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Abstract

Dielectric elastomer (DE) devices have gained significant interest in fields such
as soft robotics, mechanical engineering, biomedical technology, and energy
engineering due to their lightweight and fast actuation capabilities. However,
these devices have several shortcomings that this thesis aims to address through
the analysis of instabilities and actuation in various configurations.

The electroelasticity theory is presented, defining the general kinematics
and constitutive equations for these hyperelastic materials. Using this theory
as a foundation, various configurations are introduced and analysed, with
a focus on the novel ‘floating’ device as both a slab and tubular elastomer.
These configurations are examined under different boundary conditions, and
the deformation paths are analysed as geometrical parameters are varied. The
onset of electro-mechanical instability is shown, as well as the introduction of
the expansion limit.

The theory of incremental deformations is specialised to investigate surface
instabilities in three previously introduced elastomer slab configurations. It
is shown that the instability is more sensitive to pre-stress in the ‘floating’
configuration, while the configuration deformed by sprayed charges is more
stable against surface instabilities compared to the same configuration actuated
by voltage. The effects of stiff electrodes on surface instabilities are also studied
using surface-coating models, and it is demonstrated that the stability domain
is significantly reduced when the device contracts. New bifurcation modes come
into play and each one has been studied and characterised.

Laminated composite elastomers are then considered, which are of particular
interest due to their ability to enhance actuation characteristics. Using a small
strain model and various boundary conditions, it is shown how, with specific
parameters, an inverse mode of actuation can be achieved in both rank-1 and
rank-2 laminated composites. The rank-2 laminate is demonstrated to enhance
the rank-1 inverse actuation mode, and a guideline for optimizing composite
parameters is provided. Existing materials are also analysed to show how



x

current technology requires a rank-2 laminate to obtain the inverse mode of
actuation.
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Chapter 1

Introduction

1.1 Electro-active polymers

The use of electro-active polymers (EAPs) is an ever-growing field with an
increasing number of applications and research articles. As a type of EAP,
dielectric elastomers (DEs) work as an actuator, which typically consists of
an elastomer membrane actuated by a difference in electric potential across
the thickness, which induces in-plane large strains. Comparing these to other
actuation technologies, such as piezoelectric, magnetostrictive, and shape
memory materials, the advantages of DEs include low density and strain
modulus, large actuation strain coupled with fast actuation speed and high
specific energy density. These lightweight and flexible actuators have attracted
interest in areas such as soft robotics [7–9], mechanical [10–12], biomedical
[13–15] and energy engineering [16–18, 6] (the review [19] provides a broad
overview of the topic). The mechanisms of DEs have been known for a long
time, with Röntgen showing in 1880 [20] how a pre-stretched rubber band
showed elongation when subjected to an electric field. In the last two decades,
improvements in material science and fabrication technology, which have made
these devices viable, have led to increased interest in DE actuators. In 1998
Pelrine et al. [21] showed a bending actuator with one layer of silicon rubber
coated with polyamide electrodes showing strains of > 30%. This was followed
up with a paper in 2000 [22] showing increased strains of up to 215% with the
use of acrylic elastomers and the application of high pre-strain.

In the robotics field, these advancements coupled with a shift from con-
ventional rigid body robots to soft robots with compliant bodies have made
DE actuators of particular interest. Several reviews exist which lay out recent
advancements and challenges of DEA applications in soft robotics such as Gu
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et al. [23], Gupta et al. [24] and Yuon et al. [25] among others. So far soft
actuators have allowed many designs of artificial muscles, bio-inspired robots
and user interfaces. Soft robotics is preferred for robots that need to interact
with humans and unstructured environments where large deformations are
required with little pressure or damage when manoeuvring. DE actuators can
be stacked or designed to allow various deformation modes. This has allowed
various locomotion designs using soft actuators as seen in Fig. 1.1 (a) and (b)
which show a rolling DE device proposed by Li et al. [1] and a frog inspired
DE actuated robot proposed by Tang et al. [2] respectively. Wearable robotics
is another important challenge where soft actuators are of interest because of
the weight and comfort requirements. Fig 1.1 (c) shows a wearable fingertip
tactile display proposed by Koo et al. [3]. Challenges for DE actuators in soft
robotics remain the requirement of high voltage for actuation, limited break-
down strength of actuators, and poor reliability due to unexpected breakdown
phenomena or various types of instabilities.

(a) Rolling robot (b) Frog inspired robot (c) Tactile display

Fig. 1.1 Three DE driven designs: (a) rolling robot using DEA for locomotion
[1], (b) frog inspired DE actuated robot [2], (c) wearable fingertip tactile display
[3]

A DE device can also be used as a dielectric elastomer generator (DEG),
by exploiting the fact that the capacitance of the dielectric changes during
deformation to extract electric energy. The general load cycle works by initially
stretching then charging and subsequently releasing the capacitor and collecting
the charge at a higher electric potential. Springhetti et al. [26] investigated the
optimal cycle for a DEG within the electric breakdown and stretch limits of an
elastomer. DEGs are a promising technology for the conversion of mechanical
energy into electrical energy due to their very large energy densities, good
efficiency, and extremely low cost of the constituent materials compared to
other generator technologies. Moretti et al. [27] provided a review of state
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of the art small and large scale DEG systems DEGs are seeing development
both in small-scale devices conceived for wearable or portable power systems
for other wearable electronics and in large-scale systems such as generators
designed for renewable energy conversion. DEGs have been proposed such
as embedded in a shoe heel or backpack straps to potentially power portable
electronics [17]. The challenges with small-scale DEGs are safety due to the
high voltages required and the need for low-cost solutions for the step-down
electronics required to provide the low voltage usable output. DEGs have been
recognised particularly for use in wave energy converter technologies. The
advantages of DEGs compared to more typical generators are the simplicity
and low cost of the raw materials, the low mass density, the resistance of DE
materials to corrosion and in particular the matching between the frequency of
waves with the DEG working cycle. Wave energy DEGs are currently in the
proof-of-concept stage with small scale prototypes in laboratory environments.
Several architectures have been studied such as floating buoys or oscillating
bodies and water columns. Fig. 1.2 shows a few of these different devices.

(a) AWS-III (b) SQ1 (c) Poly-A-OWC

Fig. 1.2 Three DEG prototype devices: (a) cassette type horizontal diaphragm
DEG [4], (b) air-filled bags used as DEG [5], (c) vertical diaphragm DEG [6]

Overall the challenges in design are similar for all the reviewed applications.
These include understanding what causes breakdown and instabilities, being
able to achieve specific types of deformations fitted to the task as well as overall
larger deformations for a given actuation voltage by improving the properties
of DEs. A common problem is also that the high voltage needed to operate
a DE device can present safety issues and require electrical circuits able to
handle the voltage conversion in small form factor.



4 Introduction

1.2 Instabilities

It is evident that one of the main issues to consider when designing DE devices
are the onset of instabilities. There are several types of instablities that can
affect such a device which will be summarised here.

Fig. 1.3 Figure showing a fundamental loading path for an elastomer slab
undergoing equi-biaxial deformation in blue and the electric breakdown curve
in orange. The onset of electro-mechanical instabilities and electric breakdown
are highlighted.

Electro-mechanical instabilities

Electro-mechanical instabilities occur when the nonlinear voltage-stretch re-
sponse curve reaches a peak point [28]. Figure 1.3 shows an example of an
elastomer slab undergoing equi-biaxial deformation with a Gent material model.
As can be seen, when the actuation voltage reaches the peak at point A, the
elastomer experiences a snap-through instability causing the elastomer to thin
down drastically. This occurs because of a positive feedback between the
elastomer thinning and the electric field increasing which only ceases (point B)
at a state close to the limiting stretch due to the elastomer chain extensibility.
Typically this type of instability triggers the electric breakdown of the material,
shown as an example with the orange curve in the figure. However, there are
some studies which try to harness this snap-through instability to achieve giant
deformations such as by Su et al. [29].
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Diffuse modes of bifurcation

Diffuse buckling modes can be induced under compression of the elastomer
[30, 31]. They are typical of a pre-stretched elastomer, where the pre-stress may
reduce due to the electrical actuation. These instabilities can be detected by
investigating the propagation of small-amplitude perturbations superimposed
on a given deformation state. When this study is done for a half-space it reveals
surface instabilities.

Electric breakdown

The electric or dielectric breakdown is a failure mode arrising from an intrinsic
property of the dielectric material, called its dielectric strength, and can
be observed experimentally. It occurs when the dielectric material is being
subjected to a large enough electric field which causes it to suddenly becomes a
conductor allowing current to flow. This type of failure mode causes catastrophic
failure of the DE device. Typical dielectric strength values of elastomer materials
range in the hundreds MV/m [22, 32]. Often other types of instabilities lead
to electric breakdown as any local thinning of the elastomer could cause high
enough electric fields for breakdown to occur as is shown in figure 1.3 with the
electro-mechanical instability.

1.3 Literature Review

The aim of this thesis’ work was to carry out novel research to advance the
understanding of acuation of DE devices. To achieve this goal a couple of
different focus areas were picked, highlighting for each some novel phenomena.
At first novel configurations were investigated and their fundamental loading
paths were studied in order to advance general knowledge of potential devices.
The onset of instabilities pertaining to these new configurations was investigated
in order to understand the operating regimes. Surface instabilities were also
analysed for the classical configuration but enriched with a surface coating model
to include the effects of a stiff electrode. Hierarchical laminated composites
configurations were also investigated as a way to enhance traditional DE
actuation. This section of the thesis breaks down each chapter and provides for
each detailed insight on existing research and highlights on the novel aspects
of this work.



6 Introduction

1.3.1 Chapter 2 - Electroelasticity for homogeneous ma-
terials

Chapter 2 introduces the general continuum mechanics theory used to analyse
electroactive elastomer devices throughout the thesis. The first theory for
non-linear electro-elasticity was developed by Toupin [33]. McMeeking and
Landis [34] derived the governing equations in Eulerian form using a free energy
function dependent on the deformation gradient and material polarization.
They also obtained the constitutive equations for the electric field and total
Cauchy stress for non-dissipative materials. Dorfmann and Ogden [35] then
expanded the theory by providing a novel Lagrangian formulation based on
the notion of a total energy function. This led to simple and compact forms
of the governing and constitutive equations facilitating the formulation of
boundary-value problems. Suo et al. [36] expanded on this theory by using a
different starting point. The general theory for electroactive elastomer devices
is now well established.

Several constitutive models for hyperelastic materials are then introduced
which are used throughout the thesis to describe the stress-strain relationship
of the elastomers. A myriad of models have been proposed with new models to
account for specific characteristics still being proposed to date, such as Xiang
et al. [37]. In this thesis the purely elastic effects are assumed decoupled from
the electrostatic effects, allowing the use of existing mechanical models to be
employed with an ideal dielectric electro-elastic model. Several investigations
showed that the decoupled free energy well captures the behaviour of dielectric
elastomers [38–40].

Lastly, the incremental electro-elasticity theory is introduced as developed
by Dorfmann and Ogden [30]. Incremental deformations and electric fields are
superimposed on a known underlying finite deformation and electric field. This
theory will be used in chapter 4 to investigate diffuse modes of instabilities on
a half-space.

1.3.2 Chapter 3 - Electro-elastic boundary value prob-
lems

In chapter 3 some electro-elastic boundary value problems are introduced. The
classic configuration for these actuators (first reported by Pelrine et al. [21])
consists of an elastomer film sandwiched between compliant electrodes (carbon
grease, ion-implanted polymers, ionogels, etc.). The device is actuated by
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applying a potential difference across the electrodes. Spraying charges directly
on the surface of the elastomer is another way to actuate a dielectric elastomer
film. This method was pioneered by Röntgen [20] and proposed recently by
Keplinger et al. [41] who showed experimentally how surface charges could
be sprayed onto the elastomer. These first two modes are well known and
the governing equations are expressed and briefly discussed for further use in
chapter 4 to analyse surface instabilities. A third possible actuation mode is
that where the membrane ‘floats’ between two fixed electrodes surrounded by
either a fluid or a vacuum and is actuated via a potential difference across
the electrodes. This was proposed by Díaz-Calleja et al. [42] who addressed
non-linear actuation law and pull-in instability in terms of contrast between
dielectric permittivities of the elastomer and surrounding environment. Su et
al. [43] also examined the Hessian instability of a dielectric slab floating in a
conductive fluid undergoing equi-biaxial deformation. The fundamental paths
have not been well defined and as such in this chapter a deeper analysis of the
fundamental paths of the ‘floating’ elastomer, under plane-strain conditions,
is undertaken. This is used to understand how changing the geometrical
parameters of the device affects the actuation. The idea of the expansion limit,
where the elastomer expands up to the fixed electrodes, is also introduced and
the onset of electro-mechanical instability is analysed using both a neo-Hookean
and Gent constitutive model.

The ‘floating’ elastomer is then modified to use a tubular configuration,
such that a tubular elastomer is placed in between two fixed coaxial tubular
electrodes and actuated via a potential difference across them. There has been
work on a tubular elastomer in a classical configuration with attached compliant
electrodes, which was proposed by Pelrine et al. [21]. Dorfmann and Ogden [44]
first reviewed an elastomer with cylindrical symmetry analysing the extension
and inflation of a tube with axial or radial electric field. Zhu et al. [45] then
analysed the onset of electro-mechanical instability of a tubular elastomer with
varying amounts of pre-stretch. Calabrese et al. [15] also showed a potential
medical bandage device using the concept of sandwiched electro-active tubular
structures with attached electrodes. However, there has not been any work
on the ‘floating’ configuration, where the elastomer tube is subjected to an
external electric field. In this chapter the governing equations of the problem
are expressed using a cylindrical co-ordinate system. Two boundary conditions
are then analysed, the first when the transverse stretch λz is held constant
and the second where it is allowed to vary as a function of the radius. The
fundamental paths of the geometry are analysed as the parameters are altered,
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to understand the deformation of the tubular device when actuated, as well as
the conditions for the onset of electro-mechanical instabilities.

1.3.3 Chapter 4 - Electro-elastic surface instabilities

In chapter 4 a systematic approach is undertaken to investigate surface bifurca-
tions of electro-elastic half-spaces deforming homogeneously in the fundamental
path according to the three actuated elastomer slab devices introduced in
chapter 3.

There are several methods to investigate instabilities of an elastomer, such
as the internal stress balance, the hessian method and the energy method
with Dorfmann and Ogden providing a review of instabilities of soft dielectrics
[46]. In this thesis the incremental method is used to analyse diffuse modes of
instabilities on a half-space. The general theory, developed by Dorfmann and
Ogden [30] and laid out in chapter 2, is specialised in this chapter to the three
actuated elastomer slab devices introduced in chapter 3. A systematic approach
is undertaken to investigate surface bifurcations of the electro-elastic half-spaces
deforming homogeneously in the investigated fundamental paths. This method
has been used to analyse bifurcations by authors such as Dorfmann and Ogden
[47], Díaz-Calleja et al. [48], Su et al. [49], in elastomer blocks and thin films.
It has also been used to investigate instabilities in dielectric composites such as
by Bertoldi and Gei [31], Rudykh et al. [50, 51] and Spinelli and Lopez-Pamies
[52]. In this thesis the focus is on surface instabilities, with particular interest
on the ‘floating’ elastomer actuation as the geometrical parameters are changed.
Incremental fields are also analysed to characterise the surface instability modes
at the onset of bifurcation.

The effect of the stiffness of electrodes is commonly neglected in electro-
elastic actuation as they are assumed to be fully compliant. Elastic surface-
substrate interactions, a valid model for thin and stiff films coating elastic solids,
were analysed by Murdoch [53] and later by Ogden and Steigmann [54, 55] who
refined the theory and introduced the bending stiffness. The latter approach
is used to take into account the additional effects of the electrode on surface
bifurcations of the previously analysed half-space using the compliant electrodes
actuation mode. Guided by experimental measurements, three different kinds
of electrodes are analysed possessing a range of material parameters to cover a
variety of cases and assess their effects on electro-elastic surface instabilities
and bifurcation modes. The results show that they may limit considerably the
stability domain when the half-space contracts.
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1.3.4 Chapter 5 - Small strain actuation of electro-elastic
laminates

Composite dielectric elastomers exhibit a variety of interesting actuation fea-
tures. A significant part of the research has been focused on (hierarchical)
layered components, looking at overcoming some of the previously mentioned
limitations that affect DEAs. The key principle is to enhance the electro-
mechanical coupling by reinforcing a soft matrix with stiff, high permittivity
particles, such that the overall actuation is improved despite the expected
increase in stiffness. A homogenization framework for characterizing the be-
haviour of laminated composites was provided by deBottom et al. [56] and
Tevet-Deree [57]. Several papers investigated the optimisation of layered com-
posites, such as Rudykh et al. [50], Gei et al. [58], Gei and Mutasa [59], among
others. In the small strain setting, Tian et al. [60] showed that two-phase
dielectric rank–n laminates could exhibit improvements in the actuation strain
of more than one order of magnitude.

In this chapter laminate composites are studied which are characterised by
a softer matrix material laminated with a stiffer inclusion. It is shown that
laminate composite elastomers can also exhibit an inversion of actuation with
the right geometrical and material parameters. To better understand this mode
of actuation the conditions which cause the onset of this actuation inversion
are analysed. The presence of this inversion of actuation is shown in both
rank–1 and rank–2 laminates. At first the rank–1 laminate is analysed, looking
at the geometrical and material criteria with different boundary conditions,
namely, ‘aligned’ loading and macroscopic stress-free conditions. The actuation
response is analysed to understand how each composite phase deforms before,
during and after the onset of inversion. A rank–2 composite is then compared
against a rank–1 composite and it is shown how the rank–2 structure is able
to enhance this mode of actuation. As a rank–2 has a lot more parameters, a
general guideline is provided on how to optimise each to obtain the desired
actuation.

Finding the right material for each soft and stiff material phase is crucial
to the actuation response of the composite and is the main challenge when
trying to achieve the results shown. The development of new soft electro-
active materials with enhanced permittivity is an ongoing field of study. A
review of currently studied materials is provided, highlighting those which could
potentially be used in each material phase to achieve the inversion of actuation
in both rank–1 and rank–2 laminate composites.
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The research results in this thesis have also been published in
Liguori, P., Gei, M., "Surface instabilities of soft dielectric elastomers with

implementation of electrode stiffness", Math. Mech. Solids, March 2022,
Liguori, P., Gei, M., "New actuation modes of composite dielectric elas-

tomers" has been submitted for peer review to Proc. R. S. A.
A short note on "Large deformation of soft dielectric cylindrical tubes under

external radial electric field" is also in the works.



Chapter 2

Electroelasticity for
homogeneous materials

This thesis will analyse electroactive elastomer devices using a continuum
mechanics approach. The underlying theory has been developed for many years
and for additional information, the interested reader is referred to Truesdell
et al. [61], Gurtin [62] and Holzapfel [63], among others. This chapter con-
tains an introduction to the general theory of large-strain electro-elasticity
for a homogeneous isotropic material developed by Toupin [33] in 1956. An
electro-elastic elastomer device consists of an elastomer with a coupled electro-
mechanical response to an applied electric field. This chapter will define the
general kinematics and constitutive equations describing this coupled response
of the material.

2.1 Kinematics and field equations

Figure 2.1 shows a homogeneous material in its initial and deformed config-
urations. We assume that in the stress-free configuration the electro-elastic
material occupies a region B0 ∈ R3. After a given deformation χ, the deformed
body covers a space B ∈ R3. We can define a material particle in B0 by its
position vector x0 that is transformed to x = χ(x0) in B; F = ∂χ/∂x0 denotes
the deformation gradient. The space surrounding the body will be denoted
by Bsur or B0sur in the deformed or undeformed configuration respectively.
The particular case of vacuum will be denoted by B∗, where no undeformed
configuration is introduced in the case of a vacuum as the deformation gradient
is undefined.
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In the mechanical problem, the stress is caused by surface tractions per
unit area A. These are denoted as t in the deformed configuration B with the
outward unit normal vector denoted as n. From Cauchy’s theorem it is known
that these tractions cause a second order stress tensor known as the Cauchy
stress tensor τmech in the deformed configuration, given by

t = τmechn. (2.1)

The Eulerian equation of motion is given by

divτmech + b = ρa, (2.2)

where b, ρ and a, are the body forces, density and acceleration respectively in
B. The div is the divergence operator in the deformed configuration B. Under
the assumption of no body forces and a static problem the equilibrium equation
reduces to

divτmech = 0. (2.3)

In the electric part of the problem, the surface charges on the electro-elastic
body together with the polarization of the material generate an electric field
E in the whole deformed space B. The electric displacement field within the
material D is thus given by

D = ε0E + P , (2.4)

where P is the polarization of the material and ε0 the permittivity in vacuum.
In a vacuum or a non polarizable medium, this relation turns into

D = ε0E. (2.5)

In order to formulate the equilibrium equations, a ‘total’ stress tensor, τ ,
should be defined which includes the electro-mechanical effects in B such that

τ = τmech + τelec. (2.6)

Under the assumption of the absence of both volume free charges and body
forces, the governing equations in the eulerian formulation are the following:

divτ = 0, divD = 0, curlE = 0, (2.7)
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with curl being the curl operator in the deformed configuration B. The balance
of angular momentum also requires that

τ = τ T . (2.8)

The last equation implies that E can be derived from the electric potential
ϕ(x) such that E = −gradϕ(x).

When the surrounding of the body is a vacuum (B∗), there is a surface
force acting on the body due to the electric field which is given by the Maxwell
stress tensor T ∗ i.e.

T ∗ = ε0

(
E∗ ⊗ E∗ − 1

2(E∗ · E∗)I
)
, (2.9)

where ∗ denotes quantities in a vacuum. Here the Maxwell stress tensor does not
take into account any magnetic effects as throughout this work they are assumed
to be null. The permittivity of a vacuum has the value of, ε0 = 8.85 · 10−12 F
m−1 and I is the appropriate identity tensor. The electric quantities in the
vacuum follow the relationship previously described, D∗ = ε0E

∗, while eq.
(2.10)4 implies an electric potential in the vacuum given by E∗ = −gradϕ∗(x).

With a surrounding vacuum, the governing eqs. (2.7) and (2.8) specialise
to,

div T ∗ = 0, T ∗ = (T ∗)T , divD∗ = 0, curlE∗ = 0, (2.10)

where the total stress has null mechanical contribution and is given by the
Maxwell stress only.

The boundary conditions need to be prescribed due to the discontinuity
between the homogeneous solid material B and the surrounding space Bsur

as demonstrated in figure 2.2. Because of the discontinuity, we define jump
conditions across as

JξK = ξB − ξBsur , (2.11)

with ξ being some variable defined in both the material and surrounding space.
In the deformed configuration these boundary conditions take the form,

n · JDK = −ω, n × JEK = 0, Jτ Kn = t, (2.12)

where ω is the surface charge density and t are any prescribed surface tractions.
When the discontinuity occurs at the boundary between the elastomer B and
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an adjacent vacuum B∗, the above equations specialise as

n · D = −ω + ε0E
∗ · n, n × (E − E∗) = 0, τn = t + T ∗n. (2.13)

It could be useful to define nominal or Lagrangian measures. It can be
more useful to have a measure of the first Piola-Kirchhoff tensor which is a two
point tensor linking the total stress to the undeformed area A0. According to
Nanson’s formula we have

ndA = JF −T n0dA0, (2.14)

where J is the Jacobian given by J = detF and n0 is the outward unit normal
vector in the undeformed configuration. If the material is incompressible then
J = 1. We can thus use this to obtain the Piola-Kirchhoff total stress tensor S

given by,

tdA = τndA = Sn0dA0

S = JτF −T . (2.15)

The governing eqs. (2.7) and (2.8) updated to the reference configuration thus
become:

DivS = 0, SF T = F ST , DivD0 = 0, CurlE0 = 0, (2.16)

where Div and Curl are the appropriate operators with respect to coordinates
in B0. The Lagrangian electric displacement and electric fields are given by

D0 = JF −1D, E0 = F T E, (2.17)

respectively. The jump conditions eqs. (2.12) in the Lagrangian formulation
take the form of,

n0 · JD0K = −ω0, n0 × JE0K = 0, JSKn0 = t0, (2.18)

with all the appropriate quantities in the reference configuration.
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Fig. 2.1 Diagram of a homogeneous material body in undeformed (left) and
deformed (right) configurations, with surface tractions t and charges ω on its
boundary.

Fig. 2.2 Diagram showing jump conditions at an interface in the deformed
configuration, with surface tractions t and charges ω on its boundary.

2.2 Electro-elastic constitutive equations

This section deals with the selection of a constitutive equation to model
the elastomer materials used for dielectric elastomer devices. The aim is to
introduce constitutive models suitable to describe the stress-strain relationship,
as such we are particularly interested in hyperelastic material models or ‘Green’
elastic materials. This field is of particular interest in polymer chemistry,
polymer physics and polymer engineering, where there exist many studies trying
to accurately model and describe the stress-strain relationship of elastomer
materials [64–66]. The range of models to pick from is vast and can be broadly
classified into three classes. The first are phenomenological models where the
model describes the empiric behaviour of the material observed from testing.
This type of model does not attempt to describe the first principles of the
ongoing phenomena but merely tries to fit a curve to the data. The second class
of models are the mechanist models where the model tries to understand the
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macro and microscopic properties of the material to deduce how it will respond.
These kinds of models tend to look at how elastomer chains stretch and interact
at a molecular level in order to obtain their mathematical relationship. The
third and final class of models is the hybrid of these two, where some elements
are taken from each of the two previous classes to obtain the material model.

When picking an adequate material model there are certain factors to keep
into account. Ideally, the model should have as few parameters as possible which
should be obtainable from a small number of experiments to characterise each
specific elastomer. It is also important to understand how much deformation
the material will undergo, as some models are more suited than others in the
various stages of deformation.

The dielectric elastomers considered can be defined by an electro-elastic
strain-energy function W which is based on the deformation gradient and
nominal electrical displacement D0 such that

W = W (F ,D0). (2.19)

For this type of material, the constitutive equations take the form

S = ∂W

∂F
, E0 = ∂W

∂D0 . (2.20)

When the material is said to be incompressible it is known that J = detF = 1,
meaning that the incompressibility constraint becomes J − 1 = 0. To account
for the incompressibility of the material, the strain-energy function can be
written in the form of

W = W (F ,D0) − p(J − 1), (2.21)

where p represents an unknown hydrostatic pressure to be defined by boundary
conditions, functioning as a Lagrange multiplier. The incompressible constitu-
tive equations now take the form

S = ∂W

∂F
− pF −T , E0 = ∂W

∂D0 . (2.22)

Isotropy requires that W (F ,D0) be a function of both the invariants of the
right Cauchy-Green tensor C = F T F , namely

I1 = trC, I2 = 1
2

[
(trC)2 − tr(C2)

]
, I3 = detC = 1, (2.23)
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and those involving both C and D0, i.e.

I4 = D0 · D0, I5 = D0 · CD0, I6 = D0 · C2D0. (2.24)

It is to note that a convenient form of the energy function W (Ii) (i = 1, . . . , 6) is
the one where the purely elastic part is split from the remaining part involving
coupled electrostatic effects, namely W (Ii) = Welas(I1, I2) + Welec(I4, I5, I6).
This allows existing purely mechanical hyperelastic models to be employed by
adding an appropiate model for the coupled effects.

2.2.1 Neo-Hookean elastic model

Simple models that are easier to handle analytically are of particular interest.
For the elastic part of the strain-energy, the simplest of all commonly used
hyperelastic models is the neo-Hookean model. The neo-Hookean model is a
mechanistic model expressed in terms of invariants by Rivlin [67] and based on
the statistical thermodynamics of cross-linked polymer chains. It is particularly
fitting for lower stretch values as the polymer chains are able to move relative
to each other when a stress is applied. The strain-energy function for an
incompressible neo-Hookean material is defined as,

Welas(I1) = µ

2 (I1 − 3), (2.25)

where µ is the shear modulus of the material. The advantages of the neo-
Hookean model are its simplicity while still providing accurate results for small
to medium strain conditions. The material parameter required is also easily
obtained experimentally and compatible with various types of deformations.

2.2.2 Gent elastic model

The Gent material model is a hybrid model proposed by Gent [68] in 1996. It
tries to improve on the shortcoming of the neo-Hookean model at large strains
by providing a limiting strain factor that is fitted to experimental data. It
is the simplest model that deals with the problem of limiting polymer chain
extensions; as the polymer chains stretch out they reach a limit over which they
are unable to stretch anymore. The Gent material model for incompressible
elastomers is defined as,

Welas(I1) = −µJm

2 Ln
(

1 − I1 − 3
Jm

)
. (2.26)
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The limit of stretch is defined by the Gent parameter Jm = I lim
1 − 3 where I lim

1

is the first invariant evaluated at the stretch limit value. As Jm → ∞, such
that the stretch limit is not a factor, the neo-Hookean model is obtained. This
model, in many cases, is able to accurately simulate strain stiffening by only
introducing an extra variable.

To achieve a better understanding of the stretch ranges in which each of
these mechanical models is better, a material slab under plane-strain conditions
is analysed. Figure 2.3 shows the results for a neo-Hookean and Gent material
model with a typical Gent parameter for an elastomer of Jm = 91. The
mechanical stress τmech is plotted as the elastomer is stretched along the x1

axis. As can be seen up until a stretch of λ1 = 2 the results between the
neo-Hookean and Gent are almost identical. After that there is a transition
zone between λ1 = 2 and λ1 = 4, where the two models show a similar response,
with the Gent showing 18% higher stress at λ1 = 4. For higher stretch values
the neo-Hookean model diverges from the Gent model, with the Gent model
being more accurate for these stretch ranges when compared to experimental
results.

Fig. 2.3 Comparison between the neo-Hookean and Gent material models,
shown in blue and orange respectively, using a material slab in plane-strain
conditions. A Gent parameter of Jm = 91 is used.

2.2.3 Electro-elastic model

This thesis aims to investigate electro-elastic problems where the material be-
haves as an ideal dielectric, i.e. the permittivity of the material ε is independent
of the strain. While this is not exact, as the permittivity of the material will
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change as it is stretched, it is a good approximation as large deformations are
needed to show noticeable changes in permittivity. Kurimoto et al. [69] showed
that with a uniaxial stretch ratio of 3 the permittivity decreased by 7.6% and
10.7% for an acrylic and silicone elastomer respectively with a linear trend.
This behaviour can be captured by a strain-energy function depending only on
the 5th invariant, of the form

Welec(I5) = 1
2εI5, (2.27)

where through eq. (2.22)2 and eqs. (2.17), the relationship between E and D

is obtained as
D = εE, (2.28)

with ε being constant in this model. However, for analytical reasons that will
be expanded upon in a later chapter, the expression of Welec proposed by Gei
et al. [70] is introduced, which depends on all the three invariants I4, I5, I6,
namely

Welec = 1
2ε(γ̄0I4 + γ̄1I5 + γ̄2I6), (2.29)

where ε is to be read as the permittivity of the material in the natural configu-
ration and γ̄i (i = 0, 1, 2) are dimensionless constants such that ∑

i γ̄i = 1. This
expression allows experimental results to be fitted by the use of the dimension-
less constants to obtain a more accurate strain energy function. As γ̄0, γ̄2 → 0
(and then γ̄1 → 1), the energy function becomes that of an ideal dielectric eq.
(2.27).

2.3 Incremental electro-elasticity

This section introduces the linear incremental deformation theory that allows
for the study of the onset of diffuse and localised bifurcation modes, referring
to Bertoldi and Gei [31], Dorfmann and Ogden [30] and Ogden [71] for more
details.

The way the method works is by superimposing incremental deformations
upon a given configuration, shown in figure 2.4. Let B0 be the initial undeformed
configuration. A problem such that an equilibrium configuration is reached
where eqs. (2.12) and (2.16) are satisfied with the new deformed configuration
denoted as B with the deformation given by χ(x0). It is of interest to find
solutions near χ when perturbations are applied to the problem where eqs.
(2.12) and (2.16) are still satisfied. Let χ̄ be a solution to the perturbed



20 Electroelasticity for homogeneous materials

Fig. 2.4 Incremental deformation scheme

problem. The displacement of a material particle due to the perturbations is

ẋ = x̄ − x = χ̄(x0) − χ(x0) ≡ χ̇(x0), (2.30)

where when the displacement is small for each x0, so that higher order terms
can be neglected, then ẋ is referred to as a linear incremental deformation from
the deformed configuration B. The operator ( ˙ ) thus represents the increment
in the quantity concerned. The incremental deformation gradient due to the
incremental deformation is defined as,

Ḟ = Gradχ̇. (2.31)

The formulation of the incremental governing equations follows directly
from that relative to the finite domain. With the usual assumption of absence
volume free charges and body forces left unchanged, the eqs. (2.16) in the
incremental framework turn into the following

DivṠ = 0, DivḊ0 = 0, CurlĖ0 = 0. (2.32)

A perturbation of nominal surface charges and tractions applied on the boundary
of B0, namely ω̇0 and ṫ0, respectively, is considered such that the incremental
boundary conditions, following eqs. (2.18), become

Jẋ0K = 0, n0 · JḊ0K = −ω̇0, n0 × JĖ0K = 0, JṠKn0 = ṫ0. (2.33)
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Assuming that all incremental quantities are small such that second order terms
can be ignored, the constitutive eqs. (2.20) can be linearised as,

Ṡ = C0Ḟ + B0Ḋ0, ṠiJ = C0
iJkLḞkL +B0

iJLḊ
0
L,

Ė0 = B0T Ḟ + A0Ḋ0, Ė0
M = B0

iJM ḞiJ + A0
MNḊ

0
N . (2.34)

In the incompressible case (eqs. (2.22)) Ṡ is linearised as,

ṠiJ = −ṗF−1
Ji + pF−1

Li ḞkLF
−1
Jk + C0

iJkLḞkL +B0
iJMḊ

0
M , (2.35)

where ṗ is an unknown incremental hydrostatic pressure. The components of
the relevant tensor appearing in the previous eqs. are highlighted to facilitate
the understanding between the different quantities. The electro-elastic moduli
tensors C0, B0, A0 can be expressed in terms of the strain-energy function as

C0
iJkL = ∂2W

∂FiJ∂FkL

, B0
iJM = ∂2W

∂FiJ∂D0
M

, A0
MN = ∂2W

∂D0
M∂D

0
N

, (2.36)

which imply the following symmetries

C0
iJkL = C0

kLiJ , A0
MN = A0

NM .

The Lagrangian formulation implied by eqs. (2.32) can be turned into an
updated Lagrangian one by using push-forward operations based on the new
quantities

Σ = 1
J

ṠF T , D̂ = 1
J

F Ḋ0, Ê = F −T Ė0. (2.37)

As a consequence, the updated governing equations take the form

divΣ = 0, divD̂ = 0, curlÊ = 0. (2.38)

It is convenient to define u as the incremental displacement such that it is a
function of x given as u(x) = ẋ. The corresponding incremental boundary
conditions can be derived from the boundary conditions given in eqs. (2.12).
In the updated Lagrangian formulation, they are

JuK = 0, JΣKndA = ṫ0dA0, JD̂K · ndA = −ω̇0dA0, n × JÊK = 0 . (2.39)
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The boundary conditions can be specialised, analogously to eqs. (2.13), when
the discontinuity is adjacent to a vacuum as follows:

ΣndA = ṫ0dA0 + Σ∗ndA, D̂ · ndA = −ω̇0dA0 + D̂∗ · ndA, (2.40)

where the incremental quantities in a vacuum are given by

Σ∗ = Ṫ ∗ + T ∗(tr[L]I − LT ), D̂∗ = ε0(Ė∗ + (tr[L]I − L)E∗). (2.41)

The linearised constitutive equations can be updated through L = gradu, to
yield

Σ = CL + BD̂, Σir = CirksLks +BirkD̂k,

Ê = BT L + AD̂, Êi = BkriLkr + AikD̂k. (2.42)

In the incompressible case Σ becomes,

Σir = CirksLks + pLri − ṗδir +BirkD̂k,

where δij is the Kronecker delta and the updated electro-elastic moduli become

Cirks = 1
J
C0

iJkLFrJFsL, Birk = B0
iJMFrJF

−1
Mk, JAik = A0

JMF
−1
Ji F

−1
Mk, (2.43)

with symmetries applying as before.



Chapter 3

Electro-elastic boundary value
problems

In this chapter a variety of elastomer devices are introduced. At first, three
elastomer slab devices are described and fundamental path equations for each
device are obtained. The third ‘floating’ elastomer device, which is a novel
configuration is then analysed in detail to understand its deformation when
actuated. In particular the onset of electro-mechanical instability and the so
called ‘expansion limit’ is analysed. The ‘floating’ device is then analysed
in a tubular configuration, with the problem being posed using a cylindrical
coordinate system. Two boundary conditions are introduced, the first with the
axial stretch fixed at a constant and the second where it is free and a function
of the elastomer tube radius. These two boundary conditions are then analysed
to understand how the geometry of the device impacts its deformation. The
aim of this study is to obtain a more in depth understanding of the floating
elastomer boundary conditions in order to facilitate potential devices using
this mode of actuation. The more traditional configurations which are also
introduced will be used chapter 4 for the surface instabilities analysis.

3.1 Three electro-elastic problems for a thin
planar elastomer

Here three electro-elastic problems are investigated, differing from each other
by the type of the imposed electric actuation. Each of these elastomer problems
involves a thin slab of elastomer material being actuated through an electric
field. The differences lie in the way the electric field is created and the overall
configuration of the device. Each device is sketched in Fig. 3.1, which shows
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the three devices in the deformed configurations. In all cases, the coordinate
x1 singles out the longitudinal axis of the actuator, x2 is directed across the
thickness whereas x3 is the out-of-plane axis. The material is an ideal dielectric
and is assumed to be incompressible. Fringe effects (the non uniform fields on
the electrode edges) are ignored, meaning that the elastomer is assumed to be
long in comparison to its thickness, typically with a value of L/d > 10. The
first problem (Fig. 3.1 (a)) is the classical one where two perfectly compliant
electrodes are attached to the two opposite sides of the membrane [21]. In the
second one, Fig. 3.1 (b), charges are applied directly (typically sprayed) and
constrained on the surfaces of the material without the use of electrodes [41],
a method that was first studied experimentally by Röntgen in 1880 [20]. The
surrounding is assumed to be a vacuum B∗. The third and final problem, Fig.
3.1 (c), consists of the elastomer deforming (and floating) in vacuum between
two electrodes held at a fixed distance L, as first studied by Diaz-Calleja et
al. [42] (the vacuum can be also substituted by an ideal fluid by adjusting
the permittivity of the surrounding space). Su et al. [43] also examined
the instability of a dielectric slab floating in a conductive fluid undergoing
equi-biaxial deformation.

(a) Compliant Electrodes (b) Charge-Controlled (c) ‘Floating’ Elastomer

Fig. 3.1 Diagram of the three electro-elastic devices analysed using various
actuation mechanisms. d is the thickness of the deformed elastomer, ε the
permittivity of the material, L the distance between electrodes and ε0 the
permittivity of the vacuum. The signs in b) indicate the type of charges
applied directly to the surface of the elastomer for the charge-controlled case.
A pre-stress τpre is possibly applied to the elastomer.

In all cases, the elastomer is deformed homogeneously in plane-strain condi-
tions and the material is assumed to be incompressible such that λ2λ1 = 1 and
λ3 = 1, where λi are the stretch ratios in the three coordinates i = {1, 2, 3}.
The undeformed and deformed thickness is denoted as d0 to d respectively,
giving the relationship

d = λ2d0 = λ−1
1 d0. (3.1)

The electric field has only the transverse component, therefore the electric field
vector is given as E = [0, E2, 0]. A relationship between the potential difference
Φ across the device and E2 can be derived from the fact that in piecewise
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problems, like those addressed here, the latter is the change in voltage over a
given distance. In addition, a (current) pre-stress τpre could be applied on the
deformed configuration along axis x1. The finite electro-elastic actuation laws
of the three problems are summarised below for the neo-Hookean strain-energy
given by eq. (2.25). It is understood that a similar procedure can be followed
for the Gent material eq. (2.26). The elastomer material is assumed to behave
as an ideal dielectric and as such the electric part of the strain-energy function
is given by eq. (2.27).

3.1.1 Voltage controlled actuation

In the first problem, where the elastomer is sandwiched between compliant
electrodes, the electric field outside the electrodes vanishes as the contributions
from each electrode cancel each other out. The potential difference across the
electrodes is given only by the thickness of the elastomer as

Φ = E2d, (3.2)

or, in terms of d0 (eq. (3.1)), and knowing that D2 = εE2 (eq. (2.28)),

Φ = d0D2

ελ1
. (3.3)

Under the assumption of an incompressible neo-Hookean material, the first
Piola-Kirchhoff stress is obtained from the strain-energy function using eqs.
(2.22). The total stress τ can then be obtained with the push-forward operation
given by eq. (2.15) with the deformation gradient F for plane-strain condition
being,

F =


λ1 0 0
0 1

λ1
0

0 0 1

 . (3.4)

The boundary conditions eqs. (2.12) are specialised for the case where no
electric field is present on the two outer sides of the film. At first τ22 = 0,
coming from the jump conditions eq. (2.12)3, is used to solve the pressure term
p giving,

p = D2
2
ε

+ µ

λ2
1
. (3.5)

Then the condition τ11 = τpre is employed with the previous pressure term to
obtain the variable D2. We can hence use eq. (3.3) to obtain the relation for Φ
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in terms of λ1 given as

Φ =
d0

√
ε−1 ((λ4

1 − 1)µ− τpreλ2
1)

λ2
1

. (3.6)

3.1.2 Charge-controlled actuation

In the second problem, the actuation is controlled by the amount of surface
charges, whose nominal density is denoted by ±ω0. As previously a neo-Hookean
incompressible elastomer slab is used. The boundary conditions eqs. (2.12)
are now specialised as previously with the added requirement that eq. (2.12)1,
specialises now to D2 = ω. Following the previous procedure, the pressure term
is given by,

p = ω2

ε
+ µ

λ2
1
, (3.7)

and a relation for ω in terms of λ1 is obtained as

ω =
√
ε

(
(λ2

1 − λ−2
1 )µ− τpre

)
. (3.8)

It is worth pointing out that due to the connection between the electric and
electric displacement fields, the relationship between Φ and λ1 for the charge-
controlled problem coincides with that of the attached electrodes in eq. (3.6).

3.1.3 ‘Floating’ elastomer in vacuum

In the third problem, where the elastomer is floating between two electrodes at
a fixed distance, the potential difference is given by the sum of the contributions
from the electric field in the surrounding space and inside the elastomer. In
a vacuum where L is the fixed distance between the electrodes and d is the
current thickness of the elastomer this becomes,

Φ = E∗
2(L− d) + E2d, (3.9)

where E∗
2 is the only non-vanishing component of the electric field in the vacuum.

As the interface between vacuum and elastomer is free from surface charges,
from eq. (2.12) we know that D is continuous across this interface and hence
D∗

2 = D2, revealing that the electric displacement field is constant in the space
between electrodes. This leads to the equality ε0E

∗
2 = εE2, which helps to
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achieve an expression for Φ in terms of E2 as follows,

Φ = E2

ε0

(
(L− d)ε+ dε0

)
= E2

ε0

(
(L− d0λ

−1
1 )ε+ d0λ

−1
1 ε0

)
, (3.10)

where d0 is obtained using eq. (3.1). Equivalently, using the ideal dielectric
relationship eq. (2.28), eq. (3.10)2 can be expressed in terms of electric
displacement D2, i.e.

Φ = D2

ε0ε

(
(L− d0λ

−1
1 )ε+ d0λ

−1
1 ε0

)
. (3.11)

As before, the neo-Hookean strain energy with the assumption of incompressibil-
ity is used in eqs. (2.22) and (2.15) to obtain the total stress τ . The boundary
conditions are specialised for the case where a vacuum is in the surrounding
space and the Maxwell stress is present; This gives the condition that τ22 = T ∗

22,
with T ∗ obtained from eq. (2.9), which is used to solve the pressure term p as,

p = D2
2

(1
ε

− 1
2ε0

)
+ µ

λ2
1
. (3.12)

The other boundary condition is τ11 = τpre + T ∗
11 which yields the electric

displacement field D2. We can hence obtain the relation for Φ in terms of λ1

given as

Φ =
(d0(ε0 − ε) + Lελ1)

√
(λ4

1 − 1)µ− τpreλ2
1

λ2
1

√
εε2

0 − ε2ε0
. (3.13)

An equation for the electro-mechanical instability can be obtained by setting
dΦ/dλ1 = 0. This gives the following polynomial

Lελ1µ(1 + λ4
1) − d0(ε− ε0)(τpreλ

2
1 + 2µ) = 0, (3.14)

where the positive real root corresponds to the onset of electro-mechanical
instability.

3.1.4 Analysis of the electro-elastic response of the ac-
tuated ‘floating’ elastomer in vacuum

The first two actuation problems are well known. The plane-strain loading
paths for the voltage and charge controlled are plotted in Fig. 3.2 for reference,
obtained from eqs. (3.6) and (3.8). The non-dimensional potential difference
V̄ = (Φ/d0)

√
ε/µ and surface charges ω̄ = ω/

√
µε are reported against λ1. A
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neo-Hookean strain energy is used and curves show various values of pre-stress
with τpre/µ starting from 0 with increments of 0.5.

(a) Voltage controlled (b) Charge-controlled

Fig. 3.2 Fundamental loading paths for the voltage controlled and charge-
controlled actuation problems, (a) and (b) respectively (neo-Hookean strain
energy). λ1 varies with the non-dimensional electric potential jump V̄ (a) and
surface charges ω̄ (b). Curves with various pre-stress are shown with τpre/µ
starting from 0 with increments of 0.5

While the fundamental paths for these two described problems are well
known, the floating elastomer problem required a deeper analysis which is
presented in this section. The problem is specialised here for the case with a
surrounding vacuum, however, a fluid could be used by adjusting the permittiv-
ity of the vacuum to that of the fluid. The fundamental path of the actuated
‘floating’ elastomer depends on the geometry of the device in the initial config-
uration. Therefore, the geometrical ratio d0/L is defined whereby changing it
we can obtain different electro-mechanical loading curves. In general the float-
ing elastomer configuration is novel, as opposed to the charge-controlled and
attached compliant electrodes configurations, in that the elastomer contracts
longitudinally and expands transversely, attracted towards the fixed electrodes.

Figure 3.3 shows the loading paths for a neo-Hookean strain energy with
an incompressible elastomer under no pre-stress, τpre = 0. In the figure the
dimensionless electric potential difference V̄ = (Φ/L)

√
(ε/µ) is reported against

the longitudinal stretch λ1. As the elastomer expands transversely, the elastomer
expands more than the distance L between the electrodes. This point will
be hereafter called the expansion limit and is denoted by black dots on the
figure. The black crosses show where electro-mechanical instability triggers
which in this problem causes catastrophic thickening of the elastomer. For
large values of d0/L (e.g. 0.9 in the figure), the elastomer does not exhibit
electro-mechanical instability before reaching the ‘expansion limit’. In contrast,
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Fig. 3.3 Fundamental loading paths for the actuated ‘floating’ elastomer in
vacuum (neo-Hookean strain energy) with no pre-stress (various values of
the geometric ratio d0/L are considered). λ1 varies with the non-dimensional
electric potential jump V̄ . Dots mark the expansion limit, while crosses indicate
the onset of the electro-mechanical instability.

Fig. 3.4 Fundamental loading paths for the actuated ‘floating’ elastomer in
vacuum (neo-Hookean strain energy) with non-dimensional pre-stress τpre/µ =
2.5 (various values of the geometric ratio d0/L are considered). λ1 varies with
the non-dimensional electric potential jump V̄ . Dots mark the expansion limit,
while crosses indicate the onset of the electro-mechanical instability.
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for d0/L ⪅ 0.8 the elastomer has enough space to expand and the electro-
mechanical instability, analytically predicted by a positive real solution of eq.
(3.14), becomes critical. The condition Φ = 0 provides the points where the
electro-elastic curve intersects the horizontal axis. Equation (3.11) yields two
solutions, namely

D2 = 0, d

L
= ε/ε0

ε/ε0 − 1 . (3.15)

The former is a trivial solution, i.e. null electric actuation; the latter denotes
a configuration not physically meaningful, as the left-hand side must be less
than one (equal to one at the expansion limit), while the right-hand side has
to be greater than one, as any material will always have a permittivity higher
than that of the surrounding vacuum.

Figure 3.4 show’s the same problem but the elastomer is now experiencing
a pre-stress such that τpre/µ = 2.5. Using such a setup, an elastomer with
a d0/L > 1 is pre-stressed, causing a transversal contraction and allowing
the elastomer to be placed between the fixed electrodes. As can be seen, the
expansion limit occurs much later along the curve for the same thickness. Where
previously the electro-mechanical instability happened past the expansion limit
(0.9 in Fig. 3.3), it now occurs before. This causes the peak of the electro-elastic
response to appear at larger d0/L ratios.

Figure 3.5 shows the loading paths using the Gent strain energy for an
ideal dielectric material eqs. (2.27) and (2.26). Under plane-strain conditions
λlim is defined from eq. (2.26) as the limiting stretch. In this case I lim

1 can be
specialised to obtain that

λ2
lim + λ−2

lim − 2 = Jm. (3.16)

The adopted Gent parameter was Jm = 91, corresponding to λlim ≈ 0.1037. To
note that in literature λlim is usually calculated in tension which comes out to
1/λlim ≈ 9.6 for the plane-strain problem. This value means that at λlim the
potential difference tends to ∞. Changing the Gent parameter will cause the
asymptote to move left or right but keeps the general pattern of the figure the
same. In this case, the asymptotic effect is seen for low values of d0/L, with
the transition occurring at d0/L ≈ 0.13. Actually, just below that threshold,
the electro-mechanical instability becomes less pronounced until it quickly
disappears (the curve for d0/L = 0.12 is monotonic). This is caused by the
stretch limit preventing further material expansion. As previously mentioned
this model is much more accurate in the large stretch range, implying that an
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Fig. 3.5 Fundamental loading paths for the actuated ‘floating’ elastomer in
vacuum (Gent strain energy with Jm = 91, various values of the geometric ratio
d0/L are considered). λ1 varies with the non-dimensional electric potential
jump V̄ . Dots mark the expansion limit while crosses indicate the onset of the
electro-mechanical instability.

elastomer slab could be optimised with its thickness and material properties
such that it never experiences and electro-mechanical instability.

Figure 3.6 shows all the fundamental paths starting from the natural
configuration for both strain-energy functions and a pre-stressed neo-Hookean
function represented on an electric displacement curve. The normalised electric
displacement D̄ = D2/

√
µε is plotted against λ1. The electric displacement

curve does not depend on the geometry and as such encapsulates all fundamental
paths. The black markers represent the expansion limit for each curve. As
the d0/L parameter decreases, a higher electric displacement can be reached
before encountering the expansion limit. The Gent curve is steeper as it reaches
asymptotically the extension limit of the polymer chains λlim. It can also be
clearly seen how the pre-stress allows higher electric displacement values to be
reached at high d0/L ratios.

3.2 The floating tubular elastomer

In this section the previous floating elastomer slab configuration is considered
as a tubular form. The general formulation in polar coordinates will be defined
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Fig. 3.6 Fundamental loading paths for the actuated ‘floating’ elastomer in
vacuum (for both neo-Hookean and Gent strain energies). λ1 varies with the
non-dimensional electric displacement D̄. Black markers mark the expansion
limit for each curve; ratio d0/L is varied from 0.15 to 0.65 in increments of
0.10.

together with the appropriate boundary conditions for the problem. Two cases
will be presented with different boundary conditions; The first where the length
of the elastomer remains fixed and the second where it is allowed to freely
move during actuation. A numerical analysis will then be undertaken to obtain
fundamental loading paths for this floating tubular configuration. This will be
used to characterise the deformation and to investigate the differences between
the two cases.

3.2.1 Configuration of the tubular elastomer

The geometry considered is shown in Fig. 3.7, showing the cross-sectional and
top down views of the undeformed B0 and deformed B configuration. The two
electrodes are placed and kept at a fixed distance in space, represented by the
radii from the tube centreline a and b. A tubular elastomer is placed inside this
gap with the internal and external undeformed radii denoted by c0 and d0 and
its length L0. The elastomer is suspended inside a vacuum such that Bsur is
specialised to B∗ with ε0 representing the permittivity of the vacuum. Due to
the implicit symmetry of the tube the problem is solved in radial coordinates,
(r, θ, z) with the radial, hoop, and longitudinal stretches being represented



3.2 The floating tubular elastomer 33

as (λr, λθ, λz). Two different boundary condition cases were solved. The first
condition is characterised by the transverse stretch, λz, being held constant
throughout the deformation such that

λz = L

L0
= kL, (3.17)

where kL represents the chosen constant. In the second problem, the elastomer
is free to deform transversely such that the transverse stretch is a function of
the radius,

λz(r) = L(r)
L0

, (3.18)

where the radius r is bounded by the inner and outer boundary of the elastomer
c and d. In both cases the initial configuration is assumed to have a constant
length with the radius. The elastomer is taken to be incompressible so that
the volume remains constant, i.e. λrλθλz = 1.

3.2.2 Electro-mechanics of the system

Using the continuity of volume of the elastomer tube, from the assumption of
incompressibility, a volume of a shell bounded by the radius c0 and an arbitrary
radius r0 in the undeformed configuration is given in the deformed state c and
r as,

(r2
0 − c2

0) = λz(r2 − c2), (3.19)

with c0 being a fixed quantity once the elastomer tube is fabricated. Using
this condition over the whole volume of the tubular elastomer, a geometrical
expression for the outer radius d in the deformed configuration with respect to
the undeformed radii and the transversal stretch is given as,

d =
√
c2 + (d2

0 − c2
0)λ−1

z . (3.20)

The hoop (tangential) stretch is defined as λθ = r/R. Using eq. (3.19) a
relation for the hoop stretch in terms of r is obtained,

λθ(r) = r√
c2

0 + (r2 − c2)λz

(3.21)

It is also important to note that due to incompressibility the radial stretch can
be given by the other two stretches as λr = (λzλθ)−1 and using the previous
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Fig. 3.7 Diagram of dross-section and top down views of a floating elastomer
slab with a tubular shape, with the undeformed and deformed configuration on
the left and right respectively. The letters a b c and d are the various radii from
the centreline of the tube with L being the length in the deformed configuration.
The permittivity of the elastomer and vacuum is given by ε and ε0 respectively.

equation is obtained as,

λr(r) =

√
c2

0 + (r2 − c2)λz

rλz

. (3.22)

In the deformed configuration, the equilibrium of the elastomer is governed,
in terms of the total stress τ , by the differential equation,

dτr

dr
+ τr − τθ

r
= 0 (3.23)

where τr, τθ, τz are the stress components in the three radial coordinates.
The actuation of the elastomer is induced by applying a potential difference,

Φ, across the electrodes, as shown in the deformed configuration of Fig. 3.7.
This causes an electric field to exist only in the radial direction and be a function
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of the radius such that the electric field vector is given as E = [Er(r), 0, 0].
The radial component can be obtained using the expression

Er(r) = −dΦ/dr. (3.24)

It is, however, easier to work in terms of the electric displacement D, because as
seen in the jump conditions eqs. (2.12), the electric displacement is continuous
through a jump. The application of Gauss’ law at the inner electrode (r = a)
gives a relation between the electric displacement and the amount of charge ω
stored on the electrode,

Dr(a) = ω

2πaL. (3.25)

Gauss’ law also gives that the electric displacement at a radius r is given by
Dr(r) = Dr(a)a/r. This can be used, with the assumption of an ideal dielectric,
to obtain a relationship between the electric displacement and electric field at
a given radius as,

ε0kEr(a) = Dr(a),

ε0kEr(r) = Dr(a)a
r

= ω

2πrL, (3.26)

where k is the permittivity constant of the medium at the radius, with k = 1
in a vacuum. The total potential difference applied to the electrodes is given
as Φ = ϕ(b) − ϕ(a). Using eqs. (3.24) and (3.26) the various components of Φ
in the device can be integrated and then added together to obtain a relation
between the potential difference and the electric displacement,

Φ1 = ϕ(c) − ϕ(a) =
∫ c

a
Dr(a)a

r

1
ϵ0
dr = Dr(a) a

ϵ0
ln( c

a
),

Φ2 = ϕ(b) − ϕ(d) =
∫ b

d
Dr(a)a

r

1
ϵ0
dr = Dr(a) a

ϵ0
ln( b

d
),

Φ3 = ϕ(d) − ϕ(c) =
∫ d

c
Dr(a)a

r

1
ϵ0ks

dr = Dr(a) a

ϵ0ks

ln(d
c

),

Φ = Φ1 + Φ2 + Φ3 = Dr(a) a
ϵ0

[
ln( c

a
) + ln( b

d
)
]

+Dr(a) a

ϵ0ks

ln(d
c

), (3.27)

with ks being specialised as the permittivity constant of the elastomer material
used in the device such that ε0ks = ε. The electric field in the dielectric material
is defined as,

Er(r) = Dr(a) a
rε
, (c < r < d) (3.28)
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which when used in the previous equation allows us to obtain a relation between
the electric field inside the elastomer and the applied potential difference as,

Φ = Er(r)r
[
ε

ε0
ln( cb

ad
) + ln(d

c
)
]

Er(r) = Φε0

r
[
εln( cb

ad
) + ε0ln(d

c
)
] . (3.29)

As in the previous three devices, a simple neo-Hookean material is chosen,
with the assumption of incompressibility and an ideal dielectric such that the
strain energy function W (F ,D0) of the material is given by eqs. (2.25) and
(2.27). The total stress τ can then be obtained with the push-forward operation
following eq. (2.15)2 with the deformation gradient F in radial coordinates
given as,

F =


λr 0 0
0 λθ 0
0 0 λz

 . (3.30)

We can thus obtain τθ − τr and τz − τr as follows,

τθ − τr = λθ
∂W

∂λθ

− λr
∂W

∂λr

− D2
r

ε
,

= µ(λ2
θ − λ−2

θ λ−2
z ) − εE2

r , (3.31)

τz − τr = λz
∂W

∂λz

− λr
∂W

∂λr

− D2
r

ε
,

= µ(λ2
z − λ−2

θ λ−2
z ) − εE2

r . (3.32)

The eqs. (3.23), (3.31) and (3.32) make up a differential-algebraic system of
equations (DAE) which can be solved for a given potential difference Φ instead
of the electric field using eq. (3.29). The problem is non-linear but solutions
are studied for increasing Φ starting from the natural configuration.

3.2.3 Boundary conditions of the problem

The specification of the boundary conditions is needed in order to solve the
DAE for the two previously mentioned cases. Similar to the floating elastomer
slab device the electric field outside of the material is not null, and Maxwell’s
stress needs to be taken into account as it acts upon the elastomer. Under the
assumption of a surrounding vacuum, the Maxwell stress tensor can be obtained
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using eq. (2.9). Using the expression from the jump conditions, ε0E
∗ = εE,

the Maxwell stress tensor is given in radial co-ordinates as,

T ∗ =


(εEr(r))2

2ε0
0 0

0 − (εEr(r))2

2ε0
0

0 0 − (εEr(r))2

2ε0

 . (3.33)

The two cases of interest are when λz is held constant throughout the deforma-
tion and when the elastomer is free to deform and λz(r) becomes a function of
the radius.

Case with λz constant

In the first case the elastomer tube is stretched transversely and held throughout
the deformation such that λz becomes a constant geometrical parameter of
the problem. The hoop stretch λθ(r) is obtained from eq. (3.21) with the
only unknown being the internal deformed radius c. The potential difference
applied across the electrodes is fixed with eq. (3.29) giving the appropriate
electric field and eq. (3.20) allowing the unknown deformed outer radius d to
be expressed in terms of the unknown c. The Maxwell boundary conditions at
both boundaries of the deformed elastomer need to be satisfied such that

τr(c) = (εEr(c))2

2ε0
, τr(d) = (εEr(d))2

2ε0
. (3.34)

Together with the continuity of volume due to the incompressibility of the
material, (d2

0 − c2
0) = λz(d2 − c2), the DAE is able to be solved for the fixed λz

case.

Case with λz(r) as a function of the radius

In the second case the elastomer is allowed to deform freely such that λz(r)
becomes a function of the radius. This gives a new unknown to be solved in
the DAE and as such a new equation is needed. The procedure remains similar
to the previous case, however, in eqs. (3.21) and (3.20) λz(r) becomes another
unknown. The new equation will be given by the Maxwell boundary conditions
in the transversal direction, such that

τz = −(εEr(r))2

2ε0
. (3.35)
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Using this condition in eq. (3.32) the missing equation of the DAE to solve the
function λz(r) is obtained as,

−(εEr(r))2

2ε0
= µ

(
λz(r)2 − λθ(r)−2λz(r)−2

)
− εEr(r)2 + τr. (3.36)

To check the continuity of volume due to the incompressibility condition, λz(r)
must be integrated over the radial thickness of the deformed elastomer tube
such that,

(c2
0 − d2

0) = 2
∫ d

c
λz(r)rdr. (3.37)

3.2.4 Analysis of the electro-elastic response of the ac-
tuated ‘floating’ tubular elastomer in vacuum

To solve the DAE an iterative approach is used, in both cases, to make sure
the boundary conditions are met, detailed in Appendix A. The results of this
numerical analysis are shown, to better understand the fundamental path of
the actuated floating elastomer tube. When the elastomer tube is actuated it
deforms towards the inner electrode a. All plotted curves show the elastomer
actuated until it deforms up to the inner electrode (c = a), hereafter called the
contraction limit.

Fig. 3.8 Fundamental loading paths for the actuated ‘floating’ elastomer tube
in vacuum (neo-Hookean strain energy). λθ(c) varies with the dimensionless
voltage V̄ . Blue and orange curves show the solutions with a fixed λz = 1, and
when λz(r) is a function of the radius respectively.
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Figure 3.8 shows the same elastomer with the two different solutions with a
fixed λz = 1 in blue and a varying λz(r) in orange. The dimensionless electric
potential V̄ = (Φ/(b − a))

√
ε/µ is reported against the angular stretch at

the inner elastomer radius λθ(c). This corresponds to the dimensionless inner
radius as λθ(c) = c/c0. When the elastomer is constrained with a constant
λz larger radial deformations can be achieved with the same voltage. When
the elastomer deforms freely it also contracts transversely which causes these
higher voltages for the same radial deformation.

Figure 3.9 shows two solutions with a fixed λz = 1 and λz = 1.5 in blue
and orange respectively. Again the dimensionless electric potential V̄ is plotted
against the angular stretch at the inner elastomer radius λθ(c). The orange
curve starts at a lower value λθ(c) due to the stretch caused by the higher fixed
λz value causing the elastomer tube to thin and contract. Overall the elastomer
tube with the higher longitudinal stretch experiences bigger contractions when
actuated with the same voltage, however, reaches the contraction limit sooner.
This is caused by a combination of the elastomer being closer to the inner
electrode, and as such experiencing a greater attraction force and the elastomer
being thinner. For both of these boundary conditions the elastomer reaches
the contraction limit, before the onset of electro-mechanical instability.

Fig. 3.9 Fundamental loading paths for the actuated ‘floating’ elastomer tube
in vacuum (neo-Hookean strain energy). λθ(c) varies with the dimensionless
voltage V̄ . Blue and orange curves show the solutions when λz is fixed at 1
and 1.5 respectively.
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Figure 3.10 shows λz at mid radius against the dimensionless potential
difference V̄ in the case where the longitudinal stretch is not fixed. The
geometrical parameters are non-dimensionalised using the inner radius a, such
that r̄ = r/a. Various geometries are considered using the geometrical ratio
c̄0, meaning the higher the ratio the further away the undeformed elastomer
is from the inner electrode. The same elastomer thickness is used in all three
cases. The onset of electro-mechanical instability is seen for the first time in
the case with c̄0 = 1.6. The onset appears in this case because the elastomer
tube starts with the largest radius from the inner electrode c0. It is thus able to
undergo larger deformations before reaching the contraction limit, causing the
onset of electro-mechanical instability to appear which snaps the elastomer into
the inner electrode. Overall when λz is free, the elastomer shortens when it is
actuated, with bigger contractions for the same voltage when c̄0 is lower. This
again is caused by the elastomer starting closer to the inner electrode. However,
when the ratio is increased, the elastomer is able to achieve bigger overall
deformations as it has more room to deform before reaching the contraction
limit.

Fig. 3.10 Fundamental loading paths for the actuated ‘floating’ elastomer tube
in vacuum (neo-Hookean strain energy). λz(r) at mid radius is plotted with the
dimensionless voltage V̄ . Various values of the geometric ratio c̄0 are considered
with the same elastomer thickness.

In Fig. 3.11 the previous case with c̄0 = 1.6 is taken to examine λθ(r) and
λz(r) throughout the loading path and in particular as the onset of electro-
mechanical instability is reached. The analysed geometry is defined by the
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parameters c̄0 = 1.6, d̄0 = 1.9, and b̄ = 2. Figure 3.11 (a) shows the elastomer
tube actuated with V̄ = 0.61, showing the deformation type in the initial phase
of the fundamental path. Up until this potential difference the thickness of
the elastomer tube remains almost unchanged to the undeformed configuration
(d̄0 − c̄0 = 0.3) and the two stretches show a homogeneous deformation. The
stretches are small and the curves both have a positive gradient showing how
the stretches are larger the closer you get to the inner electrode. As the
potential difference is increased further, V̄ = 1.42 in Fig. 3.11 (b), λθ starts to
deviate from λz caused by the elastomer thickening. As the electro-mechanical
instability onset is reached (Fig. 3.11 (c)) the elastomer thickens and contracts
at faster rates until the snap-through instability forces the tube to contract
against the inner electrode (Fig. 3.11 (d)).

(a) V̄ of 0.61 (b) V̄ of 1.42

(c) V̄ of 1.83 (d) V̄ of 1.71

Fig. 3.11 Fundamental loading paths for the actuated ‘floating’ elastomer tube
in vacuum (c̄0 = 1.6). The stretches λz(r) and λθ(r) are displayed as they vary
throughout the thickness at different dimensionless voltage V̄ . Note that the
scales of the vertical axes of the four panels are not comparable.





Chapter 4

Electro-elastic surface
instabilities

In this chapter, the incremental theory introduced in section 2.3 is specialised to
identify electro-elastic surface instabilities on a pre-stressed elastomer half-space
under plane-strain conditions. These instabilities, called surface instabilities in
the case of a half-space, may be detected by investigating the propagation of
perturbations of an arbitrary wavelength superimposed on the current state
of deformation. Incremental boundary conditions are introduced suitable for
the three electro-elastic problems using a thin planar elastomer introduced in
section 3.1. The numerical results, highlighting the onset of surface instabilities
for the three cases are then discussed. The theory is further enriched by
introducing the surface-coating theory, to take into account the effect of the
stiffness of the electrode on the surface instability of a substrate, following
the path described in section 3.1.1. The of this work is to achieve a deeper
understanding of the operating regime of these dielectric elastomer devices.
Surface instability provides a good starting point to understand the range
where the device will fail as it is obtained from the limit as the wavelength
tends to infinity. The analysis of electrode stiffness effects is also meant to
understand the domain in which the assumption of compliant electrode is valid.

4.1 Governing Equations

The electro-elastic modelling framework is specialised to seek bifurcation with
a possible presence of an external electric field normal to its boundary. The
substrate, as previously introduced and shown in figure 4.1, is possibly pre-
stressed along the x1 direction (τpre ̸= 0) and is subjected to a plane incremental
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Fig. 4.1 Diagram showing surface instabilities on a pre-stressed elastomer half-
space subjected to a plane incremental deformation (u3 = 0).

deformation. In turn, this means that the out-of-plane component of the
displacement is null, i.e. u3 = 0, and u depends only on coordinates x1

and x2, i.e. ui = ui(x1, x2) (i = 1, 2). Similarly, it is also assumed that
D̂3 = 0, D̂i = D̂i(x1, x2) (i = 1, 2) and ṗ = ṗ(x1, x2). By adopting the updated
Lagrangian formulation, the governing eqs. (2.38) can be written in component
form as

Σ11,1 + Σ12,2 = 0, Σ21,1 + Σ22,2 = 0,
D̂1,1 + D̂2,2 = 0, Ê1,2 − Ê2,1 = 0, (4.1)

where a comma represents partial differentiation. Field eqs. (4.1) are satisfied
by a small amplitude solution of the form (the domain is the half-space x2 ≥ 0)

ui(x1, x2) = vi(x2)exp(ikx1),
D̂i(x1, x2) = ∆i(x2)exp(ikx1),
ṗ(x1, x2) = q(x2)exp(ikx1), (4.2)

with k being the wave-number of the perturbation. It is expected that the
electro-elastic surface instability is independent of k. The incompressibility
constraint u1,1 + u2,2 = 0 imposes to eqs. (4.2) that

ikv1(x2) + v′
2(x2) = 0; (4.3)
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similarly, eq. (4.1)3 dictates

ik∆1(x2) + ∆′
2(x2) = 0. (4.4)

Bifurcation modes must decay deep in the half-space, as x2 → ∞, therefore an
admissible general form of v2, ∆2 and q is

v2(x2) = Uexp(skx2),
∆2(x2) = W exp(skx2),
q(x2) = Qexp(skx2), (4.5)

where s < 0 to ensure that displacement decays away from the boundary as x2

increases. Then using eqs. (4.3), (4.4), eqs. (4.5) become

v1(x2) = iUsexp(sk1x2),
∆1(x2) = iWsexp(sk1x2). (4.6)

By substituting these into eqs. (4.1), a system of equations for the three
unknowns U , W and Q is obtained. A non-trivial solution requires that the
determinant of the coefficients vanishes, leading to a polynomial equation (of the
6th order) in s. However, the only admissible solutions are the three negative
roots of s, namely sj < 0 (j = 1, 2, 3). Therefore, the general expressions for
the bifurcation fields are

v2(x2) =
3∑

j=1
Ujexp(sjkx2),

∆2(x2) =
3∑

j=1
Wjexp(sjkx2),

q(x2) =
3∑

j=1
Qjexp(sjkx2). (4.7)

The coefficients appearing in (4.7) are not independent and eqs. (4.2) can be
employed to find their connection. In particular, Qj and Wj can be expressed
in terms of Uj (j = 1, 2, 3).

Incremental equations in vacuum. In some of the analysed problems, it
is mandatory to deal with the external incremental fields in vacuum B∗, where
Maxwell’s equations hold for D∗ and E∗. In those cases, there exists an electric
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potential ϕ∗(x1, x2), such that

Ė∗
1 = −ϕ∗

,1, Ė∗
2 = −ϕ∗

,2, Ė∗
3 = 0,

Ḋ∗
1 = −ε0ϕ

∗
,1, Ḋ∗

2 = −ε0ϕ
∗
,2, Ḋ∗

3 = 0, (4.8)

which satisfies the Laplace’s equation

ϕ∗
,11 + ϕ∗

,22 = 0, (4.9)

as divD∗ = 0. A solution compatible with the decaying of effects as x2 → −∞
is

ϕ∗(x1, x2) = ϕcexp(kx2)exp(ikx1), (4.10)

where ϕc is the amplitude. It may be useful to recall that, as a function of ϕ∗,
the incremental Maxwell stress tensor has the following non-zero components

Ṫ ∗
11 = Ṫ ∗

33 = −Ṫ ∗
22 = ε0E

∗
2ϕ

∗
,2,

Ṫ ∗
12 = Ṫ ∗

21 = −ε0E
∗
2ϕ

∗
,1. (4.11)

Incremental boundary conditions and bifurcation equation. The
incremental boundary conditions specialised for a discontinuity between the
elastomer surface and an adjacent vacuum are recalled from eqs. (2.40) and
(2.41). For relevant practical applications, both the surface tractions and the
surface charges are independent of deformation and as such ṫ0 = 0 and ω̇0 = 0.
On x2 = 0, eq. (2.41)1 reduces to the following scalar equations

Σ21 + T ∗
11u2,1 + T ∗

21u2,2 − Ṫ ∗
21 = 0,

Σ22 + T ∗
22u2,2 + T ∗

21u2,1 − Ṫ ∗
22 = 0. (4.12)

Similarly, for eq. (2.41)2 on x2 = 0, it turns out

D̂2 +D∗
1u2,1 +D∗

2u2,2 − Ḋ∗
2 = 0,

Ê1 − E∗
1u1,1 − E∗

2u2,1 − Ė∗
1 = 0. (4.13)

This provides a system of four homogeneous equations. For a non-trivial
solution of the bifurcation problem, the determinant of the coefficients Uj

(j = 1, 2, 3) and ϕc must vanish yielding the bifurcation equation. It is worth
mentioning that an alternative way to study bifurcation is to use the fields
(4.7), (4.2) and (4.10) into the integral formulation obtained by Gei et al. [70]
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and applied by Siboni et al. [72]. The fields can also be adapted to be used in
the Stroh formulation [73].

Specialised boundary conditions for the three electro-elastic problems.
The general theory is adapted to the three fundamental loading paths for
an elastomer slab, introduced in section 3.1, to study the onset of surface
instabilities for each type of actuation. To solve the incremental equation
system, eqs. (4.12) and (4.13), boundary conditions need to be specified for
the three cases. Just as a reminder, for all three configurations the electric
actuation is assumed along the thickness of the elastomer, therefore

D∗
1 = E∗

1 = 0, D1 = E1 = 0. (4.14)

The elastomer may be subjected to a (current) pre-stress τpre along x1. As
such, the stress boundary conditions (2.7) specialise in

τ22 = T ∗
22, τpre = τ11 − T ∗

11. (4.15)

In both the non floating cases detailed in section 3.1.1 and 3.1.2, there is no
external electric field, namely

D∗
2 = E∗

2 = 0 (4.16)

and, as a consequence, the Maxwell stress tensor vanishes, T ∗ = 0. Conversely,
for the elastomer ‘floating’ between electrodes (section 3.1.3), its components
are obtained from eq. (2.9) and are given as follows,

T ∗ =
− (ε0E∗

1 )2

2ε0
0

0 (ε0E∗
2 )2

2ε0

 =
− (D∗

1)2

2ε0
0

0 (D∗
2)2

2ε0

 . (4.17)

Only two components are shown, as the problem at hand is a two-dimensional
plane-strain case where the elastomer remains undeformed out-of-plane. The
incremental boundary conditions may also be specialised to the three configura-
tions. Likewise the finite-strain counterparts, for attached compliant electrodes
and charged-controlled configurations, the incremental Maxwell stress tensor is
null, Ṫ ∗ = 0. However, in the former case there are no fields in the vacuum and
there the incremental electric field is also null, Ḋ∗

2 = Ė∗
2 = 0, differently from

charge-controlled actuation where the charges are constrained on the surface of
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the substrate causing incremental fields to exist in the adjacent vacuum. The
incremental boundary conditions are summarised in Table 4.1.

Table 4.1 Summary of incremental boundary conditions for the three elastomer
slab devices

Device D∗
2, E∗

2 Ḋ∗
2, Ė∗

2 T ∗ Ṫ ∗

Compliant electrodes ∅ ∅ ∅ ∅
Charge controlled ∅ Ḋ∗

2, Ė∗
2 ∅ ∅

‘Floating’ elastomer D∗
2, E∗

2 Ḋ∗
2, Ė∗

2 T ∗ Ṫ ∗

4.2 Surface instabilities in three elastomer de-
vices

The bifurcation equation was obtained as previously explained and solutions
sought for the three different electro-elastic actuation paths, introduced in
section 3.1, were plotted using the specialised boundary conditions in the
previous section. In order to obtain the bifurcation equation, the expression of
Welec presented in eq. (2.29) was used to avoid double multiplicity of roots s
occurring when the ideal dielectric strain-energy equation is adopted. However,
to make sure that the ideal dielectric behaviour was maintained, it was verified
that the limit γ̄0, γ̄2 → 0, γ̄1 → 1 converges in the solutions.

Figure 4.2 shows the limit of the stability domains for the half-space with
attached compliant electrodes and charge-controlled actuation in blue and
orange, respectively. They are plotted together with the fundamental loading
paths, shown by the dotted lines, obtained from eq. (3.6). The pre-stress τpre/µ

is varied, starting from 0 to 2.5, increasing in increments of 0.5. In Fig. 4.2 (a)
the normalised electric displacement D̄ is reported in the ordinate, whereas in
(b) the normalised voltage V̄ is selected. For the attached compliant electrodes
and charge-controlled configurations, the voltage is normalised using the initial
thickness as V̄ = (Φ/d0)

√
(ε/µ), where for the floating elastomer it is as before.

Surface instabilities occur at lower values of the electric actuation over the whole
domain for the finite deformation induced by attached compliant electrodes.
This shows that the presence of the incremental outer electric field causes a
stabilising effect delaying the onset of surface instabilities, as Ḋ∗

2 and Ė∗
2 are

not null for the charge-controlled actuation. For both actuation cases the onset
of instability could theoretically be delayed to reach higher values of D̄ or V̄ , by
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(a) Electric Displacement

(b) Voltage

Fig. 4.2 Limit of the stability domains for a neo-Hookean substrate with either
attached compliant electrodes or charge-controlled boundary condition. Dotted
lines represent loading paths with τpre/µ starting from 0 with increments of
0.5. Figures (a) and (b) represent the same results, but with a different non-
dimensional electric variable on the ordinate.

controlling the loading path to make the stable path to reach the local maxima
evident in the bifurcation domains. This peak is more pronounced in the charge-
controlled actuation compared to the attached compliant electrodes and can be
seen even more marked when the voltage is represented allowing theoretically
much higher voltages to be reached. Given the almost flat trend of the curves
limiting the stability domains between 1 < λ1 < 2, the pre-stress does not have
much influence on the onset of surface instabilities. A very high pre-stress would
be needed to significantly delay the onset of surface instabilities. To highlight
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the magnitude of voltages at bifurcation, an elastomer with thickness d0 = 700
µm, and material parameters set as ε = 4.68 ε0 and µ = 100 kPa is considered,
which model well PDMS/silicone-based dielectric elastomers [74]. Following the
fundamental loading curve for τpre = 0, the onset of surface instability occurs
at approximately 23.4 kV and 29.7 kV for compliant attached electrodes and
charge-controlled configurations, respectively, showing an increase of > 20%
with the stabilising outer incremental electric field.

Fig. 4.3 Limit of the stability domain for a neo-Hookean substrate actuated
as a ‘floating’ elastomer in vacuum. Dotted lines represent loading paths with
τpre/µ going from 0 to 2.5 in increments of 0.5. Actuation is represented by
the non-dimensional electric displacement D̄.

Figure 4.3 shows the stability domain for the ‘floating’ elastomer configura-
tion plotted as a λ vs. D̄ diagram. The electric displacement is instrumentally
used, as it is independent of the aspect ratio d0/L of the film, thus representing
the critical states of all possible geometries. Again, the dotted lines show
the fundamental loading path from eq. (3.13) with a pre-stress τpre/µ going
from 0 to 2.5 in increments of 0.5. Differently from the previous cases, the
bifurcation curve does not show a local maximum. Now a tensile pre-stress
is more influential as it allows the elastomer to experience higher values of D̄
in a stable configuration. Continuing the comparison with the two previous
actuation methods, for the ‘floating’ elastomer case surface instabilites occur
at a lower value of D̄. Specific geometries for the specimen were then analysed
using the non-dimensionalised voltage V̄ . Figure 4.4 shows two characteristic
loading paths (in blue) combined with bifurcation curves (in orange) for two
extreme values of d0/L (the expansion limit is represented by a black dot along
the curve). When the elastomer is very thick compared to the gap between
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(a) d0/L of 0.1

(b) d0/L of 0.8

Fig. 4.4 Fundamental path for a neo-Hookean substrate actuated as a ‘floating’
elastomer (blue) and the limit of the stability domain (orange) for d0/L = 0.1
(a) and d0/L = 0.8 (b). Dots mark the expansion limit in each case. λ1 varies
with the non-dimensional electric potential jump V̄ .

the electrodes, as in Fig. 4.4 (b), the elastomer hits the expansion limit before
the onset of surface instabilities. With low values d0/L (Fig. 4.4 (a)), the elas-
tomer expands a lot more and intersects the bifurcation curve before it reaches
that limit, implying that surface instabilities are mainly present in thinner
elastomers. In the thicker elastomer the expansion limit and electro-mechanical
instabilities appear before the onset of surface instabilities. A thinner elastomer
is also able to reach much higher values of V̄ and larger stretches before the
onset of surface instabilities.
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To better understand the characteristics of the surface instability, incremen-
tal fields at the onset of bifurcation were studied. The simple loading path with
no pre-stress was chosen, at the point of intersection with the bifurcation curve.
Coefficients Uj (j = 1, 2, 3) and ϕc were solved for the specific case. They were
normalised such that the displacement u2 at the surface (x2 → 0) was 5% of
the wavelength of the deformation. Figure 4.5 displays the plot of this quantity
into the thickness of the elastomer normalised with the wavelength x2k/(2π) (k
selected as a unitary value). Reported curves show that the attached compliant
electrodes and the charge-controlled cases exhibit a near identical incremental
deformation. They decay a lot faster into the thickness, within one wavelength,
compared to the actuated ‘floating’ elastomer counterpart. In addition, in
the latter mode, the elastomer exhibits a maximum expansion just under the
surface before decaying. Figure 4.6 demonstrates how the boundary conditions
influence the component parallel to the surface, of the normalised incremental
electric field Ē1 = Ê1/

√
µ/ε. Following our specialised incremental bound-

ary conditions, as expected it can be noted that for the attached compliant
electrodes (in orange) Ē1 is null, whereas that is not the case for the other
two configurations. For the first analysed fundamental path, Ē1 increases
significantly into the depth of the elastomer before decaying again. For the
other two actuation cases this does not occur. The difference between the
charged-controlled and floating configurations is that the former shows the
longitudinal incremental electric field decaying slower even though it has a
lower maximum value. This correlates to the incremental displacement field
plots in Fig. 4.5.

Fig. 4.5 Incremental displacement u2 into the elastomer thickness normalised
with the wavelength (x2k/(2π)) for the three analysed electro-elastic problems.
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Fig. 4.6 Normalised incremental longitudinal electric field Ē1 into the elastomer
thickness normalised with the wavelength (x2k/(2π)) for the three analysed
electro-elastic problems.

4.3 Surface coating theory for stiff electrodes

The effect of the stiffness of the electrode on surface instabilities can be analysed
by using the theory of surface coating to obtain boundary conditions for the
electro-elastic substrate. This follows the work done by Steigmann and Ogden
[54, 55], who explored bifurcation of and wave propagation on an elastic half-
space with a thin coating on its plane boundary. In this section, the basic
notions of the surface-coating theory suitable for incremental fields are recalled.

The electrode film is assumed to be fully compliant to the elastomer such
that, in the pre-bifurcation state, the stretch λ is the same in both elements. As
shown in Fig. 4.7, ν1(S) is the unit tangent to the surface that is described by
an arc length S. Vectors e1 and e2 form the orthonormal unit basis associated
with x0

1 and x0
2. The leftward unit normal is defined by ν2(S) = k × ν1(S),

where k = e1 × e2. If θ(S) is the counter-clockwise angle between ν1 and e1,
differentiation with respect to S yields

ν ′
1(S) = κ(S)ν2(S), κ(S) = θ′(S), (4.18)

where ()′ = d/dS and κ(S) is the nominal curvature of the film. The unit
tangent to the surface can also be decomposed into the directions from the
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orthonormal unit basis as,

ν1 = cos(θ(S))e1 + sin(θ(S))e2. (4.19)

The coating is assumed to be hyperelastic and is characterised by the elastic
strain energy per unit length U(Λ, κ), where the first argument is the current
axial stretch of the electrode. Axial force and bending moment can be obtained
by partial differentiation, namely,

F = U,Λ and M = U,κ. (4.20)

In addition to the axial component, the total force at a generic point of the
surface has a normal component, say G, such that the force can be decomposed
as

f = Fν1 +Gν2. (4.21)

G is not obtained by a constitutive equation as the thin film is assumed to
have vanishing thickness: it is an unknown of the problem. In this plane strain
model of the electrode the response is determined solely by the curvature of
the electrode. Following [54, 55], linear momentum and moment-of-momentum
balances in a static problem for the film give the local equations

f ′ = Sn0, M ′ + ΛG = 0. (4.22)

The first equation couples the behaviour of the elastomer and the electrode
coating while the latter is the required condition to determine G, so that the
force, eq. (4.21), is fully determined.

The incremental boundary conditions are required to add to the bifurcation
problem. Recalling notation from section 2.3, and the governing equations
applying as before, the increment of eqs. (4.22) is taken and they are updated
from S to current arc length s, given that Λ = ds/dS, yielding

ḟ ′(s) = Σn, Ṁ ′(s) + Λ−1Λ̇G+ Ġ = 0, (4.23)

where the derivative is now taken in terms of s, ()′ = d/dS. The incremental
counterpart of eq. (4.21) gives

ḟ = Ḟν1 + Ġν2 + F ν̇1 +Gν̇2, (4.24)
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where Ḟ is given by
Ḟ = F,ΛΛ̇ + F,κκ̇. (4.25)

By knowing that ν̇1 = θ̇ν2 and ν̇2 = −θ̇ν1, with the previous equations, the
following equation is achieved

ḟ = (Ḟ −Gθ̇)ν1 + (F θ̇ + Ġ)ν2. (4.26)

The expression for ḟ ′ can be obtained from eq. (4.26) once Ġ and G are known.
To solve the term Ġ eq. (4.23)2 is used and the term G is obtained from the
updated counterpart of eq. (4.22)2, namely

M ′ +G = 0. (4.27)

The use of ν1 = θ′ν2 = Λ−1κν2 = −θ′ν1, ν ′
2 = −θ′ν1 = −Λ−1κν1 and

θ̇′ = Λ−1κ̇ yields
ḟ ′ = Tν1 +Nν2, (4.28)

where

T = Ḟ ′ + Λ−1κ̇M ′ +M ′′θ̇ − Λ−1κ(F θ̇ +M ′Λ−1Λ̇ − Ṁ ′),
N = Λ−1κ̇F + F ′θ̇ + Λ−1M ′(Λ̇′ − Λ−1Λ′Λ̇) + Λ−1Λ̇M ′′ − Ṁ ′′ + Λ−1κ(Ḟ +M ′θ̇).

(4.29)

The following kinematic expressions are needed to solve the incremental vari-
ables:

Λ̇ = Λν1 · u′, κ̇ = Λν2 · u′′ − κν1 · u′, θ̇ = ν2 · u′, (4.30)

where u is the incremental displacement field at the boundary of the half-space
defined in previous sections.

The Cartesian coordinate system specific to the problem at hand and
indicated in Fig. 4.7 is aligned with the basis such that ν1 = e1, ν2 = e2,
n = −e2 and κ = M ′ = G = 0. The problem is also specialised to the
previously introduced dielectric body problem by noting that Λ = λ, as the
electrode deforms with the elastomer homogeneously. Therefore, with the help
of eqs. (4.30), eqs. (4.29) are simplified and the results inserted into eq. (4.23)
to obtain the boundary conditions for the incremental problem, i.e.

Σ12 = −Uλλλu
′′
1 − Uλκλu

′′′
2 , Σ22 = Uκκλu

′′′′
2 + Uκλλu

′′′
1 − Uλu

′′
2. (4.31)
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Fig. 4.7 Sketch of the electro-elastic half-space in the reference configuration
(B0) coated by a ‘stiff’ electrode. B∗ represents the surrounding vacuum.

A simple elastic strain-energy function for the electrodes can be chosen [55]
as

U(λ, κ) = 1
2m(λ− 1)2 + 1

2nκ
2, (4.32)

which is an expression analogous to that of structural plates with stretching
and bending. As such, it can be deduced that the parameters m and n may be
interpreted as

m = Ech

1 − ν2
c

, n = Ech
3

12(1 − ν2
c ) , (4.33)

where Ec and νc are the Young’s modulus and Poisson’s ratio for the coating
material, respectively, and h is the film thickness. Additional terms could be
added to U(λ, κ) to take residual stresses into account, but are assumed to be
null in this investigation.

4.4 Effect of the stiffness of the electrode on
surface instabilities

In this section three different types of electrodes are examined to show a range
of materials that might be typically encountered, and the bifurcation equations
for each are obtained to analyse electro-elastic surface instabilities.

The previously described generic boundary conditions were obtained from
eqs. (4.12) and (4.13). These conditions are specialised as seen in Table
4.1 for the attached compliant electrodes case, which is the pertinent case
when wanting to include electrode stiffness effects. To take the stiffness of
the electrodes into account, the boundary conditions are derived and given
by eqs. (4.31) are used, acting on the incremental stress terms. Using these
new conditions and the strain-energy function for the electrode eq. (4.32),
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the bifurcation equation was obtained using the same method as before. It is
important to note that the introduction of the electrode stiffness causes the
bifurcation equation to be dependent on the wavenumber, in particular, due
to the fourth-order derivative in eq. (4.31)2, it is a quartic in k. As such, a
complex set of solutions depending on the wavenumber are expected, as also
discussed by Ogden and Steigmann [55] and Gei [75]. It is worth mentioning
that the model was verified by obtaining the elastic results presented in [55],
where the electric field is absent, by setting the electric actuation to null.

Material properties for the electrodes are needed to obtain the material
parameters m and n in eqs. (4.33), namely, Young’s modulus and Poisson’s
ratio. The material properties m and n have dimensions of length×pressure and
length3× pressure, respectively. As such (n/m)1/2 can be used as a length scale
to normalise the wavenumber as k̄ = k(n/m)1/2. To compare the three electrode
materials, m and n are also normalised such that m̄ = n̄ = (m/µ)(m/n)1/2; in
addition, they are assumed as incompressible. All the chosen materials may
undergo large strains as they are highly stretchable and offer good conductivity.
They are also common materials currently being used or researched for use as
electrodes in elastomer devices.

The first chosen material consists of a PDMS matrix combined with conduc-
tive materials such as graphene or carbon black. A typical value for Young’s
modulus is shown to be 0.9 MPa with an electrode thickness of h = 30 µm
[76, 77], giving m = 35.5 Pa m, n = 2.66 × 10−9 Pa m3 and m̄ = 41.57. The
second material shares the matrix with the first one, but the reinforcement is
composed of metal ions, such as gold or titanium, that are implanted into the
PDMS matrix. Information on the manufacturing process and their material
parameters were shown by Niklaus and Shea [78] and Shea [79], which measured
a Young’s modulus of 2 MPa and an electrode thickness of h = 50 nm. This
provides m = 0.13 Pa m, n = 2.74 × 10−17 Pa m3, and m̄ = 91.17. Alternative
electrode materials are ionogels which consist of an ionic liquid immobilised
in a polymer matrix. Material values were taken by Ji et al. [80], with a
Young’s modulus of 192 kPa and an electrode thickness of h = 750 nm, yielding
m = 0.19 Pa m, n = 8.88 × 10−15 Pa m3 and m̄ = 8.75. Table 4.2 summarises
the material parameters and as can be seen, a wide range of m̄ values is obtained
with the chosen materials allowing a good analysis of any electrode material in
between.

As the bifurcation diagrams are similar for the three electrode materials,
the graphene-implanted electrode is presented for analysis for which the di-
mensionless stiffness m̄ = 41.57 is the median one among the three materials.
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(a) D̄ of 0.01 (b) D̄ of 0.87

(c) D̄ of 0.90 (d) D̄ of 1.00

Fig. 4.8 Bifurcation diagram for an actuated neo-Hookean elastomer coated with
a ‘stiff’ electrode. The material parameters for a graphene implanted electrode
were used, i.e. m̄ = 41.57. λ1 is plotted against the normalised wavenumber k̄
and various values of D̄ are considered in the different plots. Blue and orange
represent two different branches of the solution to the bifurcation equation.

Figure 4.8 shows the bifurcation diagrams where λ is plotted against k̄ for an
increasing D̄. For low values of the electric displacement, Fig. 4.8 (a) where
D̄ = 0.01, there is only one solution of the bifurcation equation, like in the
case of the ideal electrode seen in the previous section. The critical λ in this
case is the maxima of the curve (i.e., k̄ = 0.290, λ = 0.799). It is of note
that, as k̄ → 0, the solution for negligible electrode stiffness (i.e., uncoated
half-space) is obtained for all values of electric displacement. For D̄ > 0.773, a
new branch emerges (see Fig. 4.8 (b)). This provides two additional solutions,
which correspond to the minimum and maximum λ values of that branch and

Table 4.2 Material properties for chosen electrode materials

Material Y oung′s h m/Pa m n/Pa m3 m̄

Ion implanted 2 MPa 50 nm 0.13 2.74 × 10−17 91.17
Graphene implanted 0.9 MPa 30 µm 35.5 2.66 × 10−9 41.57
Ionogels 192 kPa 750 nm 0.19 8.88 × 10−15 8.75
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Fig. 4.9 Limit of the stability domain for a neo-Hookean elastomer shown as
various electrode materials with varying stiffness are assumed (varying m̄).
Dotted lines represent loading paths of a dielectric elastomer with τpre/µ going
from 0 to 2.5 in increments of 0.5. Actuation is described by the non-dimensional
electric displacement D̄.

occur as k̄ → 0. As D̄ is increased further, the maxima from the first branch
has a higher critical λ than the lowest solution of the new second branch (Fig.
4.8 (c)). This causes the overall bifurcation curve (displayed in Fig. 4.9) to
have only one solution which is the one with the highest λ. At this point, as
the solution occurs as k̄ → 0, the instability curve is following the one for the
ideal electrode meaning the stiffness of the electrode no longer has an effect.
The solution then switches form and the two branches merge into one (Fig. 4.8
(d)). The highest λ as k̄ → 0 continues to be the dominant critical stretch as
the maxima from the first branch disappears.

These instability curves for the various electrodes are plotted in Fig. 4.9.
These are obtained by carefully checking the critical λcrit (more than one
solution may exist) on the bifurcation diagram analysed in Fig. 4.8 at a
given D̄. The curves pertain to ionogel (red), graphene-implanted (blue) and
ion-implanted (green) electrodes, together with the solution where electrode
stiffness is disregarded (orange) obtained in the previous section. The dotted
lines represent the loading paths of a dielectric elastomer (attached compliant
electrode) with various states of pre-stress. Taking into account the stiffness of
the electrodes causes the bifurcation curve to start at higher critical stretches
for low D̄, though always for λ1 < 1. The curves then go up much more linearly
with a high slope until they reach that for a fully compliant electrode, which
then takes over. Compared to the uncoated case, the peak that was present
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(a) u2

(b) u1

Fig. 4.10 Incremental displacement fields u2 and u1, into the thickness x2 of a
neo-Hookean elastomer, normalised with the wavelength 2π/k. The actuation
case is that of an attached compliant electrodes with the stiffness taken into
account. The material parameters for a graphene implanted electrode was used
with m̄ = 41.57. Curves represent the three solutions when k̄ = 0.001 and
D̄ = 0.85, with varying λcrit values.

vanishes in all three cases. As m̄ increases the bifurcation curve becomes more
vertical and the critical lambda at D̄ = 0 also increases. However, following the
fundamental paths considered in this investigation, this effect is not actually
seen as the original curve takes over at a critical λcrit lower than the intersection
of the fundamental paths. This implies that for typical applications it is valid
to assume that the electrodes are fully compliant.

To analyse the features of the bifurcation modes for the various branches
described earlier, let us consider the parameter D̄ = 0.85, k̄ = 0.001, a case
similar to that displayed in Fig. 4.8 (b). Again, the graphene-implanted
electrode case is adopted (m̄ = 41.57). The three critical values of λ for the
given k̄ are equal to 0.482, 0.955 and 2.055. These values were used to calculate
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Fig. 4.11 The normalised transverse incremental electric field Ê2, is shown into
the thickness x2 of a neo-Hookean elastomer, normalised with the wavelength
2π/k. The actuation case is that of an attached compliant electrodes with the
stiffness taken into account. The material parameters for a graphene implanted
electrodes were used with m̄ = 41.57. Curves represent the solutions when
k̄ = 0.001 and D̄ = 0.85, with varying λcrit values.

the eigensystem of the three coefficients (U1, U2, U3, cf. eq. (4.7)), and the
modes were normalised such that the incremental displacement u2 = 1 at the
surface of the half-space. The incremental displacement fields are displayed in
Fig. 4.10. Functions u2 and u1 are plotted into the thickness of the elastomer x2

normalised with the wavelength 2π/k. The orange and green curves correspond
to the solutions appearing only at a higher D̄ corresponding to the orange
branch in Fig. 4.8 (b), and are similar in nature. The blue curve, corresponding
to the first branch with the lowest λcrit, has a peak just inside the surface for
the displacement u2 and an inversion in u1. In general, the two solutions from
the second branch are more localised to the surface of the half-space, a finding
similar to those observed in [55, 75] in analogous purely-elastic problems. This is
also the case for the normalised transverse component of the incremental electric
field, Ē2 in Fig. 4.11. For the incremental electric fields, the general shape
of the curve is very similar. However, with lower λcrit values, the incremental
electric field is much higher (over five times more) meaning an instability mode
where the electric field plays a bigger role. It is also interesting to note that
with the largest solution λcrit = 2.055 there is a difference in the component
Ē1 that distinguishes it from the other two solutions. While they all start
off as Ē1 = 0 on the surface due to the electric boundary conditions, for this
particular solution there is a peak just inside the thickness of the elastomer of
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a value around 10% the maximum Ē2. For the other solutions Ē1 is of several
orders of magnitudes lower.

The incremental von Mises stress is defined as

Σv =
√

1
2 [(Σ11 − Σ22)2 + (Σ22 − Σ33)2 + (Σ33 − Σ11)2] + 3(Σ2

12 + Σ2
23 + Σ2

31).
(4.34)

In Fig. 4.12, the contour plots of incremental von Mises stress are plotted for
the three values λcrit. Here again the big difference in decay into the thickness
of the half-space with a lower λcrit is evident. It can also be observed that in
Fig. 4.12 (a) there is a significant inversion just inside the thickness of the
elastomer implying an instability mode that has large varying stresses just
under the surface. In Fig. 4.12 (b) the inversion is still present, but it appears
when the incremental stress has already decayed and is almost null whereas in
Fig. 4.12 (c) the plotted quantity decays monotonically with depth.
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(a) λcrit of 0.482 (b) λcrit of 0.955

(c) λcrit of 2.055

Fig. 4.12 Contour plots of the incremental von Mises stress at the onset of
instability for a neo-Hookean elastomer with a stiff electrode (m̄ = 41.57). The
domain has been normalised with the wavelength 2π/k. The three solutions
correspond to k̄ = 0.001 when D̄ = 0.85, with varying values of λcrit plotted
separately.





Chapter 5

Small strain actuation of
electro-elastic laminates

Composite elastomers are used to enhance characteristics of the elastomer
deformation when actuated. In this chapter the standard device with compliant
electrodes is investigated with a laminate composite elastomer sandwiched
in between. These composite materials can exhibit an inversion of actuation,
switching from longitudinal expansion of the elastomer (the ‘conventional’ defor-
mation for a homogeneous material) to contraction, when the right geometrical
and material parameters are picked. This research aims to analyse these hier-
archical laminated composites to understand the conditions which cause the
onset of this new actuation mode. The presence of this inversion is shown
in both rank–1 and rank–2 laminate composites. First the rank–1 laminate
onset of inversion is examined, looking at the geometrical and material criteria
with different boundary conditions. It is analysed in depth to understand how
each composite phase deforms before, during and after the onset of inversion.
The rank–2 composite is then compared to the rank–1 solution to show how a
rank–2 is able to enhance this mode of actuation further. As a rank–2 has a lot
more parameters, a guideline is provided on how to optimise them to obtain the
desired actuation. The analysis is carried out assuming plane-strain conditions.
Some 3D solutions were analysed which showed results almost identical to the
simpler plane-strain problem, and as such plane-strain is assumed throughout.
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(a) Rank–1 (b) Rank–2

Fig. 5.1 Figure of a rank–1 (a) and rank–2 (b) laminated composite.

5.1 Plane-strain actuation of rank–1 laminates

5.1.1 Small deformation linear electro-elasticity

To study the behaviour of hierarchical composite laminates the theory of small
electroelastic deformations is used throughout this chapter. The deformations
are linearised causing the Lagrangian and Eulerian representations to be ap-
proximately the same. The general theory remains similar to previous chapters,
however, the notation is unique to this chapter. At first a rank–1 layered
composite elastomer slab is investigated, which is obtained by repeating a unit
cell consisting of two compressible dielectric materials as shown in Figure 5.1
(a). The two materials in the composite, the first a soft matrix material and the
second a stiffer inclusion material, are denoted as ‘a’ and ‘b’ respectively. The
composite is defined by a generic rank-1 lamination angle θ1 and the volume
fraction of each material ca and cb where ca + cb = 1. The vectors defining the
interface between the two materials in the reference configuration, are n0 and
m0, in the normal direction and along the interface respectively. In component
form these are,

n0 =
(
− sin θ1, cos θ1

)
, m0 =

(
cos θ1, sin θ1

)
. (5.1)

In the small deformation framework, the composite is actuated as before by an
electric field E with a corresponding electric displacement D, with the total
stress generated indicated by S. With the assumption of the absence of both
volume charges and body forces, the governing equations resemble eqs. (2.7)
and (2.16) and are,

divS = 0, divD = 0, curlE = 0. (5.2)

Both the composite materials follow the relationship of an ideal dielectric
D = εE where ε is the permittivity of the material that is independent of
deformation. Continuity on the interfaces between the two materials can be
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enforced by imposing the following jump conditions

n0 · JDK = 0, n0 × JEK = 0, JSKn0 = 0, m0 · (JeKm0) = 0, (5.3)

where e denotes the strain tensor. The brackets J·K indicate the jump across
the interfaces in the composite defined as JfK = fa − f b.

Under the assumption of a homogeneous response, the average quantities
are defined in the whole composite as a sum of the quantities in each phase.
The average quantities are thus given as

Eav = caEa + cbEb, Sav = caSa + cbSb, eav = caea + cbeb. (5.4)

The jump conditions eq. (5.3)2 can be expressed in an alternate form

Ea − Eb = βn0, (5.5)

where β is a real parameter. This is substituted into eq. (5.4)1 to obtain an
expression that relates the singular phases to the average quantity,

Ea = Eav + cbβn0, Eb = Eav − caβn0. (5.6)

An analogous procedure is followed for the mechanical problem giving us the
expressions

ea = eav − ω1c
b(m0 ⊗ n0 + n0 ⊗ m0) − ω2c

b(n0 ⊗ n0),
eb = eav + ω1c

a(m0 ⊗ n0 + n0 ⊗ m0) + ω2c
a(n0 ⊗ n0), (5.7)

where ω1 and ω2 are real parameters.
With the small-strain limitations and following McMeeking and Landis [34]

the stress tensor for a linear isotropic material is given, in each material phase,
by

Sa
ij = 2Gaea

ij + (Ba − 2Ga

3 )ea
kkδij + εaEa

i E
a
j − εa

2 E
a
kE

a
kδij

Sb
ij = 2Gbeb

ij + (Bb − 2Gb

3 )eb
kkδij + εbEb

iE
b
j − εb

2 E
b
kE

b
kδij, (5.8)

where G and B are the shear and bulk moduli of the relevant phase material,
respectively, and δij represents the Kronecker delta. Note that the above
expressions can be split into the elastic and electrostatic stresses which are
independent of each other.
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Two boundary problems are considered, namely ‘aligned loading’ and macro-
scopic stress-free conditions. In both cases the composite elastomer is considered
actuated in the compliant electrode configuration such that the electric actua-
tion is across its thickness and the normal stresses are null, giving the following
boundary conditions

Eav
1 = 0, Sav

11 = Sav
22 = 0. (5.9)

For the ‘aligned loading’ problem these are further specified for a configuration
which is limited such that there is no shear strain on the composite. In this
case extra boundary conditions appear in the overall strain, namely

eav =
eav

11 0
0 eav

22

 . (5.10)

In the macroscopic stress-free conditions there are no boundary conditions on
the overall strain. However, the surface of the elastomer is traction free such
that,

Sav = 0. (5.11)

5.1.2 Actuation under ‘aligned’ loading

An analysis was undertaken to understand how the material and geometrical
parameters of the composite affect whether elongation or contraction will
occur along the longitudinal axis when actuated by an electric field across the
thickness. The former being referred hereafter as the ‘conventional response’
and the latter as the ‘unconventional response’. At first the more restrictive
aligned loading actuation case was studied, obtained by using the boundary
conditions given by eqs. (5.9) and (5.10).

Assuming an ideal dielectric, the parameter β is obtained using the jump
conditions in D (eq. (5.3)1), and eq. (5.5). In a similar manner, the parameters
ω1 and ω2 are obtained using the jump conditions in S (eq. (5.3)3), with the
stress in each phase given by eqs. (5.8). Once these parameters are obtained,
the average strain eav is obtained using the boundary conditions eqs. (5.9)
where Sav is given by eqs. (5.4)2 and the contribution of each material phase
is given by the constitutive eqs. (5.8).

To obtain the actuation response, the material parameters for the two
phases need to be set. To this end the bulk modulus is replaced with Poisson’s
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ratio ν and shear modulus G using the well-known relationship

B = 2G(1 + ν)
3(1 − 2ν) . (5.12)

As elastomer materials are typically close to being incompressible, a high
Poisson’s ratio was chosen for both phases, i.e. νa = νb = 0.495. To analyse the
response to actuation the material parameters for the soft matrix were fixed to
previously used typical values of Ga = 100 kPa and εa = 4.68 ε0. The stiffer
material then has its parameters defined as a function of the softer material, by
using εb = k1ε

a and Gb = k2G
a, where k1 and k2 are dimensionless constants.

Figure 5.2 shows the domains where the actuation behaviour of the laminate

Fig. 5.2 Domains showing inversion of actuation behaviour as k1 and θ1 are
varied. Orange and blue curves show responses for k2 = 10 and k2 = 100
respectively. Both composites have a volume fraction of ca = 0.8.

transitions from a conventional response, i.e. elongation, to the unconventional
response, i.e. contraction: with the curves showing the absence of longitudinal
strain, eav

11 = 0, as the elastomer is actuated. In the figure the response is
plotted as k1 varies with the lamination angle θ1 and the two curves show
different shear moduli ratios of k2 = 10 and 100. In both cases the volume
fraction of the composite corresponds to ca = 0.8. The ideal lamination angle,
which enhances the unconventional behaviour, is approximately 30◦ for both
curves. The curves share an asymptote at θ1 ≈ 45◦, meaning that a larger
lamination angle would only exhibit a conventional response when actuated.
Both curves are very close, meaning that the leading material parameter in
determining the actuation transition is the ratio of permittivities k1, with k1

being approximately 50-60 when the lamination angle is close to ideal.
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Fig. 5.3 Principal strain orientation angles of the two phases as k1 is varied. Blue
and Orange curves represent the soft and stiff phase respectively. Parameters
of θ1 = 30◦ and k2 = 10 are used to achieve a response. A volume fraction of
ca = 0.8 is used and the elastomer is actuated at a fixed Eav

2 = 100MV/m.

To better understand how the transition between elongation and contraction
occurs, the rotation and stretch in each material phase are analysed. To get
a sense of the deformation in each phase of the composite as the permittivity
ratio k1 is increased, a case with material and geometric parameters of θ1 = 30◦,
k2 = 10 and ca = 0.8 is picked. The angle of 30◦ is chosen as it enhances the
unconventional behaviour. The strains in each phase are obtained using eqs.
(5.7), which are used to calculate the principal strains ê and the angle α w.r.t.
the longitudinal axis where the principal directions of strain occur. These are
obtained by the following equations,

tan(2α) = 2e12

e11 − e22
,

ê = QeQT , where Q =
 cosα sinα
− sinα cosα

 . (5.13)

The elastomer is actuated at a given external macroscopic electric field
Eav

2 = 100 MV/m. Figure 5.3 shows how the orientation angle in each phase
varies with k1, and similarly Figure 5.4 shows the principal longitudinal and
transverse strain in each phase. It is to note that for that chosen parameters
the transition between responses occurs at a value of k1 ≈ 51.812. The figures
show that in both materials the angle of the principal strain direction exhibits
a sudden change as k1 is increased around the transition value. This is coupled
with the principal strains reaching their minimum values. As k1 moves away
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Fig. 5.4 Principal strains of the two phases as k1 is varied. Curves represent
the various principal strains in the two phases. Parameters of θ1 = 30◦ and
k2 = 10 are used to achieve a response. A volume fraction of ca = 0.8 is used
and the elastomer is actuated at a fixed Eav

2 = 100MV/m.

from the transition value each material in the composite tends to stabilise in
its response, showing linear deformations and constant orientation angles.

To better illustrate what is happening Figure 5.5 shows how a unit cell
deforms at various intervals as k1 is increased. At low values of k1 the con-
ventional response appears clearly, with both phases elongating longitudinally.
The matrix material experiences almost no rotation and the stiff inclusion is
angled at around 24◦. As the permittivity ratio is increased, the inclusion starts
to rotate clockwise until it stabilises an angle of around -65◦, with the matrix
material rotating counter-clockwise up to an angle of around 87◦. During
this rotation the strains are small and the leading cause of the transition to
the unconventional response is the rotation. When looking at a high value of
k1 = 70, both phases are clearly rotated in such a way that the elongation
occurs transversally. Around the transition value of k1 ≈ 51.812 large changes
in rotation occur at very small increases of k1 in both materials, with the stiff
inclusion leading the matrix. Of interest is also the value of k1 ≈ 48.7113,
where because of the no shear strain boundary conditions, there is a moment in
which both orientation angles are null and aligned with the composite material
and as a consequence no shear strain is present in each material phase.
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Fig. 5.5 Rank-1 actuation under aligned loading. Diagram showing how a unit
cell of each material phase is deformed and rotated as k1 is varied. Parameters
of θ1 = 30◦ and k2 = 10 are used to achieve a response. A volume fraction of
ca = 0.8 is used and the elastomer is actuated at a fixed Eav

2 = 100 MV/m.

5.1.3 Actuation under macroscopic stress-free conditions

Next the boundary conditions where shear strains are not limited are examined.
The analysis follows the previous one with the key difference being that no
boundary conditions are specified on the average strain and eqs. (5.9) and
(5.11) are used, which is a more realistic scenario. The same material and
geometrical parameters are used and similar figures are plotted, showing the
values of principal strains and orientation of the principal directions of strain.
In this case, the transition parameter to note is almost doubled, at k1 = 99.617.
Figure 5.6 shows, as opposed to the previous case, that as k2 is increased a
much higher value of k1 is needed for the unconventional response, coupled
with the optimal lamination angle decreasing. At small values (e.g. k2 = 1),
the optimal angle is approximately 30◦ same as the no shear strain case. As k2

increases the optimal angle decreases, with k2 = 100 having an optimal angle
of approximately 18◦. This implies that ideally to enhance the unconventional
response, a material is needed that has an increased permittivity without a
substantial increase in shear modulus. The k1 values needed are in general
much larger than the previous case, with the only similar value being with
the case of k2 = 1. In the case of k2 = 100 a value of k1 ≈ 518 is required
for the response transition when an optimal angle is used. As before there is
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an asymptotic behaviour at θ1 ≈ 45◦ which stops the unconventional response
from being obtained.

Fig. 5.6 Domains showing inversion of actuation behaviour as k1 and θ1 are
varied. Orange and blue curves show responses for k2 = 10 and k2 = 100
respectively. Both composites have a volume fraction of ca = 0.8.

Figures 5.7 and 5.8 show the orientation angles and principal strains as k1

is varied, with the elastomer being actuated at a given external macroscopic
electric field Eav

2 = 100 MV/m. Given the fewer boundary restraints, around
the transition period there is no large rotation or strains to be seen in the
material phases. From the orientation angles it can be seen that, unlike before,
both material phases rotate clockwise, with the stiff inclusion rotating right
from the start with a steep slope and the soft material phase undergoing a much
longer drawn out rotation as k1 increases. The two angles intersect at a value
of k1 = 14.155, however this happens at an angle of −14.64◦, unlike previously
where they both aligned at 0◦. Looking at the principal strains does not provide
much insight into the occurrence of the response transition. The strains in
the stiff inclusion seem to have a minimum at k1 = 14.214, around the value
where the orientation angles intercept. However, this is far from the transition
value, where the strain curves show a linear caused by the electro-mechanical
coupling effects increasing with k1. Looking at both graphs it can be deduced
that the transition occurs because of an interplay between the slowly rotating
soft bulk material coupled with the material experiencing increasingly higher
strains. The overall transition seems much more gradual than the one with the
extra boundary conditions. There are also some behaviours to note that are not
highlighted in the figures. When the shear strain is not limited, the composite
experiences high negative values of shear strain, which makes it the dominant
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deformation. In both of the cases with and without shear strain, because of
the slight compressibility of the material, the transition in the response in the
longitudinal axis occurs before that in the transversal direction.

Fig. 5.7 Principal strains orientation angles of the two phases as k1 is varied.
Blue and Orange curves represent the soft and stiff phase respectively. Parame-
ters of θ1 = 30◦ and k2 = 10 are used to achieve a response. A volume fraction
of ca = 0.8 is used and the elastomer is actuated at a fixed Eav

2 = 100MV/m.

5.2 Plane-strain actuation of rank–2 laminates

5.2.1 Homogenisation of rank–2 laminates

The next topic of interest is to assess if a rank–2 laminate can i) confirm
and –possibly– ii) enhance the behaviour of the previously discussed rank–1
composite. Because of the electro-elastic small-strain setting, the work done by
Tian et al. [60] and Tevet-Deree [57] is followed, which introduced an iterative
procedure to compute the effective response of a laminate with a generic rank.

Figure 5.1 (b) shows a sketch of a rank–2 laminate that is made up of a
core phase, which is a rank–1 composite with a soft and stiffer material, and
an –outer– matrix phase which consists of the same soft material. The core
has a lamination angle of θ1 which is independent of θ2 which describes the
inclination of the matrix. The field equations to be satisfied in each phase are
still (5.2)1,2, however, now it is convenient to write the constitutive equations
as

D = ME, S = Ce + AE ⊗ E. (5.14)
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Fig. 5.8 Principal strains of the two phases as k1 is varied. Curves represent
the various principal strains in the two phases. Parameters of θ1 = 30◦ and
k2 = 10 are used to achieve a response. A volume fraction of ca = 0.8 is used
and the elastomer is actuated at a fixed Eav

2 = 100MV/m.

M is the second-order tensor of dielectric modulus, while C and A are the fourth-
order tensors of elastic modulus and electro-mechanical coupling, respectively.
For a homogeneous phase, using eqs. (5.8), the non-zero components take the
form:

C1111 = C2222 = B + 4G
3 , C1122 = C2211 = B − 4G

3 ,

C1212 = C1221 = C2112 = C2121 = G,

A1111 = A2222 = ε

2 , A1122 = A2211 = −ε

2 ,

A1212 = A1221 = A2112 = A2121 = ε

2 ,

M11 = M22 = ε. (5.15)

To deal with homogenisation of sub-rank laminates, the electrostatic and
elastic concentration tensors are introduced, g and G, respectively, relating the
fields in each phase to the average fields in the composite, componentwise

Ei = gijE
av
j , eij = Gijkle

av
kl . (5.16)
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It has been shown in [60] that the effective coupling and elastic moduli tensors
for a rank–N material can be obtained using the expressions

Aav
ijkl =

N∑
r=1

c(r)A(r)
mnpqG

(r)
mnijg

(r)
pk g

(r)
ql , Cav

ijkl =
N∑

r=1
c(r)C

(r)
ijpqG

(r)
pqkl. (5.17)

These effective coupling tensors allow the effective macroscopic strain tensor
to be calculated. By using eq. (5.14)2 and the governing equation in S, eq.
(5.2)2, the expression

eav
ij = Cav−1

abij (Aav
abklE

av
k Eav

l ) (5.18)

is obtained, which allows the average strain to be calculated knowing just the
elastic modulus and coupling tensor. As C−1 may be hard to calculate, in
Appendix B a method to solve this equation is provided, which also has the
benefit of not requiring G to be calculated. It may also be useful to calculate
the effective dielectric modulus, given by

M av =
N∑

r=1
c(r)M (r)g(r). (5.19)

5.2.2 In-plane contraction of rank–2 laminates

A rank–2 composite is analysed where the matrix is the same as the soft
material in the core. The equivalent properties of the core will be denoted by
subscript c whereas the matrix of the rank–2 will be denoted by subscript d.
In the current composite, the volume fraction of the core cc and the volume
fraction of the matrix cd are related by the expression cc + cd = 1. To compare
the performance of a rank–2 to that of a rank–1, an equivalent volume fraction
ceq is defined, which would be the equivalent rank–1 volume fraction c(1)

a to
achieve the same overall % of soft to stiff material in the two composites. The
rank–2 composite volume fractions relate to the rank–1 equivalent volume
fraction by

(1 − c(2)
a )(1 − cd) = 1 − ceq, (5.20)

where c(2)
a refers to the volume fraction ca in the rank–2 composite. By fixing

one of the two volume fractions of the soft material the other can be obtained
using this equation. To obtain a solution for the rank–2 strain, at first the
rank–1 procedure is followed, explained in section 5.1.2, to obtain the β, ω1

and ω2 parameters. For the rank–2 analysis, the boundary conditions allow
for shear strains and as such the rank–1 results from section 5.1.3 are used to
compare the rank–2 to. The various tensors g, C, G and A are obtained from
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eqs. (5.8) and (5.6) for each material phase of the rank–1, with the dielectric
modulus M being the permittivity tensor of each phase given as in eqs. (5.15).
These are then used in eqs. (5.17) and (5.19) to obtain the effective coupling
and modulus tensors for the overall rank–1 material. The results were checked
using eq. (5.18) to give identical strains to the previously obtained effective
rank–1 strains. For all the analyses, the previously defined material parameters
were used with Ga = Gd = 100 kPa and εa = εd = 4.68 ε0. The stiff material is
again defined by the k1 and k2 constants relating as before. When comparing
rank–1 and rank–2 strains, picking for example values of k1 = k2 = 10 similar
results shown by various articles [52, 59, 50, 60] were obtained, where the
rank–2 exhibits overall larger achievable strains. When the angles and volume
fractions were picked to produce the highest strains, the rank–2 composite
showed around 5% larger deformations than an equivalent rank–1 composite.

In this section it is of particular interest whether the rank–2 composite can
enhance the transition from the conventional response to the unconventional
response. In a rank–2 composite there are multiple parameters which can
be varied to change the response to actuation. In this section an ‘optimal’
rank–2 is defined as having the various parameters optimised to enhance the
transition between the conventional and unconventional response. To compare
the rank–2 response an equivalent optimal rank–1 composite is needed. The
rank–1 composite lamination angle can be optimised for a given k2, shown
previously in Fig. 5.6. In this case it was chosen to optimise for a low k2

hence picking a θ1 of 30◦. The combination of lamination angles in a rank–2
composite greatly affects the transition between the two responses.

Figure 5.9 and 5.10 illustrate how the angles affect the inversion of actuation
domains for the rank–2 composite. Both of these figures show a rank–2
composite curve (in orange) with an equivalent volume fraction of ceq = 0.5 and
are compared to the optimal rank–1 composite curve (in blue) with c(1)

a = 0.5.
Figure 5.10 shows a response for a rank–2 composite with ‘optimal’ parameters.
It can be seen that the curve is almost flat and has a horizontal asymptote as
k2 increases. The parameters were optimised to lower this asymptote such that
the inversion of actuation appears with as low a k1 as possible. The parameters
shown to achieve this were a volume fraction of cd = 0.1 and lamination angles
of θ1 = 48◦ and θ2 = 93◦. Figure 5.9 keeps the same volume fraction but
the angles are changed to demonstrate a suboptimal parameter choice with a
θ1 = 30◦ and θ2 = 25◦. These two figures show that when optimal parameters
are picked the rank–2 shows an inversion of actuation with a lower k1 across
almost the whole domain except for very low values of k2. However, when



78 Small strain actuation of electro-elastic laminates

suboptimal lamination angles are picked, the rank–1 composite exhibits the
inversion at lower k1 values over the whole domain. In Fig. 5.9 it is also evident
that for certain suboptimal parameters the domain of inversion of actuation
is enclosed within the curve and there is no inversion of actuation appearing
with larger values of k2. The general trend is that when θ1 > θ2, the domain
is enclosed by the curve; The optimal response for a rank–2 is obtained when
θ2 > θ1. When the two lamination angles in the rank–2 composite are equal,
the matrix and core align with each other creating a composite equivalent to
the rank–1 composite and as such the rank–1 response is obtained as expected.

Figure 5.11 shows the same domain of inversion of actuation with optimal
parameters chosen. In this figure, the volume fractions were changed to
ceq = 0.84 and a cd = 0.17 and the rank–2 curve is plotted with the appropriate
equivalent rank–1. The angles used were θ1 = 50◦ and θ2 = 95◦ for the rank–2
composite and the usual θ1 = 30◦ for the rank–1. The optimal response can be
seen to be almost identical to the one previously shown with a higher percentage
of stiff material, as the graph is only shifted upwards.

Fig. 5.9 Domains showing inversion of actuation for rank–1 and 2 composites
with optimal and suboptimal parameters respectively. The volume fractions
used are c(1)

a = 0.5 the rank–1 and the rank–2 having a ceq = 0.5 and cd = 0.1.
The angles used are θ1 = 30◦ for the rank–1 composite and θ1 = 30◦ and
θ2 = 25◦ for the rank–2 composite.

Figure 5.12 shows how the volume fraction cd of the rank–2 composite, with
a given equivalent fraction, relates to the value of k1 needed for the inversion
of actuation. In this analysis a k2 = 100 was used, as this approaches the
horizontal asymptote displayed when using optimal parameters. For each value
of cd the lamination angles needed to be optimised to give the lowest possible



5.2 Plane-strain actuation of rank–2 laminates 79

Fig. 5.10 Domains showing inversion of actuation for rank–1 and 2 composites
with optimal parameters for both. The volume fractions used are c(1)

a = 0.5 the
rank–1 and the rank–2 having a ceq = 0.5 and cd = 0.1. The angles used are
θ1 = 30◦ for the rank–1 composite and θ1 = 48◦ and θ2 = 93◦ for the rank–2
composite.

k1 value, and each dot represents every case for which this optimisation was
undertaken. When cd → 0 and cd → ceq the rank–2 composite exhibits a rank–1
composite response. This is expected as either the matrix vanishes or the core
has to be made up of only the stiff material for the two respective cases. The
figure shows that for all the volume fractions in between these two values the
rank–2 composite with ideal parameters exhibits the inversion of actuation for
lower values of k1 as compared to an optimal rank–1 composite. The optimal
matrix volume fraction cd is shown to be 0.1 and 0.17 for an equivalent fraction
ceq of 0.5 and 0.84 respectively. Overall this analysis shows that to create a
rank–2 composite capable of enhancing the unconventional response, optimal
parameters to start with are a volume fraction for the rank–2 matrix of around
10-20% and lamination angles of θ1 ≈ 50◦ and θ2 ≈ 95◦.

Next the longitudinal and shear strains in a rank–1 and rank–2 composite
are analysed to better understand the performance of each. The effective
(‘average’) strain in the rank–1 and rank–2 is defined as e1 and e2 respectively.
To analyse the strains the optimal rank–2 composite from Fig. 5.11 is used
with a ceq = 0.84. A fixed value of k2 is chosen and k1 is varied, actuating
both rank–2 and rank–1 composites with a fixed electric field of Eav

2 = 10
MV/m. Figure 5.13 illustrates these results with (a) and (b) having a fixed
k2 of 5 and 20 respectively. The main difference between the rank–1 and
rank–2 composite is that for both the shear and longitudinal strain the rank–2
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composite exhibits horizontal asymptotes as k1 increases whereas the rank–1
composite increases linearly. It can be seen that this asymptote helps to limit
shearing of the composite with low values of k1. Both rank–1 and 2 composites
exhibit very similar shear strains, until the asymptote occurs, which then limits
shearing in the rank–2 composite. In terms of longitudinal strain, after the
occurrence of the inversion of actuation, the rank–2 composite exhibits bigger
deformations until the curve intersects with that of the rank–1 composite, due
to the asymptote. For lower values of k2 (e.g. (a)) this occurs quite quickly, at
around k1 ≈ 250, and the two composites perform similarly. However, as k2

is increased (e.g. (b)) the rank–2 composite exhibits higher deformations and
the intersection point happens at a much higher value of around k1 ≈ 800. As
k2 is increased further the rank–2 composite outperforms the rank–1 in any
physically meaningful domain as the intersection points quickly moves further
away. This analysis shows that the rank–2 composite with optimal parameters
can be used to not only outperform the rank–1 composite in terms of larger
deformations but also limit the shear strain which, in a rank–1 composite, is
higher than the longitudinal strain over the whole unconventional response
domain. It is also to note that the ‘optimal’ parameters used throughout this
chapter have been defined with the goal of optimising the material parameters
and geometrical parameters to hasten the occurrence of the actuation inversion.
It is also possible, if for example the material parameters are predefined, to
optimise the rank–2 geometric parameters such that the rank–2 experiences
its largest negative strains with the given materials. In such a case the angles
and volume fractions would be different to the ones used. An example of this
can be seen by the dotted lines in (b), where the rank–2 composite has been
optimised such that the maximum negative strain is achieved when k2 ≈ 20
and k1 ≈ 400. The parameters used to obtain this curve were cd = 0.05,
θ1 = 56.1◦ and θ2 = 95.4◦. It can be seen that even though the inversion of
actuation happens at a larger value of k1 when k1 = 400 the longitudinal strain
is 2.6x larger compared to the ‘optimal’ rank–2 and 5.6x larger compared to
the rank–1. Although the shear strains are larger as well, it is still not the
leading deformation as would be the case in the rank–1 composite, because of
the previously discussed asymptote.

Figures 5.14 are 3D plots of the longitudinal strain against the two lami-
nation angles for a rank–2 composite. To note that when θ1 = θ2 the rank–1
behaviour is obtained, highlighted in the plots with a blue line. The minima
are marked with green and blue dots, for the rank–2 and rank–1 respectively.
The volume parameters are of cd = 0.17 with an equivalent volume fraction



5.2 Plane-strain actuation of rank–2 laminates 81

of ceq = 0.84. The two figures have different material ratios with (a) having
k1 = 300 and k2 = 20 and (b) having k1 = 300 and k2 = 300. The composite is
actuated at a fixed Eav

2 = 10MV/m. The values chosen are not the optimal
volume fractions, which can be further optimised, but they do show the general
trends. Figure 5.14 (a) highlights that when k2 is smaller than k1 a rank–1
composite will always perform better in the traditional deformation mode
(longitudinal expansion) no matter what lamination angles for the rank–2 are
chosen. In Figure 5.14 (b), when the same material parameters are picked,
k1 = k2 = 300 the rank–2 performs better in both positive and negative strains
given optimal lamination angles. The rank–1 exhibits no inversion, with the
minima occurring when the rank–1 lamination angle θ = 0 and the actuation
strain being close to null. The figures show that a rank–2 configuration can
always be optimised to achieve larger negative strains as compared to the rank–1
composite. Overall the rank–2 composite can outperform the rank–1, but a
careful study of the geometry and material parameters needs to be undertaken
as the results vary greatly with small parameter changes. It is also to note
that the typically studied case is when the material constants k1 and k2 are
equal which allows the rank–2 to enhance the traditional deformation mode;
However, if they are not the same it is erroneous to assume that the rank–2
will always outperform a rank–1 composite and care is needed when picking
the design based on the requirements.

Fig. 5.11 Domains showing inversion of actuation for rank–1 and 2 composites
with optimal parameters for both. The volume fractions used are c(1)

a = 0.84
the rank–1 and the rank–2 having a ceq = 0.84 and cd = 0.17. The angles used
are θ1 = 30◦ for the rank–1 composite and θ1 = 50◦ and θ2 = 95◦ for the rank–2
composite.
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Fig. 5.12 Domain showing inversion of actuation for rank–1 and 2 composites
with optimal parameters as cd is varied against k1. A value of k2 = 100 is used
and lamination angles are optimised for each dot.

5.3 Viability given currently available materi-
als

In the previous sections an analysis was undertaken by changing the material
parameters k1 and k2 to show the whole range of responses. However, it is
also important to know what materials are currently available to be used, to
understand the viability of such composite devices with inverse actuation mode.
This section offers a brief view of materials that have been studied which could
potentially be used in a composite device.

Following the above analysis, a pair of materials is required, one soft and
with low dielectric permittivity and another which is stiffer and has a much
higher dielectric permittivity. Ideally only the permittivity ratio k1 is increased
in the second stiffer material. However, an increase in permittivity is usually
achieved by implanting some filler material in a soft elastomer matrix which in
turn also causes an increase in stiffness. For the soft material a material without
any filler is generally recommended either made from silicon or acrylic. It is
currently accepted that acrylic elastomer tends to be the picked material for
large strain applications, as shown by Michel et al. [81]. The most commonly
used commercially available elastomer seems to be VHB™ 4910, with other
common commercial brands being THERABAND™, OPPO BAND™ among
others. Custom synthetic elastomers can also be used and in general these
materials exhibit similar properties. Various researchers have categorised these
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(a) k2 = 5

(b) k2 = 20

Fig. 5.13 The longitudinal and shear strains are shown against a varying k1 of
a rank–1 and rank–2 composite, actuated at a fixed Eav

2 = 10MV/m. Optimal
parameters are used with an equivalent volume fraction of ceq = 0.84 and figures
(a) and (b) having a fixed k2 of 5 and 20 respectively.

materials showing that generally they exhibit a dielectric permittivity constant
ε between 2-10 and a shear modulus µ between 50kPa and 1MPa [82–86].
Overall the material parameters used throughout this thesis of µ = 100kPa
and ε = 4.68 represent a good approximation for a generic acrylic elastomer to
be used as a soft phase material.

It was shown how in the rank–1, with the more realistic stress-free config-
uration, the k2 needs to be kept low for realistic values of k1. In the rank–2
configuration this requirement is nullified as shown in Fig. 5.11, which makes
the rank–2 composite a much more viable configuration to achieve the inverse
deformation mode. When looking for a suitable stiff material the threshold for
the rank–2 composite requires a k1 > 40. Two strategies have been developed
to improve the dielectric constant of elastomers [87]. The first is blending the
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elastomer material with a highly polarizable ceramic such as barium titanate
[88, 89], titanium dioxide [90], or calcium copper titanate [91]. This method
does not seem to provide very high permittivities, with most of these materials
having a k1 < 5. The second method consists of improving the permittivity by
the addition of conductive fillers into the matrix, such as carbon nanotubes
[92–94] and graphene sheets [95–97], to form conductive filler/polymer com-
posites. These materials seem much more suitable, with permittivity ratios
reaching the hundreds. Two examples of these are shown with Tian et al. [95]
proposed graphene filler material with a k1 = 400 and a k2 = 65, and George et
al. [92] proposed a carbon nanotube composite with a k1 = 170 and a k2 = 12.
Both of these materials would be suitable in a rank–2 composite to achieve the
unconventional response with the first of these just about being able to achieve
the inversion of actuation in a rank–1 stress-free composite. Overall it can be
seen that the rank–2 composite is much more realistic in providing the studied
inverse actuation. New materials, studied with a focus on high permittivities,
could in the future allow a rank–1 composite with inverse actuation to also be
viable.
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(a) k1 = 300, k2 = 20

(b) k1 = k2 = 300

Fig. 5.14 3D plot of the longitudinal strain as θ1 and θ2 are varied. The blue
line shows the loading path for a rank–1 composite with the dots showing
the minimum strains. The two figures have different k1 and k2 values. A
parameter of cd=0.17 is used with an equivalent volume fraction of ceq = 0.84.
The composite is actuated at a fixed Eav

2 = 10MV/m.





Chapter 6

Concluding Remarks

This thesis aids the design of DE devices by improving the overall understand-
ing of actuation and stability of various configurations. To reach this goal
three ways to actuate an elastomer slab devices were introduced (possibly
pre-stressed), namely, actuation by means of (i) attached compliant electrodes,
(ii) sprayed charges onto the opposite surfaces and (iii) fixed electrodes between
which the device ‘floats’ in vacuum and expands transversally. A tubular
‘floating’ elastomer configuration was also introduced. Particular attention
was taken in analysing the fundamental paths of the more novel ‘floating’
configurations. The results showed how the elastomer contracts longitudinally
and radially in the slab and tubular configuration respectively, as opposed
to expanding which appears in the classical configurations. An analysis of
the onset of electro-mechanical instability and the approach to the ‘expansion
limit’ was undertaken for both floating geometries, showing how the various
geometrical parameters can affect the fundamental loading paths and the onset
of instabilities. Experimental results would be needed to confirm this onset
of electro-mechanical instability. These have been done for the traditional
compliant electrode configuration but up to date no experiments have been
done for a floating configuration.

In coupled mechanics, the investigation of surface instabilities is an im-
portant step toward the complete understanding of the type of bifurcations
occurring in a homogeneous body when subjected to external stimuli. This
thesis assesses plane-strain electro-elastic surface instabilities and, in particular,
with the aim of assessing the onset of surface instabilities in the ‘floating’ elas-
tomer configuration and the effect of the stiffness of electrodes in the compliant
electrode configuration on the stability domain. Surface instability is tackled
for the three actuation modes by specialising the relevant incremental theory,
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where linearised fields are superimposed on the finite-strain path. The stability
domains are obtained in the plane ‘longitudinal stretch–dielectric displacement
(or voltage jump)’. A first conclusion is that among the three modes, it was
shown that the instability is more sensible to pre-stress for specimens in the
‘floating’ configuration, while a half-space deformed by sprayed charges is more
stable than the same actuated by voltage. Surface-coating models can be
profitably adopted to investigate the effects of electrodes on surface instabilities.
Electrodes composed of three different materials, currently employed in DE
devices, were considered and picked to show a wide range of possible stiffnesses.
Their implementation in the model considerably changes the stability domain
which is significantly reduced when the half-space contracts (a longitudinal
stretch of less than one). New bifurcation modes come into play in this enriched
approach and each one has been studied and characterised by analysing various
incremental fields obtained solving the eigensystem governing the problem.

Composite elastomers are of particular interest in designing DE devices as
they are able to enhance the characteristics of the deformation when actuated. It
has been previously shown that laminated composites can exhibit improvements
in the actuation strain of more than an order of magnitude. This thesis showed
that with the right geometrical and material parameters a laminated composite
can also exhibit an inversion of actuation, where the elastomer, in a compliant
electrode configuration, expands perpendicularly to the electric field as opposed
to the typical contraction. A careful study, using a small strain model in
plane-strain conditions, was undertaken to categorise the onset of this mode
of actuation in regards to the geometrical and material parameters. At first
a rank–1 laminate was examined using two different boundary conditions, i.e.
aligned loading and macroscopic stress-free conditions. It was shown how in
the aligned loading boundary conditions the stiffness ratio between the softer
and stiffer materials had almost no effect and the onset of the inverse actuation
mode. The onset depends largely on the ratio of permittivities between the
two materials. The aligned loading boundary conditions also showed significant
changes in the orientation angle of the principal strains and the principal
strain trend around the onset of the inverse actuation mode. This allowed the
mechanics causing the inverse actuation deformation to be quite evident. In the
macroscopic stress-free boundary condition, it was shown in contrast that the
stiffness ratio plays a big role in determining the onset of the inverse actuation.
The mechanics causing the inverse actuation mode are not as evident and
are caused by a gradual change in the strain orientation angles of each phase
combined with the principal strains linearly increasing. The macroscopic stress-
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free condition also exhibits large macroscopic shear strains which make it the
dominant deformation. The analysis of a rank–2 laminate under macroscopic
stress-free boundary conditions followed, which was compared to the rank–1
results. Overall it was shown that the rank–2 laminate was able to outperform
the rank–1 laminate, allowing for much lower permittivity and stiffness ratios to
be used, while still obtaining the inverse actuation mode. The deformation was
also analysed, showing that the rank–2 limited the shear strain and enhanced
the longitudinal contraction. A careful study of the parameters is needed to
obtain these results as the rank–2 laminate is very sensitive to changes in
both the geometric and material parameters. As such a general guideline was
provided to aid the design of rank–2 laminates with the inverse actuation mode.
An analysis of currently researched materials showed that currently only one
material could potentially be used to obtain the inverse actuation mode for
the rank–1 laminate, with small strains when actuated. The rank–2 laminate,
due to the enhanced performance, showed a much wider range of potentially
viable materials. As such, with currently available material technology, a
rank–2 laminate composite is required for devices trying to exploit this inverse
actuation mode. Future discoveries in material science, providing materials
with higher permittivities without a significant increase in stiffness, would
enhance this mode of actuation further and potentially make a rank–1 laminate
design viable.
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Appendix A

Numerical scheme to solve
tubular elastomer device

In section 3.2 the floating elastomer tube was introduced making a distinction
between two boundary condition cases, the case with λz constant and the
case with λz(r) as a function of the radius. A DAE (eqs. (3.23), (3.31) and
(3.32)) was introduced with boundary conditions for each case which require
a numerical approach to solve. This appendix will go into detail about the
approach used by the author to solve the DAE to obtain the results illustrated
in section 3.2.4.

Case with λz constant

The simpler case is when λz is constant throughout the deformation. First the
geometrical values in the undeformed configuration (a, b, c0 and d0), together
with λz are picked. The material for the elastomer tube also needs to be chosen,
meaning ε and µ need to be specified. To start the process the desired actuation
potential difference Φ is chosen and an initial guess for the deformed inner
radius c is made. The deformed outer radius d and the hoop stretch λθ(r) are
given by eqs. (3.20) and (3.21) in terms of c. The boundary conditions are
given by eqs. (3.34). An initial guess of the outer boundary condition τr(d) is
made and the DAE is then numerically solved to obtain the function τ(r) such
that the domain is bounded by the initial guess of c and the initial guess of
the outer boundary conditions. The domain of the function gives an updated
value of d which satisfies the guessed outer boundary condition. The continuity
of volume due to the incompressibility of the elastomer is used, by checking
the undeformed volume against the deformed volume, using the guessed c and
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the updated d. The process is iterated by altering the guess for c until the
difference in the two volumes is sufficiently small (< 1% was used). The guessed
outer boundary condition is then checked against the value obtained using
eq. (3.21)2 and updated accordingly. The process is repeated until both the
continuity and outer boundary conditions are sufficiently satisfied (< 1%).

During the numerical study it became apparent that the inner deformed
radius c varied linearly with the outer boundary conditions τr(d), with one
such case shown in Fig. A.1. Once a few points are calculated and a linear
trend can be established, this relation can be leveraged to simplify the process;
Instead of guessing c and τr(d) separately, a pair of numbers can be obtained
from the linear regression. In this case the pair is used as a guess and Φ varied
(instead of c) to quickly get to a close solution that satisfies the continuity of
volume. From there only small alterations of c and τr(d) are needed to obtain
a more exact solution for the given Φ.

Fig. A.1 The linear relation between c and τr(d) shown using an elastomer with
an initial geometry given by a = 0.1, b = 0.2, c0 = 0.135 and d0 = 0.165 and
λz = 1 is constant throughout. The dotted line shows linear regression and
dots mark the numerical solutions. The linear equation is shown on the graph.

Case with λz(r) as a function of radius

When looking at the case with λz(r) as a function of radius the general method
remains the same. The DAE will now have an additional unknown variable
that requires using eq. (3.36) to solve for. The previous procedure is followed,
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however, now d also requires a λz guess. As the elastomer is thin a value for λz

at mid-volume is guessed and then the DAE is solved, as before, to obtain λz(r).
All the guesses are then checked as before, using the continuity of volume and
the outer boundary condition, including the guess of λz at mid-volume with
the newly solved function λz(r). To note that, as mentioned previously, the
continuity of volume now requires integration using eq. (3.37). The procedure
is again repeated until the conditions are sufficiently satisfied (< 1%). As Φ
increases, it becomes more difficult to satisfy the outer boundary condition as
any small change of λz or c causes a big change in the Maxwell stress. Because
of this, it might be required to relax the outer boundary condition criteria to
obtain a solution.

As before it became evident for this case as well that there was a linear
trend between the inner deformed radius c and the outer boundary conditions
τr(d). This can be leveraged, again, to quickly get a close solution that satisfies
the continuity of volume. An example of the linear relation for this case is
shown in Fig. A.2.

Fig. A.2 The linear relation between c and τr(d) shown using an elastomer with
an initial geometry given by a = 0.1, b = 0.2, c0 = 0.135 and d0 = 0.165 and
λz(r) is a function of the radius. The dotted line shows linear regression and
dots mark the numerical solutions. The linear equation is shown on the graph.





Appendix B

Rank–2 solution for macroscopic
strain

Here a method is provided to solve the rank two composite eq. (5.18), following
the one seen in Tian [98]. The problems that are encountered when trying to
solve the equation are that it can be tricky to obtain Cav−1 and the average
elastic concentration tensor Gav. In this method these quantities are calculated
implicitly. The jump conditions and the average quantities, eqs. (5.3) and
(5.4) are used together with the governing eqs. (5.14) to obtain the following
equations

caea + cbeb = eav, m0 · (ea − eb)m0 = 0,
(Caea + AaEa ⊗ Ea − Cbeb − AbEb ⊗ Eb)n0 = 0. (B.1)

Plugging the first of these equations into the second two gives

m0 · eam0 = m0 · eavm0,

(caCb + cbCa)ean0 = Caeavn0

−ca
[
Aa(gaEav ⊗ gaEav) − Ab(gbEav ⊗ gbEav)

]
n0.

(B.2)

A column vector can be defined from any 2 x 2 matrix ψ which will be denote
as ψ̂ and is given by

ψ̂ =


ψ11

ψ22
1√
2(ψ12 + ψ21)

 . (B.3)

A 4th order tensor can also be turned into a 2d representation with the
appropriate 2d matrices becoming a column vector. An example of this is seen
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with the constituent relation linking the stress and strain components, which
can be expressed with the 2d matrix of the following form,


S11

S22√
2S12

 =


C1111 C1122

√
2C1112

C2211 C2222
√

2C2212√
2C1211

√
2C1222 2C1212



e11

e22√
2e12

 . (B.4)

Using this notation T is defined as the row vector generated from the matrix
m0

im
0
j . For the construct the following matrices also need to be defined,

L(i)
mn = Ab

ijklg
b
kmg

b
lnnj − Aa

ijklg
a
kmg

a
lnnj

N
(i)
kl = (cbCa

ijkl + caCb
ijkl)nj

O
(i)
kl = Cb

ijklnj, (B.5)

which come from the various components of eq. (B.2)2. Next the following
matrices are constructed using the row vector forms of the newly defined
matrices L, N and O, as follows

P =


0

cbL̂(1)

cbL̂(2)

 , R =


T

N̂ (1)

N̂ (2)

 , Q =


T

Ô(1)

Ô(2)

 , (B.6)

where the 0 in the P expression is a 3 component null vector. Equation (B.2)2

can now be rewritten using the constructed matrices in a simpler manner,

Rêa = Qêav + PẼ, (B.7)

where Ẽ is the column vector of the matrix Eav ⊗ Eav. Solving for êa gives,

êa = R−1Qêav +R−1PẼ. (B.8)

W is next defined as the matrix form of the fourth order tensor,

caAa
ijklg

a
kmg

a
ln + cbAb

ijklg
b
kmg

b
ln. (B.9)

This is then used with the constructed quantities to obtain an expression of the
average total stress (eq. (5.14)2), using the expression of êa and the avarage
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strain relationship eq. (5.14)3 as,

Ŝav = caŜa + cbŜb = caĈaêa + cbĈbêb +WẼ

= [Ĉb + ca(Ĉa − Ĉb)R−1Q]êav + [ca(Ĉa − Ĉb)R−1P +W ]Ẽ. (B.10)

As previously shown, the total stress is made up of two uncoupled terms,
the mechanical and electrical terms. By observation we can thus see that the
effective coupling and elastic modulus tensors for the composite can be obtained
using the constructed variables as follows,

Ĉav = Ĉb + ca(Ĉa − Ĉb)R−1Q,

Âav = ca(Ĉa − Ĉb)R−1P +W. (B.11)

These moduli can now be used in the expression,

êav = Ĉav−1(ÂavẼ) (B.12)

to obtain the average strain. As can be seen it is now trivial to obtain the
inverse of Ĉav and the use of the modulus G, which was previously used to
calculate Aav, has been incorporated implicitly in the construct.




	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Electro-active polymers
	1.2 Instabilities
	1.3 Literature Review
	1.3.1 Chapter 2 - Electroelasticity for homogeneous materials
	1.3.2 Chapter 3 - Electro-elastic boundary value problems
	1.3.3 Chapter 4 - Electro-elastic surface instabilities
	1.3.4 Chapter 5 - Small strain actuation of electro-elastic laminates


	2 Electroelasticity for homogeneous materials
	2.1 Kinematics and field equations
	2.2 Electro-elastic constitutive equations
	2.2.1 Neo-Hookean elastic model
	2.2.2 Gent elastic model
	2.2.3 Electro-elastic model

	2.3 Incremental electro-elasticity

	3 Electro-elastic boundary value problems
	3.1 Three electro-elastic problems for a thin planar elastomer
	3.1.1 Voltage controlled actuation
	3.1.2 Charge-controlled actuation
	3.1.3 `Floating' elastomer in vacuum
	3.1.4 Analysis of the electro-elastic response of the actuated `floating' elastomer in vacuum

	3.2 The floating tubular elastomer
	3.2.1 Configuration of the tubular elastomer
	3.2.2 Electro-mechanics of the system
	3.2.3 Boundary conditions of the problem
	3.2.4 Analysis of the electro-elastic response of the actuated `floating' tubular elastomer in vacuum


	4 Electro-elastic surface instabilities
	4.1 Governing Equations
	4.2 Surface instabilities in three elastomer devices
	4.3 Surface coating theory for stiff electrodes
	4.4 Effect of the stiffness of the electrode on surface instabilities

	5 Small strain actuation of electro-elastic laminates
	5.1 Plane-strain actuation of rank–1 laminates
	5.1.1 Small deformation linear electro-elasticity
	5.1.2 Actuation under `aligned' loading
	5.1.3 Actuation under macroscopic stress-free conditions

	5.2 Plane-strain actuation of rank–2 laminates
	5.2.1 Homogenisation of rank–2 laminates
	5.2.2 In-plane contraction of rank–2 laminates

	5.3 Viability given currently available materials

	6 Concluding Remarks
	References
	Appendix A Numerical scheme to solve tubular elastomer device
	Appendix B Rank–2 solution for macroscopic strain

