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Amyloid-beta (Ab) is produced from amyloid precursor protein (APP) primarily after APP is
internalised by endocytosis and clathrin-mediated endocytic processes are altered in
Alzheimer’s disease (AD). There is also evidence that cholesterol and flotillin affect APP
endocytosis. We hypothesised that endocytic protein expression would be altered in the
brains of people with AD compared to non-diseased subjects which could be linked to
increased Ab generation. We compared protein expression in frontal cortex samples from
men with AD compared to age-matched, non-diseased controls. Soluble and insoluble Ab40
and Ab42, the soluble Ab42/Ab40 ratio, bCTF, BACE1, presenilin-1 and the ratio of phospho-
rylated:total GSK3b were significantly increased while the insoluble Ab42:Ab40 ratio was
significantly decreased in AD brains. Total and phosphorylated tau were markedly
increased in AD brains. Significant increases in clathrin, AP2, PICALM isoform 4, Rab-5
and caveolin-1 and 2 were seen in AD brains but BIN1 was decreased. However, using
immunohistochemistry, caveolin-1 and 2 were decreased. The results obtained here sug-
gest an overall increase in endocytosis in the AD brain, explaining, at least in part, the
increased production of Ab during AD.
� 2023 The Authors. Published by Elsevier Inc. This is anopen access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Alzheimer’s Disease (AD) is the most common form of
dementia, accounting for 60–80% of diagnoses [6]. There
are two main types, late-onset or sporadic AD, accounting
for about 90–95% of cases where the causes are still not
understood and early onset AD, with a significant genetic
component [72]. There are a number of risk factors for
developing AD including age and associated conditions,
environment and being female [6].

Two proteins are key to the pathogenesis of AD,
amyloid-beta (Ab) and tau. Amyloid precursor protein
(APP) is metabolised by either the amyloidogenic or non-
amyloidogenic pathways. In the amyloidogenic pathway,
APP is cleaved by b-secretase APP-cleaving enzyme
(BACE1) to form soluble APPb (sAPPb) and an intracellular
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carboxy-terminal fragment (bCTF) [15,29]). c-Secretase
then cleaves bCTF to produce various fragments of Ab
and a C-terminal intracellular fragment [15]. Ab peptides
range from 37 to 49 amino acids [8] with the most
abundant isoforms being Ab40 and Ab42 [70]. The
non-amyloidogenic pathway involves the a-secretase
enzyme which metabolises APP within the Ab region to
release soluble APPa (sAPPa) precluding the production
of Ab [2]. Once produced, Ab aggregates to form soluble oli-
gomeric assemblies, leading to neuroinflammation, tau
hyperphosphorylation and neurodegeneration according
to the amyloid hypothesis [1,30]. Ab aggregates then form
extracellular insoluble plaques [24]. Tau is a microtubule
protein and essential for normal transport in neurones
and neuronal microtubules stabilisation [36]. In AD, hyper-
phosphorylated tau accumulates as intracellular neurofib-
rillary tangles (NFTs) in neurones leading to cell death [36].

Ab is primarily produced after APP has undergone endo-
cytosis [78]. Changes in endocytosis are one of the earliest
reported abnormalities in AD [73] and inducing endosomal
dysfunction by overexpression of Rab5 independently of
APP recapitulates changes seen in AD underlying the
importance of changes in endocytosis to the disease pro-
cess [57]. The majority of studies in AD have focused on
clathrin-mediated endocytosis (CME) as this is the best
understood endocytic pathway [61]. However, the expres-
sion of proteins involved in clathrin-independent endocy-
tosis (CIE) such as caveolins and flotillins is increased in
AD brains [21,23,56]. Flotillin-1 and �2, highly expressed
in neurones, appear to establish their own CIE pathway
[5,50]. Flotillin-2, a lipid raft protein, promoted the cluster-
ing of APP at the cell surface which increased its endocyto-
sis and the interaction of flotillin with APP was dependent
on cholesterol [69]. Cholesterol also promoted the cluster-
ing of APP and BACE1 in lipid rafts leading to endocytosis
and Ab production [48]. Caveolae and caveolins were sug-
gested to be important for a-secretase cleavage of APP in
non-neuronal cells [34]. Caveolin-1 has also been proposed
to have various roles in neurones independent of caveolae
including in CIE [32,71]. Various GWAS have identified sev-
eral genes of small risk involved in endocytic trafficking
including PICALM, BIN1, CD2AP and SORLAwhich have been
shown to affect APP endocytosis and Ab production [26]. In
addition, endocytosis has been found to contribute 19.2%
to the total polygenic risk of AD [74]. In our previous study,
we showed that ageing affects the expression of several
endocytic proteins involved in CME or CIE in human male
cortical brain samples [3]. We saw significant increases
in clathrin, dynamin-1, AP180, Rab-5, caveolin-2 and
flotillin-2 with ageing. Our results suggest that ageing
may cause up-regulation of endocytosis which could
increase APP internalisation and Ab generation in the age-
ing human brain leading to an increased development of
AD. This idea is supported by data showing upregulation
of APP endocytosis in aged primary neurones and the sug-
gestion that this is an important mechanism contributing
to brain ageing and the subsequent development of AD
[10]. Having seen changes in endocytic proteins with age-
ing, we then wanted to understand how the presence of AD
affected endocytic protein expression. We hypothesised
that we would also see changes in endocytic protein
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expression in samples from people with AD compared to
non-diseased control subjects as the increased endocytosis
could be involved in increased Ab generation and hence in
the progression of the disease. We have investigated this
hypothesis here using brain samples from male AD
patients and age-matched non-diseased subjects to exam-
ine the expression of a range of endocytic proteins
involved in CME and CIE and metabolites of APP. Our data
provide evidence of wide-ranging changes in several endo-
cytic proteins during AD, suggesting that our hypothesis is
indeed correct and that alterations in the process of endo-
cytosis could underlie the development of AD.
Materials and methods

Human brain samples

Fresh frozen human frontal cortex brain samples and
6 lm formalin-fixed, paraffin-embedded sections from
subjects with or without AD were obtained from the New-
castle Brain Tissue Resource (Table 1). All subjects were
male and were either patients with late-onset sporadic
AD (n = 6, mean age ± SD, 77.3 ± 5.6 years) or age-
matched, non-diseased (ND) control subjects (n = 6, mean
age ± SD, 77.2 ± 4.1 years). The AD patients had advanced
AD (Braak V-VI), while controls were Braak 0-II so were
considered as non-diseased subjects. The mean ± SD
post-mortem intervals were 42 ± 21.2 and 47.5 ± 21.1 h
for the ND and AD subjects, respectively (Table 1). There
were no significant differences in age, post-mortem inter-
val or brain pH between the AD and ND groups (data not
all shown) so we do not believe that our findings can be
explained by these factors.

All frozen samples were stored at �80 �C prior to use
while paraffin-embedded samples were stored at room
temperature (RT). All procedures were performed in accor-
dance with the U.K. Human Tissue Act (2004).

Tissue processing

Soluble and insoluble proteins were extracted from cor-
tex samples to allow quantification of Ab40 and Ab42 from
each fraction. All other proteins were investigated in the
soluble fraction. Proteins were extracted using 2% sodium
dodecyl sulphate with protease inhibitor cocktail III
(Roche) adapted from Rees et al. [3,60]. Total protein con-
centration was determined with the BCA Protein Assay Kit
(Thermo Scientific, Waltham, USA).

Western blotting

Western blotting (WB) was performed using standard
methods. Briefly, samples were resolved on 7.5 or 10%
polyacrylamide gels, transferred on to 0.45 lm nitrocellu-
lose membranes (Amersham Biosciences, Little Chalfont,
U.K.), incubated with the relevant primary antibody (see
Materials) and detected as previously described [3].

The work described below in this study was limited by
the financial, staff and time resources available and there-
fore the Western blots were only performed once for each



Table 1
Summary of the sample identifiers, disease status, ages, gender and post-mortem intervals of the human frontal cortex brain samples and paraffin-embedded
brain sections.

Brain Bank Sample
identifier

MRCa

identifier
Disease code Age

(years)
Gender Braak

staging
Post-mortem interval (hours)

20030116 BBN_7340 ADb 83 M 5 48
20070062 BBN_2606 AD 76 M 6 64
20090026 BBN_2612 AD 83 M 6 12
20100483 BBN_7509 AD 78 M 6 37
20121029 BBN_12991 AD 68 M 6 71
20130871 BBN_19191 AD 76 M 6 53
20030123 BBN_7341 Control 64 M 0 64
20040091 BBN_7386 Control 75 M 1 64
20050087 BBN_7111 Control 68 M 0 54
20130894 BBN_19192 Control 80 M 2 16
20131187 BBN_19217 Control 88 M 2 26
20140411 BBN_24265 Control 88 M 1 28

a MRC – Medical Research Council.
b AD – Alzheimer’s disease.
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protein. All antibodies had been optimised in our previous
paper [3] so concentrations and exposures required for the
AD and ND samples were already known and thus we are
confident in the validity of our results.

Quantification of APP, Ab, bCTF, sAPPa and sAPPb

ELISA quantification was performed to detect APP (APP
DuoSet ELISA, R&D Systems, Abingdon, Oxon., UK), Ab40,
Ab42, bCTF, sAPPa and sAPPb (IBL International GmbH,
Hamburg, Germany) according to the suppliers’ guidelines
and as described previously [3]. Data were presented for
Ab as pg/mg total protein concentration, APP, sAPPa and
sAPPb as ng/mg total protein concentration and bCTF as
pmol/mg total protein concentration.

Immunohistochemistry (IHC)

Sections were deparaffinised and rehydrated through
xylene, graded ethanol (100%, 95%, 70%, 50%) � 3 min each
and distilled water 2 � 3 min. All stages were carried out at
room temperature unless otherwise specified. Antigen
retrieval was performed by immersing sections in boiled
0.01 M citric acid at 95 �C for 20 min. Sections were cooled
under running tap water for 5 min and rinsed in 0.1 M PBS
for 10 min. For Ab analysis, sections were incubated in 80%
formic acid for 10 min and then distilled water for 5 min
before 0.1 M PBS. Endogenous peroxidases were deacti-
vated by incubation for 30 min in 20% MeOH/1.5% H2O2

followed by washing in PBS with 0.3% Tween (PBST)
3 � 5 min. Non-specific binding was blocked by incubation
in 1% BSA in 0.1 M PBS, 3% serum (from the species the sec-
ondary antibody was raised in) and 0.1% Triton X-100 for
30 min. The sections were incubated in primary antibody
in blocking buffer overnight at 4 �C in a humidified
container at the optimal concentration for each protein
(see Materials). Sections were then incubated in biotiny-
lated secondary antibody (1:100) in blocking buffer for
2 h and then in the Avidin-Biotin complex (ABC) reagent
in 0.1 M PBS and 0.5% Triton X-100 for 45 min. After wash-
ing with 0.05 M TNS (Tris-buffered non-saline), sections
were stained for 5 min in 0.5 mg/ml 303diaminobenzidine
(DAB) in 0.05 M TNS with 0.0018% H2O2. Sections were
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then immersed in distilled water for 5 min, followed by
0.5% CuSO4 for 10 min to increase the strength of the
DAB signal if required and distilled water for 5 min before
drying overnight. The sections were counterstained with
haematoxylin for 30 sec-1 min, 96% ethanol/3% HCl for
5 s and Scott’s alkaline tap water substitute (0.02 M
KHCO3, 0.08 M MgSO4 per litre distilled water) for
15 min before dehydration in distilled water 2 � 3 min,
graded ethanol (50%, 70%, 95%, 100%) 3 min each, xylene
2 � 6 min and coverslipped with DPX mountant.

Materials

All chemicals and reagents were purchased from
Sigma–Aldrich (Poole, UK), Fisher Scientific (Leicester,
UK) or Vector Laboratories Ltd (Peterborough, UK) unless
specified. Antibodies used were: anti N-APP (22C11; WB
1:500, IHC 1:20) and total and phospho anti-GSK-3a/b
(1:750) (Millipore, Watford, UK); anti-Ab (6E10, BioLegend,
San Diego, CA, USA); anti-clathrin heavy chain (CHC)
(Clone 23; WB 1:1200, IHC 1;20), anti-caveolin-2 (Clone
65; WB 1:200, IHC 1:50), anti-flotillin-1 (Clone 18;
1:300) and anti-dynamin-2 (1:500) (BD Biosciences,
Oxford, UK); anti-BACE1 (1:500, Merck Chemicals Ltd. Not-
tingham, UK); anti-AP180 (LP2D11; 1:750), anti-PICALM
(WB 1:700, IHC 1:100), anti-flotillin-2 (1:500) and
anti-AP-2 (1:500) (Novus Biologicals, Littleton, CO, USA);
anti-caveolin-1 (WB 1:800, IHC 1:100, Cell Signalling Tech-
nology, Beverly, MA, USA); anti-caveolin-3 (1:200),
anti-presenilin-1 (PS-1, 1:250), anti-ADAM10 (1:5000),
anti-SORLA (EPR14670; 1:400), anti-dynamin-1 (1:300)
and anti-BIN-1 (1:100) (Abcam, Cambridge, MA); anti-
Rab5 (S-19; WB 1:300, IHC 1:30, Santa Cruz Biotechnology,
Santa Cruz, CA, USA) and total tau (1:2000, Dako, Hamburg,
Germany). Monoclonal anti-phospho-tau Ser396/Ser404
(PHF-1, 1:100) was a generous gift from Prof. Peter Davies,
Albert Einstein College of Medicine, Bronx, NY, USA.

Data and statistical analysis

ELISA data were quantified using standard curves with
GraphPad Prism5 and normalised to total protein concen-
trations. Western blots were quantified using ImageJ
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(https://www.imagej.nih.gov). All protein bands were
expressed as the relative density of the same human brain
sample and then normalised for relative GAPDH levels. The
density of the endocytic proteins for the immunohisto-
chemistry was determined by measuring the optical den-
sity of the DAB staining on a Leica bright-field
microscope. At least 20 images of individual neurons or
blood vessels were taken in the grey matter or the grey
and white matter, respectively, for each section and quan-
tified using ImageJ. For each image, the optical density of
the background was measured and subtracted from the
optical density of the cell/vessel being analysed. ELISA
results, Western blot data and immunohistochemistry data
were analysed using unpaired Student’s t-tests at the two-
tailed significance level to determine whether levels of the
relevant protein differed significantly between AD and the
ND groups. Data are presented as mean ± SEM. p val-
ues < 0.05 were considered significant. Where necessary,
data were transformed to fit the assumptions of normality
and equal variances.
Results

APP metabolites were altered in people with AD

The level of APP was measured by ELISA (Fig. 1A),
immunohistochemistry (Fig. 1B) and immunoblotting
(data not shown) and was not affected by disease status.
APP was found to have a wide-spread distribution in the
cytoplasm of neurones in the brain (Fig. 1B).

Levels of soluble and insoluble Ab40 and Ab42 (p < 0.01,
Fig. 1C,D) and the soluble Ab42/40 ratio (p < 0.05, Fig. 1E)
were significantly higher in AD brains compared to ND
controls. However, the insoluble Ab42/40 ratio was signif-
icantly greater in ND controls compared to AD brains
(p < 0.05, Fig. 1E).

bCTF levels were also significantly increased by AD sta-
tus (p < 0.001, Fig. 1F). Neither the absolute levels of sAPPa
and sAPPb (Fig. 1G) nor the sAPPa/sAPPb ratio (data not
shown) were significantly affected by disease status.

The expression of the three secretases essential for APP
processing and Ab production, ADAM10 for a-secretase,
BACE1 (mature and immature) and presenilin-1 (PS-1, rep-
resentative of c–secretase) were not all affected by disease
status. Levels of mature BACE (62 kDa, p < 0.05, Fig. 2A) and
the cleaved 26 and 19 kDa derivatives of PS-1 (p < 0.05,
p < 0.01, Fig. 2C; corresponding to the N- and C-terminal
fragments of PS-1, respectively [75]) were increased in
AD brains compared to ND controls. In contrast, the level
of full-length PS-1 (50 kDa) was significantly decreased
in AD brains compared to ND controls (p < 0.05, Fig. 2C).
The level of immature BACE-1 (55.5 kDa, Fig. 2A) was not
altered in AD brains. However, although the ‘t’ test for
the ratios of mature to immature BACE-1 was not signifi-
cantly different between AD and ND samples, the variances
were significantly different (Fig. 2B, F value 398.2,
p < 0.0001). Neither the expression of mature (73 kDa)
and immature (83 kDa) ADAM10 individually nor the ratio
of the mature to the immature protein were affected by
disease status (Fig. 2B).
4

Levels of phosphorylated-tau and phosphorylated-GSK-3b
were significantly increased in AD brains

Total tau was detected at approximately 45–60 kDa due
to multiple tau isoforms in AD and ND samples (Fig. 3A).
Total tau expression was not quantified due to the multiple
bands for the different isoforms, however, it was clearly
increased in 4 out of the 6 AD brain samples compared to
ND controls (Fig. 3A). Phosphorylated tau was examined
using the well-established PHF-1 antibody (pSer396/
pSer404) [59] and extensive expression was detected in all
AD brain samples but none was seen in the control ND
brains (Fig. 3A). Again, the expression of phosphorylated
tau was not quantified due to the multiple bands seen.
The ratios of phosphorylated to total GSK-3a and GSK-3b,
one of the major enzymes involved in the phosphorylation
of tau, were also measured [36]. The ratio of phospho-GSK-
3a:GSK-3a did not differ between AD brains and ND con-
trols but the phospho-GSK-3b:GSK-3b ratio was signifi-
cantly increased in AD brains compared to ND subjects
(p < 0.05, Fig. 3B).

Levels of several CME-related proteins were upregulated in AD
brains

Clathrin Adaptor Protein 2 (AP-2) expression was signif-
icantly higher in AD brains compared to ND subjects
(p < 0.001, Fig. 4A). The punctate expression of clathrin
heavy chain (CHC), measured using IHC, was significantly
increased in AD brains compared to ND subjects
(p < 0.01, Fig. 4B), but was not altered using Western blot-
ting although a trend for an increase was seen (Supple-
mentary Fig. 1C). Three bands were detected for PICALM
with molecular masses of 70.5, 63.5 and 55.5 kDa
(Fig. 4C). As we have previously reported in the human
brain [3], it is likely that the 70.5 kDa band equates to iso-
form 1 with a predicted mass of 70.6 kDa, the 63.5 kDa
band to isoform 2 with a predicted mass of 66.3 kDa and
the 55.05 band to isoform 4 with a predicted mass of
59.7 kDa. The band with a predicted mass of 69.9 kDa, rep-
resenting isoform 3, was not well resolved from that of iso-
form 1 due to their similar sizes and thus was analysed
with isoform 1. The level of PICALM isoform 4 was signifi-
cantly higher in AD compared to ND brains (p < 0.01,
Fig. 4C) but the levels of PICALM isoforms 1 and 2 were
not affected by disease status (Fig. 4C). The punctate
expression of PICALM detected with IHC was also signifi-
cantly higher in AD brains compared to ND subjects
(Fig. 4D). There are at least 15 different isoforms of BIN1,
most of which are expressed in the brain including the lar-
gest isoform (isoform 1) which is believed to be expressed
exclusively in neurons [33]. Here, as in our previous study
[3], BIN-1 was detected as multiple bands (Fig. 4E) with the
three clearest bands at 77 kDa, equating to isoform 1
and � 65 kDa, equating to the smaller isoforms [33]. The
expression of BIN-1 isoform1 was significantly lower in
AD brains compared to ND controls (p < 0.05, Fig. 4E) but
the other isoforms were not affected by disease status
(Fig. 4E). The expression of Rab5 was significantly
increased in AD brains compared to ND subjects measured
with both Western blotting and IHC where a distinctive

https://www.imagej.nih.gov


Fig. 1. Comparison of (A) APP (ELISA), (B) APP immunohistochemistry (IHC) with representative sections, (C) soluble and insoluble Ab40, (D) soluble and
insoluble Ab42, (E) soluble and insoluble Ab42/Ab40 ratios, (F) bCTF and (G) sAPPa and sAPPb in male human frontal cortex samples from AD patients with
age-matched, non-diseased (ND) subjects. IHC was carried out on 4 lm paraffin-embedded sections from all individuals following antigen retrieval. Optical
density was measured in at least 20 neurones in the grey matter for each subject and analysed using ImageJ. (A), (B) and (G) Levels of APP, sAPPa and sAPPb
were not altered in AD brains. (C-F) Levels of soluble and insoluble Ab40 and Ab42, the soluble Ab42/Ab40 ratio and bCTF were significantly increased in AD
brains compared to ND subjects. (E) The insoluble Ab42/Ab40 ratio was significantly decreased in AD brains compared to ND controls. Data are represented
as mean ± S.E.M. *p < 0.05, **p < 0.01, ***p < 0.001 with Student’s t-test. n = 6. White arrows indicate neurones in each IHC section.
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punctate distribution was seen throughout the neuronal
cytoplasm (p < 0.05, Fig. 4F,G).

The levels of dynamin-1 (Supplementary Fig. 1A),
dynamin-2 (Supplementary Fig. 1B) and SORLA
(Supplementary Fig. 1D) did not differ between AD
5

brains and ND controls. Clathrin coat assembly
protein AP180 exists in multiple isoforms in the
human brain as previously shown [3]. The level of
AP180 was not altered by disease status (Supplemen-
tary Fig. 1E).



Fig. 2. Comparison of mature and immature BACE-1 (A), mature and immature ADAM10 (B) and full-length and cleaved derivatives of PS-1 (C) in male
human frontal cortex samples from AD patients compared to age-matched, non-diseased (ND) subjects. Representative immunoblots and densitometric
analysis are shown for each protein. (A) and (C) Levels of mature (62 kDa) BACE and the 19 and 26 kDa cleaved derivatives of PS-1 were increased in AD
brains compared to ND controls. (C) The level of full-length (50 kDa) PS-1 was significantly decreased in AD brains compared to ND controls. (A) and (B) The
levels of immature (55.5 kDa) BACE-1 and mature (73 kDa) and immature (83 kDa) ADAM10 were not altered in AD brains. Data are represented as
mean ± S.E.M. *p < 0.05, **p < 0.01 with Student’s t-test; ****p < 0.0001 with F test. n = 6.
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Expression of several CIE-related proteins was altered in AD
brains

Using Western blotting, the levels of caveolin-1
(p < 0.05, Fig. 5A) and caveolin-2 (p < 0.01, Fig. 5C)
6

increased significantly in AD brains compared to ND con-
trols, while the level of caveolin-3 was not affected by dis-
ease status (Fig. 5E). The predominant IHC staining for
caveolin-1 and caveolin-2 was in blood vessels in the brain
but, in contrast to the blotting studies, the expression of



Fig. 3. Comparison of phospho- and total-tau (A) and the phospho-GSK-3a:GSK-3a and phospho-GSK-3b:GSK-3b ratios (B) in male human frontal cortex
samples of AD patients compared to age-matched, non-diseased (ND) subjects. Representative immunoblots and densitometric analysis are shown for each
protein. (A) Phospho-tau was only detected in AD brains. (B) The phospho-GSK-3b:GSK-3b ratio was significantly increased in AD brains compared to ND
controls. The phospho-GSK-3a:GSK-3a ratio was unchanged in AD brains. Data are represented as mean ± S.E.M. *p < 0.05 with Student’s t-test. n = 6.
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caveolin-1 (p < 0.001, Fig. 5B) and caveolin-2 (p < 0.05,
Fig. 5D) was significantly lower in AD brains compared to
ND subjects (Fig. 5B). The expression of flotillin-1 and
flotillin-2 measured with Western blotting was not altered
by disease status (Supplementary Fig. 1F,G).

Discussion

This study has shown that the levels of several endo-
cytic proteins were significantly increased in AD brains
compared to age-matched ND controls. Furthermore, as
expected there was an increase in the levels of bCTF, sol-
uble and insoluble Ab40 and Ab42 and phosphorylated
tau in AD brains, while APP and the sAPP metabolites were
unchanged. Expression of mature BACE1, the functional
units of PS-1 and the proportion of active GSK-3bwere also
increased in AD brains.

Previous studies have shown that the levels of Ab40 and
Ab42 are significantly higher in familial or sporadic AD
brains as compared to control individuals [16,62,65,79]
and we replicated this observation. Increased levels of
Ab40 have been shown to inhibit Ab deposition and toxic-
ity in vivo [41,49], hence the high level of insoluble Ab40 in
AD brains here could reflect a compensatory mechanism to
decrease Ab deposition in plaques. The increased level of
soluble Ab42 is consistent with the Ab oligomer hypothesis
where soluble Ab oligomer levels correlate much better
than insoluble forms with the extent of synaptic loss and
7

severity of cognitive impairment [8,28]. Toxic oligomers
could be formed from the high levels of soluble Ab42 found
in the AD brains and later deposited as plaques, reflected in
the high levels of insoluble Ab42. It is possible that
increased endocytosis and processing of APP leading to
accumulation of intracellular Ab40 and Ab42 [10] could
explain the increased levels seen here.

Few studies have compared APP levels in sporadic AD
cases to control subjects, but our results showing no
change in APP expression are in agreement with other
studies [42,76]. The increase we saw in bCTF in AD
brains was expected given the increases seen in Ab40
and Ab42 and agrees with others showing a significant
increase in bCTF in sporadic AD brains [42]. Accumula-
tion of bCTF occurs early in the pathogenesis of AD and
has been shown to recruit APPL1 leading to overactiva-
tion of Rab5 which is involved in the development of
endosomal dysfunction including the enlarged endo-
somes seen in AD and Down Syndrome [37,42,57]. It
may induce toxicity resulting in synaptic loss and cell
death, hence contributing to AD pathology [38,42]. There
are contradictions in the literature regarding sAPPa and
sAPPb levels in the nervous system in AD [27], but gen-
erally our findings of sAPPa and sAPPb being unaltered
are similar to results from CSF [55,63]. Since sAPPa
and sAPPb are not known to have a direct involvement
in the pathogenesis of AD, it is not surprising that their
expression was unaffected.



Fig. 4. Comparison of CME-related proteins in male human frontal cortex samples of AD patients compared to age-matched, non-diseased (ND) subjects.
Representative immunoblots and densitometric analysis or immunohistochemistry (IHC) and analysis are shown for each protein. IHC was carried out on
4 lm paraffin-embedded sections from all individuals following antigen retrieval. Optical density was measured in at least 20 neurones in the grey matter
for each subject and analysed using ImageJ. (A), (C) and (G) Levels of AP-2, PICALM (isoform 4) and Rab-5 were increased in AD brains compared to ND
controls. (E) Levels of BIN-1 (isoform 1) significantly decreased in AD compared to ND brains. (C) and (E) Levels of PICALM (isoforms 1 & 2) and the other
isoforms of BIN-1 were not altered in AD brains. (B), (D) and (F) The expression of clathrin, PICALM and Rab-5 was significantly increased in AD sections.
Data are represented as mean ± S.E.M. *p < 0.05, **p < 0.01, ***p < 0.001 with Student’s t-test. n = 6. White arrows indicate neurones in each IHC section.
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The unchanged levels of ADAM10, one of the most
important a-secretases in the brain [64], suggest that the
increases in Ab seen in AD brains may not be due to alter-
ations in the activity of a-secretase. However, as we did
not measure enzyme activity, we cannot be sure that this
8

is the case. In contrast, the increased levels of mature
BACE1 in the AD brains agree with other findings [58]
and suggest increased b-secretase activity which could
account for the increased production of Ab and bCTF. While
the expression of full-length PS-1 decreased significantly



Fig. 5. Comparison of CIE-related proteins in male human frontal cortex samples of AD patients compared to age-matched, non-diseased (ND) subjects.
Representative immunoblots and densitometric analysis or immunohistochemistry (IHC) and analysis are shown for each protein. IHC was carried out on
4 lm paraffin-embedded sections from all individuals following antigen retrieval. Optical density was measured in at least 20 blood vessels in the grey and
white matter for each subject and analysed using ImageJ. (A) and (C) Levels of caveolin-1 and caveolin-2 were significantly increased in AD brains compared
to ND controls. (E) Levels of caveolin-3 were unchanged in AD brains. (B) and (D) The expression of caveolin-1 and caveolin-2 was significantly decreased in
AD sections compared to ND controls. Data are represented as mean ± S.E.M. *p < 0.05, **p < 0.01, ***p < 0.001 with Student’s t-test. n = 6. White arrows
indicate blood vessels in each IHC section.
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in AD brains compared to the controls, its cleaved frag-
ments were significantly increased. These NTF and CTF
fragments have been shown to represent the functional
units of PS-1, essential for c-secretase activity [18,80]
and their elevation in AD brains strongly suggests
increased activity of PS-1. Thus, the likely increased activ-
9

ity of both b-secretase and c-secretase would result in the
higher levels of Ab observed in the AD brains.

We only detected hyper-phosphorylated tau in AD
brains with no expression in the ND controls, confirming
their Braak staging of 0-II. GSK-3b has been shown to play
a critical role in in the pathogenesis of AD by inducing tau
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hyperphosphorylation, phosphorylating tau at multiple
AD-associated sites [36,46]. In agreement with a previous
study, we observed a significant increase in the proportion
of active phosphorylated GSK-3b at Tyr216 in AD brains
[47] but the proportion of active phosphorylated GSK-3a
at Tyr279 was unaltered. Thus, it is likely that the phos-
phorylated tau seen in the AD brains is due, at least in part,
to upregulated GSK-3b activity.

There is now much evidence to suggest that alterations
in endocytosis are causal in AD as described above and we
tested this hypothesis by investigating whether levels of
endocytic proteins were altered in AD brains.

The level of clathrin, a major CME protein, was signifi-
cantly increased in AD brains compared to ND subjects
when measured with immunohistochemistry but not with
immunoblotting although we saw a trend towards an
increase. This difference is probably due to the ability to
measure cellular localisation more precisely with the for-
mer technique. We have previously shown that CHC
expression was significantly higher in the brains of old
compared to young and middle-aged ND subjects (Alsa-
qati. et al. 2018). Thus, it appears that clathrin levels con-
tinue to increase in AD patients, suggesting possible
upregulation of endocytosis and involvement in increased
Ab levels. Closely linked to clathrin, dynamin-1 expression
has been reported to decrease in AD patients compared to
controls in the hippocampus and entorhinal cortex but not
in the frontal or temporal cortex [11], but an increase in
the insoluble fraction in the frontal cortex [40] and a
decrease in the dynamin gene in the prefrontal cortex
[56] were also described. Our data for dynamin-1 agree
with Cao et al. [11] and could be explained by stable pro-
tein expression but are surprising given the increase we
saw in clathrin in AD brains suggesting increased CME.
However, previously we saw a significant increase in
dynamin-1 expression with age [3], and it is possible that
this is sufficient to support the increase in clathrin expres-
sion seen in the AD patients.

BIN-1, thought to be one of the most important suscep-
tibility genes for sporadic AD, has been suggested to be
involved in different mechanisms linked to AD [20]. Here,
the level of BIN-1 isoform 1 or neuronal BIN-1 was signif-
icantly lower in AD brains compared to ND controls, agree-
ing with other findings using frontal cortex [17,33]. Overall
BIN-1 expression was also found to be reduced in sporadic
but not familial AD and suggested to be mainly involved in
the pathogenesis of sporadic AD [25]. In contrast, another
study [14] found increased BIN1 mRNA in the frontal cor-
tex of AD patients, but their data still support disrupted
BIN1 processing in AD. Consistent with the changes in
BIN1 and clathrin suggesting disrupted CME in AD, AP-2
levels were significantly higher in AD brains in relation
to ND controls but were not affected by age in our previous
study [3]. However, the AP-2 gene was found to be down-
regulated in the prefrontal cortex [56]. In contrast, AP180
levels were unaltered here but have been found to be
decreased using IHC in the prefrontal, entorhinal and tem-
poral cortex and hippocampus [11,81]. The differences for
AP-2 and AP180 could be due to compensation by other
adaptor proteins [51] or changes may be in specific cells
not detectable with immunoblotting.
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PICALM is involved in AD as a link to the development
of tau pathology, a susceptibility gene for AD and is crucial
for the regulation of Ab transcytosis and clearance across
the blood–brain barrier [4,31,45,52,84]. We found that
PICALM isoform 4 was significantly increased in AD brains
as was total PICALM staining in IHC, while isoforms 1 and 2
were not altered. Our finding is consistent with increased
PICALM isoform 4 levels in the hippocampus in AD cases
in relation to controls [4]. However, unlike Ando et al. [4]
we did not observe changes in isoforms 1 and 2 or abnor-
mal cleavage of PICALM in AD brains, possibly due to our
use of a different brain region. It has been suggested that
cleavage of PICALM could be involved in the promotion
of tau fibrillisation [4], supported by the increased level
of isoform 4 here. Our finding, coupled with the alterations
in clathrin, BIN1 and AP-2, supports disruption of CME in
AD which could contribute to increased Ab levels.

Various findings have linked Rab5 to AD [7] including
increased Rab5 expression [12,13,22,44] and enlarged
Rab-5-positive endosomes in early-stage AD brains [13].
Our findings confirm this increased expression of Rab-5
in AD brains suggesting that both endocytic uptake and
recycling are increased. Importantly, overactivation of
Rab5 in the absence of any influence of bCTF has been
shown to recapitulate the endosomal dysfunction seen in
AD, thus confirming the importance of changes in endo-
cytic pathways in the pathogenesis of the disease [57]
and supporting our findings that alterations in endocytic
pathway proteins in AD are important for disease
development.

Decreased expression of SORLA, an important risk factor
for AD due to its role and genetic variants [68], was found
in AD brains [19,67,83] and here, although no significant
change was seen in SORLA levels in AD brains, there was
a trend for a decrease supporting the earlier studies.

Caveolin-1 has been shown to be associated with APP
and APP was enriched in caveolae [34,39]. In AD brains,
increases were seen in the caveolin gene in the prefrontal
cortex [56] and caveolin-1 protein in the hippocampus
and caveolin-1 mRNA in the frontal cortex [21]. Our results
for caveolin-1 and caveolin-2 depended on the technique
used with increases in AD brains seen with immunoblot-
ting while decreased blood vessel staining was seen with
IHC, the latter likely to be more reflective of caveolin levels
in the brain. Previous IHC studies identified caveolin-1 and
caveolin-2 expression in endothelial cells of cortical blood
vessels [35,77], reflecting our localisation, but their expres-
sion was not altered in AD brains [77] in contrast to our
study. There are marked changes in the blood–brain bar-
rier including the endothelium in AD brains which could
explain our findings [82]. Interestingly, a study on the tem-
poral lobe from Type 2 diabetes patients showed a large
decrease in caveolin-1 with a concomitant increase in Ab
compared to healthy controls [9]. Caveolin-3 immunoreac-
tivity was decreased in astroglial cells surrounding senile
plaques in AD brains [54] but, here, it was not affected
by AD, possibly due to the measurement of total protein.

Flotillin has been linked with AD most recently as a
potential biomarker [5]. Flotillin-1 accumulated in the
lysosomes of NFT-containing neurons in AD brains
[23,53] and Ab was found in flotillin-1-containing
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exosomes from AD brains [66]. Both flotillin-1 and �2
expression were increased as plaque numbers increased
compared to subjects with no plaques [43]. However, here,
neither flotillin-1 nor flotillin-2 were affected in the AD
brains.

Interestingly, in our previous study on ageing in male
brains with immunoblotting [3], we saw no changes in
caveolin-1 or flotillin-1, an increase in caveolin-2 and
flotillin-2 and a decrease in caveolin-3 with age. Overall,
our data suggest that caveolins and flotillins are differen-
tially modulated by age and the presence of disease and
more detailed investigations at the cellular level are
needed to understand how these proteins are affected by
disease status.

Conclusions

In conclusion, this study provides evidence for changes
in both CME and CIE proteins in the male AD brain.
Increases in several of the CME proteins suggest an upreg-
ulation in endocytosis in male AD brains, leading to
increased internalisation of APP, more metabolism by b-
and c-secretase and increased generation of Ab. This
increased metabolism of APP in the amyloidogenic path-
way would be augmented by the higher expression of b-
and c-secretase, thus further increasing Ab production.
We note that, although we controlled for the effects of bio-
logical sex as we only used male brain samples, as we did
not include any female brains in our study it is possible
that our results cannot be generalised to everyone with
AD. Further studies are needed to determine whether there
are sex-related changes in endocytic proteins in ND and AD
brains. The results obtained here, combined with our pre-
vious study on increased endocytic protein expression
with ageing, lend support to an increase in endocytosis
explaining, at least in part, the increased production of
Ab during AD. Our study sheds light on several endocytic
proteins that could be targeted to slow down the progres-
sion of AD.
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