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Abstract: Clinical text often includes numbers of various types and formats. However, most current
text classification approaches do not take advantage of these numbers. This study aims to demonstrate
that using numbers as features can significantly improve the performance of text classification
models. This study also demonstrates the feasibility of extracting such features from clinical text.
Unsupervised learning was used to identify patterns of number usage in clinical text. These patterns
were analyzed manually and converted into pattern-matching rules. Information extraction was
used to incorporate numbers as features into a document representation model. We evaluated
text classification models trained on such representation. Our experiments were performed with
two document representation models (vector space model and word embedding model) and two
classification models (support vector machines and neural networks). The results showed that
even a handful of numerical features can significantly improve text classification performance. We
conclude that commonly used document representations do not represent numbers in a way that
machine learning algorithms can effectively utilize them as features. Although we demonstrated
that traditional information extraction can be effective in converting numbers into features, further
community-wide research is required to systematically incorporate number representation into the
word embedding process.
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1. Introduction

In natural language processing (NLP), text classification is defined as a problem of
learning a classification model that maps documents to classes, which are human defined
and application specific [1]. The performance of such a model depends on multiple factors,
including the quality and size of the training data, the choice of machine learning algorithm
and its hyperparameters and the features used by the algorithm. No single algorithm can
outperform all other algorithms on all possible text classification tasks [2,3]. In other words,
no single algorithm will always be the best choice, hence it is important to experiment with
different algorithms and hyperparameters to find the best combination for a particular task.
Nonetheless, greater performance improvements can often be gained by exploiting domain-
specific text features regardless of the machine learning algorithm used. Unfortunately,
such features are often neglected in favor of ‘one size fits all’ approaches [4].

Clinical text contains extensive numerical information of various types and formats
(see Table 1 for examples). Unfortunately, most clinical text classification approaches fail
to take advantage of the corresponding features. For instance, let us have a look at two
document representation models and how they fail to capture numerical information.
Specifically, we will discuss a vector space model and a word embeddings model.

A vector space model is a mathematical model in which text documents are represented
as vectors whose dimensions correspond to terms [5]. If a term occurs in a given document
its value in the vector is positive, otherwise, it is set to zero. The definition of a term
depends on a specific application. For example, it can be a single word, a keyword, a
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phrase or an n-gram. Most often, words are chosen to be the terms, in which case the
dimensionality of the vector, also called a bag of words (BoW), matches the number of
distinct words occurring in the training corpus. As a result, we have long sparse vectors.

Table 1. Different types of numerical information reported in clinical narratives.

Type Description Example Value

vital signs Numerical measurements of vital signs, which are
essential for monitoring a patient’s health status.

body temperature 37.5 ◦C

blood pressure 153/74

oxygen saturation levels 98%

laboratory
results

Numeric values from laboratory tests, including blood
tests, urine tests or imaging reports.

white blood cell count 7.79

blood glucose level 125

lesion measurement 1.2 × 0.9 cm

medication
dosages

The amount of medication administered, frequency of
administration or duration of treatment, which are crucial
for tracking and managing patient care.

dose 250 mg

frequency q12h

duration ×6 days

body
measurements

Anthropometric measurements, which help assess a
patient’s physical condition and track changes over time.

height 5 feet 4 inches

weight 264 pounds

flexion 0–120 degrees

scores and
scales

Scores or scales used to assess various conditions,
symptoms or risks.

Oxford knee score 34

tumor stage stage II

Wells score 4

temporal
information

Temporal information relevant for tracking the
timeline of events, the duration of symptoms or
the length of hospital stays.

date 9 May 2023

timestamp 10:47 a.m.

duration for two weeks

Stopwords are common words that do not add much meaning to a document. For
that reason, but also to reduce the dimensionality of document vectors, stopwords are
often removed. Whether or not numbers are considered as stopwords often depends on
the specific NLP task considered. Even though they do add meaning to a document, more
often than not, numbers are removed for a practical reason of reducing the dimensionality
of the vector space. Another reason against using numbers as features in the vector space
model is that they bear no meaning without context. For example, the number 10 can have
many different meanings depending on the context, e.g., the base of the decimal numeral
system, the number 2 in the binary decimal system, the number of commandments, the
Prime Minister’s official residence, etc. Therefore, it makes little sense to use the number 10
as a term in the vector space model.

Word embeddings were introduced to address the limitations of traditional BoW
models. They are dense, low-dimensional vectors that can be used to represent the meaning
of words in a vector space, which is learnt from their distribution in a large corpus of text [6].
By capturing the meaning of words using low-dimensional vectors, which are easier to
use by machine learning algorithms, word embeddings can support a variety of NLP tasks
including text classification. Each number can have its own word embedding. Numeracy-
preserving embeddings are designed specifically to capture the numeric properties of
numbers [7]. This is achieved by training the word embeddings on a dataset of text that
includes numbers [8]. The training data are used to learn the relationships between numbers
and other words. This allows the word embeddings to capture the numeric properties of
numbers, such as their magnitude and order.

Individual word embeddings can be aggregated to represent a whole document
in the same vector space. Some common document embedding techniques [9] include
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simple averaging, weighted averaging, hierarchical pooling, or sequence modeling with
a neural network (NN). Unlike recurrent NNs, which process a document sequentially,
transformer-based networks process the entire document simultaneously, which allows
for better utilization of contextual information. Like the underlying word embeddings,
document embeddings represent dense, low-dimensional vectors whose dimensions aim to
capture semantic and syntactic relationships between words, but whose exact interpretation
is not always clear or intuitive. While many dimensions in word embeddings may have
meaningful interpretations, not all dimensions have clear semantic or syntactic explanations.
Some dimensions might capture noise, rare linguistic patterns or other factors that are not
easily interpretable. This makes it difficult to interpret how individual numbers mentioned
within a document are actually represented in its overall embedding.

Typed information is information that has been classified into a specific type, which
can be in turn used to describe its meaning and to help with its processing. Context used to
interpret a number can be used to infer its type. Let us consider the hypothetical example
provided in Figure 1. It mentions five numbers, which have been highlighted in the same
color as the corresponding context. We named the type of this information in the subscript.
Typed representation of numbers would mean assigning their values to specific features
that represent their types. Figure 2 illustrates how the numbers in typed representation can
still be interpreted following the removal of their context. Typed representation of numbers
can be used to extend a document representation model. This leads us to the primary aim
of this study, which is to demonstrate that numbers as features can significantly improve
the performance of text classification.
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The secondary aim is to demonstrate the feasibility of extracting such features. In NLP,
this represents an information extraction (IE) problem, which deals with the automatic
extraction of structured information from unstructured text [10]. A template consists of
a number of slots, each of which represents a specific piece of information that needs to
be extracted. Templates need to be tailored to a specific application, which makes them
difficult to create. To address this problem, the first objective of this study is to identify
different types of numerical information in text in an unsupervised manner. Trying to relate
this to our previous IE example shown in Figures 1 and 2, we want the data to inform
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the structure of the IE template (the header of the table) as opposed to designing it in a
top-down manner. The second objective is to populate the template automatically with
answers extracted from text. The third objective is to integrate these features into a text
classification model.

Finally, these objectives will enable us to address the primary aim by allowing us to
measure the impact of numerical features on the performance of text classification. The
key research question therefore is what performance improvements can be gained by
incorporating automatically extracted typed numerical information into a text classification
model? We can answer this question by comparing the results to the baseline, which
represents a typical text classification model based on either vector space model or word
embeddings model. The aim is not to implement the highest performing text classification
system but to make a relative improvement and quantify it.

2. Related Work

A recent review, which summarized and contextualized research on numeracy in NLP,
concluded that despite huge advances in large language models, this community is still not
only far from reaching a holistic solution to numeracy but far from even attempting it [11].
When they are not filtered out, numbers are usually either all collapsed into a generic token
or tokenized into subwords. Either representation has proven to be inadequate for NLP
tasks such as question answering (QA) [12].

Scientific notation has been shown to be more amenable to word embeddings than
decimal notation [13], as language models can learn to attend to the exponent over the
mantissa [14]. In addition, embedding characters, in this case digits, is more effective than
embedding subwords as the positions of digits can be used to capture scales [15–17].

Nonetheless, it is still difficult to train continuous value functions for a large range
of numbers [15]. To reduce the complexity of this task, numbers can be first binned and
then embeddings learnt for each bin [13,18]. Binning can also help with the scarcity of
numbers. There are infinitely many numbers, but their individual mentions in finite training
corpora are next to none giving rise to the out-of-vocabulary problem for most numbers.
Previously mentioned tokenization into subwords and characters can help address this
issue. Alternatively, embeddings can be learnt for a finite set of prototype numbers, and
embeddings of numbers calculated as a weighted average of prototype embeddings [19].

Still, numeracy-preserving embeddings need to be trained on corpora that include
numbers [7,8]. Some domains such as science [20] and finance [18] provide a challenge as
well as an opportunity to learn how to embed numbers. Our brief overview of different
types of numbers used in clinical narratives (see Table 1) shows that the majority of them
are grounded in units. Such numbers are particularly challenging to model as they need to
be interpreted in context [11].

In particular, medications are associated with multiple grounded numbers such as
dosage (the amount of a single medication used in each administration, e.g., two puffs,
one tablet, 200 mg), frequency (how often each dose of the medication should be taken,
e.g., daily, ×1, once a week) and duration (how long the medication is to be administered,
e.g., one week, indefinitely, until the follow-up appointment). The long track record in
clinical NLP can be used to facilitate access to training data required for modelling of
such numbers. Annotated data already exist for some types of numbers (e.g., medication
dosages [21]). Moreover, there are also open-source tools tested on such data that can
be used to annotate much larger silver standards [22]. Such data can be used to develop
and evaluate approaches to preserving numeracy in representation of clinical narratives.
To encourage further research in this area, we hereby provide evidence of the benefits of
paying special attention to numbers in clinical NLP.
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3. Materials
3.1. Referral Letters

A referral letter is a document written by a healthcare provider to recommend a patient
to another healthcare provider for further care. The letter should include information
about the patient’s medical history, current condition, and why the referral is being made.
A referral letter is an important part of the healthcare system. It helps to ensure that
patients receive the care they need from the right providers. Button et al. [23] conducted
a prospective longitudinal study to identify factors from referral letters that can predict
which patients with knee or hip pain would receive optimal care at the time of consultation.
The study included patients who met specific criteria: they were referred by their general
practitioner due to knee or hip pain, they were 18 years of age or older, they provided
informed consent, and they were fluent in English. The study excluded patients with pain
resulting from other health conditions like rheumatoid arthritis, those who had undergone
joint replacement surgery, those who had received treatment at the primary-secondary care
interface for the same condition within the last 6 months, or those who had undergone
surgery for the same joint within the last 12 months. Patients were recruited from a
single local health board, an administrative unit within the National Health Service (NHS)
in Wales, which serves approximately 445,000 individuals. Between August 2016 and
January 2017, a total of 634 participants were recruited, and their referral letters were
collected. Ethical approval was gained from the national research committee as well as the
institutional review board. All participants gave written informed consent.

The study found that 30% of patients did not receive the best possible care for knee
and hip pain because some key information was not included in their referral letters. The
patients’ body mass index (BMI) was identified as the best predictor of both how well they
would respond to treatment and how much pain they would experience. BMI is a measure
of body fat based on height and weight, which is calculated by dividing weight in kilograms
by height in meters squared. A person with a BMI of 30 or higher is considered obese. The
study concluded that BMI should be included in a minimum information standard when
referring an individual for specialist opinion for knee or hip pain.

We identified an opportunity to bridge the gap between this recommendation and
its application in practice by automatically classifying patients’ obesity status from their
referral letters. We used a subset of 386 patients for whom both a referral letter and an
independently collected BMI was available. BMI was used to label the referral letters
with the patient’s obesity status. The data were shuffled and split randomly into two
datasets used for training (≈78%) and testing (≈22%), respectively. Table 2 describes the
distribution of labels, which are reasonably well balanced between positive (≈47%) and
negative (≈53%) labels. Table 3 describes the length of referral letters, which is relevant for
the choice of a document embedding model, which will be discussed later in Section 4.4.2.

Table 2. Distribution of labels in the NHS dataset.

Subset
Obesity Label

Total
True False

Training 143 157 300
Testing 38 48 86

Total 181 205 386

3.2. Hospital Discharge Summaries

Admittedly, the NHS dataset is relatively small with the test set containing less than
100 documents in total. In addition, the length of each document is relatively small, thus
limiting the scope for reporting numerical information. We looked for an alternative dataset
to test our hypothesis that numerical features can significantly improve text classification
results and test the generalizability of our approach.
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Table 3. The length of documents in the NHS dataset. The length is calculated as the total number of
tokens in a document.

Subset Minimum Average Maximum Standard Deviation

Training 163 709 1818 313
Testing 162 689 1827 298

Informatics for Integrating Biology and the Bedside (i2b2) research consortium of
academic and industry partners organized a series of competitions held to advance the
state of the art in NLP for clinical data. Back in 2008, they organized the obesity challenge,
a text classification task that focused on obesity and its co-morbidities [24]. The goal
of the challenge was to evaluate systems on their ability to recognize whether a patient
was obese and what co-morbidities they exhibited. The data for the challenge consisted
of de-identified hospital discharge summaries from Partners Healthcare, a non-profit
healthcare system based in Boston, Massachusetts with more than 60,000 employees and
1000 physicians. The discharge summaries summarize a patient’s hospital stay and typically
include information about the patient’s diagnosis, treatment, and discharge instructions.

For each document, the challenge organizers identified whether obesity and any co-
morbidities were mentioned in the document, and if so, whether they were stated explicitly
or implied. The corresponding labels were referred to as textual and intuitive judgments,
respectively. Each label could take one of four values: present, absent, questionable, or
unmentioned. To make the classification task directly comparable to that based on the
NHS dataset, we focused specifically on the intuitive obesity label and retained only those
documents that were labeled either present or absent. We kept the organizer’s original
division of data into training (≈60%) and testing (≈40%) datasets. Table 4 describes the
distribution of labels, which are reasonably well balanced between positive (≈43%) and
negative (≈57%) labels. Table 5 describes the length of discharge summaries.

Table 4. Distribution of labels in the i2b2 dataset.

Subset
Obesity Label

Total
True False

Training 285 379 664
Testing 192 255 447

Total 477 634 1111

Table 5. The length of documents in the i2b2 dataset. The length is calculated as the total number of
tokens in a document.

Subset Minimum Average Maximum Standard Deviation

Training 724 7312 26,047 3226
Testing 1584 7357 22,441 3135

4. Methods
4.1. Preprocessing

Preprocessing text prior to its classification has been shown to be as important as
feature extraction, feature selection and classification steps [25]. Both datasets were prepro-
cessed using a linguistic preprocessing and normalization module originally developed for
hospital discharge summaries [26] and later adapted for referral letters [27]. Its main pur-
pose is to streamline subsequent text analysis by regularizing the text content. In addition
to standard linguistic preprocessing operations such as tokenization, sentence splitting and
lowercasing, it handles punctuation in clinical narratives (e.g., by removing period from
abbreviations such ‘M.D.’ and ‘E. coli’) and expands enclitics (e.g., has not is expanded to
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‘has not’). A selected subset of words and phrases are replaced by their representatives
based on a set of local lexica. For example, the words ‘woman’ and ‘lady’ are replaced
by the word ‘female’, the brand names of insulin are replaced by the word ‘insulin’, etc.
Here, special consideration is given to acronyms and abbreviations. For example, the
abbreviations ‘w/o’, ‘YOF’, ‘DMII’ are replaced by without, ‘year old female’, and ‘diabetes
mellitus 2′, respectively.

4.2. Feature Engineering

Feature engineering is the process of transforming raw data into features that are
more informative and relevant for machine learning algorithms. It is a complex and time-
consuming process, but it can significantly improve the performance of a machine learning
model in terms of its accuracy, reliability and robustness. Top-down (or hypothesis-driven
or knowledge-driven) feature engineering starts with a high-level understanding of the
problem and then identifies features that are relevant to the domain knowledge. This
approach can lead to more accurate models, as it takes into account the domain knowledge
of the problem. However, it can also be expensive, as it requires a deep understanding of the
domain knowledge. Bottom-up (or data-driven) feature engineering starts with individual
features and then tests each one individually for predictive power. This approach can be
more efficient, as it does not require as much domain knowledge, but it can easily overlook
important features.

The best approach to feature engineering will vary depending on a specific problem. In
general, it is a good idea to use a combination of both bottom-up and top-down approaches.
This will help to ensure that all important features are identified and that the most relevant
ones are used by the model. We suggest an inside-out approach to feature engineering,
where a bottom-up up approach is used to identify potential features and a top-down
approach is used to interpret and process them.

In this study, we are looking to use references to numbers as features in text classi-
fication. The bottom-up part of feature engineering is concerned with the availability of
numbers in text, whereas the top-down part is concerned with their interpretation in order
to assign them to particular types as discussed in the introduction.

Figure 3 describes the overall process of feature engineering. The input consists of
a preprocessed corpus of training documents. In order to consider numbers written as
words, such words are numerized, i.e., converted to the corresponding Arabic numerals.
Numbers are then located in text using a regular expression. Each number is anchored by
inserting a special token. By extracting its concordance, we effectively extract contexts of
the corresponding numbers. Concordance lines are clustered to facilitate their subsequent
analysis whose goal is to identify pertinent numerical features. The analysis is the only
manual operation, with the rest being fully automated. The following subsections describe
these processing steps in more detail.
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4.2.1. Numerization

Numbers can be written in several different ways, depending on the notation system,
e.g., Arabic numerals (e.g., 34), Roman numerals (e.g., XXXIV), number words (e.g., thirty-
four), scientific notation (e.g., 3.4e-6), fractional notation (e.g., 3

4 ), decimal notation (e.g.,
0.75), etc. Numbers can represent quantity, measure or label. For the purpose of feature en-
gineering, we are only interested in numbers that represent quantity or measure. In clinical
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narratives, Roman numerals are normally used only to label list items. Similarly, scientific
notation would be more relevant for scientific articles than clinical notes. Therefore, we
focus only on the most prevalent ways of writing numbers in clinical narratives, and these
include Arabic numerals, decimal notation and word numbers. Figure 1 provides examples
of such numbers. The first two types (e.g., 22 and 44.5) can be stored directly as integer or
float values of the corresponding features. Word numbers (e.g., fifty-five), however, need to
be converted into the corresponding numbers (e.g., 55). This is performed as the first step
in our feature engineering process, which we refer to as numerization. We implemented it
using a series of regular expressions.

4.2.2. Anchoring and Concordancing

In the next step, a regular expression is used to locate numbers and anchor them
using a special token that is lexically distinguishable from all other tokens. Anchoring
establishes fixed reference points or markers that can be used to identify, extract and
manipulate relevant information efficiently. We used the anchor to extract its concordance,
i.e., a list of all of its occurrences in the corpus, along with the surrounding context. In
corpus linguistics, concordances are often used to study the usage of words and phrases,
to identify patterns in language, and to find examples of how words are used in different
contexts [28]. In our case, we use a concordance to analyze the usage of numbers and define
the corresponding features.

4.2.3. Clustering

To facilitate such analysis, we automatically cluster similar concordance lines, which
makes it easier to identify and interpret a particular pattern of usage. To cluster lines based
on their meaning and account for possible variation of terminology used, we embed each
line using Sentence-BERT (SBERT) [29], a framework for learning sentence embeddings
using the Bidirectional Encoder Representations from Transformers (BERT) model. BERT
is a pre-trained language model that has been trained on a massive dataset of text and
code [30]. SBERT fine-tunes BERT by incorporating pairwise training to generate similar
embeddings for sentences that have the same meaning and dissimilar embeddings for
sentences with different meanings. SBERT leverages approximate nearest neighbor search
algorithms to efficiently retrieve semantically similar sentence embeddings from large
corpora. These algorithms allow for fast similarity searches in high-dimensional vector
spaces, making SBERT scalable for applications like clustering.

Text clustering is an unsupervised machine learning task of grouping similar texts
together. It is a powerful tool for discovering hidden patterns in text data. Text clustering
is a complex task, and there are a variety of different algorithms that can be used. We take
advantage of both hierarchical and k-means clustering. Hierarchical clustering may not
be practical when analyzing large amounts of data. We support random sampling to get a
representative view of number usage and save time and resources required for its analysis.
Figure 4 shows an excerpt from a dendrogram produced by hierarchical clustering, which
illustrates how BMI is reported in referral letters.

Hierarchical clustering is a more flexible algorithm than k-means clustering. It can be
used to find clusters of any shape, while k-means clustering can only find clusters that are
spherical in shape. However, hierarchical clustering can be more computationally expen-
sive than k-means clustering. K-means clustering, where k is a user-defined parameter, is a
faster algorithm than hierarchical clustering. To facilitate interpretation of large clusters,
we provide a user with a word cloud generated from the corresponding contexts. Figure 5
shows a sample of four clusters identified in the hospital discharge summaries, which can
be easily interpreted as (a) age, (b) cardiovascular health, (c) medication dosage, and (d)
blood work. Multiple features can be extracted from a single cluster. For example, the
medication dosage cluster can be unpacked into one feature per medication, e.g., amio-
darone, simvastatin, miconazole, etc. Similarly, the blood work cluster can be unpacked
into one feature per test, e.g., white cell count, hematocrit, platelet count, etc. We can also
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that the age cluster suggests gender as a related feature. We can unpack this into two
numerical age features, one for each gender. Even better, we can unpack this into two
features, one for age and the other for gender. Even though gender is a categorical feature
not a numerical one, it is still worth adding it to the typed representation of numbers as
it is clearly relevant for the interpretation of age. Indeed, gender is a clinically relevant
variable because the corresponding biological differences can influence various aspects of
healthcare including disease prevalence, symptom presentation, treatment response and
overall health outcomes [31]. It is reassuring that the data themselves suggested gender as
an important factor in interpreting numerical features.
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4.2.4. Analysis

We analyzed the clusters manually with the aim of defining a set of the corresponding
features. Even though the features are defined manually, this process is supported by
automated extraction of the supporting evidence. The five-step feature engineering process
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depicted in Figure 3 is semi-automated with four steps shown in green fully automated and
one manual step shown in orange. The visualization of evidence shown in Figures 4 and 5
makes it easier for engineers to identify patterns in text data without having to manually
search for them.

In our obesity case studies, we identified five features from the referral letters: gender,
age, BMI, weight and daily mileage. From hospital discharge summaries, we identified
12 features: gender, age, BMI, weight, ejection fraction, blood pressure, heart rate, respira-
tory rate, oxygen saturation, blood sugar level, diabetes type and insulin units prescribed.
We can observe four features that the two sets have in common: gender, age, BMI, weight.
However, the difference between the two sets illustrates why a top-down approach to feature
engineering would not be appropriate. For example, physical activity plays a significant role
in both the prevention and treatment of obesity. Excess weight places increased stress on
the joints, leading to various joint-related issues. Thus, physical activities such as daily runs
were found to be commonly reported in orthopedic referrals but not in hospital discharge
summaries. Similarly, obesity is closely linked to various physiological factors, which are
commonly reported in hospital discharge summaries but not in orthopedic referrals.

4.3. Information Extraction

The output of the feature engineering process described in the previous subsection is a
template that consists of a number of slots, each representing a feature. Each slot represents
a specific piece of information that needs to be extracted from a text document. Figure 6
shows a template that needs to be populated with data from a hospital discharge summary.
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The tradition of IE dates back several decades and has evolved over time with ad-
vancements in computational linguistics and machine learning [10]. The early approaches
to IE were primarily rule-based systems that relied on handcrafted patterns and linguistic
rules to identify and extract information from text. These rule-based systems were typically
domain-specific and required significant manual effort to create and maintain. Recent
developments in QA have alleviated the process of developing domain- and task-specific
methods for extracting information from text [32]. Even though off-the-shelf QA methods
can in principle be used to extract answers from text, they are typically trained on data that
do not capture the properties of clinical narratives [33]. The difficulty of training clinical
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QA systems lies in the data annotation bottleneck [34–36] and the instability observed in
fine-tuning pre-trained language models for specific tasks in biomedical NLP [37].

On the other hand, the preprocessing of text makes it highly regular (see Section 4.1
for details). For example, acronyms such as YO (year old) and kg (kilogram) are already
normalized to their long form. In addition, the numbers are anchored and their patterns
of usage already identified during cluster analysis. Together, these properties allow for
rapid development of IE rules. For example, to extract age it suffices to look for the pattern
‘XXX years? old’. Such pattern is automatically translated into a more sophisticated regular
expression ‘(\d+(\.\d+)?) [a-z\s]{0,20} years? old’ that finds and extracts the corresponding
number. Overall, we defined 6 and 14 simple pattern-matching rules for referral letters and
hospital discharge summaries, respectively.

When multiple values are extracted, the median is selected as the slot filler. Further
processing involves converting slot fillers to a common scale. For example, weights ex-
pressed in stones or pounds are converted to kilograms. Where possible, missing values
are imputed using simple rules. For example, if weight is available, but BMI is not, then
BMI is inferred from the weight using the default height. If weight is not specified, we add
one stone to the default weight each time weight is referenced in text.

4.4. Document Representation

We performed experiments with two document representations, which include vector
space model and word embeddings model. In the introduction, we discussed the short-
comings of both models when it comes to representing numbers. We, therefore, extended
both models with typed representation of numbers.

4.4.1. Vector Space Model

We used a bag-of-words (BoW) model, which represents text as a collection of in-
dividual words, disregarding grammar and word order [38]. It creates a vocabulary of
unique words, except numbers and stopwords, from the training data and represents each
document as a numerical vector, indicating the presence or absence of words from the
vocabulary. The words were weighed using TF-IDF to reflect the importance of a word in a
document within a collection or corpus [39,40]. It calculates the product of the term fre-
quency (TF) and inverse document frequency (IDF) for each word in a document to assign
higher weights to words that appear frequently in a specific document but infrequently
across the entire corpus. To reduce the number of dimensions, we used χ2 to select 20%
(capped at 500) of features that are most likely related to the target variable.

4.4.2. Word Embeddings Model

Word embeddings can be used as a basis to embed a whole document in the same
vector space. State-of-the-art methods for document embeddings are based on transformers,
a type of NN composed of a stack of encoder and decoder layers. The encoder layers learn
to represent the input, while the decoder layers learn to generate the output. The encoder
and decoder layers are connected by attention layers, which allow the model to learn
long-range dependencies [41]. A sequence of tokens (words or even subwords) is fed into
the transformer model to generate a document embedding, which can then be used for a
variety of tasks including document classification.

BERT [30] was one of the first transformer models to be released. BERT can be used to
embed each token, which can then be pooled to create a single embedding for the entire
sequence. Alternatively, a special token [CLS] can be used to represent the entire sequence
(e.g., a single sentence or the whole document), which can be used for its classification.
However, BERT imposes a limit of 512 tokens to deal with computational complexity,
memory constraints and model capacity. As we can see from Tables 3 and 5, both types of
clinical narratives used in this study exceed this limit on average. In particular, hospital
discharge summaries can exceed this limit by 50-fold. Therefore, BERT cannot be used to
embed such documents, thus we considered an alternative transformer model.
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Transformers are unable to process long sequences due to self-attention scaling
quadratically, thus creating memory and time bottlenecks. Longformer [42] addresses
this limitation by introducing an attention mechanism that scales linearly. It combines a
windowed self-attention to build contextual representations and an end-task motivated
global attention to build full sequence representations. At 4096, the token limit of Long-
former is significantly longer than that of BERT. Nonetheless, it still falls short of the average
length of hospital discharge summaries (see Table 5).

The slice and stride approach can be used to overcome these limitations. A document
is sliced into smaller subsequences whose length allows them to be embedded. These
embeddings are then combined to form a single vector representation of the document.
The slice size and stride size are two important hyperparameters that can affect the quality
of the document embedding. The slice size is the number of tokens in each subsequence.
The stride size is the number of tokens that are skipped between each subsequence.

The quality of the document embedding can be affected by the slice size and stride
size. It can also be computationally expensive to embed long documents. To avoid these
issues, we opted to use SBERT [29] to embed each sentence and then pool these embed-
dings into a single vector representation of the entire document. We used both mean and
max pooling to capture the overall representation and the most important features of a
document, respectively. Intuitively, it makes more sense to embed individual sentences for
the purpose of obesity classification as the relevant evidence such as weight is likely to be
reported in individual sentences and does not require taking into account long dependen-
cies. Empirically, it has also been demonstrated that averaging sentence embeddings is
suitable for text classification tasks [43].

4.4.3. Typed Representation of Numbers

Filled IE template (see Section 4.3 for details) can be viewed as a vector, which can be
used to support typed representation of numbers. As both vector space model and word
embedding representations are vectors themselves, we can easily extend them to support
typed representation of numbers.

4.5. Document Classification

Once document representation is obtained, a supervised classifier can be trained. The
purpose of this study is not to identify the best classifier, but to measure the difference
between its performance on two document representations, which do and do not encode
numbers explicitly. For that purpose, we designed a document classification framework,
which is illustrated in Figure 7. Input consists of individual documents. Each document is
represented using either a BoW or word embeddings model, whose outputs are vectors
whose dimensions correspond to words or latent variables, respectively. In parallel, infor-
mation is extracted from the input document to fill a template, which represents a vector
whose dimensions correspond to the previously engineered numerical features.

We chose to combine BoW representation with traditional machine learning. Specifi-
cally, we chose support vector machines (SVMs) because of their proven record in clinical
text classification [44].

In the spirit of transformers, we chose to combine document embeddings with a NN. We
created a sequential model, a type of NN that is composed of a linear stack of fully connected
layers. Overall, we built a model with fully connected layers, dropout regularization and
sigmoid activation for binary classification task. The first layer in the model is a dense layer
with the same number of neurons as the number of features in the input data. The second
layer in the model is a dropout layer, which randomly drops neurons to prevent overfitting.
The third layer in the model is another dense layer with half the number of neurons as the
first layer. The fourth layer in the model is a dropout layer. The fifth layer in the model is a
dense layer with a single neuron, which outputs a probability for the class label. The model is
compiled using the binary cross-entropy loss function and the Adam optimizer. The model is
trained for 80 epochs using a batch size of 32.
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The dotted line leading from the filled template into SVM and NN, respectively indi-
cates its optional use (see Figure 7). In other words, for each classification algorithm consid-
ered, we trained two classification models, one using the original document representation
model only and the other using a combination of the original document representation
model and typed representation of numbers.

Finally, the output represents a class label of the input document. Specifically, in our case
studies the class label represents a prediction of the corresponding patients’ obesity status.

5. Results

Table 6 summarizes the experiments performed. All experiments with the suffix b are
baseline experiments, which did not take typed representation of numbers into account. All
experiments with the suffix a are advanced experiments, which use typed representation
of numbers to extend document representation. As SVM is a deterministic method, its
accuracy was calculated once. Conversely, the accuracy of the NN classifier was calculated
for 10 runs and the mean average reported in Table 6. We can observe that the advanced
experiments outperformed the baseline experiments to various degrees.
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Table 6. A summary of the classification experiments performed. The tick marks represent the
specific options used in the document classification framework presented in Figure 7.

Experiment Dataset
Document Representation Typed Number

Representation
Classifier

Accuracy
BoW SBERT SVM NN

1
a NHS 4 4 4 61.63%
b NHS 4 4 59.30%

2
a NHS 4 4 4 62.33%
b NHS 4 4 57.91%

3
a i2b2 4 4 4 84.79%
b i2b2 4 4 76.96%

4
a i2b2 4 4 4 83.91%
b i2b2 4 4 65.39%

To test the statistical significance of the difference in performance, we first applied
bootstrap sampling in all experiments with SVMs. We resampled each dataset, including
both training and test data, nine times, which allowed us to train nine additional SVM
classification models. Figure 8 provides a box plot to illustrate the distribution of the
accuracy achieved in each experiment defined in Table 6. We employed the Wilcoxon test, a
non-parametric statistical test that can be used to compare the medians of two independent
samples [45]. The p-values obtained for each pair of experiments are provided at the bottom
of Figure 8. At significance level of 0.05, the results of the Wilcoxon test showed that there
was a statistically significant difference between the medians of the two sets of results.
In other words, the two models are not equivalent, and the one based on typed number
representation is likely to produce better results.
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6. Discussion

In Figure 8, we can observe bigger accuracy improvements on hospital discharge
summaries. They are much longer than referral letters (see Tables 3 and 5) and naturally
contain more numbers, which ultimately translate into a wider range of numerical features
(see Section 4.2.4). Nevertheless, even a handful of these features proved to make a
significant difference in text classification performance. That tells us that commonly used
document representations do not represent numbers in a way that machine learning
algorithms can effectively utilize them as features.

Typed representation of numbers can be used as a stopgap solution, but community-
wide research is required to systematically incorporate number representation into the
word embedding process. Contextualized word embeddings provide an opportunity to
embed numbers in a way that encodes their types and not mere values. Numbers play
an integral role in our understanding of text. While their lexico-syntactic properties are
fundamentally different to those of words, their representations need to be integrated into
systemic representation of the semantic space that they share.

Successful representations should strive to incorporate not just numbers but other con-
tinuous domains as well. For example, gradable adjectives such as ‘mild’, ‘moderate’, and
‘severe’ exist on some cardinal scale, which can be mapped using value embeddings [46,47].
Clinical narratives are ripe with references to scales using adjectives (e.g., ‘high blood
pressure’ versus ‘low blood pressure’) and even prefixes (e.g., ‘hypertension’ versus ‘hy-
potension’). Binning numbers to simple categories (e.g., low, normal and high) depending
on their context can lead to improved representation of clinical narratives. For example,
converting an expression such as ‘blood pressure 190/82’ to ‘high blood pressure’ can make
much better use of existing language models.

Clinical NLP has an important advantage over other application domains. Its wider
biomedical community has invested heavily into building knowledge resources that can
help interpret text. Notable examples include the Unified Medical Language System
(UMLS) [48], Open Biomedical Ontologies (OBO) Foundry [49] and BioPortal [50]. For ex-
ample, they host ontologies such as Systematized Nomenclature of Medicine Clinical Terms
(SNOMED CT) [51] and Logical Observation Identifiers Names and Codes (LOINC) [52],
which describe standard ways of identifying and reporting laboratory observations, in-
cluding blood tests and associated reference ranges. This provides a great opportunity for
NLP to use distant supervision in its efforts to learn how best to represent numbers in large
language models.
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