ will be vanishingly small (no kinematic hardening).

Implicit time integration The previous ODE may be discretised in time using
an implicit Euler scheme. This leads to the following semi-discrete material law.

1

∆T

(
D−1 : sn+1 − εn+1 + εnp

)
+ λ

sn+1
D − qn+1

‖sn+1
D − qn+1‖

= 0

1

∆T

(
H̄−1 : (qn+1 − qn)

)
+ λ

sn+1
D − qn+1

‖sn+1
D − qn+1‖

= 0

λ ≥ 0 λf(sn+1
D , qn+1, pn + λ∆T ) = 0 f(sn+1

D , qn+1, pn + λ∆T ) ≤ 0

(5.10)

Given (εn+1, εnp , q
n, pn), the previous nonlinear system of equation (the last three

constraints can be recast as a single nonlinear equality using the Heaviside function)
can be solved for (sn+1, qn+1, λ) using the usual combination of operator splitting
and Newton iterative solution scheme. The update of internal variables is performed
according to

εn+1
p = εnp + λ

(
sn+1
D − qn+1

‖sn+1
D − qn+1‖

)
∆T

pn+1 = pn + λ∆T

(5.11)

The procedure can therefore be summarised as an (implicitly defined) relationship

sn+1 = s∆T

(
εn+1, (εnp , q

n, pn);µ,∆T
)

(5.12)

where µ is a real-valued vector containing all the parameters of the constitutive law,
Y0, all the free parameters of tensor H̄ and that of R.
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Semi-discrete implicit stress functions At time tn > 0, for any phase index
i ∈ {1, 2} of the composite material, we may replace the elastic constitutive law by
the following nonlinear function

σni (∇su
n
i ) = s∆T

(
∇su

n
i , ξ

n−1
i ;µi,∆T

)
(5.13)

where the field of past internal variables ξn−1
i = (εn−1

p , qn−1, pn−1) defined over Ωi

are sequentially and locally updated according to the procedure outlined above. We
suppose that at the beginning of the simulation, all the internal variables are null.

5.2.2.2 Macroscale model with homogenised material

Here, we present a homogenised elasticity problem with an equivalent homogenised
material for the two-phase composite material defined in the previous section. The
corresponding computational domain is shown schematically in Figure 5.1b. Similar
to the heterogeneous elasticity problem, we consider a time-dependent problem with
time interval I = [0 T ] divided into N equal time steps. In each time step n, we
look for displacement un3 : Ω3 → RD satisfying the following equilibrium equation

divσn3 (∇su
n
3 ) + fnb = 0 in Ω3 . (5.14)

where the corresponding boundary conditions are as follows: un3 = und over ∂Ωu ∩ ∂Ω

and σ3 · n∂Ω = τ over ∂Ωt ∩ ∂Ω, where ∂Ω = ∂Ωt ∪ ∂Ωu and ∂Ωt ∩ ∂Ωu = {0}.
In Ω3, we introduce a surrogate material model with slowly varying parameters

in space. If the coarse material is elastic and homogeneous, it is characterized by
constant tensor D3 (which may be obtained, for instance, via some form of homogeni-
sation of the composite material), whose action reads as

D3 : ∇s . = λ3Tr(∇s . )I + 2µc∇s . (5.15)

The resulting stress function is

σ3(∇su3) := D3 : ∇su3 in Ω3 . (5.16)
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If the coarse material is plastic, we define the associated stress update at the nth

time increment, n ∈ {1, 2, ..., N}, by

σn3 (∇su
n
3 ) = s∆T

(
∇su

n
3 , ξ

n−1
3 ;µ3,∆T

)
. (5.17)

The solution approach for equation above is similar to the approach presented
for heterogeneous plasticity problems in the previous section.

5.2.3 Multiresolution problem in weak form

In this section, we are going to introduce the weak formulation of our multires-
olution problem. As mentioned above, we split our background domain Ω into two
non-overlapping domains: the fine domain Ωm and the coarse domain ΩM, as shown
in Figure 5.1c.

In the following, we present the weak form of governing equations for the mi-
croscale and macroscale problems separately. However, due to the concurrent multi-
scale modelling, both problems will be solved simultaneously.

5.2.3.1 Microscale model in weak form

Now, the microscale problem of elasticity at time tn ∈ I∆T reads: We look for a
displacement field um := {u1, u2} : Ω̄1 × Ω̄2 → RD × RD satisfying

am(um, vm) + am,](um, vm) = lm(vm) (5.18)

In the previous variational statement, arbitrary vm := {u1, u2} : Ω̄1 × Ω̄2 →
RD × RD is required to satisfy the homogeneous Dirichlet conditions

vm = 0 over ∂Ωm,u := ∂Ωu ∩ ∂Ωm (5.19)

In Equation 5.18, the bilinear form am is defined as,

am(um, vm) =

∫
Ωm

σm(∇sum) : ∇svm dx , (5.20)
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The corresponding linear form lm is given by,

lm(vm) =

∫
Ωm

fb · vm dx+

∫
∂Ωm,t

τ · vm dx , (5.21)

where
Ωm,t = Ωm ∩ ∂Ωt (5.22)

The bilinear form am,] in Equation 5.18 introduces the coupling terms related to
the Nitsche’s method to glue together the microscale sub-domains, i.e. Ω̄1 and Ω̄2,
and is expressed as,

am,](um, vm) = γ1ŵ1

∫
Γ1

JumK1 · JvmK1 dx

−
∫

Γ1

{t}1 (um) · JvmK1 dx

−
∫

Γ1

{t}1 (vm) · JumK1 dx .

(5.23)

where
JumK1 = u1 − u2 (5.24)

which denotes the jump in the displacement field across Γ1. In Equation 5.23, γ1 > 0,
ŵ1 and {t}1 are Nitsche related parameters for the microscale model that will be
defined in the discretisation stage.

5.2.3.2 Macroscale model in weak form

Now, for the macroscale problem of elasticity at time tn ∈ I∆T reads, we look for
a displacement field uM : ΩM → RD satisfying

aM(uM, vM) + aM,](uM, vM) = lM(vM) (5.25)

where the trial function vM : ΩM → RD is required to satisfy the homogeneous
Dirichlet conditions

vM = 0 over ∂ΩM,u := ∂Ωu ∩ ∂ΩM (5.26)
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The bilinear form aM in equation 5.25 is defined as follows,

aM(uM, vM) =

∫
ΩM

σM(∇suM) : ∇svM dx, (5.27)

The corresponding linear form lM(uM, vM) is defined as,

lM(vM) =

∫
ΩM

fb · vM dx+

∫
∂ΩM,t

τ · vM dx , (5.28)

where
∂ΩM,t = ΩM ∩ ∂Ωt (5.29)

The bilinear form aM,](uM, δuM) presents the Nitsche’s formulation for coupling
microscale and macroscale models over two types of interfaces; Γ2 and Γ3, which is
denoted by

aM,](uM, vM) = a2,](uM, vM) + a3,](uM , vM) (5.30)

where for i ∈ {2, 3}, the Nitsche’s formulation over Γi reads

ai,](uM, vM) = γiŵi

∫
Γi

JuMKi · JvuMKi dx

−
∫

Γi

{t}i (uM) · JvMKi dx

−
∫

Γi

{t}i (vM) · JuMKi dx .

(5.31)

where γi > 0, ŵi and {t}i are Nitsche’s terms and we have

JuMKi = uM − ui (5.32)

which denotes the jump in the displacement field across Γi.
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5.2.4 Level-set-based descriptions of sub-domains and inter-

faces

In this contribution, we define sub-domains Ω1 and Ω2 implicitly via the values
of a time-independent continuous level set function φ1 ∈ C0(Ω). More precisely, we
suppose that

Ω1 = {x ∈ Ω |φ1(x) ≤ 0}
Ω2 = {x ∈ Ω |φ1(x) > 0}

. (5.33)

Here, we define two sets of level set functions φ1 and φ2 and show how they
describe the subdomains and interfaces in our multiresolution setting. The interface
that separates the two subdomains is denoted by Γ1 and given in terms of φ1 by

Γ1 = {x ∈ Ω |φ1(x) = 0} (5.34)

In the proposed multiresolution scheme, coarse domain ΩM is defined as

ΩM = {x ∈ Ω |φ2(x) > 0} (5.35)

where φ2 ∈ C0(Ω) is a continuous level set function.
Similarly, fine domain Ωm is defined as

Ωm = {x ∈ Ω |φ2(x) ≤ 0} (5.36)

where Ωm is comprised of micro pores (or micro inclusions) and matrix. The subdo-
main corresponding micro pores or inclusions inside the Ωm is defined as

Ω̄1 = {x ∈ Ω |φ1(x) ≥ 0, φ2(x) ≤ 0} (5.37)

The subdomain corresponding matrix inside the Ωm is defined as

Ω̄2 = {x ∈ Ω |φ1(x) ≤ 0, φ2(x) ≤ 0 } (5.38)

Now, we introduce the interface between different subdomains defined above. The
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corresponding interface between coarse and fine domains is expressed by

Γ12 = {x ∈ Ω |φ2(x) = 0} (5.39)

The interface Γ12 is comprised of two separate interfaces; Γ12 = Γ2 ∪ Γ3, which
are defined as

Γ2 = {x ∈ Γ12 |φ1(x) > 0}
Γ3 = {x ∈ Γ12 |φ1(x) ≤ 0}

. (5.40)

5.2.5 Discretisation of the multiresolution problem

5.2.5.1 Discretisation of the geometry

Let us introduce a coarse triangulation T H of domain Ω. The tessellated domain is
denoted by ΩH . Furthermore, let us introduce the finite element space of continuous
piecewise linear functions, i.e.

QH := {w ∈ C0(ΩH) : w|K ∈ P1(K) ,∀K ∈ T H} (5.41)

We now define the finite element approximation of coarse domain ΩM as

ΩH
M = {x ∈ ΩH |φH2 (x) ≥ 0} (5.42)

where φH2 (x) ∈ QH is the coarse nodal interpolant of φ2.
Let us now introduce a hierarchical subtriangulation T h of T H , with h � H.

Due to the hierarchical structure, the union of all triangles of T h is the coarse finite
element domain T H . We define space

Q(H,h) := {w ∈ C0(ΩH) : w|K ∈ P1(K) ,∀K ∈ T h} (5.43)

With this definition, domains Ω1 and Ω2 are discretised as follows.

Ω
(H,h)
1 = {x ∈ ΩH |φH2 (x) ≤ 0, φh1(x) ≤ 0}

Ω
(H,h)
2 = {x ∈ ΩH |φH2 (x) ≤ 0, φh1(x) ≥ 0}

. (5.44)
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We define the interface between the fine domains as

Γ
(H,h)
1 = {x ∈ ΩH |φH2 (x) ≤ 0, φ

(H,h)
1 (x) = 0} (5.45)

and the interfaces between the coarse and the fine domains as

ΓH12 = {x ∈ ΩH |φH2 (x) = 0}

Γ
(H,h)
2 = {x ∈ ΓH12 |φh1(x) ≤ 0}

Γ
(H,h)
3 = {x ∈ ΓH12 |φh1(x) ≥ 0}

(5.46)

Notice that finely discretised quantities are parametrised by a pair of mesh charac-
teristics H = (H, h). This is due to the hierarchical structure of the multiresolution
scheme that we have introduced (the coarse domain “overshadows" the composite
material). To simplify the notations, the coarse sets and variables that only depend
on H will also be written to be dependent on H.

5.2.5.2 Overlapping domain decomposition

For the three different domains of the multiresolution scheme, we need to define
appropriate extended domains. Such an extended domain is composed of all the
elements that have a non-void intersection with its non-extended counterpart. Hence,
the set of all elements of T H that have a non-zero intersection with ΩHM is

T̂ HM := {K ∈ T H : K ∩ ΩHM 6= ∅} (5.47)

The fictitious domain domain corresponding to this set is Ω̂HM :=
⋃
K∈T̂ H

M
K. Similarly

for the fine domains,

∀i ∈ {1, 2}, T̂ Hi := {K ∈ T H : K ∩ ΩHi 6= ∅} (5.48)

The domains corresponding to these sets are denoted by Ω̂Hi :=
⋃
K∈T̂ H

i
K, for i = 1

and for i = 2.
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5.2.5.3 Extended interface FE spaces

We will look for an approximation uH =
(
uH1 , u

H
2 , u

H
3

)
of the multiresolution

elasticity problem in space UH = UH1 × UH2 × UH3 , where

UH3 = UHM := {w ∈ C0(Ω̂HM) : w|K ∈ P1(K)∀K ∈ T̂ HM}

∀i ∈ {1, 2}, ÛHi := {w ∈ C0(Ω̂Hi ) : w|K ∈ P1(K)∀K ∈ T̂ Hi }
(5.49)

Notice that uH is multi-valued in the elements that are cut by the two embedded
interfaces. This feature allows us to represent discontinuities at the two interfaces.

The field of internal variables ξni , for any n ∈ J0NK and for any i ∈ J1 3K, will be
defined over the corresponding approximated domain ΩHi . These fields do not need
to be extended to the fictitious domain.

5.2.5.4 Additional sets

We now define some additional sets, which is required to introduce the stabilisa-
tion strategy for our implicit boundary multiresolution formulation.

For stabilisation purpose, let us denote all elements which are intersected by ΓH12

by

ĜH12 := {K ∈ T H |K ∩ ΓH12 6= ∅} (5.50)

The domain corresponding to this set is denoted by Γ̂H12 :=
⋃
K∈ĜH12

K. Similarly for
the fine domains, for i ∈ {1, 2},

ĜHi := {K ∈ T H |K ∩ ΓHi 6= ∅} (5.51)

and the corresponding domains will be denoted by Γ̂Hi :=
⋃
K∈ĜHi

K. We now define
the set of Ghost-Penalty element edges for fictitious domain Ω̂H1

F̂G1 := {F = K ∩K ′ : K ∈ T̂ H1 and K ′ ∈ T̂ H1 , F ∩ Γ̂H1 6= ∅} (5.52)
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and for fictitious domain Ω̂Hi , i ∈ {2, 3} as

F̂Gi := {F = K ∩K ′ : K ∈ T̂ Hi and K ′ ∈ T̂ Hi , F ∩ Γ̂Hi 6= ∅} (5.53)

5.2.6 Implicit boundary finite element formulation

The finite element multiresolution formulation is as follows: for any vH ∈ UH

satisfying the homogeneous Dirichlet boundary conditions,

aH(uH, vH) + aH] (uH, vH) + aH♥(uH, vH) = lH(vH) . (5.54)

In the previous formulation, the bilinear form aH is defined by

aH(uH, vH) =
3∑
i=1

∫
ΩH

i

σi(∇su
H
i ) : ∇sv

H
i dx . (5.55)

and the linear form lH is as follows:

lH(vH) =
3∑
i=1

∫
ΩH

i

fb · vHi dx+
3∑
i=1

∫
∂ΩH

t,i

τ · vHi dx , (5.56)

Term aH] is composed of terms that allows gluing the three domains together, using
Nitsche’s method. It is further expanded as

aH] (uH, vH) = aH1,](u
H, vH) + aH2,](u

H, vH) + aH3,](u
H, vH) , (5.57)

where the first term is for the interface between matrix and inclusion, while the
second and third terms are for the interfaces between the coarse and fine (i.e. matrix
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and inclusion, respectively) subdomains. We have that

aHi,](u
H, vH) = γiŵi

∫
ΓH
i

JuHKi · JvHKi dx

−
∫

ΓH
i

{t}i (u
H) · JvHKi dx

−
∫

ΓH
i

{t}i (v
H) · JuHKi dx .

(5.58)

where

JuHK1 = uH1 − uH2 ,

JuHK2 = uH1 − uH3 ,

JuHK3 = uH2 − uH3 ,

(5.59)

denotes the jumps in the displacements across ΓH1 ,Γ
H
2 and ΓH3 respectively; and {t}i

denotes the following weighted averages

{t}1 = w1
1σ1(∇su

H
1 ) · n1 + w2

1σ2(∇su
H
2 ) · n1 ,

{t}2 = w1
2σ1(∇su

H
1 ) · n2 + w2

2σ3(∇su
H
3 ) · n2 ,

{t}3 = w1
3σ2(∇su

H
2 ) · n2 + w2

3σ3(∇su
H
3 ) · n2 ,

(5.60)

where n1 = − ∇φ1|∇φ1| , n2 = − ∇φ2|∇φ2| .

w1
1 =

E2

E1 + E2

, w2
1 =

E1

E1 + E2

w1
2 =

E3

H
E1

h
+ E3

H

, w2
2 =

E1

h
E1

h
+ E3

H

w1
3 =

E3

H
E2

h
+ E3

H

, w2
3 =

E2

h
E2

h
+ E3

H

.

(5.61)
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ŵ1 =
E1E2

h(E1 + E2)
,

ŵ2 =
E1

H
E3

h
E1

h
+ E3

H

,

ŵ3 =
E2

H
E3

h
E2

h
+ E3

H

.

(5.62)

Finally, aH♥ is an interior penalty regularisation term that reads as, for i ∈
{1, 2, 3},

aH♥(uH, δuH) =
∑
F∈F̂G

i

(∫
F

βiHiJ∇su
HKJ∇s(v

H)K dx
)
. (5.63)

where βi > 0 is the ghost penalty parameter, and JxK is the normal jump of quantity
x over the F . As explained in [7, 5], the ghost penalty term extends the coercivity
from the physical domain into the discretised domain.

5.3 Numerical Results

This section first verifies the proposed multiscale framework for a simplified mul-
tiscale elasticity problem. Then, we adopt von Mises material for the multiscale
model and assess it for two types of hard and void micro inclusions. Eventually, we
assess the performance of the framework for the zooms that are time-dependent and
relocate during the simulation.

5.3.1 Verification test for an elasticity problem in a quasi-

uniform porous structure

In this section, the proposed multiresolution framework is assessed for a hetero-
geneous structure with micropores and then compared with a full microscale FEM
model and a smoothed concurrent multiscale method proposed in [189]. We consider
the same quasi-uniform porous medium given in [189] which includes circular pores
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distributed all over the domain (as depicted in Figure 5.2). The material behaviour
is assumed as elastic and isotropic. According to [189], the material properties for
matrix are given as E1 = 1 and ν1 = 0.3, and for the homogenised model are derived
by MMTT [192, 191] as following: E3 = 0.78 and ν3 = 0.3.

Figure 5.2: Boundary conditions and geometry of a heterogeneous structure with compression test

The computational meshes for the FEM and multiresolution models are shown in
Figure 5.3a,b, which contain linear Lagrangian elements with the smallest element
size of h = 0.054. The element size inside the zoom area is the same as in reference
models for verification purposes, while in the coarse region it is set to H = 0.11.
As shown for the discretised domain in Figure 5.4, the three types interfaces, Γ

(H,h)
1 ,

Γ
(H,h)
2 and Γ

(H,h)
3 intersect the background mesh in an arbitrary fashion. The ghost

penalty parameters for the intersected elements are specified as β1 = β2 = β3 =

0.005. Additionally, the Nitsche’s penalty parameters used to couple the micro and
macroscale models are γ2 = γ3 = 10.

A compression test is conducted for the heterogeneous structure where the dis-
placements are fixed along the x and y directions on the lower end, and traction
τ = (0,−0.01) is prescribed along the top edge. The FEM displacement component
uy contour is obtained and used as a reference solution, see Figure 5.5a. The same
test is carried out for the multiscale model. The corresponding displacement field
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(a) (b)

Figure 5.3: Discretised domains; a) FE conforming mesh and b) CutFEM non-conforming mesh.

Figure 5.4: Discretised domain for the multiscale CutFEM including Γ
(H,h)
1 , Γ

(H,h)
2 and Γ

(H,h)
3 . The

coarse elements cut with Γ
(H,h)
2 and Γ

(H,h)
3 and the fine elements cut with Γ

(H,h)
1 are shown with

their sub-triangules that are used for the integration purpose.

component is shown in Figure 5.5b. When our multiscale model is compared with the
FEM and smoothed concurrent multiscale models, a close similarity of uy is observed
inside the zooming region. Outside of the zoom, again, a satisfactory agreement is
achieved.

We compute the stress field component σyy in Figure 5.6. Here again, a good
agreement is achieved between the multiscale and reference models. The homoge-
neous model adopted in the coarse domain of the multiscale model smooth out the
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(a) (b)

Figure 5.5: Displacement field component uy; a) FEM and b) Multiscale CutFEM.

fluctuations produced by the coarse pores, and the overall trend in this domain is
captured very well.

(a) (b)

Figure 5.6: Stress field component σyy; a) FEM and b) Multiscale CutFEM.
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For further investigations, we study the effects of mesh coarsening in the coarse
region of the multiresolution framework on the energy norm of the error field. The
corresponding mesh layouts for the fine and coarse multiresolution models are de-
picted in Figures 5.3b and 5.7b, respectively. While the mesh outside the zoom is
different for two multiresolution models, the mesh inside is considered the same size.
Moreover, as shown in Figure 5.7a, a full fine resolution mesh is used for computation
of the error field. We compute the energy norm of the error field with respect to the
reference FE model according to the following formulation.

‖e‖ =

√∫
Ω

∇se : ∇se dx . (5.64)

where e = uref−u. uref and u denote the displacement for FE and multiresolution
models, respectively.

The energy norm of the error fields for the two multiresolution models is com-
puted as shown in Figure 5.8, where H = 0.11 for the first multiresolution model and
H = 0.22 for the second one. The results indicate that the error norm within the
zoomed region remains minimal for both models, irrespective of the coarsening of the
mesh outside the zoomed area. Furthermore, the analysis suggests that the primary
source of error outside the zoomed region can be attributed to the homogenisation
approximation rather than the mesh size. This assertion is supported by the observa-
tion that the ‖e‖ remains unaltered in the coarse region despite the mesh coarsening
process.

To facilitate a quantitative assessment, a comparative analysis of the computed
σyy values is conducted between the full FEM and the multiscale CutFEM at four
distinct locations situated within the zoom region, as depicted in Figure 5.7b. These
locations are designated as A(5.7,6.7), B(3.9,5.7), C(4.36,5.15), and D(7.1,5.5), each
carrying their unique significance. The corresponding relative absolute errors at
these designated points are computed and reported in table 5.1, ranging between
5.5% and 13.4%. Importantly, the observed errors within the zoom region fall well
within an acceptable range, with point C displaying the highest deviation and point
D demonstrating the lowest deviation. The slight increase in error on the left side of
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(a) (b) (c)

Figure 5.7: Computational meshes for; a) computing the error field (hmin = 0.054), b) multiresolu-
tion CutFEM with a mesh size H = 0.11 in the macroscale region and c) multiresolution CutFEM
with a mesh size H = 0.22 in the macroscale region. For both multiresolution CutFEM models
we have h = 0.054. All the cut elements in the multiresolution CutFEM are shown with their
integration subtriangles.

(a) (b)

Figure 5.8: Energy norm of error field ‖e‖ for multiscale CutFEM with different mesh resolutions
in the macroscale region; a) H = 0.11 and b) H = 0.22. A uniform mesh size of h = 0.054 is used
for plotting the ‖e‖.

the zoom can be attributed to the proximity of adjacent pores located just outside the
zoom, which introduce certain perturbations within the homogenised model, thereby
influencing the solution within the zoom in the heterogeneous models.
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σyy Point A Point B Point C Point D
Full FEM 0.000170 -0.0125 -0.0252 -0.0215

Multiscale CutFEM 0.000159 -0.0115 -0.0218 -0.0227
Absolute error (σyy) 0.000011 0.001 0.0034 0.0008

Relative absolute error (%) (σyy) 6.47 8 13.4 5.5

Table 5.1: Quantitative comparison of σyy between the full FEM and multiscale CutFEM at four
different locations inside the zoom (A(5.7,6.7), B(3.9,5.7), C(4.36,5.15), and D(7.1,5.5)). The mesh
sizes are h = 0.054 for both models, and H = 0.11 for the macroscale region of the multiscale
CutFEM.

5.3.2 S shape heterogeneous structure with elastoplastic be-

haviour using fixed zooms

In this section, we assess the ability and efficiency of the multiresolution CutFEM
in modelling heterogeneous structures with nonlinear material properties and differ-
ent types of heterogeneities. We consider an S shape heterogeneous structure with a
random distribution of heterogeneities. As shown in Figure 5.9, the heterogeneities
can be either voids or hard inclusions. We assume von Mises elastoplastic material
behaviour for these structures. The material properties heterogeneous structures are:
2E1 = E2 = 2, ν1 = ν2 = ν3 = 0.3, σc1 = σc2 = σc3 = 0.25 and Ĥp

1 = Ĥp
2 = Ĥp

3 = 10−2.
The material properties for the macroscale homogenised model with voids and in-
clusions are calculated by using the MTT as follows, respectively: E3 = 0.5, 1.3. To
analyse the influence of different microstructural features on the accuracy of the pro-
posed multiscale framework, we consider the geometry and distribution of the voids
and hard inclusions to be similar in the two structures. We restrict the displace-
ment along the x and y directions on the lower end and apply traction τ = (0, 0.18)

incrementally (in 30 increments) on the top edge along the y direction.
We employ two circular zooms fixed over a background mesh (see Figure 5.10).

We refine the mesh inside the zoom regions with a refinement scale defined as s =
1
16

(means each coarse element is subdivided hierarchically into 16 fine elements),
where the largest element size is H = 0.06. The discretised physical domain of
multiresolution models in Figures 5.10b,c show that all the three interfaces intersect
the coarse background mesh (see Figure 5.10a) for both models in a fully arbitrary
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manner.
Next, we solve the nonlinear problem and assess the corresponding solution fields.

The displacement field component uy for two models in Figure 5.11 is smooth, es-
pecially in cut elements. Moreover, the stress field component σyy shown in Figure
5.12, is smooth for both structures. However, as expected, the structure with hard
inclusion inherits more stiffness and absorbs more stresses inside and outside the
zoom.

(a) (b)

Figure 5.9: Geometry of the heterogeneous structures; a) heterogeneities are voids, b) hetero-
geneities are hard inclusions
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(a) (b)

(c)

Figure 5.10: Computational meshes; a) coarse mesh, b) multiresolution mesh for the porous mi-
crostructure, c) multiresolution mesh for the microstructure with hard inclusions. The intersected
elements are shown with their integration sub-triangles.
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(a) (b)

Figure 5.11: Displacement field uy for the heterogeneous structures in the last time step; a) hetero-
geneities are voids, b) heterogeneities are hard inclusions

(a) (b)

Figure 5.12: Stress component σyy for the last time step; a) heterogeneities are voids, b) hetero-
geneities are hard inclusions
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5.3.3 S shape porous structure with elastoplasic behaviour

using moving zooms

This section is devoted to the numerical study of a moving zoom for the proposed
multiresolution with a von Mises plasticity material behaviour. We here consider the
S shape microporous structure analysed in section 5.3.2. However, contrary to the
previous section, we will not fix the zooms over the background mesh but relocate
them during the simulation. As shown in Figure 5.13, this relocation is carried out
arbitrarily and independent of background mesh configuration. In this study, we
change the location and size of zooming manually during the simulation to assess
the numerical efficiency; however, using an adaptive approach would be more relevant
from the physics point of view.

We show the displacement component uy field for three different time in Fig-
ure 5.14. The results show that the multiscale solution with a nonlinear material
stays convergent in each time step, even with the relocation of the zooming region.
Furthermore, the global behaviour during simulation stays smooth and without os-
cillations.

Next, we show the results in the form of plastic strain growth during the simula-
tion. We compute the effective plastic strain at three time steps and show the results
in Figure 5.15. The changes in the zooms’ location and size during the simulation
are intended to capture the plastic strain growth.
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(a) (b)

(c)

Figure 5.13: Computational meshes for the microporous heterogeneous structure with different set
of zooms at various time steps, a) τ = (0, 0.05), b) τ = (0, 0.12) and c) τ = (0, 0.18). All the cut
elements are depicted with their sub-triangles (used for their integration).
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(a) (b)

(c)

Figure 5.14: Displacement component uy for the microporous heterogeneous structure with different
set of zooms; a) τ = (0, 0.05), b) τ = (0, 0.12) and c) τ = (0, 0.18).
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(a) (b)

(c)

Figure 5.15: Effective plastic strain ε̄p contours; a) τ = (0, 0.05), b) τ = (0, 0.12) and c) τ = (0, 0.18).
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5.4 Conclusion

In this chapter, we developed another novel concurrent multiscale method based
on CutFEM that couples micro and macroscale models through Nitsche’s formula-
tion over a sharp interface. We utilised three sets of interfaces to approximate the
microstructure and zoom geometries over a multiresolution fixed background mesh.
However, the arbitrary intersection of interfaces with the background mesh creates
stability issues as follows:

• Stability of cut elements by only a single interface, including one of the following
interfaces: Γ

(H,h)
1 , Γ

(H,h)
2 and Γ

(H,h)
3 .

• Stability of the cut elements intersected simultaneously by Γ
(H,h)
1 , Γ

(H,h)
2 and

Γ
(H,h)
3 .

In our multiscale framework, we addressed the above-mentioned issues by ap-
plying the ghost penalty regularisation technique for the intersected elements. The
regularisation includes displacement gradient jump term across the interface.

The framework was successfully applied for heterogeneous structures with lin-
ear elasticity and plasticity material properties. The numerical results showed that
our concurrent multiscale technique is capable of modelling heterogeneous struc-
tures with complex microstructures with either micropores or micro inclusions in a
mesh-independent way. The method was stable and accurate for different types of
microstructures with pores or inclusions. Moreover, the relocation of the zoomed
regions during the simulation was carried out seamlessly.
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Conclusion and Future Research

6.1 Conclusion

It has been widely recognised that several macroscopic phenomena, including frac-
ture and failure, originate from the mechanics of the corresponding microstructure.
The properties of microstructure constituents (e.g. the shape, size, volume fraction
and material properties) all have a remarkable impact on the structure’s response
at the macroscale. Computational modelling of such heterogeneous materials is a
challenging task for several reasons. Firstly, due to the multiscale nature of these
materials, various essential length-scale properties need to be linked and reflected
accurately in the computational model. Secondly, the computational resource is a
limiting factor for a direct numerical simulation of large-scale structures. Concurrent
multiscale modelling is capable of alleviating both challenges mentioned above. This
framework is particularly appealing when modelling large structures, where compli-
cated processes such as failure only occur in a small (local) portion of the structure,
while the behaviour of the rest of the domain remains linear.

As discussed in chapters 1 and 2, there is an obvious need to use advanced discreti-
sation methods for problems with complex microstructures and/or time-dependent
geometries to improve the robustness and efficiency of computational analysis. The
advanced discretisation methods, such as the CutFEM technique, approximate the
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solution of boundary value problems with unfitted meshes, alleviating mesh-related
obstacles. This is also crucial when dealing with progressive phenomena in the con-
text of concurrent multiscale modelling, where the corresponding zooming interface
moves or changes during the simulation.

This thesis focused on the application of the CutFEM technique for concurrent
multiscale analysis. The use of CutFEM allowed us to represent the geometries of
microstructure geometry and micro-macro interface mesh independently. Two novel
coupling frameworks were developed for linking the macroscale and microscale models
owning complex microstructures.

In the first concurrent multiscale framework, we presented a mixing technique
to couple the micro and macro scale models over a single computational mesh. We
used a homogenised FEM model in the macro subdomain and the CutFEM model
representing the microstructure in the microscale domain (or zooming region). We
showed that using the homogenised FEM model in the macroscale model alleviates
the geometrical artefacts perceived in the counterpart adaptive CutFEM simula-
tions, which is mainly because of coarse level set functions. Moreover, utilising the
mixing strategy within a smoothed micro/macro coupling interface ensured the well
conditioning of the system matrix, particularly when the micropores were cut by the
zooming interface. We tested the framework for 2D and 3D linear elasticity problems
with complex microstructures. The corresponding results were promising in terms
of accuracy and efficiency.

In the second concurrent multiscale method, unlike the first one, we proposed a
sharp interface between micro and macro scale models for coupling purposes. The
coupling is based on Nitsche’s method. Then, we refine the mesh in the microscale
region hierarchically. Moreover, like the first framework, we employ ghost penalty
regularisation to stabilise intersected elements by two types of interfaces representing
(1) the zooming region and (2) the microstructure. We showed that our results are
stable even when the elements are intersected simultaneously by the two interfaces.
The methodology was applied successfully for linear elasticity and plasticity problems
with stationary and moving zooming interfaces.

In the third contribution that is presented in chapter 4, we applied the smoothed
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concurrent multiscale method for phase field fracture problems. The micro and macro
scale phase fields were computed over a single computational mesh and were mixed
through a smooth function in their transition region. The corresponding numerical
results demonstrated that the mixing technique is reliable for phase field problems
that are intrinsically nonlinear. Moreover, the results provided compelling evidence
of the advantages of the concurrent multiscale modelling over employing the full
microscale CutFEM in terms of computational costs.

In this thesis, we developed our computational methodologies within a widely
used open source finite element platform, called FEniCS [196]. The FEniCS is based
on several components including the UFL [197] as is an interface for creating forms
and the DOLFIN [198] as a finite element library. Our CutFEM-based frameworks
were extended in the CutFEM library [5] that has been developed on the FEniCS
platform.

6.2 Future research

This last section discusses the possible extensions of the present work in following
aspects:

• An extension of two proposed concurrent multiscale methods for the problems
that their zooming regions are not known beforehand. This aim requires to
develop an efficient adaptive scheme that dynamically locates the appropriate
zooming regions based on criteria such as error estimators or machine learning
algorithms, reducing computational costs and enhancing accuracy.

• Extension of the CutFEM and concurrent multiscale methods for discrete crack
problems. In such problems, further treatments will be required for the ele-
ments intersected simultaneously by the interfaces related to the crack, mi-
crostructure and zooming regions.

• Large deformation problems. Current multiscale methodologies are limited to
a small deformation regime, which can be extended to materials with large
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deformation behaviours, such as soft tissues.

• Investigating the performance of proposed coupling techniques for multiscale
problems with different constitutive models in the fine and coarse regions, for
instance, continuum-atomistic or continuum-molecular.

• Employing high order interfaces within our concurrent multiscale frameworks,
which will improve the accuracy of complex geometries representations with
coarse elements.

• In multiphysics problems, particularly when local progressive phenomena oc-
cur, such as hydraulic fractures. In this regard, a further application of the
phase field fracture model within our concurrent multiscale frameworks can be
investigated.
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