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Abstract 

 

 

 

This thesis investigates the resource misallocation in the presence of the externality of 

R&D spillover in the Chinese and the UK manufacturing sector. It takes capital, labour, 

as well as the R&D input as production factors and measure the output loss caused by 

the resource misallocation. This thesis extends the resource misallocation model 

proposed by Hsieh and Klenow (2009) by considering the externality of R&D input. 

We find that the output loss computed from the approach suggested by the literature is 

overestimated when they do not consider any externality. The externality of R&D 

spillover can alleviate resource misallocation. We then propose an improved allocation 

that is a weighted sum of the solution maximizing the industry output and the solution 

maximizing the industry R&D spillover. This allocation generates a larger output, 

implying that the allocative efficiency is increased. We also decompose the industry 

productivity and output in an approximation to gauge the individual contribution of 

each input misallocation to the output loss. The results show that the largest contribution 

in Chinese manufacturing sector is from labour misallocation, while capital 

misallocation explains most of the output loss in the UK manufacturing sector. In the 

end, we estimate the effect of firm’s own R&D effort and intra-industry and inter-

industry R&D spillover for Chinese listed firms. The firm’s own R&D effort has 

positive effect on the productivity in the manufacturing sector. The intra-industry R&D 

spillover is negative in the manufacturing sector suggesting innovative rivalry between 

firms. The positive inter-industry R&D spillover in the non-manufacturing sector 

implies that non-manufacturing firms are more likely to communicate and cooperate 

rather than compete in R&D activities. 
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Chapter 1 Introduction 

Since the financial crisis of 2008, economic growth has continued to slow in most 

countries. Many believe that the primary source of the slowdown in economic growth 

is the slowdown in productivity growth. Exploring the reasons for the slowdown in 

productivity growth has become an essential topic in economic research today. As an 

important part of the world economy, China's economic performance is affected by the 

world economic environment and influences other countries and economies. China's 

economic growth has also slowed down significantly in recent years compared to the 

period before the financial crisis. Therefore, exploring what has caused this poor 

economic performance and what can be done to improve the situation is necessary for 

economic development. 

 

Many studies have attributed the slowdown in economic growth to productivity growth. 

China's previous economic growth relied heavily on low-end manufacturing and 

massive input investment in production, which allowed the economy to reach a high 

growth rate but could not sustain the economy in the long run (Eichengreen et al. 2011). 

Therefore, in order to promote sustainable economic development, many studies have 

explored the determinants of total factor productivity (TFP) in the hope of increasing 

productivity.  

 

There are two mainstreams of literature that discusses what causes the slowdown in the 

productivity. The first direction emphasises the role of R&D in boosting productivity 

(Griliches, 1979; Cuneo and Mairesse, 1984; Griliches and Mairesse, 1985; Wakelin, 

2001). However, China's economic growth in the past heavily relied on low-end 

manufacturing, where economic growth comes from increased inputs. As the economy 

developed, the marginal revenue products of input factors gradually decreased ((Shi et 

al., 2017)), which caused a slowdown in economic growth. R&D activities, instead, can 

increase output by increasing productivity rather than by increasing the number of 

inputs. In recent years, it has become a pivotal point in exploring R&D's role in 
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increasing productivity and promoting long-term economic development. Literature 

provides abundant empirical evidence suggesting that R&D activities have a positive 

role in boosting productivity growth in many countries and economies, such as France, 

Japan, the US, UK and Germany and other OECD countries (Griliches and Mairesse, 

1985; Wakelin, 2001; O’Mahony and Vecchi, 2009; Ortega-Argilés, 2011; Kancs, et al., 

2016). Yang et al. (2020) point out that the R&D input has been continuously increasing 

from 2000 to 2015 in China. Moreover, there are studies suggesting that a firm's 

productivity is not only influenced by the R&D input itself, but also by the R&D 

spillover from other firms (Romer, 1990; Grossman and Helpman, 1991; Sena, 2004; 

Ugur, et al., 2016).  

 

In order to promote R&D activities by firms, the government both in developed and 

emerging countries have implemented various policies. In general, policies consist of 

subsidies and R&D tax incentives. The latter is more market-oriented and can reduce 

asymmetric information associated with R&D (Arrow, 1962; Peneder, 2008; Xiao and 

Zhuang, 2022). R&D tax incentives often include R&D tax credit, tax deduction of 

R&D expenses, etc. Since the innovation achievements created by R&D activities can 

generate higher productivity and therefore strengthen a country’s competitiveness, most 

OECD countries encourage firms’ R&D by R&D tax incentives (Appelt et al., 2016). 

Literature suggests that R&D tax incentives have a positive and significant effect on 

firms’ R&D in developed countries, for instance, the US (Wu, 2005), France (Bozio et 

al., 2015), Canada (Baghana and Mohnen, 2009), the Netherlands (Lokshin and 

Mohnen 2012) and the UK (Sterlacchini and Venturini, 2019). 

 

The Chinese tax policies adopt two kinds of incentives for enterprises’ R&D activity: 

the super deduction for R&D expenditure and a concessional tax rate of 15% for High 

and New Technology Enterprises (HNTEs) (Jia and Ma, 2017). The R&D tax incentives 

in China have developed over time. In 1996, only state-owned firms (SOE) and 

collective industrial firms (COE) could deduct an additional 50% of the R&D 
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expenditure from taxable income. In 2003, the tax reform eliminated discrimination 

between SOEs and private firms, and R&D tax policies are now applied to all types of 

firms (Liu et al., 2023). Moreover, the types of R&D expense that can be deducted, 

have expanded and the deduction rate has also increased from 50% in 1999 to 100% 

for manufacturing firms and 75% for non-manufacturing firms in 2021 (Xiao and 

Zhuang, 2022). At the same time, the Chinese tax authority is increasingly simplifying 

the process for enterprises to claim R&D tax benefits (Tian et al., 2020). With the help 

of these R&D tax incentives, China’s R&D to GDP ratio has increased from 0.56% in 

2001 to 2.13% in 2017. And the R&D investment has reached a level close to that of 

the US in 2016 (Liu et al., 2023).  

 

The UK government also encourages R&D activities with tax incentives. While the 

R&D intensity (business R&D as a percentage of GDP) in other G7 countries has been 

increasing during the 1980s and 1990s, the UK shows a downward trend in the R&D 

intensity (Bond and Guceri, 2012). Less R&D investment leads to less new technology 

and invention, which further slows down productivity growth. To address this, the UK 

government promulgated the R&D tax credit to promote enterprises’ R&D investment 

in 2000. In fact, the UK government had already introduced tax deduction for R&D 

expenditure in the 1980s. The tax relief of 2000 was initially for the SMEs, which is 

subsequently extended to all firms. Under this scheme, the R&D expenditure can be 

deducted from the firm’s taxable income, which reduces the firm’s tax burden. SMEs 

can enjoy an extra 50% deduction of their R&D expenditure. And, loss-making SMEs 

can also apply for refundable tax credits to deduct against future profits or profits in the 

last accounting year (Firoz, 2021). Compared to SMEs, large firms can deduct their 

R&D expenditure with a lower rate of 25%, but they cannot apply for any tax credits if 

they are loss-making. 

 

Evidence shows that the R&D tax policy did promote real innovation (Bond and Guceri, 

2012). Sterlacchini and Venturini (2019) provide empirical evidence that the R&D 
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intensity in the UK significantly increased due to the R&D tax incentives of 2007 to 

2009. But this effect only exists in SMEs while large companies are not influenced by 

these incentives. 

 

However, although the government did a lot on incentives to promote R&D of firms, 

there is still a problem of misallocation of R&D resources. In addition to R&D activities, 

another possible way to increase productivity is to eliminate resource misallocation. 

Several types of input misallocation (capital, labour, R&D, energy) have been analysed 

in the literature (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Jones, 2011; 

Song et al., 2015). Resource misallocation theory considers resource allocation 

inefficient when the input distortion, measured by the marginal revenue product of each 

input factor, differs across firms. This indicates that firms with higher productivity have 

to pay extra "tax" to buy input. In contrast, the input price for less productive firms is 

lower than the efficient level, leading to a loss in productivity and output. The literature 

suggests that when the input price for more productive firms decreases to allow them 

to purchase more inputs, the marginal revenue product of the input will decrease until 

it is equalised for all firms. 

 

In the thesis, we combine the two aspects of productivity improvement mentioned 

above. It is known that R&D input and the R&D spillover effect are essential sources 

of productivity improvement. Therefore, it is necessary to ensure that its allocation 

across firms is efficient. However, there is little literature on resource misallocation that 

has considered both the R&D input allocation efficiency and the effect of R&D 

spillover. In order to fill this gap, we consider both R&D allocation and the externality 

of R&D spillover in the resource misallocation model to identify the efficient resource 

misallocation.  

 

The second chapter evaluates the output loss caused by resource misallocation in the 

Chinese manufacturing sector. We adopt a resource misallocation model proposed by 
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Hsieh and Klenow (2009) to build the relationship between the firm's productivity and 

the input price wedges. This model is widely accepted in the literature. Our study 

measures the output loss caused by the misallocation of capital, labour, and R&D input. 

Since the externality of R&D spillover is a distinctive characteristic of R&D input, we 

also include an R&D spillover term in the model to gauge its impact on the output. This 

is the main difference between our study and the literature: we consider the externality 

in the allocation and the literature does not. We firstly derive the allocation solution to 

the maximisation problem of the industry output in the case with the assumption that 

there does not exist any type of externality and in the case with the assumption of the 

externality of R&D spillover. The solution from the case with no externality suggests 

that the optimum is achieved when all firms face the same actual input price. However, 

when R&D spillover takes a role in the output, the optimal allocation would not require 

equalised input distortions for all input types. Instead, the efficient allocation should 

leave a certain level of dispersion in R&D distortion. Therefore, while the actual capital 

and labour prices should remain equalised for firms within an industry, the actual R&D 

price should be proportional to its productivity. We then compute the output gain from 

the above allocation approaches. Comparing the results implies that the output gain is 

larger from the reallocation of inputs when the R&D spillover effect is taken into 

account. This improves the allocation approach suggested in the literature and increases 

allocative efficiency. In addition, we also notice that the output loss from input 

misallocation could be overestimated when the R&D spillover effect is ignored. In 

order to gauge the output loss caused by each type of input misallocation, we compute 

the output gain from eliminating one type of input misallocation at a time. The results 

show that labour misallocation is the most significant cause of output loss in the 

Chinese manufacturing sector. 

 

Chapter 3 applies the same allocation approach to measure resource misallocation in 

the UK manufacturing sector. The empirical results also support the conclusion derived 

in chapter 2: The optimal solution to the industry output maximisation problem comes 
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from the allocation that considers the effect of R&D spillover and sustains a certain 

level of dispersion in R&D distortion. In this chapter, we extend the study by deriving 

an output decomposition to measure the individual contribution to the output loss 

caused by each type of misallocation. Using the UK firm-level data in the 

manufacturing sector, we find that capital misallocation contributes the largest to 

generating output loss, which is different from the Chinese case in the previous chapter. 

The contribution of labour misallocation is much smaller. Although the R&D 

misallocation contributes the least to the output loss, there is still a point worth 

discussing: In our model, the output is influenced by both the industry productivity and 

the R&D spillover. There is a trade-off between maximising the industry productivity 

and maximising the industry R&D spillover. Since the literature does not consider any 

externality, the solution in the literature only maximises industry productivity. 

Therefore, their solution is not an optimal one in our model. We use an approximation 

in decomposing the output. The approximate industry output is expressed in terms of 

variances and covariances of the input distortions. The optimal solution to the 

maximisation problem of the approximate industry output requires the capital distortion 

and labour distortion to be equalised across firms in the industry, in other words, zero 

dispersion in capital and labour distortions. However, the variance and covariance terms 

of R&D distortion are not zero in the optimal solution. This requires that the R&D 

allocation is efficient when more productive firms pay a higher actual R&D price, while 

the actual price for less productive firms is lower.  

 

The previous two chapters mainly discuss how resource misallocation and R&D 

spillover affect productivity and output at the industry level. In chapter 4, we discuss 

how the industry-level R&D spillover and the firm's own R&D effort would affect the 

firm's productivity and output. The fourth chapter follows the basic framework 

proposed by Griliches (1979). It mainly discusses the empirical results of the effect of 

a firm's own R&D input, the R&D spillover within the industry, and the R&D spillover 

from other industries on productivity. From the empirical results, a firm's R&D 
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investment significantly increases its productivity in the manufacturing sector, while 

the effect of R&D in the non-manufacturing sector is not significant. Regarding the 

R&D spillover, the manufacturing sector has a negative correlation between the R&D 

spillover and productivity, indicating intense competition and technology rivalry among 

firms. The non-manufacturing sector, on the contrary, has positive R&D spillover, but 

only from other industries. The type of ownership also matters for R&D and spillover 

effect: The R&D effect on productivity is the most significant in jointly owned firms. 

Foreign-owned and jointly-owned firms have larger R&D spillover effects than other 

types of firms. State-owned firms can better receive inter-industry R&D spillover. 

These empirical observations provide policy implications: As manufacturing firms are 

good at transferring R&D investment to increase productivity, the government should 

encourage them to conduct R&D activities. The possible policy includes easing 

financial constraints for R&D activities and subsidising firms' R&D activities. However, 

as there is a negative correlation between government subsidies and productivity in our 

study, regulating the use of funds for R&D projects and evaluating the R&D results are 

required to increase R&D efficiency and avoid resource misallocation. The 

communication and cooperation between domestic and foreign firms can increase the 

R&D spillover, further promoting productivity. 

 

Chapter 5 contains the conclusion and relevant policy suggestions. 
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Chapter 2 The resource misallocation in Chinese 

manufacturing industries in the presence of R&D 

externality 

2.1 Introduction 

Over the past few decades, China's economic development has been characterized by 

the low-end manufacturing and processing industries and the massive consumption of 

energy resources. However, this development model has led to a steady slowdown in 

economic growth, as well as to problems such as waste of resources and environmental 

pollution. In order to achieve the sustainable development in the long term, China is 

now exploring new ways of economic development, which include industrial upgrading 

and increased investment in research and development. The question of how to improve 

productivity, rather than expanding production, has become a key topic of economic 

development. 

 

A widely accepted view of productivity improvement is to eliminate the misallocation 

of resources in production. Several important misallocated input resources include 

capital, labour and energy. Hsieh and Klenow (2009) and subsequent related literature 

(e.g., Dias et al., 2016) have found that the misallocation of capital and labour is an 

important cause of productivity and output losses. While encouraging R&D activities 

is an important way to increase productivity (Griliches, 1979; Cuneo and Mairesse, 

1984; Griliches and Mairesse, 1991; Wakelin, 2001), blindly increasing R&D 

investment or misallocating R&D resources across firms can also hinder productivity 

gains. Yang et al. (2020) note that the R&D input has been continuously increasing at 

an average rate of around 19% from 2000 to 2015. But the R&D resource is 

misallocated between firms, which causes inefficiency in innovation (Song et al., 2015; 

Boeing, 2016). Therefore, we also take R&D resources as one of the several 

misallocated input factors. At the same time, when thinking about how to allocate R&D 

resources more efficiently, we also need to consider the externalities of R&D activities 
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(Arrow, 1962; Nelson, 1959), as they affect the aggregate productivity in a sector and 

the firm's own R&D activities. 

 

We adopt Hsieh and Klenow (2009) model to build a linkage between resource 

misallocation and output but extend their basic model by using R&D human capital as 

a third input factor as well as the externality of R&D in the production function. We 

quantify the aggregate output loss caused by all the three input factors. According to 

the explanation by Hsieh and Klenow (2009), when all firms have the same level of 

input distortions, the resource allocation is efficient. Following Hsieh and Klenow 

(2009), we introduce the concept of “tax” or “wedge” to express the input factor 

allocation distortion. It is measured by marginal revenue product of each input factor. 

The literature suggests that resources are misallocated when firms pay different amount 

of “tax” to hire input factors in their production. Generally, it is related to policy 

distortion in China (Brandt. et al. 2013), where the policy favours state-owned firms so 

they pay less tax than private firms. Similar interpretation also applies to firms in 

different regions. When the distortions are equalized across firms, a higher output 

means that the allocative efficiency has been increased. The gap between the output 

after reallocation and the initial output is the allocative efficiency gain from eliminating 

the resource misallocation. 

 

One distinctive characteristic of knowledge capital is its externality (Arrow, 1962; 

Nelson, 1959). When a firm successfully creates a new technology or invention, it 

cannot keep all the benefits from this invention to itself. Other firms can also benefit 

from the innovation achievement (Schumpeter, 1942). Therefore, we expect the R&D 

spillover externality to play a role across the firms that conduct R&D activities, which 

later has an impact on their productivity and, consequently, on their output.  

 

This study contributes to existing literature in the following two aspects. Firstly, we 

measure the impact of externality of R&D on the resource allocative efficiency in the 
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resource misallocation model. Literature (Dias, et al. 2014; Benkovskis, 2015; Chen, 

2017; Choi, 2020) shows that the allocation efficiency can be increased when 

equalizing all input distortions across firms in the same industry. However, there is no 

externality in their models and this might bias in the results of resource reallocation. 

Although Ayerst (2021) consider the externality of R&D activities, he applies this in a 

different dynamic model which is initially brought up by Klette and Kortum (2004). 

There are few studies quantifying the R&D externality in Hsieh and Klenow (2009) 

resource misallocation model. We fill the gap by including the R&D spillover factor in 

the production function and it is defined as the geometric average of all firms’ R&D 

input. Also, since we have the externality of R&D in the model, the reallocated inputs 

when all distortions are equalized across firms are not the optimal ones anymore, 

though they would still increase the allocation efficiency to some extent.  

 

The second contribution is that we bring up an alternative resource allocation approach 

that could generate higher allocative efficiency by considering the R&D spillover effect 

in firms’ R&D input decision, which improves one drawback in Hsieh and Klenow 

(2009) methodology. That is, they assume that eliminating distortions is a good thing. 

However, distortions in some industries should not be completely eliminated. For 

example, capital rent should differ across firms when they have different default risk 

(Dias, et al., 2016). Therefore, in this chapter, it is also possible that the output with 

equalized distortions is lower than the initial output. This implies that equalizing all 

distortions might not increase the allocation efficiency for some industries, while it 

would increase the efficiency for the majority of industries. 

 

The remainder of the Chapter proceeds as follows. Section 2 offers a brief review of 

the relevant literature. Section 3 describes the methodology to measure the effect of 

input resource misallocation on the output. Section 4 introduces the data used in the 

measurement. Section 5 discusses the results by comparing the estimated allocative 

efficiency loss with and without the presence of the externality of R&D. Then it 
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discusses the comparison of the results of the output gain from the traditional allocation 

and those from our alternative allocation approach. Section 6 is devoted to robustness 

checks. Section 7 concludes. 

 

 

2.2 Literature review 

2.2.1 Economic growth, productivity and resource misallocation 

In recent years, China's economic growth has shown a significant slowdown. Zhang 

Yong et al. (2008) indicate that investment in input factors can only promote economic 

growth in the short term. But in the long run, this will cause overcapacity and is not 

conducive to long-term economic development. Solow (1957) shows that besides the 

accumulation of physical capital and human capital, the improvement of total factor 

productivity is the other source of economic growth. The differences in the productivity 

across countries explains their differences in per capita income. Bai and Zhang (2014) 

point out that the slowdown in China's total factor productivity growth has also 

contributed to the slowdown in economic growth.  

 

There are various studies exploring the reasons causing the difference in the total factor 

productivity among countries or the productivity slowdown in a certain country, where 

one of the main opinion attributes this to input factor resource misallocation (Restuccia 

and Rogerson 2013). Hsieh and Klenow (2009) brought up a well-known theoretical 

model that links the aggregate productivity to input factor allocative efficiency. They 

explain that when all producers have the same level of factor productivity, the input 

factor allocation reaches its optimal level and thus aggregate productivity and output is 

increased. Initially, the marginal revenue product of input factor across firms varies. 

Restuccia and Rogerson (2008) note that firms’ input factor distortions are positively 

related to their own productivity. This is because as firms grow, they must incur cost to 

get the access to a larger proportion in the market. Therefore, only firms that are more 

productive are willing to pay taxes in order to expand the firm size and earn more profit, 
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while low-productivity firms tend to remain small so they can avoid paying taxes 

(Roger Gordon and Wei Li, 2005). Scarpetta (2013) found that the relationship between 

firm size and productivity is stronger in developed economies, which suggests a more 

efficient resource allocation between firms within an industry. In the resource 

reallocation process, more input resources are moved from less productive firms to 

more productive firms. As more productivity firms hire more and more factor inputs, 

their productivity gradually decreases. At the same time, the productivity of the less 

productive firm gradually increases as it reducing the amount of hired inputs. This 

reallocation process continues until all producers reach the same level of productivity.  

 

The resource misallocation is measured by the deviation of the productivity across firms. 

Hsieh and Klenow (2009) measure the capital and labour resource misallocation in 

Chinese and Indian manufacturing sector. They found that when capital and labour 

resource are reallocated to the efficient level observed in the US, the productivity is 

increased by 30%-50% in China and 40%-60% in India. However, Brandt et al. (2013) 

shed further light on the causes of resource misallocation in China. Due to a number of 

institutional constraints, factor markets (such as capital, labour, energy, land, etc.) in 

China are less marketed than those in developed countries. This results in resource 

misallocation between firms at different levels, including the misallocation across 

different regions or across firms with different ownership types. Du et al. (2014) report 

similar findings of significant resource misallocation between the state and private 

sectors. 

 

2.2.2 Misallocation type 

2.2.2.1 Capital resource misallocation 

Misallocation from capital markets is a prevailing problem. Jeong and Townsend (2006) 

find that financial market development brought about a 70% increase in aggregate total 

factor productivity in Thailand between 1976 and 1996, without considering exogenous 

technological progress. Midrigan and Xu (2014) use a dynamic model to compare the 
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total factor productivity loss from resource misalignment in Korea and Colombia, 

where the credit market development in these two countries is different. They find that 

the estimated total factor productivity losses from misallocation in their dynamic model 

is very small in both countries. Their results seem to be contradictory with those in 

Hsieh and Klenow (2009). They explain the different results as, in their model, firms 

have the ability to accumulate internal funds as they grow. Therefore, whether or not 

micro-level financial information is taken into account can make a large difference in 

the model’s predictions. Brandt et al. (2012) also find very limited gains from improved 

input factor allocation over the period 1998-2007. Gong and Hu (2016) extend Hsieh 

and Klenow’s (2009) model with the assumption of heterogenous product and find that 

the allocative efficiency loss from resource misallocation is overestimated in China. In 

addition, capital factor miasallocation in China is more associated with firm ownership. 

State-owned firms have easier access to finance, while privately owned firms have more 

difficulty in obtaining finance support and pay higher financial costs (Wei et al., 2016). 

The resource misallocation level may vary in different sectors. Dias et al. (2016) 

measure the allocative efficiency in agricultural, manufacturing and service sectors in 

Portugal. They find that the most significant misallocation comes from the service 

sector, which accounts for about 70% of misallocation in all sectors. At the same time, 

capital factor distortions are the largest source of resource misallocation in service 

sector. 

 

2.2.2.2 Labour resource misallocation 

There is other literature that suggests that labour factor misallocation also contributes 

to the loss of aggregate TFP. In earlier studies of labour misallocation in China, the 

literature focused on labour market distortions caused by low labour mobility (Yang 

and Zhou, 1999; Cai et al., 2002; Knight and Li, 2005). Labour in rural areas with low 

productivity cannot move to more productive urban sector, which results in larger 

output losses. Yang (2004) finds that the development of education in rural areas can 

increase labour mobility. More labour working in more productive non-agricultural 
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activities increases the efficiency of labour allocation. In recent years, labour mobility 

has increased with subsequent reforms in relevant institutions such as the household 

registration system in China (Bai and Chen, 2016). Hertel and Zhai (2005) also suggest 

that the large-scale movement of labour from the low-productivity rural sector to the 

high-productivity urban sector significantly reduced labour misallocation in China, 

leading to increased economic efficiency and inequality. However, this does not 

guarantee that labour misallocation will completely disappear or decline over time. 

Chen (2019) shows that China's human capital misallocation is closely related to the 

undergoing industrial upgrading, which involves the distribution of general labour and 

human capital engaged in R&D activities across industries with different levels of 

technology. He conducted a counterfactual experiment to measure the impact of the 

human capital misallocation on productivity with the provincial panel data covering 15 

years. The results show that total TFP increases by 41% when labour mismatches 

between industries are completely eliminated. This suggests that hiring more human 

capital in high-tech firms plays an important role in promoting economic development. 

Li and Zhang (2015) suggest that since China's manufacturing industry has been 

saturated, resources have begun to move to the service sector. But the productivity in 

China's service sector is lower than that in the manufacturing sector and this would 

result in the lower productivity growth. Apart from this, consistent with Brandt et al.'s 

(2013) view on ownership and productivity, Fleisher et al. (2011) point out that since 

one of the policy objectives that Chinese state-owned enterprises (SOEs) have is to 

stabilise employment, SOEs have an advantage such as subsidy in hiring employees. 

This leads to lower labour productivity in SOEs. 

 

2.2.2.3 R&D resource misallocation 

Most of the studies focus only on the misallocation of capital, labour or energy inputs. 

However, quantifying R&D and innovation resource misallocation has gradually 

gained attention. There are two main classic development theories that build the 

relationship between innovation and economic growth. One says that economic growth 
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is driven by the development of new products, which is known as the variety-expanding 

growth model (Romer, 1990). The other is the quality-ladder growth model. It was 

initially brought up by Schumpeter (1942) and later developed by Grossman and 

Helpman (1991) and Aghion and Howitt (1992) and others. In this theory, innovation 

activities improve the quality of products, which further drives the economic growth. 

 

Li et al. (2017) point out the importance of analysing the misallocation of innovation-

related factor resources such as human capital and technology for the long-term 

development of emerging economies, as innovation is an important factor for long-term 

economic growth. Jovanovic (2014) estimates the impact of human capital 

misallocation on economic growth with the assumption of heterogeneous workers and 

firms. He finds that a more efficient allocation of human capital can promote long-term 

economic growth. Uras and Wang (2016) measure the capital and technical 

misallocation on TFP by setting up heterogenous firms that vary in technological and 

capital conditions. They use firm-level data from the US manufacturing sector and find 

that the technical misallocation causes more TFP losses than capital misallocation. 

Therefore, it is important to eliminate technology misallocation in industries that rely 

more on technique to increase the aggregate. Acemoglu et al. (2018) construct a model 

of innovation and productivity growth at the firm level. They classify firms into high 

type and low type based on their R&D capabilities. They find that reallocating R&D 

resources through taxation raises welfare by 1.4%. In addition, preferential government 

subsidies could be another reason that leads to R&D resource misallocation in China 

(Li et al., 2017), which makes state owned firms and foreign-owned firms easier in 

getting access to credit. However, if subsidized SOEs and foreign-owned enterprises do 

not undertake the relevant R&D activities, resources are misallocated. 

 

2.2.3 The externality of R&D activities 

When studying R&D resource misallocation, the spillover effect of R&D activities 

needs to be taken into account, because the externality is one distinctive characteristic 
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of innovation activities. It may have an impact on R&D resource allocation efficiency 

and even affect firms’ R&D input decision. Ayerst (2021) shows that R&D resource 

misallocation comes from the different goals of firms and social planner. Firms decide 

their R&D investment with the objective of maximising profits, while the social 

planner's goal is to acquire public return from the R&D spillover effect. If the R&D 

input required by these two goals do not coincide, then the R&D resource misallocation 

would occur. Using US patent data, he finds that R&D misallocation reduces 

productivity growth by 22%. Xiao et al. (2021) find that the effect of R&D input on 

TFP is also influenced by external technological environment. With a better external 

technological environment, the effect of a firm’s own R&D activities on its productivity 

would be reduced. Conversely, a firm's own R&D input such as human capital stock 

facilitates the firm's ability to exploit technology spillovers to increase its own 

productivity (Su and Liu, 2016). 

 

In the empirical evidence, the effect of knowledge or technological spillovers on TFP 

differs in different studies. Ujimori and Sato (2015) and Huang et al. (2019) find that 

knowledge spillovers can facilitate the diffusion of advanced technologies and the 

aggregate productivity can be increased by measuring technology spillovers through 

FDI (foreign direct investment). Ugur et al. (2020) find that if firms rely too much on 

external technology, they will invest insufficiently in their own innovation activities. 

This implies that knowledge spillovers do not necessarily have a positive effect on 

firm’s R&D activities. 

 

 

2.3 Model 

This section describes the methodology of resource misallocation resulting from the 

input factor distortions at the firm level. This model allows us to measure the output 

gain from reducing or even eliminating resource misallocation, and consider the impact 

of R&D spillover externality on the size of this output gain. In the first and second part, 
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we extend the basic framework of Hsieh and Klenow (2009) by considering the 

externality of R&D spillover as well as the physical capital, labour and R&D human 

capital in the production function. In the absence of externalities, inputs are reallocated 

to the optimal use when the input distortions are equalized for the firms in the same 

industry. With the externalities, equalizing input distortions can still generate a more 

efficient result, though it is not the most efficient. The gap between the output with 

reallocated inputs and the initial output is the efficiency gain from eliminating 

misallocation. In the third part, we explain the relationship between output gain, 

dispersions of input factors and the R&D spillover effect. The fourth part is to measure 

the contribution of eliminating the distortion of each input factor separately. We follow 

Dias et al. (2016)’s method by adjusting one input when its input factor price is 

equalized and keep the other inputs fixed. In the last part, we also provide an alternative 

solution where reallocated R&D is a weighted average of allocations that maximize two 

different objective functions: one is to maximize the output where there is no R&D 

spillover and the other is to maximize only the R&D spillover. It increases the efficiency 

of the input allocation to generate a better competitive outcome. 

 

2.3.1 Theoretical framework 

Similar to Hsieh and Klenow (2009), we assume a representative firm that combines 

the output of S manufacturing industries to produce a single homogenous final good in 

a perfectly competitive market. It uses a Cobb-Douglas production technology： 

𝑌 = ∏ 𝑌𝑠
𝜃𝑠𝑆

𝑠=1                             (1) 

, where 𝑌 is a single final good, and 𝑌𝑠 is the output of industry 𝑠. 𝜃𝑠 is the industry 

𝑠  share that satisfies ∑ 𝜃𝑠
𝑆
𝑠=1 = 1  and 𝜃𝑠 =

𝑃𝑠𝑌𝑠

𝑃𝑌
  holds in equilibrium. 𝑃𝑠  and 𝑃 

represent the industry output price and final good price, respectively. 

 

There are 𝑚𝑠  firms in industry 𝑠 . The industry output 𝑌𝑠  is an aggregate of 𝑚𝑠 

differentiated products 𝑌𝑠𝑖 using a CES technology: 
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𝑌𝑠 = [∑ (𝑌𝑠𝑖)
𝜎−1

𝜎
𝑚𝑠
𝑖=1 ]

𝜎

𝜎−1
                         (2) 

, where 𝑌𝑠𝑖  is the output of firm 𝑠𝑖.  

 

The assumption of free entry and monopolistic competition implies the relation 

between firm-specific output price and industry-level output price (Hsieh and Klenow, 

2009; Dias et al., 2016): 

𝑃𝑠𝑖 = 𝑃𝑠(
𝑌𝑠

𝑌𝑠𝑖
)
1

𝜎                            (3) 

Since we will only consider resource reallocations within industries and not allow any 

resource reallocation across industries, we impose a normalization that 𝑃𝑠𝑌𝑠
1/𝜎

= 1. 

The differentiated product of firm 𝑠𝑖 is produced using a Cobb-Douglas production 

function:  

𝑌𝑠𝑖 = 𝐵𝑠𝑖𝐾𝑠𝑖
𝛼𝑠𝐿𝑠𝑖

𝛽𝑠𝐻𝑠𝑖
𝛾𝑠𝑋𝑠

𝛿𝑠                     (4) 

, where 𝐵𝑠𝑖 , 𝐾𝑠𝑖 , 𝐿𝑠𝑖  and 𝐻𝑠𝑖  represent firm 𝑠𝑖 ’s TFP (total factor productivity), 

physical capital stock, labour and R&D human capital, respectively. All the firms in the 

same industry face the same R&D spillover 𝑋𝑠 . 𝛼𝑠 , 𝛽𝑠  and γ𝑠  are the industry-

specific shares of physical capital, labour and R&D human capital, respectively. We 

assume that the sum of these three input shares equals to one: 𝛼𝑠 + 𝛽𝑠 + 𝛾𝑠 = 1. These 

three input shares 𝛼𝑠, 𝛽𝑠 and γ𝑠, in the interval (0, 1), are the same for all the firms 

in the same industry but vary across industries. The parameter δ𝑠 is measuring the 

impact of R&D spillover externality on firm 𝑠𝑖’s output and is also assumed to be the 

same for all firms in the same industry.  

 

Due to the distinctive characteristic of the externality of knowledge and R&D activities, 

all the firms can benefit from the results of innovation to increase their productivity or 

output even if they do not conduct R&D activities themselves. Firms do not recognize 

that the industry R&D spillover depends on their choice of R&D effort so they treat the 

spillover as an exogenous constant. We assume that all the firms in the same industry 

evenly enjoy the result of other firms’ R&D effort and set the R&D spillover 𝑋𝑠 as a 
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geometric average of the R&D stock in the industry. The amount of R&D spillover is 

𝑋𝑠 = ∏ 𝐻𝑠𝑗
1

𝑚𝑠
𝑚𝑠
𝑗=1                          (5) 

 

We introduce exogenous firm-specific distortions (or wedges) for each of the three input 

factors: physical capital distortion (𝜏𝐾𝑠𝑖  ), labour distortion (𝜏𝐿𝑠𝑖  ) and R&D human 

capital distortion (𝜏𝐻𝑠𝑖  ). The firm 𝑠𝑖  maximises its profits by choosing the optimal 

inputs subject to the inverse demand function (3) and the production function (4): 

𝜋𝑠𝑖 = 𝑃𝑠𝑖𝑌𝑠𝑖  −  𝑟𝑠(1 + 𝜏𝐾𝑠𝑖)𝐾𝑠𝑖  −  𝜔𝐿𝑠(1 + 𝜏𝐿𝑠𝑖)𝐿𝑠𝑖  − 𝜔𝐻𝑠(1 + 𝜏𝐻𝑠𝑖)𝐻𝑠𝑖   (6) 

, where 𝜋𝑠𝑖 is firm 𝑠𝑖’s profit, 𝑟𝑠 is the rental rate for physical capital, 𝜔𝐿𝑠  is the 

wage for labour, 𝜔𝐻𝑠 is the wage for R&D employment. All the input factor costs are 

industry-specific. 

 

The first order conditions of profit maximization imply the firm’s initial input allocation: 

𝐼𝑠𝑖 =
𝜎−1

𝜎
𝑃𝑠𝑖𝑌𝑠𝑖

𝜑𝑠

(1+𝜏𝐼𝑠𝑖)𝑐𝑠
                    (7) 

, where 𝐼𝑠𝑖  is the firm’s initial input allocation and there are 3 input factors represented 

by 𝐼𝑠𝑖 : 𝐾𝑠𝑖  , 𝐿𝑠𝑖  and 𝐻𝑠𝑖 . 𝜏𝐼𝑠𝑖   is the input distortion for the three input factors 

respectively. The input share of 𝜑𝑠 and input cost 𝑐𝑠 are: 

𝜑𝑠 = {

𝛼𝑠 𝑓𝑜𝑟  𝐼 = 𝐾
𝛽𝑠 𝑓𝑜𝑟  𝐼 = 𝐿
𝑟𝑠 𝑓𝑜𝑟  𝐼 = 𝐻

 

𝑐𝑠 = {

𝑟𝑠 𝑓𝑜𝑟  𝐼 = 𝐾
𝜔𝐿𝑠 𝑓𝑜𝑟  𝐼 = 𝐿

𝜔𝐻𝑠 𝑓𝑜𝑟  𝐼 = 𝐻
 

We can use the first order condition (7) to recover the firm-specific input distortions: 

(1 + 𝜏𝐼𝑠𝑖) =
𝜎−1

𝜎
𝑃𝑠𝑖𝑌𝑠𝑖

𝜑𝑠

𝑐𝑠𝐼𝑠𝑖
                    (8) 

, in which a high ratio of output to input cost implies a high input factor distortion. 

 

2.3.2 Resource reallocation and output gain 
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Substitute the first order condition (7) back into production function (4) and it becomes 

𝑌𝑠𝑖 =

𝐵𝑠𝑖𝑋𝑠
𝛿𝑠[

𝜎−1

𝜎
𝑃𝑠𝑖𝑌𝑠𝑖

𝛼𝑠

(1+𝜏𝐾𝑠𝑖)𝑟𝑠
]𝛼𝑠[

𝜎−1

𝜎
𝑃𝑠𝑖𝑌𝑠𝑖

𝛽𝑠

(1+𝜏𝐿𝑠𝑖)𝜔𝐿𝑠
]𝛽𝑠[

𝜎−1

𝜎
𝑃𝑠𝑖𝑌𝑠𝑖

𝛾𝑠

(1+𝜏𝐻𝑠𝑖)𝜔𝐻𝑠
]𝛾𝑠 =

𝐵𝑠𝑖𝑋𝑠
𝛿𝑠[

𝛼𝑠

(1+𝜏𝐾𝑠𝑖)𝑟𝑠
]𝛼𝑠[

𝛽𝑠

(1+𝜏𝐿𝑠𝑖)𝜔𝐿𝑠
]𝛽𝑠[

𝛾𝑠

(1+𝜏𝐻𝑠𝑖)𝜔𝐻𝑠
]𝛾𝑠(

𝜎−1

𝜎
𝑃𝑠𝑖𝑌𝑠𝑖)

𝛼𝑠+𝛽𝑠+𝛾𝑠           (9) 

 

Since we assume 𝛼𝑠 + 𝛽𝑠 + 𝛾𝑠 = 1, above equation becomes 

1 = 𝐵𝑠𝑖𝑋𝑠
𝛿𝑠[

𝛼𝑠

(1+𝜏𝐾𝑠𝑖)𝑟𝑠
]𝛼𝑠[

𝛽𝑠

(1+𝜏𝐿𝑠𝑖)𝜔𝐿𝑠
]𝛽𝑠[

𝛾𝑠

(1+𝜏𝐻𝑠𝑖)𝜔𝐻𝑠
]𝛾𝑠(

𝜎−1

𝜎
𝑃𝑠𝑖)   (10) 

 

Following the approach adopted in the literature (Hsieh and Klenow, 2009; Dias, et al. 

2014; Benkovskis, 2015; Chen, 2017; Choi, 2020), firms can reallocate their inputs 

more efficiently (achieve a larger output) when the firm-specific distortions they face 

are adjusted to the same industry level: 𝜏𝐾𝑠, 𝜏𝐿𝑠 and 𝜏𝐻𝑠. We will perform the same 

exercise here, although later we will argue that because of spillovers, the output can be 

increased if in fact the distortions are not equalized across the firms. Thus, we now find 

𝜏𝐾𝑠, 𝜏𝐿𝑠 and 𝜏𝐻𝑠 for each 𝑠, such that the aggregate industry use of inputs does not 

change. Also, we will denote the new firm level variables for equalized distortions with 

an asterisk. 

 

Using (3) and equalizing distortions, the input factors with equalized distortions for 

firm 𝑠𝑖 are 

𝐼𝑠𝑖
∗ =

𝜎−1

𝜎
𝑃𝑠𝑖
∗ 1−𝜎 𝜑𝑠

(1+𝜏𝐼𝑠)𝑐𝑠
                     (11) 

, where 𝐼𝑠𝑖
∗  is the reallocated input of firm 𝑠𝑖 after equalizing all distortions for the 

three input factors 𝐾𝑠𝑖
∗  , 𝐿𝑠𝑖

∗   and 𝐻𝑠𝑖
∗  . 𝑃𝑠𝑖

∗   is the output price of firm 𝑠𝑖  when the 

distortions it faces are equalized to the industry level. 

 

Then the output price is obtained from equation (10): 

𝑃𝑠𝑖
∗ =

1

𝐵𝑠𝑖
𝑋𝑠
∗−𝛿𝑠(

𝜎

𝜎−1
)[
(1+𝜏𝐾𝑠)𝑟𝑠

𝛼𝑠
]𝛼𝑠[

(1+𝜏𝐿𝑠)𝜔𝐿𝑠

𝛽𝑠
]𝛽𝑠[

(1+𝜏𝐻𝑠)𝜔𝐻𝑠

𝛾𝑠
]𝛾𝑠       (12) 
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, where 𝑋𝑠
∗  is the R&D spillover for all firms in the industry 𝑠  when firm-level 

distortions 𝜏𝐾𝑠𝑖  , 𝜏𝐿𝑠𝑖   and 𝜏𝐻𝑠𝑖   are equalized to the industry level of 𝜏𝐾𝑠 , 𝜏𝐿𝑠  and 

𝜏𝐻𝑠 . It is the geometric average of all firms R&D human capital stock 𝐻𝑠𝑖
∗ . 

 

To eliminate the output price, we substitute (12) into the input allocation with equalized 

distortions in (11): 

𝐼𝑠𝑖
∗ =

𝐵𝑠𝑖
𝜎−1(

𝜎−1

𝜎
)𝜎𝑋𝑠

∗𝛿𝑠(𝜎−1) 𝜑𝑠

(1+𝜏𝐼𝑠)𝑐𝑠
[
(1+𝜏𝐾𝑠)𝑟𝑠

𝛼𝑠
]𝛼𝑠(1−𝜎)[

(1+𝜏𝐿𝑠)𝜔𝐿𝑠

𝛽𝑠
]𝛽𝑠(1−𝜎)[

(1+𝜏𝐻𝑠)𝜔𝐻𝑠

𝛾𝑠
]𝛾𝑠(1−𝜎)  

(13) 

 

We assume that the total physical capital, labour supply and R&D human capital supply 

of an industry does not change. Therefore, the aggregate industry inputs stay fixed 

before and after the resource reallocation from equalizing the input distortions of all 

firms. The initial firm level input is  

𝐼𝑠𝑖 =

𝐵𝑠𝑖
𝜎−1(

𝜎−1

𝜎
)𝜎𝑋𝑠

𝛿𝑠(𝜎−1) 𝜑𝑠

(1+𝜏𝐼𝑠𝑖)𝑐𝑠
[
(1+𝜏𝐾𝑠𝑖)𝑟𝑠

𝛼𝑠
]𝛼𝑠(1−𝜎)[

(1+𝜏𝐿𝑠𝑖)𝜔𝐿𝑠

𝛽𝑠
]𝛽𝑠(1−𝜎)[

(1+𝜏𝐻𝑠𝑖)𝜔𝐻𝑠

𝛾𝑠
]𝛾𝑠(1−𝜎)  

(14) 

And the aggregate industry input is the sum of all firms’ input (13) in the same industry: 

𝐼𝑠

=∑𝐵𝑠𝑖
𝜎−1(

𝜎 − 1

𝜎
)𝜎𝑋𝑠

∗𝛿𝑠(𝜎−1)
𝜑𝑠

(1 + 𝜏𝐼𝑠)𝑐𝑠
[
(1 + 𝜏𝐾𝑠)𝑟𝑠

𝛼𝑠
]𝛼𝑠(1−𝜎)[

(1 + 𝜏𝐿𝑠)𝜔𝐿𝑠
𝛽𝑠

]𝛽𝑠(1−𝜎)[
(1 + 𝜏𝐻𝑠)𝜔𝐻𝑠

𝛾𝑠
]𝛾𝑠(1−𝜎)

𝑖

 

(15) 

With this assumption of fixed industry-level quantity of input, the firm’s reallocated 

input is derived to be positively related to its productivity, which is shown below. 

 

Now we derive the optimal R&D spillover 𝑋𝑠
∗. First, using (13) and (15), we find 

𝐼𝑠𝑖
∗ =

𝐵𝑠𝑖
𝜎−1

∑ 𝐵𝑠𝑖
𝜎−1

𝑖
𝐼𝑠                         (16) 
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In particular, 𝐻𝑠𝑖
∗ =

𝐵𝑠𝑖
𝜎−1

∑ 𝐵𝑠𝑖
𝜎−1

𝑖
𝐻𝑠 . The relationship between the reallocated firm-level 

R&D and the aggregate industry R&D stock implies that firm 𝑠𝑖’s productivity and its 

reallocated R&D input are positively related. This indicates that firms with higher 

productivity should use more R&D capital to achieve a higher allocation efficiency. 

Substituting (16) into the formula for 𝑋𝑠 in (5), the new R&D spillover 𝑋𝑠
∗ can be 

calculated as 

𝑋𝑠
∗ =

∏ 𝐵𝑠𝑖

𝜎−1
𝑚𝑠

𝑚𝑠
𝑖=1

∑ 𝐵𝑠𝑖
𝜎−1

𝑖
𝐻𝑠                         (17) 

 

From the aggregate industry input in (15) we can observe the relationship between 

distortions and the aggregate inputs: 

𝐻𝑠

𝐿𝑠
=

(1+𝜏𝐿𝑠
)𝜔𝐿𝑠

𝛽𝑠

(1+𝜏𝐻𝑠
)𝜔𝐻𝑠

𝛾𝑠

                          (18) 

𝐻𝑠

𝐾𝑠
=

(1+𝜏𝐾𝑠
)𝑟𝑠

𝛼𝑠

(1+𝜏𝐻𝑠
)𝜔𝐻𝑠

𝛾𝑠

                          (19) 

We use (18) and (19) to eliminate 𝜏𝐿𝑠 and 𝜏𝐾𝑠 in industry aggregate input (15) when 

𝐼𝑠 = 𝐻𝑠: 

𝐻𝑠

=∑𝐵𝑠𝑖
𝜎−1 (

𝜎 − 1

𝜎
)
𝜎

𝑋𝑠
∗𝛿𝑠(𝜎−1)[

(1 + 𝜏𝐾𝑠)𝑟𝑠

𝛼𝑠
]𝛼𝑠(1−𝜎)[

(1 + 𝜏𝐿𝑠)𝜔𝐿𝑠
𝛽𝑠

]𝛽𝑠(1−𝜎)[
(1 + 𝜏𝐻𝑠)𝜔𝐻𝑠

𝛾𝑠
]𝛾𝑠(1−𝜎)−1

𝑖

=∑𝐵𝑠𝑖
𝜎−1 (

𝜎 − 1

𝜎
)
𝜎

𝑋𝑠
∗𝛿𝑠(𝜎−1)[

(1 + 𝜏𝐻𝑠)𝜔𝐻𝑠
𝛾𝑠

]−𝜎 (
𝐻𝑠
𝐾𝑠
)
𝛼𝑠(1−𝜎)

(
𝐻𝑠
𝐿𝑠
)
𝛽𝑠(1−𝜎)

𝑖

 

One can use this equation to find 𝜏𝐻𝑠  and then find 𝜏𝐿𝑠 and 𝜏𝐾𝑠 from (18) and (19). 

The industry-level distortions can be expressed as a function of the aggregate industry 

inputs as: 

1 + 𝜏𝐼𝑠 =
𝜑𝑠
𝑐𝑠

𝐻𝑠
𝐼𝑠
(
1

𝐻𝑠
∑𝐵𝑠𝑖

𝜎−1 (
𝜎 − 1

𝜎
)
𝜎

(𝑋𝑠
∗)𝛿𝑠(𝜎−1) (

𝐻𝑠
𝐾𝑠
)
𝛼𝑠(1−𝜎)

(
𝐻𝑠
𝐿𝑠
)
𝛽𝑠(1−𝜎)

𝑚𝑠

𝑖=1

)

1
𝜎

 

, where 𝐼𝑠 is the industry level aggregate input and there are 3 input factors in 𝐼𝑠: 𝐾𝑠, 
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𝐿𝑠 and 𝐻𝑠. 

 

The input allocation at the firm-level (13) and the industry-level (15) implies the input 

ratios for the firm 𝑠𝑖 and the industry 𝑠 are the same: 

𝐻𝑠𝑖
∗

𝐾𝑠𝑖
∗ =

𝐻𝑠

𝐾𝑠
                             (20) 

𝐻𝑠𝑖
∗

𝐿𝑠𝑖
∗ =

𝐻𝑠

𝐿𝑠
                             (21) 

In order to compute the new output 𝑌𝑠𝑖
∗ , we use (20) and (21) to replace the firm-level 

input ratios with the industry-level input ratios. The new output with reallocated input 

and new R&D spillover then can be expressed as: 

𝑌𝑠𝑖
∗ = 𝐵𝑠𝑖(𝐾𝑠𝑖

∗ )𝛼𝑠(𝐿𝑠𝑖
∗ )𝛽𝑠(𝐻𝑠𝑖

∗ )𝛾𝑠(𝑋𝑠
∗)𝛿𝑠 = 𝐵𝑠𝑖 (

𝐾𝑠𝑖
∗

𝐻𝑠𝑖
∗ )

𝛼𝑠

(
𝐿𝑠𝑖
∗

𝐻𝑠𝑖
∗ )

𝛽𝑠

𝐻𝑠𝑖
∗ (𝑋𝑠

∗)𝛿𝑠 

= 𝐵𝑠𝑖𝐻𝑠𝑖
∗ (
𝐾𝑠
𝐻𝑠
)
𝛼𝑠

(
𝐿𝑠
𝐻𝑠
)
𝛽𝑠

(𝑋𝑠
∗)𝛿𝑠 =

𝐵𝑠𝑖
𝜎

∑ 𝐵𝑠𝑗
𝜎−1

𝑗

𝐻𝑠 (
𝐾𝑠
𝐻𝑠
)
𝛼𝑠

(
𝐿𝑠
𝐻𝑠
)
𝛽𝑠

(𝑋𝑠
∗)𝛿𝑠 

=
𝐵𝑠𝑖

𝜎

∑ 𝐵𝑠𝑗
𝜎−1

𝑗
𝐾𝑠
𝛼𝑠𝐿𝑠

𝛽𝑠𝐻𝑠
𝛾𝑠(𝑋𝑠

∗)𝛿𝑠 = 𝐵𝑠𝑖
𝜎Φ𝑠           (22) 

, where 𝑌𝑠𝑖
∗  is the new output when the firm 𝑠𝑖 reallocates its inputs with the equalized 

industry level input distortions and new R&D spillover. Φ𝑠 is the same for all the firms 

in industry 𝑠  and it equals to 
𝐾𝑠
𝛼𝑠𝐿𝑠

𝛽𝑠𝐻𝑠
𝛾𝑠(𝑋𝑠

∗)𝛿𝑠

∑ 𝐵𝑠𝑖
𝜎−1

𝑖
 . In this expression, the new output 

depends on its physical productivity 𝐵𝑠𝑖.  

 

With the new output, the industry-level output gap can be measured as: 

𝑌𝑠
∗

𝑌𝑠
= [

∑ (𝑌𝑠𝑖
∗ )
𝜎−1
𝜎

𝑚𝑠
𝑖=1

∑ (𝑌𝑠𝑖)
𝜎−1
𝜎

𝑚𝑠
𝑖=1

]

𝜎

𝜎−1

                      (23) 

Using the Cobb-Douglas aggregator, the output gain for the whole economy is 

𝑌∗

𝑌
= ∏ {

𝑌𝑠
∗

𝑌𝑠
}
𝜃𝑠

𝑆
𝑠=1                          (24) 

 

2.3.3 The relationship between output gap, the dispersion of 

productivity and R&D spillover 



29 

 

We can also express the industry-level output gap in terms of the dispersion of firms’ 

revenue productivity and R&D spillover to gauge the relationship between the industry-

level output gain and firms’ productivity. The industry level physical productivity is 

defined as 

𝑇𝐹𝑃𝑠 ≡
𝑌𝑠

𝐾𝑠
𝛼𝑠𝐿𝑠

𝛽𝑠𝐻𝑠
𝛾𝑠𝑋𝑠

𝛿𝑠
                     (25) 

 

Since the aggregate industry inputs do not change, we have 

𝑌𝑠
∗

𝑌𝑠
=
𝑇𝐹𝑃𝑠

∗

𝑇𝐹𝑃𝑠

𝑋𝑠
∗𝛿𝑠

𝑋𝑠
𝛿𝑠

                            (26) 

 

In logarithm, the output gap is 

𝑙𝑜𝑔𝑌𝑠
∗ − 𝑙𝑜𝑔𝑌𝑠 = 𝑙𝑜𝑔𝑇𝐹𝑃𝑠

∗ − 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 + 𝛿𝑠(𝑙𝑜𝑔𝑋𝑠
∗ − 𝑙𝑜𝑔𝑋𝑠)     (27) 

 

From central limit theorem, the industry level TFP after reallocation can be 

approximated as 

𝑙𝑜𝑔𝑇𝐹𝑃𝑠
∗ = 𝐸[𝑙𝑜𝑔𝐵𝑠𝑖] +

𝜎−1

2
𝑣𝑎𝑟(𝑙𝑜𝑔𝐵𝑠𝑖)            (28) 

 

Now we find the other term 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 as it is also required in the output gap. After 

substituting the initial firm-level inputs in terms of firm-level distortions (14) and the 

industry aggregate input (15) into the above expression of 𝑇𝐹𝑃𝑠 , the industry 

productivity in logarithm becomes 

𝑙𝑜𝑔𝑇𝐹𝑃𝑠 = 𝐸[𝑙𝑜𝑔𝐵𝑠𝑖] +
𝜎−1

2
𝑣𝑎𝑟(𝑙𝑜𝑔𝐵𝑠𝑖) −

𝜎

2
𝑣𝑎𝑟(𝑙𝑜𝑔Θ𝑠𝑖) −

𝛼𝑠(1−𝛼𝑠)

2
𝑣𝑎𝑟(log(1 +

𝜏𝐾𝑠𝑖)) −
𝛽𝑠(1−𝛽𝑠)

2
𝑣𝑎𝑟(log(1 + 𝜏𝐿𝑠𝑖)) −

𝛾𝑠(1−𝛾𝑠)

2
𝑣𝑎𝑟(log(1 + 𝜏𝐻𝑠𝑖))             (29) 

where Θ𝑠𝑖 = (1 + 𝜏𝐾𝑠𝑖)
𝛼𝑠
(1 + 𝜏𝐿𝑠𝑖)

𝛽𝑠
(1 + 𝜏𝐻𝑠𝑖)

𝛾𝑠
 

 

In the presence of the R&D spillover in the production function, the firm-specific TFPR 

(total factor revenue productivity) is defined as the product of firm-specific output price 

and productivity 𝑃𝑠𝑖𝐵𝑠𝑖 and it measures the revenue productivity of firm 𝑠𝑖: 



30 

 

𝑇𝐹𝑃𝑅𝑠𝑖  = 𝑃𝑠𝑖𝐵𝑠𝑖 =  
𝑃𝑠𝑖𝑌𝑠𝑖

𝑋𝑠
𝛿𝑠𝐾𝑠𝑖

𝛼𝑠
𝐿𝑠𝑖

𝛽𝑠𝐻𝑠𝑖
𝛾𝑠

 

                          =
1

𝑋𝑠
𝛿𝑠

𝜎

𝜎−1
(
𝑟𝑠(1+𝜏𝐾𝑠𝑖)

𝛼𝑠
)

𝛼𝑠

(
𝜔𝐿𝑠(1+𝜏𝐿𝑠𝑖)

𝛽𝑠
)

𝛽𝑠

(
𝜔𝐻𝑠(1+𝜏𝐻𝑠𝑖)

𝛾𝑠
)

𝛾𝑠

         (30) 

And in approximation, it becomes 

𝑣𝑎𝑟(𝑙𝑜𝑔𝑇𝐹𝑃𝑅𝑠𝑖) = 𝑣𝑎𝑟(𝑙𝑜𝑔Θ𝑠𝑖)                 (31) 

where Θ𝑠𝑖 = (1 + 𝜏𝐾𝑠𝑖)
𝛼𝑠
(1 + 𝜏𝐿𝑠𝑖)

𝛽𝑠
(1 + 𝜏𝐻𝑠𝑖)

𝛾𝑠
. 

Therefore, the industry level productivity in logarithm can be written as 

𝑙𝑜𝑔𝑇𝐹𝑃𝑠 = 𝑙𝑜𝑔𝑇𝐹𝑃𝑠
∗ −

𝜎 − 1

2
𝑣𝑎𝑟(𝑙𝑜𝑔𝑇𝐹𝑃𝑅𝑠𝑖)  −

𝛼𝑠
2
𝑣𝑎𝑟(log(1 + 𝜏𝐾𝑠𝑖)) 

−
𝛽𝑠

2
𝑣𝑎𝑟(log(1 + 𝜏𝐿𝑠𝑖)) −

𝛾𝑠

2
𝑣𝑎𝑟(log(1 + 𝜏𝐻𝑠𝑖))                (32) 

 

After substituting 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 and 𝑙𝑜𝑔𝑇𝐹𝑃𝑠
∗ in to the output gap (26), we can see that 

the output gain comes not only from eliminating dispersion in distortions of inputs, but 

also from the R&D spillover term: 

𝑙𝑜𝑔𝑌𝑠
∗ − 𝑙𝑜𝑔𝑌𝑠 = 𝑙𝑜𝑔𝑇𝐹𝑃𝑠

∗ − 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 + 𝛿𝑠(𝑙𝑜𝑔𝑋𝑠
∗ − 𝑙𝑜𝑔𝑋𝑠) 

                                  =
𝜎 − 1

2
𝑣𝑎𝑟(𝑙𝑜𝑔𝑇𝐹𝑃𝑅𝑠𝑖) + 𝛿𝑠(𝑙𝑜𝑔𝑋𝑠

∗ − 𝑙𝑜𝑔𝑋𝑠) 

+
𝛼𝑠

2
𝑣𝑎𝑟(log(1 + 𝜏𝐾𝑠𝑖)) +

𝛽𝑠

2
𝑣𝑎𝑟(log(1 + 𝜏𝐿𝑠𝑖)) +

𝛾𝑠

2
𝑣𝑎𝑟(log(1 + 𝜏𝐻𝑠𝑖))      (33) 

 

 

2.3.4 Importance of each input distortion to the output loss 

We also measure the contribution to the output gain of eliminating separately each input 

distortion. We equalize one input distortion at a time and keep the other two input 

allocations fixed at the same time (Dias et al. 2014). 

 

When the firm-specific physical capital distortions are equalized at the industry level, 

each firm adjusts physical capital input to maximize its profit, while they fix the other 

two inputs. The firms would also want to change the use of other inputs when the capital 
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distortions change. However, we still want to ensure that the industry level use of inputs 

stays the same as originally, but by changing only capital distortions, we cannot ensure 

that the use of all three inputs will stay the same at the industry level. Therefore, we 

assume that the firms simply cannot change their other two inputs. The equalized 

industry-level capital distortion is derived under the assumption that the aggregate 

capital input in the industry 𝑠 stays fixed after reallocating capital input across firms. 

(Detailed derivation and calculations are available in the Appendix 2.A). After 

obtaining the reallocated capital stock and initial labour and R&D human capital, one 

can get the new output of eliminating the physical capital distortion. And we apply the 

same approach to get the output gain from eliminating labour distortion. When 

eliminating R&D capital distortion, we need to take into account that the R&D spillover 

also changes as it is a geometric average of optimal firm-level R&D human capital 

stock. 

 

2.3.5 An alternative approach to improve the allocation outcome 

In the presence of externality of the R&D spillover, the input reallocation will not result 

in the most efficient output when distortions are equalized at the industry level, as it is 

done in the previous studies (Dias, et al. 2014; Benkovskis, 2015; Chen, 2017; Choi, 

2020). In fact, the initial output might be higher than the output from equalizing all the 

distortions in some industries, which indicates that the reallocated inputs might not 

achieve the efficient outcome. 

 

It seems that there does not exist an explicit analytical solution for distortions that lead 

to the first best allocation of inputs. However, we suggest an alternative allocation 

approach that improves on the outcome with equalized distortions. The input distortions 

derived from this alternative allocation might provide policy implications for firms with 

different levels of productivity. 

 

An industry-wide output is 
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𝑌𝑠 =

(

 
 
∑(𝐵𝑠𝑖𝐾𝑠𝑖

𝛼𝑠𝐿𝑠𝑖
𝛽𝑠𝐻𝑠𝑖

𝛾𝑠 (∏ 𝐻
𝑠𝑗

1
𝑚𝑠

𝑚𝑠

𝑗=1
)

𝛿𝑠

)

𝜎−1
𝜎𝑚𝑠

𝑖=1

)

 
 

𝜎
𝜎−1

 

                                = (∑ (𝐵𝑠𝑖𝐾𝑠𝑖
𝛼𝑠𝐿𝑠𝑖

𝛽𝑠𝐻𝑠𝑖
𝛾𝑠)

𝜎−1

𝜎𝑚𝑠
𝑖=1 )

𝜎

𝜎−1

(∏ 𝐻
𝑠𝑗

1

𝑚𝑠𝑚𝑠
𝑗=1 )

𝛿𝑠

             (34) 

After taking the logarithm, it becomes 

log𝑌𝑠 =
𝜎

𝜎−1
log(∑ (𝐵𝑠𝑖𝐾𝑠𝑖

𝛼𝑠𝐿𝑠𝑖
𝛽𝑠𝐻𝑠𝑖

𝛾𝑠)

𝜎−1

𝜎𝑚𝑠
𝑖=1 ) +

𝛿𝑠

𝑚𝑠
∑ log𝐻𝑠𝑗
𝑚𝑠
𝑗=1      (35) 

If we maximize the first term subject to the resource constraint: 

max
𝐾𝑠𝑖,𝐿𝑠𝑖,𝐻𝑠𝑖   

(∑(𝐵𝑠𝑖𝐾𝑠𝑖
𝛼𝑠𝐿𝑠𝑖

𝛽𝑠𝐻𝑠𝑖
𝛾𝑠)

𝜎−1
𝜎

𝑚𝑠

𝑖=1

)

𝜎
𝜎−1

 

s.t.  

𝐼𝑠 =∑𝐼𝑠𝑖

𝑚𝑠

𝑖=1

 

From the FOCs, the input allocation is: 

𝐼𝑠𝑖 =
𝐵𝑠𝑖
𝜎−1

∑ 𝐵𝑠𝑗
𝜎−1

𝑠𝑗

𝐼𝑠 

which is exactly what we obtain when equalizing distortions across firms. The R&D 

allocation would be different if we maximize the second term in (35) subject to R&D 

human capital resource constraint: 

𝐻𝑠𝑖 =
1

𝑚𝑠
𝐻𝑠  

That is, 𝑋𝑠 is maximized if all firms in industry 𝑠 get an equal share of 𝐻𝑠. 

Note that log𝑌𝑠 is a strictly concave function in (𝐻𝑠1, … , 𝐻𝑠𝑚𝑠), 

log𝑌𝑠 (𝜆𝑠�̂�𝑠1 + (1 − 𝜆𝑠)�̌�𝑠1, … , 𝜆𝑠�̂�𝑠𝑚𝑠 + (1 − 𝜆𝑠)�̌�𝑠𝑚𝑠)

> 𝜆𝑠 log𝑌𝑠 (�̂�𝑠1, … , �̂�𝑠𝑚𝑠) + (1 − 𝜆𝑠) log𝑌𝑠 (�̂�𝑠1, … , �̌�𝑠𝑚𝑠) 

, where �̂�𝑠𝑖 =
𝐵𝑠𝑖
σ−1

∑ 𝐵𝑠𝑗
σ−1

𝑠𝑗
𝐻𝑠 and �̌�𝑠𝑖 =

1

𝑚𝑠
𝐻𝑠. 

Therefore, we choose an R&D allocation as a mixed solution of �̂�𝑠𝑖 and �̌�𝑠𝑖. 
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�̃�𝑠𝑖 ≡ 𝜆𝑠�̂�𝑠𝑖 + (1 − 𝜆𝑠)�̌�𝑠𝑖 =
𝛾𝑠𝐵𝑠𝑖

σ−1+
𝛿𝑠
𝑚𝑠
∑ 𝐵𝑠𝑗

σ−1
𝑠𝑗

(𝛾𝑠+𝛿𝑠) ∑ 𝐵𝑠𝑗
σ−1

𝑠𝑗
𝐻𝑠          (36) 

, where 𝜆𝑠 =
𝛾𝑠

𝛾𝑠+𝛿𝑠
 . This alternative allocation of R&D input, which is a weighted 

average of the allocations when maximizing the output without the spillover term and 

when maximizing R&D spillover, could improve on the competitive outcome with the 

equalized distortions. Though, it does not guarantee to improve on the initial outcomes 

as the initial outcome in some industries could happen to be the first best, which is 

higher than the outcome resulting from alternative allocations.  

 

2.4 Data 

2.4.1. Data sources and sample 

Our dataset includes information on Chinese manufacturing firms listed on Shanghai 

Stock Exchange and Shenzhen Stock Exchange in mainland China. Industries are 

classified according to the benchmark of CSRC Industry Classification (2012 Edition). 

All data is collected in CSMAR database (China Stock Market and Accounting 

Research Database). Our study starts with the year 2015 as the data of firm-specific 

R&D personnel in CSMAR database is only available from 2015. The sample period is 

from 2015 to 2018. 

 

Our initial data includes 1586 firms with 6344 observations. We drop 119 observations 

with missing or non-positive value of the data on sales, fixed assets, employees, R&D 

employment, R&D expenditure and wage bill. We then exclude observations with 

values of the fixed assets and employment above the 99th percentile or below 1st 

percentile to eliminate outliers. The resulting sample includes 1460 firms with 5840 

observations. 

 

2.4.2. Definitions of main variables 

The main variables in this study are nominal output, physical capital stock, non-R&D 
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employment and R&D human capital, which are measured by sales, fixed assets, the 

number of employees hired in non-R&D activities and the number of employees hired 

in R&D activities respectively. We deflate the sales by Purchasing Price Indices for 

Industrial Producers and use deflated sales as nominal output. As a measure of R&D 

human capital, we use the number of employees in R&D activities of the firm. And 

since we only have employment data for all employees and R&D employees, we 

measure the number of non-R&D employees by the difference between the number of 

total employees and R&D employees of the firm. 
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Table 2.1 Descriptive Statistics 

   Total Low-tech Medium-tech High-tech 

  100% 12.5% 46.5% 40.0% 

  5840 724 2708 2328 

Variable  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

𝑃𝑠𝑖𝑌𝑠𝑖 Nominal output (revenue) 5467.135 13112.705 5110.718 8944.143 6260.89 14739.195 4144.064 8992.252 

𝐾𝑠𝑖 Capital stock (fixed asset) 1928.857 3638.229 1633.938 2257.46 2471.242 4556.073 1246.113 1989.224 

𝐿𝑠𝑖 Non-R&D employment 4194.642 7126.443 5439.635 8489.716 3895.169 6131.366 3848.649 6214.597 

𝐻𝑠𝑖 R&D employment 544.745 1260.149 286.119 348.184 490.031 938.043 661.938 1606.564 

𝛼𝑠 Capital share 0.377 0.152 0.352 0.146 0.433 0.167 0.315 0.089 

𝛽𝑠 Non-R&D labour share 0.484 0.121 0.592 0.145 0.458 0.123 0.479 0.059 

𝛾𝑠 R&D human capital share 0.139 0.08 0.055 0.018 0.109 0.063 0.206 0.064 

𝑟𝑠 Rental rate of capital 3.076 2.196 3.239 1.203 2.57 0.845 3.305 0.713 

𝜔𝐿𝑠 
Non-R&D labour cost 0.016 0.006 0.018 0.009 0.018 0.005 0.014 0.003 

𝜔𝐻𝑠 
R&D labour cost 0.035 0.016 0.033 0.021 0.032 0.018 0.036 0.008 

 

 

 

  



36 

 

2.4.3. Descriptive statistics 

Table 2.1 presents the descriptive statistics for the total sample of the manufacturing 

firms listed in Shanghai and Shenzhen stock exchanges as well as three groups 

according to firms’ type (Low-tech industries, Medium-tech industries and High-tech 

industries). The classification of the three technology types for industries is based on 

An and Qian (2021) and Jiang and Guan (2008) and High-tech industry (manufacturing 

industry) Classification (2017 Edition) issued by Chinese National Bureau of Statistics. 

We use this classification to measure the allocative efficiency loss for groups of 

different technology type separately, as the R&D resource misallocation and R&D 

spillover effect might differ in industries of different technology type. There are 1460 

firms in the sample and 12.5 of them are classified as low-tech firms, 46.5% as medium-

tech firms and 40.0% as high-tech firms. The mean value of sales is 5467.135 million 

RMB. The standard deviation is 13112.705, indicating that the revenues of sample firms 

take a broad range of values. On average, the capital stock is 1928.857 million RMB. 

The standard deviation of 3638.229 also reflects a wide range of values for the capital 

stock. Firms in the medium-tech group have the highest mean value of 2471.242 million 

RMB, which is almost twice of that for the firms in the high-tech group that invest the 

least in capital stock. On average, firms hire 4194.642 non-R&D employees. The 

standard deviation is 7126.443, indicating a wide range of firms’ non-R&D 

employment. Firms in the low-tech group have the highest mean value of 5439.635 

non-R&D employees. Firms in the other two groups have, on average, a similar number 

of non-R&D employees, which is around 3850. The mean value of R&D employment 

for the total sample of firms is 544.745. The standard deviation of 1260.149 reflects a 

broad range of R&D employment. The ranking of mean values of R&D employment 

for each group is closely related to the technology type. Firms in the high-tech group 

hire the most R&D employees, with a mean value of 661.938. The mean value of R&D 

employees of firms in the low-tech group is only around one third of that of firms in the 

high-tech group, while that of firms in the medium-tech group is 490.031. 
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From the data, we also calculate the shares of capital stock, non-R&D employment and 

R&D employment in the output for each industry. The average capital input share is 

0.377 for all industries. The difference across firms is indicated by a standard deviation 

of 0.152 as well as a minimum of 0.032 and a maximum of 0.962. Firms in the medium-

tech group have the highest capital share among the three groups, exhibiting a mean 

value of 0.433, whereas firms in the high-tech group have the lowest capital share of 

0.315. The average share of non-R&D employment for the total sample is 0.484 and it 

also differs a lot across firms. Firms in the low-tech group rely the most on non-R&D 

labour in the production among all groups as the mean value of 0.592 is the highest, 

while firms in the medium-tech group have the lowest average share of non-R&D 

employment. With regard to the share of R&D employment, the average for the entire 

sample is 0.139. R&D employment share is the highest in the high-tech group and 

lowest in the low-tech group, exhibiting mean values of 0.206 and 0.055, respectively. 

 

Concerning the input factor prices (Parameter calibration is in Appendix 2.B), the 

average rental rate of capital for all firms is 3.076 million RMB while that for firms in 

the medium-tech group is the lowest at 2.57 million RMB and in the high-tech group is 

the highest at 3.305 million RMB. On average, the labour cost for non-R&D employees 

is 16000 RMB. The mean value of non-R&D labour cost in the high-tech group is lower 

than in the other two groups. Firms in the low-tech group and the medium-tech group 

pay a similar estimated wage rate with an average of 18000 RMB to non-R&D 

employees. As for R&D labour cost, its mean value for the entire sample is more than 

double that of the non-R&D labour cost. R&D employees hired in the high-tech 

industry are paid the highest wage rate with a mean of 36000 RMB and those hired in 

the low-tech industry and medium-tech industry are paid similar wage rates of 33000 

RMB and 32000 RMB, respectively. 

 

The industry composition is shown in Table 2.2 The low-tech industry takes up the 

smallest part, representing 12.5% of the whole sample. Within the low-tech industry, 
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firms are more evenly distributed when compared with the other two groups. Medium-

tech and high-tech groups make up a similar percentage of the whole sample, which is 

around 43% for each group. These two groups take up most of the sample. Within the 

medium-tech industry, the number of firms in the industry of Raw Chemical Materials 

and Chemical Products (C26) is the highest, accounting for around 10% of the total 

sample. Within the high-tech industry, there are the most firms in the Computer, 

Communication and Other Electronic Device Manufacturing Industry (C39), taking up 

13.63% of all firms in the sample. 
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Table 2.2 Industry Composition 

Industry Code Obs % 

Low-tech industries 
   

Farm and Sideline Products Processing C13 29 1.99 

Food Manufacturing C14 29 1.99 

Wine, Drinks and Refined Tea Manufacturing C15 26 1.78 

Textile Industry C17 26 1.78 

Textiles, Garments and Apparel Industry C18 27 1.85 

Leather, Fur, Feathers, and Related Products and Shoe-making C19 6 0.41 

Timber Processing, Bamboo, Cane, Palm Fiber and Straw Products C20 5 0.34 

Furniture Manufacturing C21 9 0.62 

Paper-making & Paper Products C22 21 1.44 

Printing and Reproduction of Recorded Media C23 6 0.41 

Culture and Education, Arts and Crafts, Sports and Entertainment Products 

Manufacturing C24 6 0.41 

Medium-tech industries 
   

Petroleum Processing, Coking and Nuclear Fuel Processing C25 8 0.55 

Raw Chemical Materials and Chemical Products C26 147 10.07 

Chemical Fiber Manufacturing C28 16 1.10 

Rubber and Plastic Product Industry C29 45 3.08 

Non-metallic Mineral Products C30 52 3.56 

Ferrous Metal Smelting and Extruding C31 14 0.96 

Non-ferrous Metals Smelting & Rolling Processing C32 52 3.56 

Metal Products C33 36 2.47 

General Equipment Manufacturing C34 91 6.23 

Special Equipment Manufacturing C35 142 9.72 

Automobile Manufacturing C36 82 5.62 

High-tech industries 
   

Medicine Manufacturing C27 153 10.48 

Railway, Shipbuilding, Aerospace and Other Transportation Equipment 

Manufacturing C37 31 2.12 

Electric Machines and Apparatuses Manufacturing C38 169 11.58 

Computer, Communication and Other Electronic Device Manufacturing C39 199 13.63 

Instrument and Meter Manufacturing C40 23 1.58 

Total 
 

1460 100 

Note: Low-tech industries and medium-tech industries are classified using the methodology in Jiang and Guan (2021). High-

tech industries are classified by High-tech industry (manufacturing industry) Classification (2017 Edition) issued by Chinese 

National Bureau of Statistics. 
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2.5 Empirical results 

This section presents the results of measurement of resource misallocation and the 

output gain from a more efficient reallocation for Chinese listed manufacturing firms. 

The first part discusses the input resource misallocation in the presence of the 

knowledge spillover for the whole economy as well as that within and between the 

industries of different technology type: low-tech, medium-tech and high-tech. The 

second part presents the results of the output gain from input reallocation by eliminating 

all distortions. TFPR levels are equalized across firms when all distortions are equalized. 

The third part describes the contribution of eliminating each input distortion at a time 

for the output gain. The last part presents the results of the output gain from the 

alternative reallocation approach of adopting a weighted average of the allocations 

when maximizing the output without the spillover term and when maximizing only 

R&D spillover term. 

 

2.5.1 Resource misallocation for Chinese manufacturing firms 

From the equation (33) in the model section, efficient resource allocation requires the 

equalized TFPR across firms, accompanied by a change in the magnitude of the R&D 

spillover. Since the logarithm output gap is expressed in terms of the dispersion in TFPR 

in equation (33), we present the logarithm scaled TFPR (the firm level TFPR over the 

industry level TFPR) dispersion statistics for the whole economy as well as for the three 

groups in Table 2.3.  

 

Table 2.3 The dispersion of TFPR 

  Whole economy Low-tech Medium-tech High-tech 

2015 0.664 0.574 0.685 0.628 

2016 0.624 0.566 0.655 0.576 

2017 0.625 0.609 0.643 0.593 

2018 0.639 0.592 0.635 0.628 

Note: Entries are standard deviation of the logarithm scaled TFPR (
𝑇𝐹𝑃𝑅𝑠𝑖

𝑇𝐹𝑃𝑅𝑠
∗ ). 

 

The efficiency gain is higher the larger the dispersion of the scaled TFPR (Dias, et al., 

2016). The standard deviation is significantly larger than zero for all years and all 

groups, suggesting the misallocation exists in all groups. For the three groups, the 
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standard deviation is the lowest in the low-tech group, and highest in the medium-tech 

group. This indicates that the input misallocation problem is the least serious in the low-

tech industries and the most serious in the medium-tech industries. This is consistent 

with the actual economic situation in China. The level of market competition in the low-

tech industries, such as for Food Manufacturing (C14), Textiles, Garments and Apparel 

Industry (C18) and Leather, Fur, Feathers, and Related Products and Shoe-making 

(C19), is the highest among the three groups. Therefore, the resource misallocation is 

the lowest in the low-tech industries. Medium-tech industries, including Raw Chemical 

Materials and Chemical Products (C26), Ferrous Metal Smelting and Extruding (C31) 

and Non-ferrous Metals Smelting & Rolling Processing (C32), rely heavily on the 

natural resources. Due to the monopolization and the control by the government, the 

market competition is insufficient in these industries, so the misallocation is larger 

(Wang and Niu, 2019). 

 

Now we look at the TFPR dispersion change over the sample period. For the total 

economy, the change seems negligeable, decreasing from 0.664 in 2015 to 0.639 in 

2018. The decrease in the TFPR dispersion indicates the allocation is more efficient. 

By looking at the TFPR dispersion change in the three groups, the TFPR dispersion in 

the low-tech group increases as the standard deviation increases from 0.574 in 2015 to 

0.592 in 2018. The TFPR dispersion for high-tech firms stay at the same level in 2018 

as in 2016, while it decreases a little in the middle of the sample years. It is noticeable 

that there is a consistent decrease of the TFPR dispersion in the medium-tech group. 

Wang and Niu (2019) explain that this is due to the success of supply side reforms in 

China from 2015, which aims to alleviate the industrial overcapacity. Therefore, we 

find that the input allocation becomes more efficient for medium-tech firms. 

 

Figure 2.1 presents the distribution of the scaled TFPR for firms in the low-tech group, 

medium-tech group and high-tech group over the sample period. The density graphs 

show the change of the dispersion of scaled TFPR in each year, which is consistent with 

the S.D. change reported in Table 2.3. The tail becomes thicker for low-tech groups 

over time, while that for medium-tech firms becomes thinner, suggesting a less efficient 

input allocation and a more efficient allocation over time respectively. 
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Figure 2.1 Density of TFPR for three groups 

 

Low-tech group 

 

 

Medium-tech group 

 

 

High-tech group 
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We follow Dias et al. (2016)’s methodology to measure the correlation between the 

firms’ productivity and their distortion. The results are shown in Table 2.4. Dias, et al. 

(2016) find that if the firms’ productivity and their distortions are strongly positively 

correlated, the output gain would be higher, which means the efficiency loss from the 

inefficient allocation is larger. And if the physical productivity is not correlated with 

TFPR, the dispersion of TFPR would not cause a large efficiency loss and, the output 

gain would be small (Restuccia and Rogerson, 2008; Dias, et al., 2016). The positive 

correlation coefficient implies that more productive firms face higher distortions. The 

input for firms with higher productivity is insufficient so they tend to produce less, 

while firms with lower productivity tend to overproduce as they hire too much of inputs.  

 

Table 2.4 Correlation between productivity and distortions 

  
Average 

(2015-2018) 
2015 2016 2017 2018 

whole economy 0.587 0.57 0.579 0.603 0.602 

low-tech 0.632 0.558 0.644 0.697 0.657 

medium-tech 0.566 0.538 0.547 0.6 0.589 

high-tech 0.67 0.69 0.631 0.668 0.693 

Note: Entries are the correlation coefficients between the firms’ productivity and input distortions. 

We follow Dias et al. (2016)’s methodology to measure the correlation, where they use a firm’s 

productivity weight in the industry 𝜌𝑠𝑖 =
𝐵𝑠𝑖
𝜎−1

∑ 𝐵𝑠𝑖
𝜎−1𝑚𝑠

𝑖=1

 to replace a firm’s productivity. They use the 

scaled TFPR (
𝑇𝐹𝑃𝑅𝑠𝑖

𝑇𝐹𝑃𝑅𝑠
∗ ) to express the firm-level distortion as 𝑇𝐹𝑃𝑅𝑠𝑖 can be expressed in terms of 

the three input distortions in equation (19).  

 

2.5.2 Reallocation gains 

The R&D externality in our model plays an important role in the allocative efficiency 

gain. In the literature without any externality, the allocative efficiency gain only 

depends on the dispersion of the scaled TFPR. But in our model, as Eq. (33) suggests, 

the allocative efficiency gain depends not only on the dispersion of TFPR, but also on 

the change in R&D spillover after reallocation. 

𝑙𝑜𝑔𝑌𝑠
∗ − 𝑙𝑜𝑔𝑌𝑠 = 𝑙𝑜𝑔𝑇𝐹𝑃𝑠

∗ − 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 + 𝛿𝑠(𝑙𝑜𝑔𝑋𝑠
∗ − 𝑙𝑜𝑔𝑋𝑠) 

=
𝜎 − 1

2
𝑣𝑎𝑟(𝑙𝑜𝑔𝑇𝐹𝑃𝑅𝑠𝑖) + 𝛿𝑠(𝑙𝑜𝑔𝑋𝑠

∗ − 𝑙𝑜𝑔𝑋𝑠) 
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          +
𝛼𝑠

2
𝑣𝑎𝑟(log(1 + 𝜏𝐾𝑠𝑖)) +

𝛽𝑠

2
𝑣𝑎𝑟(log(1 + 𝜏𝐿𝑠𝑖)) 

+
𝛾𝑠

2
𝑣𝑎𝑟(log(1 + 𝜏𝐻𝑠𝑖))  (33) 

 

Table 2.5 Output gains from equalizing TFPR within industries 

years whole economy low-tech medium-tech high-tech 

2015 48.742 36.224 61.061 35.238 

2016 41.092 34.017 47.928 33.849 

2017 39.326 44.805 44.562 29.716 

2018 36.324 40.323 38.682 31.354 

Note: Entries for the output gains are given by (𝑌∗/𝑌 − 1) ∗ 100  and the output gap 𝑌∗/𝑌  is 

computed form Eq.(24). All the output gains are presented in percentages (%). 

 

Table 2.5 presents the aggregate output gain from eliminating all the distortions by 

equalizing TFPR across firms in the same industry, which is computed from Eq. (22) 

and Eq. (23). We generate the output gain for each sample year from 2015 to 2018 and 

for the three groups. The output gain for the whole economy decreases over time, 

suggesting the allocative efficiency has improved after 2015. Wang and Niu (2019) 

explain the decreased resource misallocation as a result of the industrial adjustment in 

China in recent years. From our results, the largest (potential) gain occurs in the 

medium-tech group in the first two years, reaching at 61% in 2015 and 48% in 2016, 

while it reaches 45% in the low-tech group in 2017 and 40% in 2018. High-tech firms 

always gain the least from equalizing all distortions during the sample period, with the 

magnitude of 35% in 2015, 34% in 2016, 30% in 2017 and 31%in 2018. This suggests 

that high-tech firms are the most efficient in resource allocation between the three 

groups as the efficiency loss from the distortions in the high-tech industry is the smallest 

between the three types of firms.  

 

The effect of the R&D externality differs for firms with different technology type. As 

Table 2.3 suggests, medium-tech firms are the main driver of the resource misallocation 

as the scaled TFPR for medium-tech firms is the most dispersed for all four years. They 

should always have the largest output gain when there is no externality. From our results 

with the R&D externality in Table 2.5, in 2015 and 2016, medium-tech firms have the 

largest gain and it is consistent with what literature suggests. But in the next two years, 
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their output gain becomes lower than that in the low-tech group, which implies that the 

allocative gain is affected by R&D externality. For high-tech firms, the TFPR dispersion 

is lower than for the medium-tech group and higher than for the low-tech group. 

However, the output gain in the high-tech group from the reallocation is the smallest 

for all years, indicating that high-tech firms are the most efficient in resource allocation. 

We attribute this to the  R&D spillover effect that high-tech firms benefit from. On the 

contrary, the scaled TFPR for low-tech firms is the least dispersed in Table 2.3. But the 

results in Table 2.5 show that the efficiency loss in the low-tech group is not the smallest 

among all groups in 2017 and 2018, which is not consistent to the literature that does 

not consider externality. Since R&D input only takes a small proportion in low-tech 

industries, the R&D spillover does not make a large effect in alleviating resource 

misallocation. 

 

In order to gauge to what extent the R&D externality affects the allocative efficiency 

gain, we keep the R&D spillover fixed at the level before the reallocation to represent 

the situation where there is no R&D externality. In Table 2.6, the efficiency loss 

increases by around 50 percentage points for all the three groups. Particularly, high-

tech firms now have the largest efficiency gain in the last two years, increasing from 

30% to 93% in 2017 and from 31% to 119% in 2018. This implies that the efficiency 

loss could be overestimated when the R&D externality is not considered. Low-tech 

firms now have the smallest efficiency loss and this result is consistent with this group 

having the smallest dispersion in Table 2.3. The substantial increase in the output gain 

emphasizes the importance of R&D externality in alleviating the resource misallocation. 

 

Table 2.6 Output gains from equalizing TFPR within industries  (R&D spillover 

fixed) 

years whole economy low-tech medium-tech high-tech 

2015 95.379 42.513 108.656 100.007 

2016 80.781 40.514 88.411 87.161 

2017 85.635 54.613 89.359 92.921 

2018 91.698 51.762 86.064 119.068 

Note: Entries for the output gains are given by (𝑌∗/𝑌 − 1) ∗ 100  and the output gap 𝑌∗/𝑌  is 

computed form Eq.(24). All the output gains are presented in percentages (%). 
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2.5.3 Individual contribution of each input misallocation 

In order to evaluate the contribution of eliminating each input distortion at a time to the 

output gain, we use eq. (33) to decompose the overall output gain into four parts: 

contribution from eliminating capital distortion, non-R&D labour distortion, R&D 

distortion and the interaction of the three input factors. Table 2.7 and Figure 2.2 present 

the output gain from eliminating one input distortion at a time while keeping the other 

two inputs fixed. From the results, the labour distortion contributes the most to the total 

output loss for the whole economy. The output gain is 23% in 2015, 17% in 2016, 19% 

in 2017 and 20% in 2018 if the labour distortions across firms are equalized at the 

industry level. This is consistent with Jin, et al. (2018), suggesting that labour 

misallocation is more serious than capital misallocation, though their study focuses on 

the misallocation aross industries and our study concentrates more on the misallocation 

within industries. However, the trend of the change in the importance of the labour 

distortion is different for the three technology groups. Its importance has an increasing 

trend from 17% in 2015 to 19% in 2018 in the low-tech group, while it decreases by 

around 4 pp in medium-tech group and high-tech group.  

 

The capital distortion is the second most important in resource misallocation for the 

whole economy. In the low-tech group and the medium-tech group, the contribution of 

capital distortion to the output gain is significantly lower than labour distortion, while 

in the high-tech group, capital distortion contributes the most among the three 

distortions from 2016 to 2018. 

 

Compared to above two distortions, the contribution from eliminating R&D distortion 

is much smaller as the largest size it has achieved is 1.8% in 2018 in the low-tech group. 

The maginitude of the R&D misallocation in the low-tech group is relatively the highest, 

while that in the medium-tech firms is the lowest. In particular, it causes an negative 

output gain of -0.2% for the whole economy in 2016. The negative output gain comes 

from the medium-tech group, -1.457% in 2016 and -0.024% in 2018. This indicates that 

the initial R&D allocation is more efficient for medium-tech firms in 2016 and 2018. 
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Table 2.7 Contribution of each distortion 

  Whole economy  Low-tech firms 

 2015 2016 2017 2018  2015 2016 2017 2018 

all 48.742 41.092 39.326 36.324  36.224 34.017 44.805 40.323 

capital 13.64 17.539 13.776 12.91  6.529 7.307 7.209 7.529 

labour 22.976 17.373 19.418 19.681  16.915 14.887 21.875 19.12 

R&D 0.894 -0.216 0.42 0.387  1.618 1.377 1.385 1.813 

          

 Medium-tech firms  High-tech firms 

 2015 2016 2017 2018  2015 2016 2017 2018 

all 61.061 47.928 44.562 38.682  35.238 33.849 29.716 31.354 

capital 16.369 18.89 13.761 11.265  12.254 19.672 16.383 17.62 

labour 26.388 19.676 21.293 22.028  20.036 14.876 15.689 16.38 

R&D 0.447 -1.457 0.158 -0.024  1.329 1.091 0.454 0.481 

Note: Entries in the first row are the output gains from eliminating all the distortions simutaneously and are presented in Table 

2.5. Entries in the second to forth row are the output gains from eliminating the distortion individually while keeping the other 

two inputs fixed at the initial level. 

 

Figure 2.2 Contribution of each distortion 
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2.5.4 Alternative approach 

The input reallocation by equalizing the firm level distortions to the industry level does 

not achieve the most efficient level due to the R&D externality. We now consider the 

alternative approach that takes R&D spillover into account, by setting the new firm 

level R&D labour input to be a weighted average of the optimal amount of R&D 

employees that maximize the output without R&D spillover and the optimal amount of 

R&D employees that only maximize the R&D spillover. Therefore, when the firms 

choose their R&D input, it depends not only on the firm’s own productivity level, but 

also on the industry level productivity, which relates to the R&D spillover. In our 

analysis, we find that this new allocation approach increases the output gain 

significantly. Table 2.8 and Figure 2.3 present the comparison between the output gain 

from the alternative allocation approach and from the baseline model. For the whole 

economy, the output gain from the alternative approach is higher than that from the 

main approach for all sample years, increasing by 42 pp in 2015, 37 pp in 2016, 43 pp 

in 2017 and 51 pp in 2018. The changes in the efficiency gain from these two 

approaches have a similar trend for the three groups with different technology types but 

the magnitudes differ. The high-tech group can benefit the most from the alternative 

allocation approach as the output gain increases by 59 pp in 2015, 50 pp in 2016, 57 pp 

in 2017 and 80 pp in 2018. The output gain in the medium-tech group increases by 

around 45 pp in each year. The extra gain for low-tech firms is the smallest, only 

increasing by 7 pp in 2015 and 2016, 10 pp in 2017 and 12 pp in 2018. Although the 

magnitude of the increase in the output gain differs across groups, all the groups can 

benefit from it, which stresses the necessity of considering R&D spillover in the R&D 

input decision. Therefore, there is no need to eliminate all R&D distortions in the 

industry. Rather, the output gain could be higher when the R&D distortion is partly kept 

when an appropriate weights for the solutions of maximizing the output and 

maximizing the R&D spillover are found. 
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Table 2.8 Output gain from the alternative reallocation approach 

  whole economy low-tech medium-tech high-tech 

years Main Alternative Main Alternative Main Alternative Main Alternative 

2015 48.742 91.012 36.224 42.877 61.061 103.66 35.238 94.008 

2016 41.092 77.762 34.017 40.756 47.928 84.737 33.849 83.516 

2017 39.326 82.188 44.805 54.545 44.562 86.236 29.716 87.436 

2018 36.324 87.002 40.323 51.722 38.682 81.714 31.354 111.384 

Note: Both the output gains from equalizing TFPR in Table 2.5 and the output gains from the alternative reallocation approach 

are presented in Table 2.8. In the alternative reallocation approach, R&D input is a weighted average of the optimal amount 

of maximizing the output without R&D spillover and maximizing the R&D spillover only. 

 

Figure 2.3 Output gain from alternative allocation approach 
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2.6 Robustness checks 

2.6.1 The weight of R&D spillover in the output 

The baseline model assumes that the R&D spillover and the firm’s own R&D input 

have the same weight in the firm’s output. That is, the parameter of the R&D spillover 

𝛿𝑠 is equal to the parameter of the firm’s own R&D input 𝛾𝑠. The weight of R&D 

spillover 𝛿𝑠  in the output is the same for all firms in the same industry. In the 

robustness check, the magnitude of the impact of the R&D spillover is equalized for all 

the firms in all industries. We firstly compute the firm-level productivity that includes 

the R&D spillover: 

𝐴𝑠𝑖 =
𝑌𝑠𝑖

𝐾𝑠𝑖
𝛼𝑠𝐿𝑠𝑖

𝛽𝑠𝐻𝑠𝑖
𝛾𝑠

 (37) 

Then we regress it on the R&D spillover 𝑋𝑠 in logarithm level using OLS: 

𝑙𝑛𝐴𝑠𝑖 = 𝑐 + δ𝑙𝑛𝑋𝑠 (38) 

The estimated coefficient for the R&D spillover δ  is the new measurement of the 

weight of R&D spillover δ𝑠. Table 2.9 shows the coefficient for the weight of the R&D 

spillover δ𝑠 computed from the above approach and from the baseline model. In 2016 

and 2017, both the low-tech group and the medium-tech group have higher δ𝑠 than 

that in the baseline model, while δ𝑠 in the high-tech group is lower. In 2015 and 2018, 

δ𝑠 in the medium-tech group is only a half of that in the baseline model and δ𝑠 in the 

low-tech group nearly does not change. Although δ𝑠  in the high-tech group in the 

robustness check is always lower, the value in 2015 and 2018 is less than a third of that 

in the baseline model. 

 

Table 2.9 The weight of R&D spillover in the output δ𝑠 

    Low-tech Meidum-tech High-tech 

 new baseline baseline baseline 

2015 0.041 0.044 0.092 0.189 

2016 0.146 0.046 0.091 0.183 

2017 0.153 0.056 0.112 0.204 

2018 0.07 0.069 0.14 0.238 

Note: The weight of R&D spillover in the baseline model is the average across all the industries in 

the subgroup. 
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Table 2.10 and Figure 2.4 present the reallocation gain with the δ𝑠 in the robustness 

check (solid lines) and in the baseline model (dashed lines). By comparing the results, 

δ𝑠 is closely related to the output gain as the output gain in Table 2.10 is consistent 

with the change of δ𝑠 in Table 2.9. The increased δ𝑠 causes a more efficient initial 

input allocation, while a smaller δ𝑠 suggests a larger allocative efficiency loss. The 

output gain in the low-tech group does not change much in 2015 and 2018, but it 

decreases by 12pp in 2016 and 17pp in 2017. Medium-tech firms have lower output 

gains in 2016 and 2017 and higher gains in 2015 and 2018. The reallocation gain in the 

high-tech group with the new δ𝑠  is always larger than that in the baseline model, 

especially in 2015 and 2018. It is because the externality of R&D could alleviate 

resource misallocation to some extent. As suggested by equation (33),  

𝑙𝑜𝑔𝑌𝑠
∗ − 𝑙𝑜𝑔𝑌𝑠 = 𝑙𝑜𝑔𝑇𝐹𝑃𝑠

∗ − 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 + 𝛿𝑠(𝑙𝑜𝑔𝑋𝑠
∗ − 𝑙𝑜𝑔𝑋𝑠)

=
𝜎 − 1

2
𝑣𝑎𝑟(𝑙𝑜𝑔𝑇𝐹𝑃𝑅𝑠𝑖) + 𝛿𝑠(𝑙𝑜𝑔𝑋𝑠

∗ − 𝑙𝑜𝑔𝑋𝑠) 

+
𝛼𝑠

2
𝑣𝑎𝑟(𝑙𝑜𝑔(1 + 𝜏𝐾𝑠𝑖))

𝛽𝑠

2
𝑣𝑎𝑟(𝑙𝑜𝑔(1 + 𝜏𝐿𝑠𝑖))

𝛾𝑠

2
𝑣𝑎𝑟(𝑙𝑜𝑔(1 + 𝜏𝐻𝑠𝑖)) (33) 

 

According to the data, the R&D spillover after reallocation 𝑋𝑠
∗  is smaller than its 

initial level 𝑋𝑠, so the change in the R&D spillover (𝑙𝑜𝑔𝑋𝑠
∗ − 𝑙𝑜𝑔𝑋𝑠) decreases the 

output gap (𝑙𝑜𝑔𝑌𝑠
∗ − 𝑙𝑜𝑔𝑌𝑠) . Therefore, the output gap (𝑙𝑜𝑔𝑌𝑠

∗ − 𝑙𝑜𝑔𝑌𝑠)  with a 

larger weight of R&D spillover 𝛿𝑠  is smaller than that with a smaller weight. The 

change in the weight of R&D spillover in Table 2.9 is consistent with the output gain 

change in Table 2.10 and Figure 2.4, showing that the larger the weight of the R&D 

spillover in the output, the smaller is the allocative efficiency loss and therefore the 

more efficient is the initial resource allocation. 

 

Table 2.10 Output gains (with newly defined R&D spillover weight 𝛅𝒔) 

  low-tech medium-tech high-tech 

 new baseline new baseline new baseline 

2015 36.96 36.224 90.678 61.061 84.86 35.238 

2016 21.92 34.017 41.031 47.928 45.866 33.849 

2017 28.653 44.805 41.767 44.562 46.757 29.716 

2018 39.807 40.323 63.021 38.682 90.313 31.354 
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Figure 2.4. Output gains (with newly defined R&D spillover weight 𝛅𝒔)

 

 

 

2.6.2 R&D stock as a measure of R&D input 

The baseline model uses the number of R&D employees to measure the R&D input. 

But one may argue that it takes time to hire new R&D employees that fit a firm’s R&D 

project and due to the competition of the R&D activities across firms, firms would not 

arbitrarily hire or fire R&D employees in the same way as non-R&D employees. 

Therefore, R&D employees might not fully represent a firm’s investment in the R&D 

input. However, R&D stock, which is measured by spending sum on R&D activities, is 

more flexible when a firm decides to increase or decrease the R&D input. 

 

We replace the R&D employees with the R&D stock to see whether the results would 

change. The calibration of weights in the production function unchanged as we have 

the assumption that the sum of the weights of three inputs equals to 1. We show how 

the parameters are calibrated in Appendix 2.B. 

 

The reallocation gain results of using R&D stock as the measure of R&D input are 

shown in Table 2.11 and Figure 2.5. The output loss estimated with R&D stock is shown 

with solid lines and that estimated with R&D employees in the baseline model is shown 
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with dashed lines. The largest increase of the output gain happens in the high-tech group, 

increasing from 35% to 80% in 2015 and from 31% to 62% in 2018. Low-tech firms, 

on the contrary, have smaller output loss using the R&D stock as input, except that it 

does not change much in 2015. The reason of differences of the output gain change 

could be the different magnitudes of the variable of R&D input. In the robustness check, 

R&D spending takes a larger proportion of the inputs in the production in high-tech 

firms than the R&D employees. It achieves the largest output increase in this group. 

But in the low-tech group, it is not as important as in the high-tech group, so whether 

the R&D stock or the number of R&D employees is chosen does not make much 

difference.  

 

  



54 

 

 

Table 2.11 Output gains (R&D input is measured by R&D stock) 

  low-tech medium-tech high-tech 

 
R&D 

stock 

baseline (R&D 

employees) 

R&D 

stock 

baseline (R&D 

employees) 

R&D 

stock 

baseline (R&D 

employees) 

2015 46.957 36.224 66.128 61.061 79.892 35.238 

2016 41.581 34.017 56.191 47.928 59.816 33.849 

2017 50.043 44.805 78.085 44.562 54.265 29.716 

2018 46.73 40.323 58.087 38.682 62.362 31.354 

 

 

Figure 2.5 Output gains (R&D input is measured by R&D stock) 
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2.7 Conclusion 

In this chapter, we quantify the output loss from capital, labour and R&D input 

misallocation in Chinese manufacturing industries by including R&D input and R&D 

externality in Hsieh and Klenow (2009) resource misallocation model. We find that in 

the presence of R&D externality, the output loss from resource misallocation for all 

manufacturing industries is around 49% in 2015 and decreases to 36% in 2018. This 

indicates that the initial resource allocation efficiency has improved during the sample 

period. We also compute the allocative efficiency loss for sub groups of industries with 

different technology type. The results show that the allocative efficiency loss in 

medium-tech manufacturing industries（Industries that rely heavily on natural resources 

such as Chemical Products industry and Ferrous Metal Smelting and Extruding industry）

is significantly higher than that in low- and high- tech manufacturing industries. But it 

improves in the following years. This shows that the reform, which began in 2015, in 

reducing overcapacity in China, has had significant results. Allocative efficiency losses 

have been relatively low in the high-tech industry. This is related to large share of R&D 

investment in high-tech industries that generates large scale of R&D externality. It 

mitigates the misallocation of R&D resources to some extent. 

 

To explore the impact of the externality of R&D on allocative efficiency, we compare 

the results generated from the model with and without R&D spillover. The results show 

that when R&D externalities are not included in the model, the estimated efficiency 

loss caused by resource misallocation is substantially higher, especially in high-tech 

industries. The difference of the estimated output losses indicates the significant impact 

of R&D externality on resource allocative efficiency. 

 

As R&D externalities can have a significant impact on the efficiency of resource 

allocation, this factor should be taken into account in the search for optimal resource 

allocation approach. Therefore, we adjust the traditional R&D allocation approach of 

equalizing R&D distortions across firms. Instead, we adopt a weighted mix of the 

solution of the traditional approach that maximize firms’ output and the solution that 

maximizes the R&D spillover. The result shows that this new allocation approach 

generates higher aggregate output, especially for high-tech industries. The empirical 

result is consistent with our theoretical derivation: In the presence of R&D externality, 
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equalizing all the distortions across firms does not lead to the most efficient allocation. 

This result gives similar conclusions to Ayerst's (2021) findings, which emphasize the 

extra contribution of dealing with the gap between private and public returns. 

 

The findings provide some policy suggestions. The misallocation of input resources, 

while decreasing over time, has not been completely eliminated. The government 

should cultivate market system and improve marketization degree of input factor 

resources. Also, subsidies and support for low-productivity firms should be reduced, so 

that high-productivity firms can get access to more resources. Regarding the R&D or 

human capital resources, developing the information infrastructure is more encouraged 

as it facilitates the communication of human capital. The economic performance can be 

improved by the increased R&D spillover without eliminating all human capital 

misallocation. The government should create environment for firms to promote 

cooperation and competition, which enhance the R&D spillover effect and increase the 

public return. 
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Appendix 2.A Contribution of eliminating each input 

misallocation separately 

A1. Eliminating capital misallocation 

Assuming that the firms keep their inputs of labour and human capital fixed, they 

maximize their profits w.r.t. 𝐾𝑠𝑖: 

 

max
𝐾𝑠𝑖
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𝛿𝑠 . (It is evaluated at the original values.) Thus, 
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From the above two equations, the new capital input of firm 𝑠𝑖 is 

𝐾𝑠𝑖 = 𝐾𝑠
Ψ
𝑠𝑖

𝜎−1
𝜎−𝛼𝑠(𝜎−1)
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𝑠𝑖
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𝑖

 

We can also calculate the common capital distortion in sector 𝑠 such that the aggregate 

capital stock stays fixed. 
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Finally, one can calculate 
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Then, the output gap is 
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A2. Eliminating labour misallocation 
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Assuming that the firms keep their inputs of physical and human capital fixed, they 

maximize their profits w.r.t. 𝐿𝑠𝑖: 

max
𝐿𝑠𝑖

(𝐵𝑠𝑖𝐾𝑠𝑖
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𝛼𝑠𝐻𝑠𝑖
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𝐿𝑠𝑖 = (
𝛽𝑠

(1 + 𝜏𝐿𝑠)𝜔𝐿𝑠

𝜎 − 1

𝜎
)

𝜎
𝜎−𝛽𝑠(𝜎−1)

Ψ
𝑠𝑖

𝜎−1
𝜎−𝛽𝑠(𝜎−1) 

𝐿𝑠 = (
𝛽𝑠

(1+ 𝜏𝐿𝑠)𝜔𝐿𝑠

𝜎 − 1

𝜎
)

𝜎
𝜎−𝛽𝑠(𝜎−1)

∑Ψ
𝑠𝑖

𝜎−1
𝜎−𝛽𝑠(𝜎−1)

𝑖

 

From the above two equations, the new labour input of firm 𝑠𝑖 is 

𝐿𝑠𝑖 = 𝐿𝑠
Ψ
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𝜎−1
𝜎−𝛼𝑠(𝜎−1)
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We can also calculate the common labour distortion in sector 𝑠 such that the aggregate 

labour stock stays fixed. 
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Finally, calculate 
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The output gap is again: 
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A3. Eliminating R&D distortion 

Assuming that the firms keep their inputs of labour and physical capital fixed, they 

maximize their profits w.r.t. 𝐻𝑠𝑖: 

max
𝐻𝑠𝑖
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From the last two equations: 
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Appendix 2.B Parameter calibration 

In the robustness test, we replace R&D employees with R&D stock in the measurement 

of the R&D input. In Table Appendix 2.B, we show how parameters are calibrated in 

the benchmark model where the R&D input is measured by R&D employees and 

robustness check where it is measured by R&D stock. We calibrate weights in 

production function under the assumption that the sum of the weights of three inputs 

equals to 1. The capital share 𝛼𝑠 in both benchmark model and the robustness test are 

calibrated by the ratio of the aggregate physical capital stock to the aggregate output, 

which measures capital’s contribution to the output in the industry. In the benchmark 

model, we use the ratio of aggregate new product sales to the aggregate main business 

sales 휁𝑠 in the industry to separate the rest shares into the non-R&D labour share 𝛽𝑠 

and the R&D share 𝛾𝑠, where we adopt the aggregate new product sales to represent 

the contribution of R&D to the output. In the robustness test, we calibrate the R&D 

share 𝛾𝑠 with the ratio of aggregate R&D stock to the aggregate output. The non-R&D 

labour share 𝛽𝑠  is calibrated with the assumption that the sum of weights of three 

inputs equals to 1. 

 

And for the parameters of the price of the three inputs, we adopt Chen (2017)’s 

assumption that the sum of all the three input cost equals to the aggregate output, which 

implies that the cost of each input equals the output of it. The non-R&D labour cost 

𝜔𝐿𝑠 in both benchmark and robustness test is calibrated by dividing the aggregate wage 

for non-R&D employees by the total amount of non-R&D employees. Then we use the 

ratio of the aggregate new product sales to the aggregate output 휁𝑠 to separate the total 

wage into the wage for non-R&D employees and the wage for R&D employees in the 

benchmark. And in the robustness test, since we measure R&D input by R&D stock, 

we use 휁𝑠 to separate the total cost of physical capital stock and R&D stock into the 

cost for physical capital stock and the cost for R&D stock. Then the rental rate of capital 

𝑟𝑠 is calibrated by dividing the revenue or output of physical capital (equals to the cost 

of physical capital under the assumption) by the total amount physical capital stock. 

The R&D cost 𝜔𝐻𝑠  (equals to the cost of R&D capital under the assumption) is 

calibrated by dividing the output from the R&D by the total amount of R&D stock. 
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Appendix 2.B Parameter calibration 

 
Benchmark Robustness 

 
R&D input (R&D employees) R&D input (R&D stock) 

𝛼𝑠 capital share 

∑ 𝐾𝑠𝑖
𝑚𝑠
𝑖=1

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 

 

∑ 𝐾𝑠𝑖
𝑚𝑠
𝑖=1

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 

𝛽𝑠 non-R&D labour share 

(1 − 휁𝑠) ∗ (∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1 −∑ 𝐾𝑠𝑖

𝑚𝑠
𝑖=1 )

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 
(∑ 𝑃𝑠𝑖𝑌𝑠𝑖

𝑚𝑠
𝑖=1 − ∑ 𝐾𝑠𝑖

𝑚𝑠
𝑖=1 − ∑ 𝑅&𝐷 𝑠𝑡𝑜𝑐𝑘𝑠𝑖

𝑚𝑠
𝑖=1 )

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 

𝛾𝑠 R&D share 

휁𝑠 ∗ (∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1 − ∑ 𝐾𝑠𝑖

𝑚𝑠
𝑖=1 )

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 
∑ 𝑅&𝐷 𝑠𝑡𝑜𝑐𝑘𝑠𝑖
𝑚𝑠
𝑖=1

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 

𝜔𝐿𝑠 non-R&D labour cost 

휁𝑠 ∗ ∑ 𝑊𝑎𝑔𝑒 𝑏𝑖𝑙𝑙𝑠𝑖
𝑚𝑠
𝑖=1

∑ 𝐿𝑠𝑖
𝑚𝑠
𝑖=1

 
휁𝑠 ∗ ∑ 𝑊𝑎𝑔𝑒 𝑏𝑖𝑙𝑙𝑠𝑖

𝑚𝑠
𝑖=1

∑ 𝐿𝑠𝑖
𝑚𝑠
𝑖=1

 

𝑟𝑠 rental rate of capital 

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1 −∑ 𝑊𝑎𝑔𝑒 𝑏𝑖𝑙𝑙𝑠𝑖

𝑚𝑠
𝑖=1

∑ 𝐾𝑠𝑖
𝑚𝑠
𝑖=1

 
(1 − 휁𝑠) ∗ (∑ 𝑃𝑠𝑖𝑌𝑠𝑖

𝑚𝑠
𝑖=1 − 휁𝑠 ∗ ∑ 𝑊𝑎𝑔𝑒 𝑏𝑖𝑙𝑙𝑠𝑖

𝑚𝑠
𝑖=1 )

∑ 𝐾𝑠𝑖
𝑚𝑠
𝑖=1

 

𝜔𝐻𝑠 R&D cost 

(1 − 휁𝑠) ∗ ∑ 𝑊𝑎𝑔𝑒 𝑏𝑖𝑙𝑙𝑠𝑖
𝑚𝑠
𝑖=1

∑ 𝐻𝑠𝑖
𝑚𝑠
𝑖=1

 
휁𝑠 ∗ [∑ 𝑃𝑠𝑖𝑌𝑠𝑖

𝑚𝑠
𝑖=1 − (1 − 휁𝑠) ∗ ∑ 𝑊𝑎𝑔𝑒 𝑏𝑖𝑙𝑙𝑠𝑖

𝑚𝑠
𝑖=1 ]

∑ 𝐻𝑠𝑖
𝑚𝑠
𝑖=1

 

Note: 휁𝑠 is the ratio of total new product sales to the total main business revenue in industry 𝑠. This ratio is used to separate the wage paid for R&D and non-R&D 

employees in the benchmark model and separate the physical capital cost and R&D capital cost in the robustness test. 
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Chapter 3 Resource misallocation in the presence of 

R&D spillovers in the UK manufacturing sector 

3.1 Introduction 

It is well known that UK productivity growth has slowed down after the 2008 financial 

crisis (Patterson et al., 2016; Goodridge et al., 2018; Crafts and Mills, 2020), and it is 

known as the “UK productivity puzzle”. Poor economic performance attracts people’s 

interest in exploring the determinants of output and productivity. One perspective is to 

focus on resource misallocation (Restuccia and Rogerson (2008); Hsieh and Klenow 

(2009); Jones, 2011; Song et al., 2015; Boeing, 2016; Choi, 2020), including the inputs 

of capital, labour, energy, and R&D resources. 

 

In addition to these regular input resources, R&D spillover also matters for productivity 

(Arrow, 1962; Nelson, 1959). Ugur et al. (2020) note the two sides of the externality of 

R&D. While the R&D spillover effect would cause an under-investment problem, it 

would also lead to a productivity increase. They also find that the impact of R&D 

spillover is smaller than that of R&D capital itself. In contrast, Audretsch and Belitski 

(2020) find that knowledge spillovers are more critical than R&D for firm productivity 

in the UK. Therefore, we would like to explore the contribution of R&D spillover to 

productivity and output. 

 

Our analysis aims to gauge the resource misallocation in the presence of the externality 

of R&D spillover. It follows a similar structure to the literature (Restuccia and Rogerson, 

2008; Hsieh and Klenow, 2009; Jones, 2011; Song et al., 2015; Boeing, 2016; Choi, 

2020). Similar to the literature, we represent the firm-level input price distortion by 

introducing a concept of “wedge” or “tax”, which is measured by the marginal revenue 

product of each input factor. As the literature suggests, the allocation is inefficient when 

firms pay different actual input prices. That is when more productive firms have to pay 

higher prices to hire inputs while the less effective firms pay less. This would cause 

output loss. The literature suggests that the policymaker should implement policies to 

ensure all firms face the same input price to achieve an efficient resource allocation and, 

therefore, a larger output. Therefore, more productive firms would be able to hire more 

inputs, and less productive firms hire less. During the process, as the more productive 
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firms hire more inputs with a lower price, the marginal product of each input factor 

would decrease, and vice versa. Until the marginal products of input factors become 

equivalent for all firms, the input allocation is the most efficient. However, our results 

are different from the results generated in the literature. In our model, the optimum 

allocation does not require the marginal products of R&D input to be equivalent among 

firms. Instead, the output gain is larger when a certain level of dispersion in R&D input 

distortion is kept. That is, firms with lower productivity should pay a lower price for 

R&D inputs than suggested in the literature. At the same time, higher productivity firms 

should have higher R&D input costs than suggested in the literature. 

 

The main difference is that we consider the effect of the externality of R&D, which is 

an essential characteristic of R&D input. The production function in our model consists 

of capital, labour, and R&D inputs, as well as R&D spillover. To present the role of the 

externality of R&D spillover in production, we compare the output gain when the R&D 

spillover factor changes with the R&D input allocation and when the R&D spillover 

factor is fixed at the initial value. There are mainly two allocation approaches to 

eliminate resource misallocation. The first approach follows the insight of the literature, 

in which there does not exist any externality. The literature suggests that allocation is 

optimal when all firms face the same input price wedge, in other words, when the input 

price distortions are equalised across firms. In the second allocation approach, we 

allocate inputs to maximize the aggregate output in the presence of R&D spillover. Due 

to the externality of R&D spillover, this approach keeps the dispersion in the R&D 

input distortions across firms, implying that the allocation policy would allow the actual 

R&D input price to be different for firms. We also evaluate the individual contribution 

of each input misallocation to the output loss. Similar to the literature (Hsieh and 

Klenow, 2009; Chen and Irarrazabal, 2013; Ryzhenkov and Mykola, 2016), we do it by 

decomposing the productivity in terms of input distortions under the central limit 

theorem. In the end, we compare the results in 2019 and 2013 to see whether there is 

deterioration in allocative efficiency. 

 

In the traditional estimation approach, there is no externality. The estimated output loss 

from resource misallocation is around 76% in 2019. The allocative efficiency differs in 

groups with different technology types. The medium-high-tech industries suffer the 
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most from misallocation, while the output loss in the medium-low-tech industries is the 

smallest among all groups. In addition, we also find that the output loss is overestimated 

when we analyse R&D input misallocation without considering its externality. Once we 

allow the R&D spillover to change, the output gain is smaller. The estimated output 

loss is larger when we use the initial value of R&D spillover in reallocation. 

 

We then propose an optimal solution that generates a larger output gain given the 

externality of R&D spillover. In the industry output decomposition section, we find that 

capital misallocation contributes the largest to output loss. Labour misallocation also 

reduces the output, but the magnitude is much smaller than due to capital misallocation. 

The initial R&D allocation does not harm the output, which makes the estimated output 

gain smaller in the traditional allocation approach that equalises R&D input distortions. 

In the optimal allocation, the contribution of eliminating the capital and labour 

misallocation remains the same. But the reallocation of R&D input could generate a 

higher output and, therefore, higher allocative efficiency. In the end, we compare the 

allocative efficiency in 2019 and 2013. The allocation is more efficient in 2013, as the 

estimated output loss is smaller in all groups, indicating an allocative efficiency 

deterioration in 2019. 

 

Our analysis contributes to the vast literature on resource misallocation by emphasising 

the role of the externality. We find a trade-off between productivity and knowledge 

spillover, which indicates that the allocation approach suggested by the literature is not 

the most efficient and can be improved whenever there are externalities. We propose an 

improved resource allocation approach by including the R&D spillover term in the 

output maximisation problem. This approach improves allocative efficiency, which 

leads to higher output. 

 

The rest of this chapter is structured as follows. Section 2 presents the theoretical 

framework to link the output with the input misallocation. It also describes the resource 

reallocation approaches as well as the output decomposition. Section 3 describes the 

data used in the analysis, parameter calibration, and industry classification. Section 4 

discusses the empirical results and gives policy suggestions. The conclusion is in 

Section 5. 
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3.2 Model 

3.2.1 Theoretical framework 

We extend the model of Hsieh and Klenow (2009) by introducing R&D externality. 

There is a single final good that is produced by a representative firm in a perfectly 

competitive market. To produce the final good, this firm combines the outputs of 

industries 𝑠 = 1,… , 𝑆 using a Cobb-Douglas production technology: 

𝑌 =∏𝑌𝑠
θ𝑠

𝑆

𝑠=1

 

where 𝑌  and 𝑌𝑠  are the quantities of the final good and industry 𝑠  output, 

respectively. Production exhibits constant returns to scale, ∏ θ𝑠
𝑆
𝑠=1 = 1 . In the 

equilibrium, θ𝑠 =
𝑃𝑠𝑌𝑠

𝑃𝑌
  holds, where 𝑃  and 𝑃𝑠  are the prices of the final good and 

industry 𝑠 output, respectively. The final good serves as a numeraire, and so 𝑃 = 1. 

 

The industry 𝑠  output is also produced by a representative firm in a perfectly 

competitive market. It combines the differentiated products of firms 𝑠𝑖, 𝑖 = 1,… ,𝑚𝑠, 

using a CES production technology: 

𝑌𝑠 = (∑ 𝑌
𝑠𝑖

σ−1

σ𝑚𝑠
𝑖=1 )

σ

σ−1

                       (1) 

, where 𝑌𝑠𝑖  is the quantity of firm 𝑠𝑖 output. σ is the elasticity of substitution, which 

is the same for all industries. In the equilibrium, 

𝑃𝑠𝑖 = 𝑃𝑠 (
𝑌𝑠
𝑌𝑠𝑖
)

1
σ
 

holds, where 𝑃𝑠𝑖 is the price of firm 𝑠𝑖 output. We will only consider intra-industry 

reallocation of resources. Therefore, similar to Dias et al. (2016), we impose a 

normalization that 𝑃𝑠𝑌𝑠
1/σ

= 1 , and so 𝑃𝑠𝑖 = 𝑌𝑠𝑖
−1/σ

 . We say that firms 𝑠𝑖 , 𝑖 =

1,… ,𝑚𝑠 belong to industry 𝑠. 

 

Firm 𝑠𝑖  ( 𝑠 = 1,… , 𝑆 , 𝑖 = 1,… ,𝑚𝑠 ) produces its output using a Cobb-Douglas 

production technology: 

𝑌𝑠𝑖 = 𝐵𝑠𝑖𝐾𝑠𝑖
α𝑠𝐿𝑠𝑖

β𝑠𝐻𝑠𝑖
γ𝑠𝑋𝑠

δ𝑠                      (2) 
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where 𝐵𝑠𝑖 , 𝐾𝑠𝑖 , and 𝐿𝑠𝑖  are firm 𝑠𝑖  total factor productivity (TFP), capital, and 

labour, respectively. 𝐻𝑠𝑖 stands for the resources that firm 𝑠𝑖 devotes to R&D. In this 

study we use the number of researchers conducting R&D activities as R&D input, we 

will refer to 𝐻𝑠𝑖 as R&D input or R&D researchers. There is ample empirical evidence 

that R&D often results in spill-overs that affect other firms in the industry (Jaffe, 1986; 

Keller, 2004; Mahony and Vecchi, 2007; Xiao et al., 2021). 

 

R&D spill-over, which is the same for all firms in industry 𝑠, is captured by the variable 

𝑋𝑠, and it is a geometric average of 𝑅&𝐷 inputs by the firms in industry 𝑠:  

𝑋𝑠 = ∏ 𝐻
𝑠𝑖

1

𝑚𝑠𝑚𝑠
𝑗=1                            (3) 

Although R&D spill-over depends on 𝐻𝑠𝑖 , we assume that firm 𝑠𝑖  treats 𝑋𝑠  as 

exogenous. α𝑠 , β𝑠 , and γ𝑠  are the industry-specific factor shares that take values 

between 0 and 1. We assume that the production function exhibits constant returns to 

scale in the inputs that the firm controls: α𝑠 + β𝑠 + γ𝑠 = 1 . The parameter δ𝑠 

determines the strength of R&D spill-over on firm 𝑠𝑖 output. 

 

The parameters 𝑟𝑠, 𝑤𝑠, and 𝑞𝑠 denote the rental rate of capital, the wage rate of labour, 

and the price of R&D input, respectively. We allow the input prices to be industry 

specific. Firm 𝑠𝑖 might employ an input at a level where the marginal revenue product 

of that input is not equalized to its price. We can think that firm 𝑠𝑖 effectively faces 

prices of (1 + τ𝐾𝑠𝑖)𝑟𝑠, (1 + τ𝐿𝑠𝑖)𝑤𝑠, and (1 + τ𝐻𝑠𝑖)𝑞𝑠 for capital, labour, and R&D 

input. We refer to the variables τ𝐾𝑠𝑖 , τ𝐿𝑠𝑖 , and τ𝐻𝑠𝑖  as distortions. 

 

Since firm 𝑠𝑖  produces a differentiated product, it possesses a market power. This 

implies that it faces a downward sloping inverse demand function 𝑃𝑠𝑖 = 𝑌𝑠𝑖
−1/σ

. Firm 

𝑠𝑖 chooses inputs to maximize its profit: 

𝑃𝑠𝑖𝑌𝑠𝑖 − (1 + τ𝐾𝑠𝑖)𝑟𝑠𝐾𝑠𝑖 − (1 + τ𝐿𝑠𝑖)𝑤𝑠𝐿𝑠𝑖 − (1 + τ𝐻𝑠𝑖)𝑞𝑠𝐻𝑠𝑖 

subject to the production function in (2) and the inverse demand function. The first 

order conditions are 

𝜎−1

𝜎

𝛼𝑠𝑌𝑠𝑖

𝜎−1
𝜎

𝐾𝑠𝑖
= (1 + 𝜏𝐾𝑠𝑖)𝑟𝑠                     (4) 
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𝜎−1

𝜎

𝛽𝑠𝑌𝑠𝑖

𝜎−1
𝜎

𝐿𝑠𝑖
= (1 + 𝜏𝐿𝑠𝑖)𝜔𝑠                    (5) 

𝜎−1

𝜎

𝛾𝑠𝑌𝑠𝑖

𝜎−1
𝜎

𝐻𝑠𝑖
= (1 + 𝜏𝐻𝑠𝑖)𝑞𝑠                    (6) 

If there is a change in distortions due to the government intervention, it will lead to 

reallocation of resources and, consequently, to a change in output. In fact, it is easier to 

start by defining the new allocation of resources. Then, we can use (3) to calculate the 

new R&D spill-overs and (2) to calculate the new outputs. Finally, we use (4)-(6) to 

recover the new distortions. Note, however, that we will keep the input prices at their 

original level. Therefore, we only consider the reallocation of resources that keep the 

aggregate industry demand for inputs at the original level. 

 

3.2.2 The social planner’s problem 

In this section, we identify a couple of candidates for allocation of inputs. Later we use 

the data from British manufacturing industries to evaluate the output gains from 

implementing these allocations. 

 

Let 𝐾𝑠 = ∑ 𝐾𝑠𝑖
𝑚𝑠
𝑖=1 , 𝐿𝑠 = ∑ 𝐿𝑠𝑖

𝑚𝑠
𝑖=1 , and 𝐻𝑠 = ∑ 𝐻𝑠𝑖

𝑚𝑠
𝑖=1  be the aggregate quantities of 

inputs in industry 𝑠. The social planner maximizes 𝑌𝑠 taking the aggregate quantities 

of inputs in industry 𝑠  as given. Substituting (2) and (3) into (1) and taking the 

logarithm, the planner's problem is 

max
{𝐾𝑠𝑖 ,𝐿𝑠𝑖 ,𝐻𝑠𝑖}𝑖=1

𝑚𝑠
log 𝑌𝑠 =

σ

σ − 1
log(∑(𝐵𝑠𝑗𝐾𝑠𝑗

α𝑠𝐿𝑠𝑖
β𝑠𝐻𝑠𝑗

γ𝑠)

σ−1
σ

𝑚𝑠

𝑗=1

) +
δ𝑠
𝑚𝑠
∑log𝐻𝑠𝑗

𝑚𝑠

𝑗=1

 

subject to 

𝐾𝑠 =∑𝐾𝑠𝑖

𝑚𝑠

𝑖=1

, 

𝐿𝑠 =∑𝐿𝑠𝑖

𝑚𝑠

𝑖=1

 

𝐻𝑠 =∑𝐻𝑠𝑖

𝑚𝑠

𝑖=1

 

 

We firstly assume that there are no R&D spillover effects: δ𝑠 = 0. The solution to the 
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planner's problem is given by 

𝐾𝑠𝑖

𝐾𝑠
=
𝐿𝑠𝑖

𝐿𝑠
=
𝐻𝑠𝑖

𝐻𝑠
=

𝑌
𝑠𝑖

σ−1
σ

∑ 𝑌
𝑠𝑗

σ−1
σ𝑚𝑠

𝑗=1

=
𝐵𝑠𝑖
σ−1

∑ 𝐵𝑠𝑗
σ−1𝑚𝑠

𝑗=1

                (7) 

for all 𝑖 = 1, … ,𝑚𝑠. Comparison with (4)-(6) tells that if we want to implement this 

solution as the equilibrium outcome, the distortions must be equalized across firms: 

There exist τ𝐾𝑠 , τ𝐿𝑠 , and τ𝐻𝑠   such that τ𝐾𝑠𝑖 = τ𝐾𝑠 , τ𝐿𝑠𝑖 = τ𝐿𝑠  , and τ𝐻𝑠𝑖 = τ𝐻𝑠   for 

all 𝑖 = 1,… ,𝑚𝑠. This is the standard case that is considered in the literature when there 

are no externalities (Hsieh and Klenow, 2009; Marques, et al. 2014; Benkovskis, 2015; 

Chen, 2017; Choi, 2020). 

 

Now we consider the planner’s problem in the presence of R&D spill-over. The 

conditions that describe the optimum are 

𝐾𝑠𝑖

𝐾𝑠
=
𝐿𝑠𝑖

𝐿𝑠
=

𝑌
𝑠𝑖

σ−1
σ

∑ 𝑌
𝑠𝑗

σ−1
σ𝑚𝑠

𝑗=1

                        (8) 

and 

𝐻𝑠𝑖

𝐻𝑠
=
γ𝑠𝑌𝑠𝑖

σ−1
σ +

δ𝑠
𝑚𝑠
∑ 𝑌

𝑠𝑗

σ−1
σ𝑚𝑠

𝑗=1

(γ𝑠+δ𝑠)∑ 𝑌
𝑠𝑗

σ−1
σ𝑚𝑠

𝑗=1

                     (9) 

for all 𝑖 = 1, … ,𝑚𝑠 . These conditions imply that in the optimum, τ𝐾𝑠𝑖 = τ𝐾𝑠  and 

τ𝐿𝑠𝑖 = τ𝐿𝑠  still hold for all 𝑖 = 1,… ,𝑚𝑠, but τ𝐻𝑠𝑖  is increasing in 𝑌𝑠𝑖 . 

 

To understand (9) better, note that when δ𝑠 = 0, (9) together with (8) reduces to the 

solution with no R&D spill-over given in (7). But, when γ𝑠 = 0, (9) reduces to 

𝐻𝑠𝑖 =
𝐻𝑠

𝑚𝑠
                            (10) 

for all 𝑖 = 1, … ,𝑚𝑠. This is the allocation of R&D input that we would obtain if we 

maximized R&D spill-over 𝑋𝑠  or, equivalently, ∑ log𝐻𝑠𝑗
𝑚𝑠
𝑗=1   subject to 𝐻𝑠 =

∑ 𝐻𝑠𝑖
𝑚𝑠
𝑖=1 . That is, R&D spill-over is maximized if R&D input is shared equally by the 

firms. Therefore, we can interpret the expression in (9) as a weighted average of 

allocations in two extreme cases when δ𝑠 = 0 and when γ𝑠 = 0. 

 

It appears that there is no closed form solution to the optimal allocation of inputs in 

terms of the exogenous model parameters. Therefore, we will consider an allocation of 
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inputs that, while not optimal, is close to optimal. 

 

First, given any allocation of R&D input, 𝐻𝑠𝑖  for 𝑖 = 1,… ,𝑚𝑠, let the allocation of 

capital and labour be 

𝐾𝑠𝑖

𝐾𝑠
=
𝐿𝑠𝑖

𝐿𝑠
=

(𝐵𝑠𝑖𝐻𝑠𝑖
γ𝑠)

σ−1
1+γ𝑠(σ−1)

∑ (𝐵𝑠𝑗𝐻𝑠𝑗
γ𝑠)

σ−1
1+γ𝑠(σ−1)𝑚𝑠

𝑗=1

                   (11) 

 for all 𝑖 = 1, … ,𝑚𝑠. If we substitute (11) into (2), we can verify that 

𝑌
𝑠𝑖

σ−1
σ

∑ 𝑌
𝑠𝑗

σ−1
σ𝑚𝑠

𝑗=1

=
(𝐵𝑠𝑖𝐻𝑠𝑖

γ𝑠)

σ−1
1+γ𝑠(σ−1)

∑ (𝐵𝑠𝑗𝐻𝑠𝑗
γ𝑠)

σ−1
1+γ𝑠(σ−1)𝑚𝑠

𝑗=1

                  (12) 

also holds. It then follows from (4)-(5) that the proposed capital and labour allocation 

in (11) still ensures that τ𝐾𝑠𝑖 = τ𝐾𝑠 and τ𝐿𝑠𝑖 = τ𝐿𝑠  hold for all 𝑖 = 1, … ,𝑚𝑠. 

 

It remains to determine the allocation of R&D input. In the next section, we decompose 

the industry output assuming that productivity and distortions are log-normally 

distributed. Using that decomposition, we find the output is maximized when 

𝑣𝑎𝑟(log(1 + τ𝐻𝑠𝑖)) = (
δ𝑠(σ − 1)

γ𝑠 + δ𝑠 + 𝛾𝑠𝛿𝑠(σ − 1)
)

2

𝑣𝑎𝑟(log𝐵𝑠𝑖) 

𝑐𝑜𝑣(log𝐵𝑠𝑖 , log(1 + τ𝐻𝑠𝑖)) =
δ𝑠(σ − 1)

γ𝑠 + δ𝑠 + γ𝑠δ𝑠(𝜎 − 1)
𝑣𝑎𝑟(log𝐵𝑠𝑖) 

This will be the case if the allocation of R&D input 𝐻𝑠𝑖 for all 𝑖 = 1,… ,𝑚𝑠 is given 

by 

𝐻𝑠𝑖

𝐻𝑠
=

𝐵
𝑠𝑖

γ𝑠(σ−1)
γ𝑠+δ𝑠+γ𝑠δ𝑠(σ−1)

∑ 𝐵
𝑠𝑗

γ𝑠(σ−1)
γ𝑠+δ𝑠+γ𝑠δ𝑠(σ−1)𝑚𝑠

𝑗=1

                       (13) 

To see it, we combine (13) with (12) and (6). This gives that (1 + τ𝐻𝑠𝑖) ∝

𝐵
𝑠𝑖

δ𝑠(σ−1)

γ𝑠+δ𝑠+γ𝑠δ𝑠(σ−1) , that is, the above variance and covariance relationships are indeed 

satisfied. 

 

The allocation in (13) is only approximately optimal. We can improve on it through the 

iterative process where we substitute (13) into (12), which we then substitute into (9) 

to get a new allocation of R&D input: 
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𝐻𝑠𝑖

𝐻𝑠
=
γ𝑠𝐵𝑠𝑖

(γ𝑠+δ𝑠)(σ−1)
γ𝑠+δ𝑠+γ𝑠δ𝑠(σ−1)+

δ𝑠
𝑚𝑠
∑ 𝐵

𝑠𝑗

(γ𝑠+δ𝑠)(σ−1)
γ𝑠+δ𝑠+γ𝑠δ𝑠(σ−1)𝑚𝑠

𝑗=1

(γ𝑠+δ𝑠) ∑ 𝐵
𝑠𝑗

(γ𝑠+δ𝑠)(σ−1)
γ𝑠+δ𝑠+γ𝑠δ𝑠(σ−1)𝑚𝑠

𝑗=1

            (14) 

 

Although we could continue iteratively producing new allocations of R&D input by 

using (12) and (9), we will view (14) already as a good approximation and use it in the 

empirical analysis. 

 

3.2.3 Decomposition of Industry Output 

In order to gauge how much each type of distortion contributes to the output loss, we 

now decompose the industry output similarly to how it is done in (Hsieh and Klenow, 

2009; Chen and Irarrazabal, 2013; Ryzhenkov, 2016). We assume that 𝐵𝑠𝑖 and 1 +

τ𝐼𝑠𝑖  for 𝐼 = 𝐾, 𝐿, 𝐻 are drawn from a multivariate log-normal distribution. The draws 

are independent across firms. The variance-covariance matrix of log 𝐵𝑠𝑖 and 

log(1 + τ𝐼𝑠𝑖) for 𝐼 = 𝐾, 𝐿, 𝐻 for all 𝑖 is 

∑=

(

 

𝜎𝐵𝑠
2

𝜎𝐵𝐾𝑠
𝜎𝐵𝐿𝑠

𝜎𝐵𝐾𝑠 𝜎𝐵𝐿𝑠 𝜎𝐵𝐻𝑠

𝜎𝐾𝑠
2 0 0

0 𝜎𝐿𝑠
2 0

𝜎𝐵𝐻𝑠 0 0 𝜎𝐻𝑠
2 )

  

where σ𝐵𝑠
2   stands for 𝑣𝑎𝑟(log𝐵𝑠𝑖) , and σ𝐼𝑠

2   and 𝜎𝐵𝐼𝑠  respectively stand for 

𝑣𝑎𝑟(log(1 + τ𝐼𝑠𝑖))  and 𝑐𝑜𝑣(log𝐵𝑠𝑖 , log(1 + τ𝐼𝑠𝑖))  for 𝐼 = 𝐾, 𝐿,𝐻 . Thus, 

distortions can be correlated with the productivity, but for simplicity, we assume that 

there is no correlation between the distortions. 

 

Let industry 𝑠 TFP be defined as  

𝑇𝐹𝑃𝑠 ≡
𝑌𝑠

𝐾𝑠
α𝑠𝐿𝑠

β𝑠𝐻𝑠
γ𝑠𝑋𝑠

δ𝑠
                        (15) 

Then, the industry output can be expressed as log𝑌𝑠 = 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 + δ𝑠 log𝑋𝑠 +

log(𝐾𝑠
α𝑠𝐿𝑠

β𝑠𝐻𝑠
γ𝑠). We show in Appendix 3.A1 that TFP can be approximated as  

log𝑇 𝐹𝑃𝑠 = 𝐸[𝑙𝑜𝑔𝐵𝑠𝑖] +
σ−1

2
σ𝐵𝑠
2 −

(σ−1)α𝑠
2+α𝑠

2
σ𝐾𝑠
2 −

(σ−1)β𝑠
2+β𝑠

2
σ𝐿𝑠
2 −

(σ−1)γ𝑠
2+γ𝑠

2
σ𝐻𝑠
2    

(16) 

(16) implies that industry 𝑠 TFP is maximal when all firms face the same distortions 
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because then the variances are zero. Similarly, R&D spill-over can be approximated as 

log𝑋𝑠 = log𝐻𝑠 −
(σ−1)2

2
σ𝐵𝑠
2   

−
(σ − 1)2α𝑠

2

2
σ𝐾𝑠
2 −

(σ − 1)2β𝑠
2

2
σ𝐿𝑠
2  

−
(1 + (σ − 1)γ𝑠)

2

2
σ𝐻𝑠
2 + (σ − 1)2α𝑠σ𝐵𝐾𝑠 + (σ − 1)

2β𝑠σ𝐵𝐿𝑠 

+(𝜎 − 1)(1 + (𝜎 − 1)𝛾𝑠)𝜎𝐵𝐻𝑠                            (17) 

 

(17) says that the spill-over is decreasing in the variances of distortions but increasing 

in their covariances with the productivity parameter. Since it is impossible to have zero 

variance and positive covariance, if the covariance is positive, so is the variance. This, 

in turn, implies that there is a trade-off between maximizing industry TFP and R&D 

spill-over. 

 

Given (16) and (17), industry 𝑠 output is 

log𝑌𝑠 =
1

2
{(𝜎 − 1)(1 − δ𝑠(σ − 1))σ𝐵𝑠

2 − ((σ − 1)α𝑠
2 + α𝑠 + δ𝑠(σ − 1)

2α𝑠
2)σ𝐾𝑠

2

− ((𝜎 − 1)𝛽𝑠
2 + 𝛽𝑠 + 𝛿𝑠(𝜎 − 1)

2𝛽𝑠
2)𝜎𝐿𝑠

2

− ((𝜎 − 1)𝛾𝑠
2 + 𝛾𝑠 + 𝛿𝑠(1 + (𝜎 − 1)

2)𝛾𝑠
2)𝜎𝐻𝑠

2 + 2δ𝑠(σ − 1)
2α𝑠σ𝐵𝐾𝑠

+ 2δ𝑠(σ − 1)
2β𝑠σ𝐵𝐿𝑠 + 2δ𝑠(σ − 1)(1 + (σ − 1)γ𝑠)σ𝐵𝐻𝑠} + 𝑐𝑜𝑛𝑠𝑡 

 (18) 

, where 𝑐𝑜𝑛𝑠𝑡 contains all those terms which are independent of distortions. 

 

Maximizing (18) w.r.t. σ𝐼𝑠
2  and σ𝐵𝐼𝑠 for 𝐼 = 𝐾, 𝐿, 𝐻 subject to the constraint that Σ𝑠 

is a positive semi-definite matrix, we find that σ𝐾𝑠
2 = σ𝐿𝑠

2 = σ𝐵𝐾𝑠 = σ𝐵𝐿𝑠 = 0, 

σ𝐵𝐻𝑠 =
δ𝑠(σ − 1)

γ𝑠 + δ𝑠 + γ𝑠δ𝑠(σ − 1)
σ𝐵𝑠
2  

σ𝐻𝑠
2 = (

δ𝑠(σ − 1)

γ𝑠 + δ𝑠 + γ𝑠δ𝑠(σ − 1)
)

2

σ𝐵𝑠
2  

 

 

3.3 Data 

3.3.1 Data source 
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Our dataset consists of firm-level information on the UK manufacturing industries. 

There are two primary sources of data. One is the Annual Business Survey (ABS) 

database, the largest annual survey conducted by the Office for National Statistics 

(ONS). The ABS database is a good choice for UK business data studies, as it contains 

more respondents and a more comprehensive set of questions than other surveys. This 

database provides information on indicators of business activity, including revenue, 

expenditure, costs, inventory, etc. Another data source is the Business Expenditure on 

Research and Development (BERD). It is also an annual survey administered by the 

ONS. It mainly provides information on the use of funds, sources, and amounts of funds 

and firms’ employment in R&D. In our research, we use information about companies’ 

R&D spending and R&D employment from BERD. Therefore, we generate our dataset 

by linking ABS and BERD via the enterprise reference number in both databases. 

 

We choose manufacturing firms that conduct R&D activities as sample firms and 2019 

and 2013 as sample years. Firms with non-positive or missing value in turnover, value-

added, capital stock, employment and R&D expenditure are excluded. In order to 

eliminate outliers, we exclude firms whose capital stock is above the 95th percentile or 

below the 5th percentile. After data cleaning, there are 1760 firms in our database. 

 

3.3.2 Measurement of primary variables and parameter calibration 

The main variables in this study are output, capital stock, non-R&D labour, and R&D 

labour. All variables are at the firm level. The output is measured by value-added. The 

capital stock is proxied by the total value of all stocks at the end of the year. We choose 

the number of scientists and researchers to present the R&D input. Non-R&D labour is 

measured by the difference between the number of all employees and the number of 

scientists and researchers. All the variables can be found in the ABS and BERD 

databases. Detailed information on the main variables and the variables used to calibrate 

parameters are shown in the Appendix 3.B. Similar to Hsieh and Klenow (2009) and 

Dias et al. (2016), we calibrate the elasticity of substitution 𝜎 = 3 . The industry-

specific parameters consist of input factor shares and input factor price in the production 

function. We calibrate the non-R&D labour share 𝛽𝑠 as the ratio of industry aggregate 

wage for non-R&D employees to the industry aggregate revenue and the R&D labour 

share γ𝑠 as the ratio of industry aggregate wage for R&D employees to the industry 
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aggregate revenue. With the assumption that the three input shares add up to one: 𝛼𝑠 +

𝛽𝑠 + 𝛾𝑠 = 1, the capital share is calibrated as the ratio of the gap between the industry 

aggregate revenue and employment cost to the industry aggregate revenue. To 

summarize, the input shares are expressed as below: 

𝛽𝑠 =
∑ (𝑛𝑜𝑛 − 𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖)
𝑚𝑠
𝑖=1

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 

𝛾𝑠 =
∑ (𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖)
𝑚𝑠
𝑖=1

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 

Since we only have data on the total wage bill and the wage bill only for the scientists 

and researchers is not provided in the database, we need to split the total wage bill into 

two parts: the wage for non-R&D employees and the wage for scientists and researchers. 

We calibrate the wage for non-R&D employees and R&D employees with the ratio of 

R&D expenditure to total expenditure: 

𝑛𝑜𝑛 − 𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖

= 𝑊𝑎𝑔𝑒𝑠𝑖 ∗ (1 −
𝑅&𝐷 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑖

𝑅&𝐷 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑖 + 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑖
) 

 and  

𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖 = 𝑊𝑎𝑔𝑒𝑠𝑖 ∗
𝑅&𝐷 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑖

𝑅&𝐷 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑖 + 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑖
 

 

The price of each input factor is calibrated as the ratio of the industry revenue to the 

industry aggregate of that factor: 

𝑟𝑠 = (∑𝑃𝑠𝑖𝑌𝑠𝑖

𝑚𝑠

𝑖=1

−∑𝑊𝑎𝑔𝑒𝑠𝑖

𝑚𝑠

𝑖=1

)/∑𝐾𝑠𝑖

𝑚𝑠

𝑖=1

 

𝜔𝐿𝑠 =∑𝑛𝑜𝑛 − 𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖

𝑚𝑠

𝑖=1

/∑𝐿𝑠𝑖

𝑚𝑠

𝑖=1

 

𝜔𝐻𝑠 =∑𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖

𝑚𝑠

𝑖=1

/∑𝐻𝑠𝑖

𝑚𝑠

𝑖=1

 

 

To calibrate the weight of R&D spill-over δ𝑠, we assume that it is the same for all 

industries. We cannot estimate a separate δ𝑠 for each industry because 𝑋𝑠 is the same 

for all firms in the same industry. Therefore, we need to assume that all industries have 

the same δ𝑠 , which we then estimate by exploiting the variation in 𝑋𝑠  across 



80 

 

industries. We first calculate the firm-level productivity that includes R&D spill-over: 

𝐴𝑠𝑖 =
𝑃𝑠𝑖𝑌𝑠𝑖

σ
σ−1

𝐾𝑠𝑖
α𝑠𝐿𝑠𝑖

β𝑠𝐻𝑠𝑖
γ𝑠

 

Then we estimate the weight of R&D spill-over δ𝑠, which is common to all industries, 

by regressing the logarithm firm-level productivity 𝑙𝑜𝑔𝐴𝑠𝑖  on the logarithm R&D 

spill-over 𝑙𝑜𝑔𝑋𝑠: 

𝑙𝑜𝑔𝐴𝑠𝑖 = δ𝑠𝑙𝑜𝑔𝑋𝑠 

The results are in Table 3.1. The estimated δ𝑠 is 0.12 under both OLS and GLS 

estimation methods, and both results are significant at high level of precision (P-value 

of 0). Hence, we calibrate the weight of R&D spill-over equal to 0.12. 

 

Table 3.1 Estimated weight of R&D spill-over 𝛅𝒔 

Variable OLS GLS 

δ𝑠 0.12*** 0.12*** 

 (0.0152) (0.0219) 

P-value 0 0 

 

In Table 3.2, we adopt the industry classification reported by ONS to split the 

manufacturing industries into four groups: low, medium-low, medium-high and high 

technology. The R&D intensity is the criterion in the classification. There are 22 

manufacturing industries in total. The manufacture of pharmaceutical products and the 

manufacture of computer, electronic and optical products are classified as high-

technology industries. The low technology group comprises ten industries, including 

food products, beverages, etc. 5 industries are classified as medium-low technology 

industries, mainly related to metal and non-metallic products. Medium-high tech group 

consists of 6 industries, and they are mainly related to chemical, machinery, and 

equipment. 

 

Table 3.2 Industry classification 

  Code SIC07 2-digit level description 

Low Technology 
10 Manufacture of food products 

11 Manufacture of beverages 
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13 Manufacture of textiles 

15 Manufacture of leather products 

16 Manufacture of wood products, except furniture 

17 Manufacture of paper products 

18 Printing and reproduction of recorded media 

31 Manufacture of furniture 

32 Other manufacturing 

   

  

Medium-Low 

Technology 

22 Manufacture of rubber and plastic products 

23 
Manufacture of other non-metallic mineral 

products 

24 Manufacture of basic metals 

25 Manufacture of fabricated metal products 

33 
Repair and installation of machinery and 

equipment 

  

Medium-High 

Technology 

19 Manufacture of coke and petroleum 

20 Manufacture of chemicals 

27 Manufacture of electrical equipment 

28 Manufacture of machinery and equipment 

29 Manufacture of motor vehicles 

30 Manufacture of other transport equipment 

  

High Technology 

21 Manufacture of pharmaceutical products 

26 
Manufacture of computer, electronic and optical 

products 

 

 

Table 3.3 shows the descriptive statistic for the main variables (output, capital, non-

R&D labour, and R&D labour) in 2019 and 2013, respectively. The large standard 

deviation implies that the output across firms is highly dispersed. Notably, firms in the 

high-tech group hire more employees in R&D activities, with a mean value of 19.59. 

This is followed by the medium-high group, where R&D employees are half the amount 
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in the high-tech group. Comparatively, R&D employees in the low-tech and medium-

low-tech groups are much lower, only around 5. In terms of other main variables, low-

tech industries have larger amounts of value-added, capital stock and non-R&D 

employees than other counterparts. And the high standard deviation also reveals 

significant heterogeneity in all groups. In 2013, all the main variables (output, capital 

stock, non-R&D labour, and R&D labour) have larger magnitudes and higher dispersion 

than those in 2019.  

 

Table 3.3 also presents the industry-level input shares. The higher mean value of capital 

share among the three input factors indicates that capital takes the most important role 

in production in both years, though it varies across industries. In 2019, among four 

groups with different technology levels, high-tech industries have the largest capital 

share with a mean value of 0.46, while low-tech industries display a relatively lower 

value of 0.39. The non-R&D labour share, on the contrary, takes a more important role 

in low-tech industries. When comparing over time, the mean value of R&D share 

decreases from 0.25 in 2013 to 0.22 in 2019 in the whole economy. And it is 

significantly higher in the high-tech group, reaching 0.31 in 2019 and 0.36 in 2013. 

This is followed by the medium-high-tech group, with a mean value of 0.24 in 2019 

and 0.33 in 2013. The medium-low and the low-tech group have a relatively lower R&D 

share in both years. 

 

We also summarize the rental cost for three input factors in the model. The mean values 

of all three parameters are higher in 2019. The capital rental rate is the highest in the 

low-tech group and lowest in the medium-high-tech group in both years. Regarding the 

wage rate, the wage rate of R&D employees displays significant heterogeneity between 

groups. In 2019 the R&D wage rate in the high-tech group (249.03 thousand GBP) is 

only around one-third of that in the low-tech group (749.11 thousand GBP). In 2013, 

the gap between the two groups is smaller, but the R&D wage in the high-tech group 

remains the lowest. The wage rate of non-R&D employees is comparatively more even, 

with the highest value of 29.64 in the medium-low tech group and the smallest value of 

22.76 in the high-tech group in 2019. The average value in 2013 is smaller than in 2019 

by around 2 thousand GBP.  
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Table 3.3 Descriptive Statistics and parameter calibration 

Year  Whole economy Low tech Medium low tech Medium high tech High tech 

2019  100% 14% 26% 44% 15% 

 Obs 1759 251 462 778 268 

Variable Name Mean Std. Dev. Mean Std. Dev. Mean Std. Dev Mean Std. Dev. Mean Std. Dev. 

𝑃𝑠𝑖𝑌𝑠𝑖 Output 
19245.16 40057.80 34806.52 66708 

16570.73

6 

38416.47

6 
16616.33 31724.72 16912.71 25612.52 

𝐾𝑠𝑖 Capital stock 5752.14 7537.42 7254.25 8951.801 4871.341 7314.301 5987.81 7424.60 5197.55 6503.33 

𝐿𝑠𝑖 Non-R&D employees 258.3 457.34 551.7304 874.97 229.753 406.906 212.47 287.28 165.74 199.01 

𝐻𝑠𝑖 R&D employees 9.01 20.41 5.56 6.35 4.26 11.845 9.29 20.84 19.59 32.22 

𝛼𝑠 Capital share 0.43 0.08 0.39 0.09 0.43 0.056 0.43 0.10 0.46 0.05 

𝛽𝑠 Non-R&D labour share 0.35 0.08 0.41 0.06 0.412 0.058 0.33 0.05 0.23 0.02 

𝛾𝑠 R&D human capital 

share 
0.22 0.09 0.19 0.13 

0.157 0.09 
0.24 0.06 0.31 0.02 

𝑟𝑠 Rental rate of capital 1.39 0.46 1.76 0.73 1.47 0.295 1.19 0.34 1.47 0.34 

𝜔𝑠 Non-R&D labour cost 26.41 4.19 25.69 6.40 29.631 2.975 25.99 3.19 22.76 0.53 

𝑞𝑠 R&D labour cost 508.64 248.52 749.11 405.63 646.39 119.888 434.69 139.97 249.03 40.99 

 

Year  Whole economy Low tech Medium low tech Medium high tech High tech 

2013  100% 20% 20% 42% 13% 

 Obs 1141 277 230 480 154 

Variable Name Mean Std. Dev. Mean Std. Dev. Mean Std. Dev Mean Std. Dev. Mean Std. Dev. 

𝑃𝑠𝑖𝑌𝑠𝑖 Output 26932.88 56966.83 39091.40 95958.20 22329.46 30310.59 21247.65 32433.31 29658.78 49928.59 

𝐾𝑠𝑖 Capital stock 7291.67 9252.50 7491.46 9561.08 6871.42 8848.28 7639.21 9574.59 6476.70 8209.44 

𝐿𝑠𝑖 Non-R&D employees 394.29 715.08 613.11 1243.13 372.82 387.74 304.751 385.748 311.86 460.41 

𝐻𝑠𝑖 R&D employees 12.92 39.73 6.39 10.45 5.98 7.86 14.83 44.40 29.08 69.82 

𝛼𝑠 Capital share 0.41 0.09 0.45 0.13 0.40 0.04 0.37 0.07 0.47 0.02 

𝛽𝑠 Non-R&D labour share 0.35 0.11 0.41 0.08 0.47 0.03 0.31 0.06 0.17 0.003 

𝛾𝑠 R&D human capital 

share 
0.25 0.11 0.14 0.09 0.14 0.06 0.33 0.05 0.36 0.02 

𝑟𝑠 Rental rate of capital 1.53 0.99 2.30 1.53 1.30 0.15 1.02 0.35 2.08 0.61 

𝜔𝑠 Non-R&D labour cost 22.15 5.55 23.42 5.41 27.95 2.13 20.63 4.76 15.97 0.57 

𝑞𝑠 R&D labour cost 489.45 141.32 537.84 99.41 557.16 154.31 464.48 82.05 379.16 221.23 

Note: The value in value added, capital stock, rental rate of capital, non-R&D labour cost, and R&D labour cost are presented in thousand GBP. 
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3.4 Empirical results 

3.4.1 Output gain 

We first calculate the new output and the output gap between the new output and the 

initial output with different allocation approaches. The results are in Table 3.4 

Allocation in column (1) and column (2) solve the maximization problem of the 

logarithm industry aggregate output. The solutions are provided in (7). Allocation in 

column (3) and column (4) aims to maximize an approximation of output that is 

decomposed into variance and covariance of input terms in (18), and the solution is 

provided by (11), (13) and (14).  

 

The first column presents the output gain when we do not consider the effect of R&D 

spill-over in allocation (δ𝑠 = 0). This is the general allocation approach adopted in the 

literature. Under this assumption, we use (7) to allocate inputs, which requires input 

distortions to be equalised across firms in industry s. After reallocation, the dispersion 

of the capital, labour, and R&D inputs distortions become zero. Both the variances of 

distortions and covariances between distortions and productivity become 0. From the 

results, for the whole economy, the output gain is 76.28%, implying the allocative 

efficiency is significantly increased. If one looks at groups with different technology 

types, the medium-high-tech group has the most significant output gain, achieving 

103.21%. The output in the medium-low-tech group also increases significantly with 

an output gain of 43.16%, though this magnitude is smallest among all groups. 

 

The difference between the results in column (1) and column (2) is that, column (1) 

presents the case when we adopt the allocation approach suggested in the literature with 

the assumption of no R&D spillover effect (which implies that after reallocation the 

input distortions are equalised), but count for the fact that the actual R&D spillover will 

change after reallocation. We use (3) to calculate the new R&D spill-over after the 

reallocation of R&D input, which is a geometric average of the R&D input in industry 

s. Column (2) presents the case when we adopt the same allocation approach suggested 

in the literature as in column (1), but at the same time, assuming that the actual R&D 

spillover does not change as there is no spillover effect. The output gains in column (2) 

would be the results generated by the literature, as they do not consider any externality. 

The results in column (2) are higher than those in column (1) by around 40pp to50 pp. 
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The most significant change in the output gain is in the medium-high-tech group, 

increasing by around 63pp. The results in column (1) indicate that if the role of R&D 

spill-over is ignored, the output loss from misallocation would be overestimated, 

especially for those industries where R&D input takes a more critical role. 

 

Table 3.4 Output gains from eliminating input misallocation in 2019 

 
no R&D 

spillover 

fixed R&D 

spillover 

with R&D 

spillover 

with R&D 

spillover 

(improved) 

 (1) (2) (3) (4) 

Whole economy 76.28 128.087 110.483 118.768 

Low-tech 75.174 128.606 116.48 121.18 

Medium-low-tech 43.158 82.313 67.806 73.759 

Medium-high-tech 103.21 165.759 143.577 154.703 

High-tech 69.082 114.393 92.756 104.861 

Note: Entries for the output gains are given by (𝑌∗/𝑌 − 1) ∗ 100, where 𝑌∗ is the new output 

after reallocation and 𝑌 is the initial output. All the output gains are presented in percentages (%) 

 

Column (3) shows the output gains from the allocation in (11) and (13), where the R&D 

spill-over effect is now taken into account. The R&D allocation in (13) suggests that 

the variance of R&D distortion is not reduced to zero as in columns (1) and (2). Instead, 

it is kept at a certain level, and the covariance between productivity and R&D distortion 

is positive. In this approach, the capital and labour allocations do not change, and their 

distortions are equalised across firms. The variances of capital and labour distortion and 

the covariances between these distortions and productivity are still reduced to zero. The 

results in column (3) are significantly larger than in column (1), which increased by 

around 34pp for the whole economy. The results emphasise the role of R&D spill-over 

in production. In the production function in (2), there are not only three types of inputs, 

but also an R&D spill-over term. Therefore, the social planner should also consider 

R&D spill-over in the maximisation problem, as it also influences the output like the 

other input factors do. 

 

However, the results in column (3) are only approximately optimal, and the allocation 

can be improved by an iterative process of substituting R&D allocation in (13) into 
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capital and labour allocation in (12) and then into the optimum R&D allocation in (9). 

The results in column (4) are the output gain from the improved allocation. Compared 

with column (3), the output gains in column (4) are more prominent in all groups, 

especially in medium high-tech and high-tech groups. The output gain increased by 

around 5pp in low- and medium-low-tech groups and increased by more than 10pp in 

medium-high and high-tech groups, implying that the output gain increased with the 

industry R&D intensity. 

 

By comparing the results in column (1) and column (4), the output gain from improved 

R&D allocation in (14) increased by around 42pp for the whole economy. The most 

considerable improvement is in the medium high-tech group, with an output gain of 

154.7%. This is followed for the low-tech and high-tech groups, with the increased 

output gain of 121.18% and 104.86%, respectively. The increase in the medium-low-

tech group is the smallest among all groups, though it still has an output gain of 73.76% 

after reallocation. 

 

3.4.2 Output decomposition and individual contribution of each input 

distortion 

We measure the individual contribution of each type of input distortion to the output 

loss. We decompose the output and express it in terms of variances of input distortions 

and covariances between input distortions and productivity in (18). All the expressions 

are in logarithms. The empirical results are in Table 3.4. In our model, the industry 

aggregate output consists of industry productivity, industry R&D spill-over and 

industry aggregate input. From (16) and (17), the sum of variances and covariances 

represents the sum of industry productivity 𝑙𝑜𝑔𝑇𝐹𝑃𝑠  and the R&D spill-over term 

δ𝑠𝑙𝑜𝑔𝑋𝑠. There are some constant terms, such as the average productivity 𝐸[𝑙𝑜𝑔𝐵𝑠𝑖] 

in the expression of industry productivity 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 in (16) and aggregate R&D input 

𝑙𝑜𝑔𝐻𝑠 in the expression of industry R&D spill-over 𝑙𝑜𝑔𝑋𝑠 in (17). Due to this, the 

sum of all variance and covariance is not equivalent to the sum of industry productivity 

and R&D spill-over term. The discrepancy between the sum of industry productivity 

and R&D spill-over and the sum of all variance and covariance terms may also come 

from the decomposition process. We use an approximation in the decomposition. It 

assumes that the distortions are log-normally distributed and that there are an infinite 
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number of firms, which would cause discrepancies with the actual data we adopt. 

 

3.4.2.1 Initial allocation 

The empirical results in Table 3.4 show that input distortions’ variances negatively 

contribute to the output. In contrast, the covariances positively contribute, consistent 

with our theoretical derivation in (18). The first column presents the output 

decomposition for the original allocation of inputs. By looking at the variances of input 

distortions, capital dispersion contributes the most to the output loss. The variance term 

is -0.406 for the whole economy, -0.425 in the low-tech group, -0.398 in the medium-

low-tech group, -0.327 in the medium-high-tech group and -0.609 in the high-tech 

group. Labour is less dispersed than capital; its variance term is -0.241 in the low-tech 

group and less than 0.2 in other groups. The high-tech group has the most dispersed 

R&D input with a variance term of -0.367. 

 

Regarding covariance between input distortions and productivity, it positively affects 

output as all the relevant terms have a positive magnitude. The positive covariance term 

would offset the output loss caused by input distortion. When gauging the individual 

contribution of each type of input distortion, the sum of the magnitude of both variance 

and covariance would be less than the one from only considering the variance term 

itself. The covariance terms between R&D distortion and productivity are 0.278, 0.225, 

0.347, 0.222 and 0.42 for the whole economy, low-tech, medium-low-tech, medium-

high-tech, and high-tech groups, respectively. The magnitudes are larger than the other 

two types of covariances, implying that the output loss attributed to R&D input 

distortion is much less than the other two input distortions due to the larger covariance 

term. 

 

Since the output is composed of both variance input distortion and the covariance 

between distortion and productivity, we look at the sum of these two components to 

gauge the individual contribution of each type of distortion. The capital distortion 

contributes most significantly to the output loss among the three input distortions, with 

a magnitude of -0.24 for the whole economy. The sum of the variance and covariance 

terms of capital distortion in the high-tech group is -0.319, the highest across all groups. 

The contribution of labour distortion is lower than that of capital distortion, only 
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contributing -0.056 to the output of the entire economy. Within four groups with 

different technology types, the low-tech group suffers more from labour distortion than 

other groups, given the sum of variance and covariance term of -0.103. Therefore we 

conclude that the initial capital and labour allocations cause output loss. Regarding 

R&D distortion, different from capital and labour distortions, the magnitude of 

covariance between productivity and R&D distortion is larger than the variance of R&D 

distortion, which leads to a positive sum of these two terms. This indicates that the 

initial R&D input positively contributes to the output at the initial allocation, though 

the optimal R&D input contributes more. 
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Table 3.5 Industry output decomposition in 2019 

Whole economy (1) (2) (3) (4) (5) (6) (7) 

Industry output 21.993 22.558 0.566 22.736 0.743 22.774 0.782 

Industry productivity 10.8 11.624 0.824 11.562 0.762 11.574 0.774 

Industry R&D spillover 0.178 -0.08 -0.258 0.159 -0.019 0.186 0.008 

Capital distortion variance -0.406 0 0.406 0 0.406 0 0.406 

Labour distortion variance -0.166 0 0.166 0 0.166 0 0.166 

R&D distortion variance -0.224 0 0.224 -0.158 0.066 -0.428 -0.204 

Capital distortion covariance 0.166 0 -0.166 0 -0.166 0 -0.166 

Labour distortion covariance 0.11 0 -0.11 0 -0.11 0 -0.11 

R&D distortion covariance 0.278 0 -0.278 0.316 0.039 0.499 0.222 

Aggregate contribution       

capital   -0.24   0.24   0.24   0.24 

labour  -0.056  0.056  0.056  0.056 

R&D   0.054   -0.054   0.105   0.018 

         

Low tech   (1) (2) (3) (4) (5) (6) (7) 

Industry output 21.835 22.395 0.561 22.607 0.772 22.628 0.794 

Industry productivity 10.65 11.477 0.827 11.419 0.769 11.436 0.786 

Industry R&D spillover 0.156 -0.11 -0.266 0.16 0.004 0.164 0.008 

Capital distortion variance -0.425 0 0.425 0 0.425 0 0.425 

Labour distortion variance -0.241 0 0.241 0 0.241 0 0.241 

R&D distortion variance -0.13 0 0.13 -0.191 -0.062 -0.301 -0.172 

Capital distortion covariance 0.159 0 -0.159 0 -0.159 0 -0.159 

Labour distortion covariance 0.138 0 -0.138 0 -0.138 0 -0.138 

R&D distortion covariance 0.225 0 -0.225 0.383 0.157 0.471 0.246 

Aggregate contribution       

capital   -0.266   0.266   0.266   0.266 

labour  -0.103  0.103  0.103  0.103 

R&D   0.095   -0.095   0.095   0.074 

         

Medium-low tech (1) (2) (3) (4) (5) (6) (7) 

Industry output 21.612 21.966 0.354 22.125 0.513 22.16 0.548 

Industry productivity 10.782 11.378 0.596 11.328 0.546 11.332 0.55 

Industry R&D spillover 0.121 -0.121 -0.242 0.088 -0.033 0.119 -0.002 
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Capital distortion variance -0.398 0 0.398 0 0.398 0 0.398 

Labour distortion variance -0.18 0 0.18 0 0.18 0 0.18 

R&D distortion variance -0.286 0 0.286 -0.171 0.115 -0.485 -0.199 

Capital distortion covariance 0.166 0 -0.166 0 -0.166 0 -0.166 

Labour distortion covariance 0.122 0 -0.122 0 -0.122 0 -0.122 

R&D distortion covariance 0.347 0 -0.347 0.342 -0.004 0.555 0.208 

Aggregate contribution       

capital   -0.232   0.232   0.232   0.232 

labour  -0.058  0.058  0.058  0.058 

R&D   0.061   -0.061   0.111   0.009 

 

Medium-high tech (1) (2) (3) (4) (5) (6) (7) 

Industry output  22.31 23.019 0.709 23.2 0.89 23.245 0.935 

Industry productivity  10.961 11.939 0.977 11.866 0.905 11.883 0.922 

Industry R&D spillover 0.187 -0.082 -0.268 0.172 -0.014 0.2 0.013 

Capital distortion variance -0.327 0 0.327 0 0.327 0 0.327 

Labour distortion variance -0.122 0 0.122 0 0.122 0 0.122 

R&D distortion variance -0.202 0 0.202 -0.117 0.085 -0.368 -0.166 

Capital distortion covariance 0.126 0 -0.126 0 -0.126 0 -0.126 

Labour distortion covariance 0.086 0 -0.086 0 -0.086 0 -0.086 

R&D distortion covariance 0.222 0 -0.222 0.233 0.011 0.402 0.18 

Aggregate contribution       

capital   -0.201   0.201   0.201   0.201 

labour  -0.036  0.036  0.036  0.036 

R&D   0.02   -0.02   0.096   0.014 

         

High tech   (1) (2) (3) (4) (5) (6) (7) 

Industry output  22.035 22.56 0.525 22.691 0.656 22.752 0.717 

Industry productivity  10.661 11.424 0.763 11.369 0.707 11.371 0.709 

Industry R&D spillover 0.289 0.052 -0.237 0.238 -0.051 0.297 0.008 

Capital distortion variance -0.609 0 0.609 0 0.609 0 0.609 

Labour distortion variance -0.124 0 0.124 0 0.124 0 0.124 

R&D distortion variance -0.367 0 0.367 -0.19 0.177 -0.747 -0.38 

Capital distortion covariance 0.29 0 -0.29 0 -0.29 0 -0.29 

Labour distortion covariance 0.104 0 -0.104 0 -0.104 0 -0.104 
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R&D distortion covariance 0.42 0 -0.42 0.38 -0.04 0.736 0.317 

Aggregate contribution       

capital   -0.319   0.319   0.319   0.319 

labour  -0.02  0.02  0.02  0.02 

R&D   0.053   -0.053   0.137   -0.063 

Note: We decompose the industry output and present the variance and covariance terms for all types of inputs in eq. (18). All 

the values are in logarithm. 

Column (1) is the industry output decomposition in the initial allocation. 

 

Column (2) is the industry output decomposition when there is no R&D spillover effect, where we use eq. (7) to allocate 

inputs. Column (3) describes the change from the initial value. It is the difference between the Column (2) and Column (1). 

 

Column (4) is the industry output decomposition in the presence of R&D spillover, where we use eq. (11) and eq. (13) to 

allocate inputs. Column (5) describes the change from the initial value. It is the difference between the Column (4) and Column 

(1). 

 

Column (6) is an improved version based on the results in Column (4), where we use eq. (11) and eq. (14) to allocate inputs. 

Column (5) describes the change from the initial value. It is the difference between the Column (6) and Column (1). 
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3.4.2.2 Allocation without the externality of R&D spill-over 

In this section we analyse the individual contribution of each type of input misallocation 

to the output loss. We adopt the solution under the assumption of no externality in (7) 

and substitute it in (2) to generate the new output. The literature (Hsieh and Klenow, 

2009; Marques et al., 2014; Benkovskis, 2015; Chen, 2017; Choi, 2020) suggests that 

the optimal allocation approach is to equalise input distortions across firms. But when 

we use (2) to compute the new output, in addition to inputs, we still count for the actual 

R&D spillover change by measuring the new R&D spillover as the geometric average 

of the new R&D input as suggested in (3). The optimal solution in (7) suggests that the 

input use should be proportional to productivity. Column (2) shows the results of output 

decomposition after equalising all distortions; therefore, the magnitudes of all types of 

variances and covariances become zero. Column (3) is the change in each component 

in the decomposition. After all types of input distortions are equalised, the output 

becomes larger, implying an increase in the allocative efficiency. The output after 

reallocation increases by 56.6%. The output gain in this approach is different with Table 

3.3, because the solution in this approach is for the maximization problem of an 

approximate industry output in (18). The R&D spill-over effect becomes smaller than 

it was initially in all groups. The elimination of capital distortion takes up the largest 

proportion of the increase in the output in all groups. The contribution of eliminating 

capital dispersion is 24pp in the whole economy. Regarding groups, it is noticeable that 

the contribution is substantial in the high-tech group, with a magnitude of 31.9pp. In 

the medium-low-tech group, eliminating capital misallocation contributes 23.2pp to the 

output gain of 35.4%, which also takes up a substantial share. In the low-tech and 

medium-high-tech groups, the capital misallocation contributes 26.6pp and 20.1pp to 

the output loss, respectively. The contribution of labour distortion is much less when 

compared to capital distortion, with 5.6pp for the whole economy. Output loss caused 

by labour input dispersion is larger in low- and medium-low-tech groups, as the 

contribution of eliminating labour input dispersion takes up 18% and 16% of the output 

increase, respectively. In the other two groups with higher R&D intensity, labour input 

dispersion only takes up 5% and 4% of the output loss. 

 

As for R&D input dispersion, the allocation approach that equalises R&D distortions 

across firms does not generate a positive contribution to the increase in output as capital 
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and labour counterparts do. Instead, the changes in the sum of R&D variance and 

covariance terms become negative for the whole economy and all groups with different 

technology types in column (3). The R&D allocation with equalised distortion reduces 

the output gain by 5.4pp in the whole economy, 9.5pp in the low-tech group, 6.1pp in 

the medium-low-tech group, and 2pp in the medium-high-tech and 5.3pp in the high-

tech group. The results indicate that equalising R&D input distortion is not the optimal 

approach to generate larger output. 

 

3.4.2.3 Allocation in the presence of the externality of R&D spill-over 

Next, we take R&D spill-over into consideration. Since there is no externality in capital 

and labour, the allocation of capital and labour in (11) would still generate zero 

dispersion in their distortions. The R&D allocation in (12) is the solution of a weighted 

average in the case where the social planner’s objective is to maximise the output where 

there is no R&D spill-over and the case where the objective is to maximise R&D spill-

over. Therefore, the R&D input distortions will not be equalised as suggested in (7). 

Instead, R&D input dispersion is kept at a certain level, and the variance and covariance 

would not be zero in this allocation approach. The decomposition results are presented 

in columns (4) and (5). Compared with the results in column (2) and (3), the 

contribution of capital and labour distortions do not change. However, now the R&D 

allocation is the optimal solution in the social planner’s problem to maximise the output 

in the presence of R&D spill-over. The magnitudes of both variance and covariance 

term in R&D distortion has changed, where the variance terms decrease and covariance 

terms increase for all groups. In addition, the R&D input reallocation now positively 

contributes to the output gain, as the sum of the variance and covariance terms has now 

increased to a positive value in column (5). The magnitudes are 10.5pp for the whole 

economy, 9.5pp in the low-tech group, 11.1pp in the medium-low-tech group, 9.6pp in 

the medium-high-tech group, and 13.7pp in the high-tech group, implying that the R&D 

allocation now generates a positive contribution to the output gain. 

 

3.4.2.4 An improved allocation approach 

We also improve the R&D allocation through an iterative process by substituting (13) 

into (12). The results in column (6) and (7) indicate that the output could be larger under 

this allocation. The contributions of capital and labour distortion are still the same as 
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those in column (2) and column (4). Since there is no externality in capital and labour, 

the distortions are equalised, and the dispersions become zero after reallocation. The 

improved output comes from the R&D allocation, where the output gain is 78.2% in 

the whole economy. The largest output gain is in the medium-high-tech group, with a 

93.5pp increase, followed by the high-tech group, with a 79.4pp increase. Medium-low-

tech group has a relatively smaller output gain, though the output gain still increases by 

54.8pp. The contribution of R&D reallocation is measured by the sum of variance and 

covariance terms of R&D input. The magnitude is significantly larger (1.8pp in the 

whole economy) than in the allocation that equalises all distortions (-5.4 pp in the whole 

economy). The low-tech group benefits the most from this allocation, as its R&D 

distortions reduce output gain the most under the original allocation but now the 

magnitude of its contribution becomes the largest among the four groups (7.4pp). The 

R&D contribution in column (7) is smaller than that in column (5), but the output gain 

in column (7) is higher than that in column (5). This is because the values in column (4) 

are the solution to the approximation problem of industry output maximization in (18). 

Since they are only close to optimal, there are still spaces to improve the output by 

continuing the iterative process. 

 

3.4.3 Industry productivity and R&D spill-over 

From (16), the industry productivity 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 is negatively correlated to the variances 

of input distortions. The second row in Table 3.4 presents the value of 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 

generated by the initial and the three new allocation approaches. From the empirical 

results, the industry productivity 𝑙𝑜𝑔𝑇𝐹𝑃𝑠 is the largest in column (2), where all types 

of input distortions are equalised across firms within industry s, and therefore the 

variance terms are zero. The highest productivity in column (2) is consistent with (16), 

which indicates that the industry productivity is maximised when the dispersion in all 

types of input distortions is eliminated. 

 

However, different from industry productivity, the industry R&D spill-over 𝑙𝑜𝑔𝑋𝑠 in 

(17) is not only negatively related to the variances of input distortions but also 

positively related to covariances between productivity and input distortion. The third 

row shows the industry R&D spill-over in the initial and new allocations. The R&D 

spill-overs under the improved R&D allocation in column (6) have reached a level quite 
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close to the initial value (almost zero change to the initial value). This implies that in 

optimum, the R&D contribution is similar to that in the initial allocation, though it is 

not precise as it also depends on the level of other distortions. 

 

3.4.3.1 Trade-off between industry productivity and R&D spill-over 

Since the industry aggregate output consists of the industry productivity, industry R&D 

spill-over, and industry aggregate inputs, the changes in industry productivity and 

industry R&D spill-over matter for the output gain. In (16), the industry productivity is 

maximised when all variances become zero. However, in (17), the covariance terms 

also increase with the variance. Therefore, it is impossible to have a positive covariance 

term and keep the variance to zero simultaneously. This implies that in the output 

maximisation problem, there is a trade-off between maximising the industry 

productivity and R&D spill-over. In Table 3.4, when we compare the industry TFP and 

R&D spill-over term across the initial allocation and new allocations, we can see that 

as the industry TFP becomes larger in all groups, the R&D spill-overs become less than 

the initial value. Although in the improved allocation in (11) and (14), both terms are 

slightly larger than the ones in the allocation approach in (11) and (13), the differences 

are quite minor between these two allocations. This also indicates that the R&D 

allocation in the last approach is more efficient, as it is improved from the second 

approach. 

 

3.4.4 Output and decomposition change in 2013 

We also do the output decomposition in 2013 in Table 3.5 and compare it with the 

results in 2019 to see how the input allocation efficiency differed in 2013. The results 

show that capital distortion still generates the largest contribution to the output loss, 

though the magnitude was smaller in 2013. In column (3), the output loss caused by 

capital distortion is 13.3pp for the whole economy. The smaller output loss implies that 

capital input was allocated more efficiently in 2013. In the low-tech group, the 

magnitude of capital distortion contribution remains mostly the same, only decreasing 

by 3.4pp in 2013 compared to the value in 2019. Nevertheless, the capital input 

allocation in the rest of groups is more efficient in 2013: The output loss due to capital 

distortion is reduced to 9.4pp in the medium-low-tech group, 5.1pp in the medium-

high-tech group, and 12.6pp in the high-tech group. It is noticeable that in 2013 the 
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initial labour allocation does not harm the productivity as well as the output, as the sum 

of the variance and the covariance terms in column (1) is positive in all groups. 

Therefore, when all labour distortions are equalised across firms, the contribution is 

negative and around -4pp in column (3). Similar to labour input, the initial R&D 

allocation is efficient as column (1) shows a positive value of the sum of the variance 

term and covariance term. Therefore, when R&D distortions are equalised, it reduces 

the output gain by 14.3pp in the whole economy, 33.5pp in the low-tech group, 9.1pp 

in the medium-low-tech group, 5pp in the medium-high-tech group, and 7.6pp in the 

high-tech group. In total, for all input types, the initial allocation is more efficient in 

2013, leading to a smaller output gain in column (3). 

 

Now we look at the improved allocation approach that keeps a certain level of 

dispersion in R&D distortion. These allocations generate a higher output in all groups. 

Compared with 2019, the contribution of capital and labour distortions to the output 

gain is smaller. However, the magnitude of R&D’s contribution is more prominent in 

2013, with 32.9pp in the whole economy, 33pp in the low-tech group, 18.1pp in the 

medium-low-tech group, 37pp in the high-tech group, and 40.3pp in the high-tech group. 

The contribution is particularly significant in high-tech groups, as the output gain 

generated by the optimal allocation of inputs (108.5% in column (5) and 116.9% in 

column (7)) exceeds the value in 2019 (65.6% in column (5) and 71.7% in column (7)). 
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Table 3.6 Industry output decomposition in 2013 

Whole economy (1) (2) (3) (4) (5) (6) (7) 

Industry output 21.892 22.258 0.366 22.736 0.844 22.779 0.888 

Industry productivity 10.563 11.411 0.848 11.304 0.741 11.326 0.763 

Industry R&D spillover 0.4 -0.081 -0.482 0.504 0.103 0.525 0.125 

Capital distortion variance -0.542 0 0.542 0 0.542 0 0.542 

Labour distortion variance -0.158 0 0.158 0 0.158 0 0.158 

R&D distortion variance -0.402 0 0.402 -0.472 -0.071 -0.753 -0.352 

Capital distortion covariance 0.409 0 -0.409 0 -0.409 0 -0.409 

Labour distortion covariance 0.198 0 -0.198 0 -0.198 0 -0.198 

R&D distortion covariance 0.545 0 -0.545 0.945 0.4 1.169 0.624 

Aggregate contribution       

capital   -0.133   0.133   0.133   0.133 

labour  0.04  -0.04  -0.04  -0.04 

R&D   0.143   -0.143   0.329   0.272 

         

Low tech (1) (2) (3) (4) (5) (6) (7) 

Industry output 22.451 22.7 0.249 23.413 0.962 23.447 0.996 

Industry productivity 10.444 11.418 0.974 11.315 0.871 11.349 0.906 

Industry R&D spillover 0.328 -0.397 -0.725 0.418 0.09 0.418 0.09 

Capital distortion variance -0.81 0 0.81 0 0.81 0 0.81 

Labour distortion variance -0.235 0 0.235 0 0.235 0 0.235 

R&D distortion variance -0.182 0 0.182 -0.666 -0.484 -0.859 -0.678 

Capital distortion covariance 0.578 0 -0.578 0 -0.578 0 -0.578 

Labour distortion covariance 0.268 0 -0.268 0 -0.268 0 -0.268 

R&D distortion covariance 0.517 0 -0.517 1.332 0.814 1.499 0.982 

Aggregate contribution       

capital   -0.232   0.232 0.034 0.232   0.232 

labour  0.033  -0.033  -0.033  -0.033 

R&D   0.335   -0.335   0.33   0.304 

         

Medium-low tech (1) (2) (3) (4) (5) (6) (7) 

Industry output 20.969 21.152 0.183 21.423 0.454 21.445 0.477 

Industry productivity 10.213 10.688 0.475 10.605 0.392 10.624 0.412 

Industry R&D spillover 0.344 0.052 -0.292 0.405 0.062 0.408 0.065 
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Capital distortion variance -0.272 0 0.272 0 0.272 0 0.272 

Labour distortion variance -0.141 0 0.141 0 0.141 0 0.141 

R&D distortion variance -0.235 0 0.235 -0.272 -0.037 -0.383 -0.148 

Capital distortion covariance 0.178 0 -0.178 0 -0.178 0 -0.178 

Labour distortion covariance 0.162 0 -0.162 0 -0.162 0 -0.162 

R&D distortion covariance 0.326 0 -0.326 0.544 0.218 0.635 0.309 

Aggregate contribution       

capital   -0.094   0.094 0.138 0.094   0.094 

labour  0.021  -0.021  -0.021  -0.021 

R&D   0.091   -0.091   0.181   0.161 

 

Meidum-high tech (1) (2) (3) (4) (5) (6) (7) 

Industry output 21.708 22.205 0.497 22.516 0.808 22.561 0.853 

Industry productivity 10.801 11.543 0.743 11.439 0.639 11.451 0.65 

Industry R&D spillover 0.411 0.165 -0.246 0.58 0.169 0.614 0.203 

Capital distortion variance -0.337 0 0.337 0 0.337 0 0.337 

Labour distortion variance -0.122 0 0.122 0 0.122 0 0.122 

R&D distortion variance -0.583 0 0.583 -0.365 0.218 -0.688 -0.105 

Capital distortion covariance 0.286 0 -0.286 0 -0.286 0 -0.286 

Labour distortion covariance 0.173 0 -0.173 0 -0.173 0 -0.173 

R&D distortion covariance 0.578 0 -0.578 0.73 0.152 0.984 0.406 

Aggregate contribution       

capital   -0.051   0.051   0.051   0.051 

labour  0.051  -0.051  -0.051  -0.051 

R&D   -0.005   0.005   0.37   0.301 

         

High tech (1) (2) (3) (4) (5) (6) (7) 

Industry output 22.013 22.571 0.558 23.097 1.085 23.182 1.169 

Industry productivity 10.712 11.915 1.203 11.763 1.051 11.783 1.071 

Industry R&D spillover 0.613 -0.031 -0.644 0.646 0.034 0.711 0.099 

Capital distortion variance -0.67 0 0.67 0 0.67 0 0.67 

Labour distortion variance -0.078 0 0.078 0 0.078 0 0.078 

R&D distortion variance -0.706 0 0.706 -0.478 0.228 -1.064 -0.358 

Capital distortion covariance 0.544 0 -0.544 0 -0.544 0 -0.544 

Labour distortion covariance 0.128 0 -0.128 0 -0.128 0 -0.123 
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R&D distortion covariance 0.782 0 -0.782 0.957 0.175 1.401 0.62 

Aggregate contribution       

capital   -0.126   0.126   0.126   0.126 

labour  0.05  -0.05  -0.05  -0.045 

R&D   0.076   -0.076   0.403   0.262 

Note: We decompose the industry output and present the variance and covariance terms for all types of inputs in eq. (18). All 

the values are in logarithm. 

 

Column (1) is the industry output decomposition in the initial allocation. 

 

Column (2) is the industry output decomposition when there is no R&D spillover effect, where we use eq. (7) to allocate 

inputs. Column (3) describes the change from the initial value. It is the difference between the Column (2) and Column (1). 

 

Column (4) is the industry output decomposition in the presence of R&D spillover, where we use eq. (11) and eq. (13) to 

allocate inputs. Column (5) describes the change from the initial value. It is the difference between the Column (4) and Column 

(1). 

 

Column (6) is an improved version based on the results in Column (4), where we use eq. (11) and eq. (14) to allocate inputs. 

Column (5) describes the change from the initial value. It is the difference between the Column (6) and Column (1). 
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From (15), the industry output is influenced by industry productivity, industry R&D 

spill-overs and the industry aggregate inputs. We compare the decomposition of the 

initial allocation in 2013 and 2019 in Table 3.7 to see whether the change in output in 

2019 is mainly due to changes in industry productivity and R&D spill-overs or to 

changes in the industry aggregate inputs. Industry output increased by 10pp for the 

whole economy in 2019. 8.6pp of the output gain are explained by the change in 

industry aggregate100 inputs. Industry productivity and R&D spill-overs also 

contributed to the increase in output, but the combined effect was smaller, at a 1.5pp 

improvement. In the low-tech group, industry output in 2019 is 61.6pp lower than in 

2013. While industry productivity and R&D spill-overs have a positive effect on 

generating greater output, it is offset by the considerable reduction in aggregate inputs. 

Notably, total industry inputs decreased by 65pp in 2019, which is greater than the 

change in output. The low- and medium-technology industries benefited from both 

increases in the industry inputs and the combined effect of productivity and R&D spill-

overs. The output increases by 64.3pp in 2019, with the industry aggregate inputs 

contributing 29.7pp and industry productivity and R&D spill-overs contributing 34.6pp. 

Industry output growth in the medium-high technology group is similar to that of the 

medium-low technology group. However, there is a slight difference. In this group, the 

scale of the increase in industry inputs exceeded the industry output. Meanwhile, the 

combined effect of industry productivity and R&D spill-overs falls by 6.4pp in 2019. 

The change in the high-tech group follows a similar trend to that of the medium-high-

tech group. It also shows a large increase in the industry aggregate inputs by 39.7pp. 

However, due to the massive decline of 37.5pp in industry productivity and R&D spill-

overs, output changed little, increasing by only 2.2pp. 

 

After comparison, industry output is mainly influenced by the aggregate inputs and the 

industry output changes in the same direction. The low-tech group had fewer inputs and 

smaller outputs, while the other groups had larger inputs and, therefore, higher outputs. 

In terms of the impact of industry productivity and R&D spill-over, it has a slight impact 

on the industry output. It was observed that this impact in 2019 becomes smaller for 

industries with lower R&D intensity (low-tech and low-medium technology groups) 

and larger for industries with higher R&D intensity (medium-high and high-tech 

industries). 
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Table 3.7 Comparison of the industry output decomposition in 2013 and 2019 
  2013 2019 change 

Whole economy (1) (2) (3) 

Industry output 21.892 21.993 0.101 

Industry aggregate input 10.929 11.015 0.086 

Industry productivity 10.563 10.8 0.237 

Industry R&D spill-over 0.4 0.178 -0.222 

Aggregate effect of industry 

productivity and R&D spill-over 
10.963 10.978 0.015 

      

Low-tech (1) (2) (3) 

Industry output 22.451 21.835 -0.616 

Industry aggregate input 11.679 11.029 -0.65 

Industry productivity 10.444 10.65 0.206 

Industry R&D spill-over 0.328 0.156 -0.172 

Aggregate effect of industry 

productivity and R&D spill-over 
10.772 10.806 0.034 

  0.136 -0.274  

Medium-low-tech (1) (2) (3) 

Industry output 20.969 21.612 0.643 

Industry aggregate input 10.412 10.709 0.297 

Industry productivity 10.213 10.782 0.569 

Industry R&D spill-over 0.344 0.121 -0.223 

Aggregate effect of industry 

productivity and R&D spill-over 
10.557 10.903 0.346 

     

Medium-high-tech (1) (2) (3) 

Industry output 21.708 22.31 0.602 

Industry aggregate input 10.496 11.162 0.666 

Industry productivity 10.801 10.961 0.16 

Industry R&D spill-over 0.411 0.187 -0.224 

Aggregate effect of industry 

productivity and R&D spill-over 
11.212 11.148 -0.064 

     

High-tech (1) (2) (3) 

Industry output 22.013 22.035 0.022 

Industry aggregate input 10.688 11.085 0.397 

Industry productivity 10.712 10.661 -0.051 

Industry R&D spill-over 0.613 0.289 -0.324 

Aggregate effect of industry 

productivity and R&D spill-over 
11.325 10.95 -0.375 

 

 

3.4.5 Policy suggestions 

From the output decomposition in Table 3.3 and Table 3.4, we find that capital distortion 

plays the most prominent role in contributing to the output loss, with 40.6pp in 2019 
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and 27.2pp in 2013. The results provide some suggestions. In order to eliminate the 

resource misallocation caused by the initial capital and labour input allocation, the 

policymaker should efficiency in capital and labour markets. This requires that firms 

face the same actual input price, in which capital and labour distortions are equalised 

across firms. In order to improve the efficiency of capital and labour resource allocation 

government should take actions to improve the efficiency of capital and labour resource 

allocation, such as reducing subsidies to less productive firms and implementing tax 

deductions or subsidies to more productive firms. 

 

However, regarding R&D input, the policy suggestions are different. When we compare 

the results from two different R&D allocation approaches (one is equalising R&D 

distortions across firms, and in the other one, a certain level of dispersion in R&D 

distortion is retained), the latter allocation generates a larger output. This indicates that 

in the optimum the R&D input is used more evenly. Therefore, the policymaker should 

be aware of the externality of R&D activities and allow for a certain level of inequality 

in R&D input price. The results suggest that firms with higher productivity pay a higher 

price to hire R&D resources, and the less productive firms pay R&D input at a lower 

price. Therefore, the policymaker could encourage less productive firms with the 

ambition to conduct R&D activities by subsidising the R&D input price they pay. 

 

 

3.5 Conclusion 

In this chapter, we measure the allocative efficiency of capital, labour and R&D 

resource in UK manufacturing industries. We also analyse how the externality of R&D 

spillover would affect the results. We employ a similar methodology to the literature 

but with R&D spill-over added to compute the output loss caused by input resource 

misallocation across firms. The results show that the output loss in 2019 is around 76% 

for the whole economy. Regarding the industries with different technology type, the 

medium-high-tech group suffer the most from the misallocation, with an output loss 

exceeding 100%. The medium-low-tech group is more efficient in allocation, and the 

output loss is 43%. In 2013, the allocation is more efficient in all groups, as the results 

of output loss are smaller. 
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We also find that the output loss measured in the literature would be overestimated if 

the effect of R&D spillover on the output is ignored. By comparing the allocation where 

R&D spillover changes with the R&D allocation and where the R&D spillover is fixed 

at the initial level, the output in the latter case is larger by around 50 percentage points.  

 

In order to see the role of knowledge spillover in production, we compute the output 

gain from the improved allocation approach and compare it with the results from the 

approach introduced in the literature. In the literature, since there does not exist any 

externality, the allocation is the most efficient when all firms pay the same actual input 

price. In other words, the input distortions (wedges) are equalised across firms. But in 

our model, the externality of R&D spillover influences the input allocation. We allow 

for a certain degree of R&D distortion which is increasing in the firm's productivity. 

The results show that our improved allocation is more efficient in generating larger 

output gain. Regarding groups, the medium-high-tech and high-tech groups benefit the 

most from the improved approach, where the output gain is the largest in the high-tech 

group in 2013 and the largest in the medium-high-tech group in 2019. In contrast, the 

medium-low group benefits the least from this approach in both years. The reason might 

be that the R&D expenditure ratio is the lowest in the medium-low-tech group, in which 

the industries are mainly related to metals and mineral products. Therefore, the 

improvement in R&D input allocation makes less difference than for other groups that 

rely more on R&D input. 

 

We decompose the industry output to see which input misallocation contributes the 

most to the output loss. The results show that capital misallocation makes the most 

prominent part. The capital misallocation problem is the most serious in the high-tech 

group, with a contribution of 12.6pp and 31.9pp in 2013 and 2019, respectively. Labour 

misallocation also matters, but the magnitude is much smaller. The low-tech group has 

the largest labour misallocation contribution. Due to the R&D spillover effect, the initial 

R&D allocation does not harm the output. However, it can still be improved to generate 

a larger output gain when R&D input distortion maintains a certain level of dispersion. 

In addition, we find a trade-off between industry productivity and R&D spillover. This 

indicates that only maximising productivity is not the best solution. Instead, it should 

be a weighted average of maximising the industry productivity and R&D spillover. 
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Based on the results, we also provide some policy suggestions. The policymaker should 

implement policies such as subsidising or tax reduction to encourage firms with higher 

productivity to hire more capital and labour. On the contrary, less productive firms 

should be allocated less capital and labour resources. Feasible policies include 

strengthening the exit mechanism for firms with low productivity and reducing 

subsidies to less effective firms. 

 

The findings suggest that the magnitude of output gains and input misallocation differs 

across groups with different technology. Further study is needed to explore what causes 

these differences. For example, what is the reason that causes the capital misallocation 

to be more severe in the high-tech group? Or what makes the labour misallocation to 

be worse in the low-tech group? Except for that, we observe a discrepancy between the 

output change and the changes in variance and covariance terms. In future research, one 

can reduce the discrepancy by extending the current model to study the part in the 

output gain that has not been explained by output decomposition in the current 

allocation approach. 
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Appendix 3.A 

Appendix 3.A1. Decomposition of industry TFP 

We start by substituting (4)-(6) into the production function (2) to arrive at 

𝑌𝑠𝑖 = (
𝐵𝑠𝑖Γ𝑠𝑋𝑠

δ𝑠

Θ𝑠𝑖
)
σ

                          (19) 

Where Γ𝑠 ≡
σ−1

σ
(
α𝑠

𝑟𝑠
)
α𝑠
(
β𝑠

𝑤𝑠
)
β𝑠
(
γ𝑠

𝑞𝑠
)
γ𝑠

  and Θ𝑠𝑖 ≡ (1 + τ𝐾𝑠𝑖)
α𝑠
(1 + τ𝐿𝑠𝑖)

β𝑠
(1 +

τ𝐻𝑠𝑖)
γ𝑠

. 

Given (19), the industry 𝑠 output in (1) becomes  

𝑌𝑠 = (Γ𝑠𝑋𝑠
δ𝑠)

σ

(∑(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑚𝑠

𝑖=1

)

σ
σ−1

 

Also, if we substitute (19) back into (4)-(6) and sum across the firms, input demands 

by industry 𝑠 are 

𝐾𝑠 =
σ − 1

σ
(Γ𝑠𝑋𝑠

δ𝑠)
σ−1 α𝑠

𝑟𝑠
∑

1

1 + τ𝐾𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑚𝑠

𝑖=1

 

𝐿𝑠 =
σ − 1

σ
(Γ𝑠𝑋𝑠

δ𝑠)
σ−1 β𝑠

𝑤𝑠
∑

1

1 + τ𝐿𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑚𝑠

𝑖=1

 

𝐻𝑠 =
σ− 1

σ
(Γ𝑠𝑋𝑠

δ𝑠)
σ−1 γ𝑠

𝑞𝑠
∑

1

1 + τ𝐻𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑚𝑠

𝑖=1

 

We can use the above expressions for 𝑌𝑠, 𝐾𝑠, 𝐿𝑠, and 𝐻𝑠 to write industry TFP in (15) 

as 

𝑇𝐹𝑃𝑠

=
(∑ (

𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑚𝑠
𝑖=1 )

σ
σ−1

(∑
1

1 + τ𝐾𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑚𝑠
𝑖=1 )

α𝑠

(∑
1

1 + τ𝐿𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑚𝑠
𝑖=1 )

β𝑠

(∑
1

1 + τ𝐻𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑚𝑠
𝑖=1 )

γ𝑠
 

 

Similar to (Hsieh and Klenow, 2009; Chen and Irarrazabal, 2013; Ryzhenkov and 

Mykola, 2016), we now provide an approximation of 𝑇𝐹𝑃𝑠 assuming that distortions 

and firm TFPs are log-normally distributed with the variance-covariance matrix given 

by Σ𝑠  and the number of firms in the industry tends to infinity. Let μΘ𝑠 ≡

𝐸[logΘ𝑠𝑖], σΘ𝑠
2 ≡ 𝑣𝑎𝑟(logΘ𝑠𝑖), 𝑎𝑛𝑑σ𝐵Θ𝑠 = 𝑐𝑜𝑣(log𝐵𝑠𝑖 , logΘ𝑠𝑖). Then,  
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log𝑇 𝐹𝑃𝑠 =
σ

σ − 1
log∫ (

𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑑𝑖 − α𝑠 log∫
1

1 + τ𝐾𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑑𝑖 

−β𝑠 log∫
1

1 + τ𝐿𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑑𝑖 − γ𝑠 log∫
1

1 + τ𝐻𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑑𝑖 

, where  

log∫ (
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑑𝑖 = (σ − 1)(μ𝐵𝑠 − μΘ𝑠) +
(σ − 1)2

2
(σ𝐵𝑠
2 + σΘ𝑠

2 ) − (σ − 1)2σ𝐵Θ𝑠 

and 

log∫
1

1 + τ𝐼𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

𝑑𝑖 = (σ − 1)(μ𝐵𝑠 − μΘ𝑠) − μ𝐼𝑠 +
(σ − 1)2

2
(σ𝐵𝑠
2 + σΘ𝑠

2 ) 

+
1

2
σ𝐼𝑠
2 − (σ − 1)2σ𝐵Θ𝑠 − (σ − 1)(σ𝐵𝐼𝑠 − σΘ𝐼𝑠) 

 , for 𝐼 = 𝐾, 𝐿,𝐻. Observe that 

μΘ𝑠 = α𝑠μ𝐾𝑠 + β𝑠μ𝐿𝑠 + γ𝑠μ𝐻𝑠  

σΘ𝑠
2 = α𝑠

2σ𝐾𝑠
2 + β𝑠

2σ𝐿𝑠
2 + γ𝑠

2σ𝐻𝑠
2  

σΘ𝐼𝑠 = ϕ𝐼𝑠σ𝐼𝑠
2  

where ϕ𝐼𝑠 = α𝑠 , β𝑠, γ𝑠   for 𝐼 = 𝐾, 𝐿,𝐻 , respectively. Substituting it all in the 

expression for log𝑇 𝐹𝑃𝑠  and noting thatα𝑠 + β𝑠 + γ𝑠 = 1, we obtain the expression in 

(16). 

 

To write log𝑋𝑠 in terms of variances and covariances of distortions and firm TFPs, we 

note that 

log𝐻𝑠 = log∫𝐻𝑠𝑖 𝑑𝑖 = 𝐸[log𝐻𝑠𝑖] +
1

2
𝑣𝑎𝑟(log𝐻𝑠𝑖) 

= log𝑋𝑠 +
1

2
𝑣𝑎𝑟 (log(

1

1 + τ𝐻𝑠𝑖
(
𝐵𝑠𝑖
Θ𝑠𝑖
)
σ−1

)) 

Hence, 

log𝑋𝑠 = log𝐻𝑠 −
(σ − 1)2

2
(σ𝐵𝑠
2 + σΘ𝑠

2 ) −
1

2
σ𝐻𝑠
2 + (σ − 1)2σ𝐵Θ𝑠

+ (σ − 1)(σ𝐵𝐻𝑠 − σΘ𝐻𝑠) 

  

After substituting the expressions for σΘ𝑠
2  , σΘ𝐻𝑠 , and σ𝐵Θ𝑠 = α𝑠σ𝐵𝐾𝑠 + β𝑠σ𝐵𝐿𝑠 +

γ𝑠σ𝐵𝐻𝑠, we arrive at (17).  
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Appendix 3.A2. Maximizing industry output 

We want to maximize (18) subject to the constraint that Σ𝑠 is a positive semi-definite 

matrix. A symmetric matrix is positive semi-definite if and only if all of its principal 

minors are nonnegative: 

σ𝐾𝑠
2 ≥ 0                      (20) 

σ𝐿𝑠
2 ≥ 0                      (21) 

σ𝐻𝑠
2 ≥ 0                      (22) 

σ𝐵𝑠
2 σ𝐾𝑠

2 − σ𝐵𝐾𝑠
2 ≥ 0                      (23) 

σ𝐵𝑠
2 σ𝐿𝑠

2 − σ𝐵𝐿𝑠
2 ≥ 0                      (24) 

σ𝐵𝑠
2 σ𝐻𝑠

2 − σ𝐵𝐻𝑠
2 ≥ 0                      (25) 

σ𝐵𝑠
2 σ𝐾𝑠

2 σ𝐿𝑠
2 − σ𝐵𝐾𝑠

2 σ𝐿𝑠
2 − σ𝐵𝐿𝑠

2 σ𝐾𝑠
2 ≥ 0                      (26) 

σ𝐵𝑠
2 σ𝐾𝑠

2 σ𝐻𝑠
2 − σ𝐵𝐾𝑠

2 σ𝐻𝑠
2 − σ𝐵𝐻𝑠

2 σ𝐾𝑠
2 ≥ 0                      (27) 

σ𝐵𝑠
2 σ𝐿𝑠

2 σ𝐻𝑠
2 − σ𝐵𝐿𝑠

2 σ𝐻𝑠
2 − σ𝐵𝐻𝑠

2 σ𝐿𝑠
2 ≥ 0                      (28) 

σ𝐵𝑠
2 σ𝐾𝑠

2 σ𝐿𝑠
2 σ𝐻𝑠

2 − σ𝐵𝐾𝑠
2 σ𝐿𝑠

2 σ𝐻𝑠
2 − σ𝐵𝐿𝑠

2 σ𝐾𝑠
2 σ𝐻𝑠

2 − σ𝐵𝐻𝑠
2 σ𝐾𝑠

2 σ𝐿𝑠
2 ≥ 0  (29) 

There are four more constraints  

σ𝐾𝑠
2 σ𝐿𝑠

2 ≥ 0 

σ𝐾𝑠
2 σ𝐻𝑠

2 ≥ 0 

σ𝐿𝑠
2 σ𝐻𝑠

2 ≥ 0 

σ𝐾𝑠
2 σ𝐿𝑠

2 σ𝐻𝑠
2 ≥ 0 

, but they are automatically satisfied if the other constraints are satisfied. 

 

We will minimize 

𝑎𝐾𝑠σ𝐾𝑠
2 + 𝑎𝐿𝑠σ𝐿𝑠

2 + 𝑎𝐻𝑠σ𝐻𝑠
2 − 2𝑏𝐾𝑠σ𝐵𝐾𝑠 − 2𝑏𝐿𝑠σ𝐵𝐿𝑠 − 2𝑏𝐻𝑠σ𝐵𝐻𝑠 

subject to (20)-(29) where 

𝑎𝐾𝑠 = α𝑠 + (σ − 1)α𝑠
2 + δ𝑠(σ − 1)

2α𝑠
2 

𝑎𝐿𝑠 = β𝑠 + (σ − 1)β𝑠
2 + δ𝑠(σ − 1)

2β𝑠
2 

𝑎𝐻𝑠 = γ𝑠(1 + (σ − 1)γ𝑠) + δ𝑠(1 + (σ − 1)γ𝑠)
2 

𝑏𝐾𝑠 = δ𝑠(σ − 1)
2α𝑠 

𝑏𝐿𝑠 = δ𝑠(σ − 1)
2β𝑠 

𝑏𝐻𝑠 = δ𝑠(σ − 1)(1 + (σ − 1)γ𝑠) 

 

As it turns out, the constraint qualifications are not satisfied in this problem and, 

therefore, the Kuhn-Tucker conditions are not necessary conditions. We identify the 
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solution in several steps. First, suppose the solution is such that σ𝐵𝐾𝑠
2 > 0, σ𝐵𝐿𝑠

2 > 0 

and σ𝐵𝐻𝑠
2 > 0 . But then from (23)-(25), σ𝐾𝑠

2 > 0 , σ𝐿𝑠
2 > 0 , σ𝐻𝑠

2 > 0 . Furthermore, 

the only constraint that binds is (29). To see it, suppose for example that (23) binds. But 

then from (29), σ𝐵𝐿𝑠
2 σ𝐾𝑠

2 σ𝐻𝑠
2 + σ𝐵𝐻𝑠

2 σ𝐾𝑠
2 σ𝐿𝑠

2 = 0, a contradiction. The same applies if 

we assume that any other constraint from (24) to (28) binds. Hence, we solve the 

following problem: 

min 𝐿 = 𝑎𝐾𝑠σ𝐾𝑠
2 + 𝑎𝐿𝑠σ𝐿𝑠

2 + 𝑎𝐻𝑠σ𝐻𝑠
2 − 2𝑏𝐾𝑠σ𝐵𝐾𝑠 − 2𝑏𝐿𝑠σ𝐵𝐿𝑠 − 2𝑏𝐻𝑠σ𝐵𝐻𝑠 

−λ(σ𝐵𝑠
2 σ𝐾𝑠

2 σ𝐿𝑠
2 σ𝐻𝑠

2 − σ𝐵𝐾𝑠
2 σ𝐿𝑠

2 σ𝐻𝑠
2 − σ𝐵𝐿𝑠

2 σ𝐾𝑠
2 σ𝐻𝑠

2 − σ𝐵𝐻𝑠
2 σ𝐾𝑠

2 σ𝐿𝑠
2 ) 

 

The Kuhn-Tucker conditions are 

∂𝐿

∂σ𝐾𝑠
2 = 𝑎𝐾𝑠 − λσ𝐿𝑠

2 σ𝐻𝑠
2 (σ𝐵𝑠

2 −
σ𝐵𝐿𝑠
2

σ𝐿𝑠
2 −

σ𝐵𝐻𝑠
2

σ𝐻𝑠
2 ) = 0          (30) 

∂𝐿

∂σ𝐿𝑠
2 = 𝑎𝐿𝑠 − λσ𝐾𝑠

2 σ𝐻𝑠
2 (σ𝐵𝑠

2 −
σ𝐵𝐾𝑠
2

σ𝐾𝑠
2 −

σ𝐵𝐻𝑠
2

σ𝐻𝑠
2 ) = 0          (31) 

∂𝐿

∂σ𝐻𝑠
2 = 𝑎𝐻𝑠 − λσ𝐾𝑠

2 σ𝐿𝑠
2 (σ𝐵𝑠

2 −
σ𝐵𝐾𝑠
2

σ𝐾𝑠
2 −

σ𝐵𝐿𝑠
2

σ𝐿𝑠
2 ) = 0          (32) 

∂𝐿

∂σ𝐵𝐾𝑠
= −𝑏𝐾𝑠 + λσ𝐵𝐾𝑠σ𝐿𝑠

2 σ𝐻𝑠
2 = 0          (33) 

∂𝐿

∂σ𝐵𝐿𝑠
= −𝑏𝐿𝑠 + λσ𝐵𝐿𝑠σ𝐾𝑠

2 σ𝐻𝑠
2 = 0          (34) 

∂𝐿

∂σ𝐵𝐻𝑠
= −𝑏𝐻𝑠 + λσ𝐵𝐻𝑠σ𝐾𝑠

2 σ𝐿𝑠
2 = 0          (35) 

∂𝐿

∂λ
= σ𝐵𝑠

2 −
σ𝐵𝐾𝑠
2

σ𝐾𝑠
2 −

σ𝐵𝐿𝑠
2

σ𝐿𝑠
2 −

σ𝐵𝐻𝑠
2

σ𝐻𝑠
2 = 0          (36) 

If one plugs (36) into (30)-(32), one gets that 

𝑎𝐾𝑠 − λσ𝐿𝑠
2 σ𝐻𝑠

2
σ𝐵𝐾𝑠
2

σ𝐾𝑠
2 = 0 

𝑎𝐿𝑠 − λσ𝐾𝑠
2 σ𝐻𝑠

2
σ𝐵𝐿𝑠
2

σ𝐿𝑠
2 = 0 

𝑎𝐻𝑠 − λσ𝐾𝑠
2 σ𝐿𝑠

2
σ𝐵𝐻𝑠
2

σ𝐻𝑠
2 = 0 

Substituting (33)-(35) into the above expressions, one gets that  

σ𝐵𝐾𝑠
σ𝐾𝑠
2 =

𝑎𝐾𝑠
𝑏𝐾𝑠

 

σ𝐵𝐿𝑠
σ𝐿𝑠
2 =

𝑎𝐿𝑠
𝑏𝐿𝑠

 

σ𝐵𝐻𝑠
σ𝐻𝑠
2 =

𝑎𝐻𝑠
𝑏𝐻𝑠
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However, from (33)-(35), we also have that 

𝑏𝐾𝑠
𝑏𝐿𝑠

=
σ𝐵𝐾𝑠σ𝐿𝑠

2

σ𝐵𝐿𝑠σ𝐾𝑠
2  

𝑏𝐾𝑠
𝑏𝐻𝑠

=
σ𝐵𝐾𝑠σ𝐻𝑠

2

σ𝐵𝐻𝑠σ𝐾𝑠
2  

which imply 

σ𝐵𝐾𝑠
σ𝐾𝑠
2 =

𝑏𝐾𝑠
𝑏𝐿𝑠

σ𝐵𝐿𝑠
σ𝐿𝑠
2 =

𝑏𝐾𝑠
𝑏𝐻𝑠

σ𝐵𝐻𝑠
σ𝐻𝑠
2  

𝑎𝐾𝑠
𝑏𝐾𝑠

=
𝑏𝐾𝑠
𝑏𝐿𝑠

𝑎𝐿𝑠
𝑏𝐿𝑠

=
𝑏𝐾𝑠
𝑏𝐻𝑠

𝑎𝐻𝑠
𝑏𝐻𝑠

 

However, these equalities cannot be satisfied simultaneously. It follows that the solution 

cannot be such that σ𝐵𝐾𝑠
2 > 0, σ𝐵𝐿𝑠

2 > 0, and σ𝐵𝐻𝑠
2 > 0 hold. 

 

Second, suppose the solution is such thatσ𝐵𝐾𝑠
2 > 0  and σ𝐵𝐿𝑠

2 > 0 , while σ𝐵𝐻𝑠
2 = 0 . 

From (23)-(24), σ𝐾𝑠
2 > 0 and σ𝐿𝑠

2 > 0 hold. Further, inspection of (20)-(29) tells that 

σ𝐻𝑠
2 > 0 does not help to relax any of the constraints, while the objective is decreasing 

in σ𝐻𝑠
2 . Therefore, σ𝐻𝑠

2 = 0 must hold. Then, (25) and (27)-(29) are all automatically 

satisfied. Of the remaining constraints, (23)-(24) and (26), only the last will bind. To 

see it, suppose for example that (23) binds. But then from (26), σ𝐵𝐿𝑠
2 σ𝐾𝑠

2 = 0 , a 

contradiction. The same applies if we assume that (24) binds. Hence, we solve the 

following problem: 

min 𝐿 = 𝑎𝐾𝑠σ𝐾𝑠
2 + 𝑎𝐿𝑠σ𝐿𝑠

2 − 2𝑏𝐾𝑠σ𝐵𝐾𝑠 − 2𝑏𝐿𝑠σ𝐵𝐿𝑠 

−λ(σ𝐵𝑠
2 σ𝐾𝑠

2 σ𝐿𝑠
2 − σ𝐵𝐾𝑠

2 σ𝐿𝑠
2 − σ𝐵𝐿𝑠

2 σ𝐾𝑠
2 ) 

Using similar steps as before, we find the solution where 

σ𝐵𝐾𝑠
σ𝐾𝑠
2 =

𝑏𝐾𝑠
𝑏𝐿𝑠

σ𝐵𝐿𝑠
σ𝐿𝑠
2  

𝑎𝐾𝑠
𝑏𝐾𝑠

=
𝑏𝐾𝑠
𝑏𝐿𝑠

𝑎𝐿𝑠
𝑏𝐿𝑠

 

However, this equality again is not satisfied. It follows that the solution cannot be such 

that σ𝐵𝐾𝑠
2 > 0, σ𝐵𝐿𝑠

2 > 0, and σ𝐵𝐻𝑠
2 = 0 hold. By symmetry, the same is true if only 

σ𝐵𝐾𝑠
2 = 0 or σ𝐵𝐿𝑠

2 = 0 holds. 

 

Third, the remaining case is when only one of the covariances is strictly positive. Thus, 

suppose that σ𝐵𝐾𝑠
2 > 0, while σ𝐵𝐿𝑠

2 = 0 and σ𝐵𝐻𝑠
2 = 0. From (23), σ𝐾𝑠

2 > 0 holds. 
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Further, inspection of (20)-(29) tells that σ𝐵𝐿𝑠
2 > 0 or σ𝐻𝑠

2 > 0 does not help to relax 

any of the constraints, while the objective is decreasing in σ𝐵𝐿𝑠
2  and σ𝐻𝑠

2 . Therefore, 

σ𝐵𝐿𝑠
2 = σ𝐻𝑠

2 = 0 must hold. Then, (24)-(29) are all automatically satisfied. The only 

constraint that we need to take into account is (23), which will bind. 

If it did not, we could decrease the objective by decreasing σ𝐾𝑠
2 . Hence, we solve the 

following problem: 

min 𝐿 = 𝑎𝐾𝑠σ𝐾𝑠
2 − 2𝑏𝐾𝑠σ𝐵𝐾𝑠 − λ(σ𝐵𝑠

2 σ𝐾𝑠
2 − σ𝐵𝐾𝑠

2 ) 

The solution is 

σ𝐵𝐾𝑠 =
𝑏𝐾𝑠
𝑎𝐾𝑠

σ𝐵𝑠
2  

σ𝐾𝑠
2 = (

𝑏𝐾𝑠
𝑎𝐾𝑠
)
2

σ𝐵𝑠
2  

Evaluating the objective at this solution, gives that 

−
𝑏𝐾𝑠
2

𝑎𝐾𝑠
σ𝐵𝑠
2  

Similar analysis would apply if we assumed that either only σ𝐵𝐿𝑠
2 > 0 or only σ𝐵𝐻𝑠

2 >

0 holds. To decide which of these covariances is strictly positive, we need to compare 

𝑏𝐾𝑠
2

𝑎𝐾𝑠
, 
𝑏𝐿𝑠
2

𝑎𝐿𝑠
, and 

𝑏𝐻𝑠
2

𝑎𝐻𝑠
, and pick the largest. One can verify that 

𝑏𝐻𝑠
2

𝑎𝐻𝑠
 takes the largest value 

if either 0 ≤ δ𝑠 ≤ max{1, σ}  or σ ≥ 2  holds, both of which are satisfied by our 

calibration of the model. We conclude that the output is maximized when σ𝐾𝑠
2 = σ𝐿𝑠

2 =

σ𝐵𝐾𝑠 = σ𝐵𝐿𝑠 = 0, 

σ𝐵𝐻𝑠 =
δ𝑠(σ − 1)

γ𝑠 + δ𝑠 + γ𝑠δ𝑠(σ − 1)
σ𝐵𝑠
2  

σ𝐻𝑠
2 = (

δ𝑠(σ − 1)

γ𝑠 + δ𝑠 + γ𝑠δ𝑠(σ − 1)
)

2

σ𝐵𝑠
2  
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Appendix 3.B 

B1. Main variables 

𝑃𝑠𝑖𝑌𝑠𝑖 Value added WQ613 Approximate Gross Value Added (aGVA) at basic prices (£,000)  

𝐾𝑠𝑖 Total stock WQ599 Total value of all stocks at the end of the year (£,000)  

𝐿𝑠𝑖  Non-R&D 

employees 

empment IDBR employment at time of sample selection minus 𝐿𝑠𝑖 = 𝑒𝑚𝑝𝑚𝑒𝑛𝑡𝑠𝑖 − 𝑒𝑚𝑝_𝑠𝑐𝑖𝑠𝑖 
 emp_sci Number of scientists, researchers 

𝐻𝑠𝑖 R&D employees emp_sci number of scientist & researchers  

B2. Parameter calibration 

𝛼𝑠  
Capital share 

WQ613 Approximate Gross Value Added (aGVA) at basic prices (£,000) 
𝛼𝑠 =

∑ (𝑃𝑠𝑖𝑌𝑠𝑖 −𝑊𝑎𝑔𝑒𝑠𝑖)
𝑚𝑠
𝑖=1

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 
slries Salaries and wages 

𝛽𝑠 
Non-R&D 

labour share 

WQ613 Approximate Gross Value Added (aGVA) at basic prices (£,000) 
𝛽𝑠

=
∑ (𝑛𝑜𝑛 − 𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖)
𝑚𝑠
𝑖=1

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 

slries Salaries and wages 

WQ522 Value of total net capex (excluding NYIP) (£,000) 

intram R&D Intramural/in-house expenditure total 

𝛾𝑠 
R&D human 

capital share 

WQ613 Approximate Gross Value Added (aGVA) at basic prices (£,000) 

𝛾𝑠 =
∑ (𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖)
𝑚𝑠
𝑖=1

∑ 𝑃𝑠𝑖𝑌𝑠𝑖
𝑚𝑠
𝑖=1

 
slries Salaries and wages 

WQ522 Value of total net capex (excluding NYIP) (£,000) 

intram R&D Intramural/in-house expenditure total 

𝑟𝑠 Rental rate of 

capital 

WQ613 Approximate Gross Value Added (aGVA) at basic prices (£,000) 
 𝑟𝑠 = (∑ 𝑃𝑠𝑖𝑌𝑠𝑖

𝑚𝑠
𝑖=1 −

∑ 𝑊𝑎𝑔𝑒𝑠𝑖
𝑚𝑠
𝑖=1 )/∑ 𝐾𝑠𝑖

𝑚𝑠
𝑖=1  

slries Salaries and wages 

WQ599 Total value of all stocks at the end of the year (£,000) 

𝜔𝐿𝑠 
Non-R&D 

labour cost 

empment IDBR employment at time of sample selection 

 𝜔𝐿𝑠 = ∑ 𝑛𝑜𝑛 −
𝑚𝑠
𝑖=1

𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖 /∑ 𝐿𝑠𝑖
𝑚𝑠
𝑖=1  

emp_sci Number of scientists, researchers 

slries Salaries and wages 

WQ522 Value of total net capex (excluding NYIP) (£,000) 

intram R&D Intramural/in-house expenditure total  

𝜔𝐻𝑠 
R&D labour 

cost 

emp_sci number of scientist & researchers 
 𝜔𝐻𝑠 = ∑ 𝑅&𝐷 𝑊𝑎𝑔𝑒𝑠𝑖

𝑚𝑠
𝑖=1 /

∑ 𝐻𝑠𝑖
𝑚𝑠
𝑖=1  

slries Salaries and wages 

WQ522 Value of total net capex (excluding NYIP) (£,000) 

intram R&D Intramural/in-house expenditure total 
Note: WQ613, WQ522, WQ599, empment are available in the ABS database. emp_sci, slries, intram are available in the BERD database. 
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Chapter 4 R&D and Productivity: A Study of Chinese 

Listed Firms 

 

4.1 Introduction 

This chapter evaluates the effects of firms’ accumulated R&D capital and knowledge 

spillovers on firm level productivity across the sample of listed Chinese firms 

encompassing both the manufacturing and non-manufacturing sectors. R&D activities 

have caught up more attention in recent years in China. As the Chinese economy is 

growing, the marginal effect of investment in infrastructure is diminishing (Shi et al., 

2017). This implies that physical capital accumulation may not be the main driver of 

economic growth as much as it used to be. Grill et al. (2007) explained this issue as the 

''middle-income trap''. To address this issue, one of the approaches is to switch the 

development strategy from producing low-end goods to high value-added products 

(Eichengreen et al. 2011). This requires improvement in the productivity of firms. R&D 

activities and innovations are seen to play an important role in this regard. Hence, in 

this chapter we set out to explore the R&D and firm level productivity relationship in 

China. In doing so, we will also explore the role of several other factors that are viewed 

to shape the firm level productivity.  

 

We follow the basic framework of R&D and productivity popularized by Griliches 

(1979). He investigated the impact of R&D capital and/or R&D investment on 

productivity growth in the United States using large R&D-performing firm data 

(Griliches, 1980, 1986). A positive role of R&D capital or R&D investment in 

explaining productivity growth is also found in other countries, e.g., France, Japan, and 

the UK (Cuneo and Mairesse, 1984; Griliches and Mairesse, 1991; Wakelin, 2001). For 

the effect of knowledge spillover on productivity, Romer (1986) and Krugman (1979), 

among others, point out that knowledge spillovers between firms generate higher levels 

of productivity. Therefore, this paper considers firms’ own accumulated R&D capital 

stock as well as intra- and inter-industry knowledge spillovers on the productivity of 

Chinese listed firms. 

 

The main contribution of this chapter is that we jointly model the potential effects of 
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intra- and inter-industry knowledge spillovers on firm level productivity. This idea has 

been long ago emphasized by Schumpeter (1934) who argues that knowledge, to a large 

extent, is a non-rival public good which exhibits externalities. One's consumption of 

knowledge does not preclude others from consuming it. Thus, a firm's productivity can 

be driven by not only its own R&D investment but also other firms' innovations. 

Although there exists a voluminous literature examining the effect of firm's own R&D 

on productivity, studies exploring knowledge spillovers across firms are scant. In 

contrast, macro studies have examined cross-country knowledge spillovers in greater 

detail (Coe & Helpman, 1995; Coe et al., 2009; Luintel & Khan, 2004; Luintel & Khan, 

2017). This chapter fills the void by scrutinizing the effects of knowledge spillovers on 

productivity at the firm-level using data of Chinese listed firms. We also extend the 

analyses by examining if firms that do not undertake R&D activities benefit through 

knowledge spillovers accruing from those that are engaged in R&D activities. In 

addition, we look at the effects of government subsidy, financing sources, ownership, 

firm size and board size on the productivity as in the literature not all these issues have 

been covered by one study/paper. 

 

We also consider the heterogeneity in firms with different types of ownership. Hu (2001) 

found that R&D productivity differs between SOEs (state-owned enterprises) and POEs 

(private-owned enterprises), and that SOEs are less efficient in transferring R&D into 

productivity. But few studies mention the knowledge spillover effect together with 

firms' ownership. 

 

This study takes forward the extant literature on R&D, knowledge spillover, and firm 

level productivity involving the Chinese listed firms. We find that R&D investment 

could significantly increase productivity in manufacturing sector and the estimated 

spillover parameters suggest intense competition across Chinese firms. However, the 

magnitude of competition differs across firms with different ownership. Foreign firms 

appear to have technological cooperation and positive knowledge spillovers while 

private Chinese firms appear to compete. For other relevant factors, government 

subsidy has a negative effect on the productivity and the ease of financial constraints 

promotes both the productivity and the output. Larger firms are more productive in 

manufacturing sector while in non-manufacturing sector smaller firms are more 
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productive ceteris paribus. 

 

The remainder of the Chapter is organised as follows. Section 2 summarises the theories 

about the impact of a firm's own R&D investment and knowledge spillover on 

productivity and output as well as relevant empirical studies. It also discusses other 

factors that may have an impact on productivity such as government subsidies, 

financing sources and ownership. Section 3 describes the method to measure R&D 

knowledge stocks and the models employed to evaluate the effects of R&D capital and 

knowledge spillovers on productivity and output in the long run and short run. Section 

4 describes the sample, data sources and construction of variables. The econometric 

methodology is discussed in section 5. Section 6 discusses the empirical results. Section 

7 concludes the Chapter and comments on policy implications and avenues for future 

studies. 

 

4.2 Literature Review 

4.2.1 R&D, productivity, and output growth 

There is already a lot of literature explaining R&D as one of the factors driving 

productivity and output growth which is not explained by Solow economic growth 

model (Solow, 1957). Firms’ R&D investment increases their productivity, which 

drives their output growth (Griliches, 1979, 1988; Grossman and Helpman,1991; Coe 

and Helpman, 1995). Grossman and Helpman (1991) and Aghion and Howitt (1992) 

build a quality-ladder model where labour is taken as a factor to conduct R&D activities 

to improve the quality of intermediate goods or to produce intermediate goods. 

Intermediate good is used to produce final goods. Denicolò and Zanchettin (2014) also 

find that a firm’s R&D investment can influence its output by a different mechanism, 

where they develop a lab-equipment model and assume final goods rather than labour 

to be employed in improving the quality of goods in the production function. 

 

Recent literature focuses on how knowledge could affect productivity. Rodrik (2006) 

made a supplementary point to the traditional opinion of fostering economic growth 

that labour should move from low-productivity industries such as agriculture to 

‘modern’ industries, by emphasizing the productive diversification. Increasing the 

range of manufactured goods is an integral part of economic development. In the 
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process of economic development, learning to develop new things, rather than what has 

already been done, should be more focused on. This requires innovation and R&D 

activities in expanding the diversification in manufacturing industries. Wang et al. 

(2017) used a fixed effects panel model to estimate a region-level production function 

to analyse the relationship between various technology inputs and productivity changes 

for 29 Chinese regions from 1990 to 2005. They choose value added as the dependent 

variable. Region-level R&D stock, generated from expenditure on science and 

technology activities by perpetual inventory method, is adopted as each region’s own 

R&D input. They find that regional R&D expenditure has positive effect on the regional 

industrial growth. Shen et al. (2019) used a panel data for 30 Chinese provinces from 

1978 to 2014 to estimate the effect of R&D capital on regional productivity by OLS 

and GMM estimates. They concluded that R&D can promote growth in regional TFP 

by absorbing new technologies embodied in FDI and foreign trade. 

 

Literature also reveals that the magnitude of R&D’s effect on productivity and output 

growth varies across industries with different taxonomies and/or different countries. 

For example, O’Mahony and Vecchi (2009) estimate the R&D’s effect in industries 

classified by capital-intensive, labour-intensive, high-tech intensive. Griliches (1985) 

found both federally financed R&D and privately financed R&D have a positive effect 

on productivity growth in the U.S. manufacturing sector. But the benefit for the 

privately financed R&D is much higher. Cuneo and Mairesse (1984) reported the 

elasticity of output to R&D to be higher in France than that in the US. Harhoff (1998) 

and Griffith et al. (2006) also found a positive effect of R&D on output growth in 

Germany and the UK, respectively. Sassenou (1988) reported a positive effect of R&D 

on output growth in Japanese manufacturing sector and the R&D elasticity in scientific 

sector is higher than what is reported in other sectors. O’Mahony and Vecchi (2009) 

analysed the impact of R&D on output growth and the spillover effect for different 

taxonomies of industries: R&D intensive industry and other kinds of industries (e.g., 

labour-intensive industry, capital-intensive industry, advertising-intensive industry, and 

others). The results show that the firm’s R&D promotes output growth in both 

manufacturing and non-manufacturing sectors in the US, UK, Japan, France and 

Germany. Ortega-Argilés (2011) found the overall impact of knowledge stock on a 

firm’s productivity is positive and significant for 532 European R&D firms from 2000 
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to 2005. The elasticity appears to be the highest in high-tech sector while it is smaller 

in low-tech sectors, which suggests that companies in the high-tech sector are in a 

leading position in R&D productivity. Kancs et al. (2016) used firm-level data for 

OECD countries and found a non-linear relationship between R&D investment and firm 

productivity growth. The productivity elasticity is higher for firms with higher R&D 

intensity and firms in high-tech industries have a higher level of productivity gain 

related to R&D activities. Besides, Ugur et al. (2016) employed a meta-regression 

analysis to explore the relationship between R&D and productivity. They found that the 

private and social returns to R&D investment are smaller and more heterogeneous than 

those in prior literature, though they are still positive. 

 

However, some studies stressed the importance of R&D efficiency. R&D efficiency can 

be considered as a ratio of innovation outputs over R&D inputs (Hollanders and 

Celikel-Esser, 2007). They mentioned that the R&D inputs are always education, R&D 

investment, firm-level R&D activities, etc. The R&D outputs are often measured by 

patents, revenues earned from new product and so on. In their research, intellectual 

property is treated as the innovation output. A higher R&D efficiency means firms 

invest the same amount in R&D but can get more in output. However, the results show 

that as the R&D investment increase, the R&D efficiency does not change in Chinese 

high-tech industries (Han et at., 2017). This suggests R&D investment cannot be well 

transferred to output in the current development stage and the quality of innovation 

should be improved. 

 

4.2.2 Knowledge spillover 

Although Griliches (1979) generated a production function and measured the effect of 

the knowledge capital on the output, he did not consider the knowledge spillovers. 

However, Romer (1990) and Grossman & Helpman (1991) emphasized the knowledge 

spillover effect in generating higher productivity and economic growth in the long run. 

Schumpeter (1942) illustrated the idea of the knowledge spillover effect. He mentioned 

that a firm which creates the new technology or invention cannot capitalize all benefit 

from its innovation. Instead, other firms would also benefit from this innovation. This 

would attract competitors and then the competition would decrease the profit of the 

innovation to the inventors. Arrow (1962) and Nelson (1959) show that not only the 
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traditional factors of physical capital and labour but also the knowledge capital plays a 

role in the production. The distinctive characteristic of knowledge capital is its non-

exclusiveness and non-rivalry and technological achievements or information can be 

considered as public goods. They generate externalities, which means all firms with and 

without R&D effort can benefit from existing knowledge and information as they are 

shared by all firms in the same technological environment. Research shows that 

knowledge has strong externalities, and it generates a much higher return to the society 

compared to the firm’s own benefits. Terleckyj (1980) found that the social return of 

R&D investment exceeds 100% while the private return of R&D is only 25%, implying 

that the external effect of R&D is three times larger than its internal effect. Scherer 

(1982) obtained similar results, indicating that the social return of R&D is three times 

higher than the private return of R&D. Keller (2004) analysed the international 

knowledge diffusion and found that countries which do not pay the full cost in R&D 

can still benefit from the knowledge diffused from other countries. This indicates that 

knowledge investment has both private and social returns. Sena (2004) found that social 

return is extremely high and knowledge spillover from other industries is more obvious. 

She also pointed out that R&D spillover is embodied in intermediate goods which firms 

purchase and use in their production processes.  

 

Some recent literature brought up issues that may cause biases in the estimation of 

private and social returns on R&D investment. Manski (1993) discussed a situation 

when the estimates of social returns on R&D might be upward biased. If all firms spend 

more in R&D when there is a new research opportunity, social returns on R&D might 

contain spillover effect as well as the effect of firms’ own R&D on productivity and this 

would cause biased estimates of social return. Bloom et al. (2013) addressed this issue 

by constructing an instrumental variable for R&D expenditure. They use the changes 

in firm-specific R&D tax as instrument to estimate the causal impact of knowledge 

spillovers. They also separated the positive knowledge spillovers and negative private 

return caused by product-market competition by identifying a firm’s market position 

using its information on distribution of its sales activity across different industries. Ugur 

et al. (2016) elaborated on R&D and productivity at firm- and industry- level for OECD 

countries through a meta-regression analysis. Their finding on the private and social 

returns on R&D contrasts with the prior mainstream of literature, which suggest that 
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social return to R&D is much higher than private return. Instead, their result not only 

shows that the private and within-industry social return to R&D are smaller and more 

heterogeneous than that in prior literature, but also reports that private return and intra-

industry social return are similar.  

 

There are micro and macro studies on the knowledge spillover effects. In firm-level 

studies, Jaffe (1986) illustrated that the spillover effect implies a situation that firms 

with R&D effort would let other firms obtain benefit with fewer R&D activities. 

Although both kind of firms with and without R&D effort would get extra gains, there 

are studies which reveal that investing in R&D helps firms better to acquire existing 

knowledge (Cohen and Levinthal, 1989, Griffith et al., 2004). Mahony and Vecchi 

(2009) extended this research by measuring productivity in industries with different 

taxonomies and found a higher TFP in R&D intensive and skill intensive industries. 

They take this result as evidence of the spillover effect in R&D- and skill- intensive 

industries. Also, even if a firm is not involved in R&D activities but operates in the 

same industry with other firms that are involved in R&D, it can also generate extra 

productivity gains. Some studies focus on international knowledge spillover effect on 

productivity. For macro studies, Frantzen (2002) and Pueyo et al. (2008) calculated both 

domestic and foreign intra- and inter- sectoral R&D capital stock to analyse the 

international and domestic knowledge spillover effect for OECD countries. Liu and 

Buck (2007) explored the international knowledge spillover effect on innovation in 

high-tech industries in China. They concluded that export and import can promote 

innovation for high-tech industries. Also, R&D capital stock in multinational 

enterprises has a significant effect on domestic innovation only when the absorptive 

ability is considered. Eberhardt et al. (2013) expanded the Griliches knowledge 

production framework by conflating economy’s own R&D stock and spillover effects 

for ten OECD economies. The results imply that knowledge spillovers cannot be 

neglected at least in these OECD economies. Luintel & Khan (2017) gauged the 

knowledge spillover from emerging countries (EMEs) countries and Organisation for 

Economic Cooperative Development (OECD) countries to EMEs through several 

knowledge diffusion channels (e.g., total import, machinery import and geographical 

proximity). They found that there does not exist positive and significant knowledge 

diffusion across EMEs while there are intellectual knowledge spillovers from OECD 
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countries through the geographical distance channel and disembodied channels.  

 

There are several channels of knowledge spillover. One of the most important channels 

is FDI. Griffith et al. (2006) point out that UK firms could reap higher knowledge 

spillover if they undertake their innovation activities in the US. Spillover induced from 

FDI not only contributes to the regional economic growth (Kuo & Yang, 2008) but also 

impacts the productivity and efficiency of regional innovation production. MNEs are 

willing to impart technology and management experience to enterprises from which 

they supply or purchase intermediate goods in the industry (Javorcik, 2004; 

Gorodnichenko et al., 2015). Keller (2009) pointed out that the reason for the significant 

backward spillover (MNEs buy inputs from domestic firms) is that MNEs’ hope to 

obtain high-quality intermediate goods supply from host country enterprises. These 

findings imply that foreign-related firms might perform differently than domestic firms 

in knowledge spillover effect, hence we also consider the ownership factor in this 

chapter. 

 

4.2.3 Firm Ownership, R&D, and Productivity 

Except for foreign-related firms, state-owned and private-owned firms also perform 

differently as they have different objectives. Tan et al. (2007) suggest that for many 

SOEs (state-owned enterprises/firms), their objectives are different due to state 

ownership and are mainly to achieve social policy goals (including guarantying 

employment rate, doing research and development on prominent technologies). But for 

other firms with a different type of ownership, the objective is often just profit 

maximization. This difference could cause a different attitude towards R&D activities. 

Hu (2001) found that state-owned firms are less efficient in transferring R&D into 

productivity than private-owned firms in Chinese industry. Boeing et al. (2016) use a 

two-periods panel data for Chinese listed firms and found that privately-owned 

enterprises have higher return on R&D than state-owned enterprise. Zhou and Deng 

(2009) explored the R&D efficiency in high-tech industries for SOEs and foreign-

funded enterprises in China and concluded that the R&D efficiency in SOEs is 

comparatively lower. 

 

However, although literature shows Chinese SOEs have lower R&D efficiency, they 
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want to innovate because a successful innovation can have externalities and generate 

social welfare. This technological spillover effect would benefit other firms and 

industries. Due to this reason, state-owned firms tolerate the low success rate of R&D 

and are willing to spend more on R&D (Howell, 2017). For private-owned firms, since 

their main objective is to achieve short-term profit maximization, they might not spend 

much on R&D because the cost is high and the success of R&D is not guaranteed. 

Arrow (1962) illustrated that private-owned firms tend to invest in a suboptimal level 

in R&D. Yue and Zhang (2017) found that the main source of R&D investment for 

state-owned enterprises is government subsidy and that for non-state-owned enterprises 

is internal funds. Since the literature reports differential effects of firm level R&D on 

productivity across firms with different types of ownership, we are going to address this 

issue as well in this chapter. 

 

4.2.4 Other related factors (control variables) 

4.2.4.1 Firm size 

Firm size affecting R&D and innovation has a long history. The relationship between 

innovation and firm size is firstly proposed by Schumpeter (1942). He found that 

different from small-sized firms, monopoly firms are more likely to create innovation. 

This implies firms with larger size and commanding greater share in their industries 

tend to engage more in R&D activities. He argued that firms with monopoly power 

have advantage in capturing the returns to innovation (Schumpeter, 1942). Ace and 

Audretsch (1987) extended Schumpeter’s hypothesis by pointing out that the relative 

innovative advantage of large and small firms is determined by the extent of the 

imperfect competition in a market. Rather than finding a relationship between firm size 

and R&D activities, exploring the circumstances that provide innovative advantage to 

large firms or small firms is more important. Cohen and Klepper (1996) showed that 

there is an advantage for large firms to conduct R&D activities due to the fixed costs. 

Also, larger firms might get access to external financing more easily, which eases the 

financial constraints on their innovation activities. Cohen et al. (1987) found that firm 

size has an insignificant effect on research intensity. But they found that firm size is 

positively related to the probability of conducting R&D activities. Benavente (2006) 

obtained a similar conclusion in the context of Chile. In the analysis of the relation of 

firm size to R&D productivity, Kim et al. (2009) found that patents per R&D increase 
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with firm size for semiconductor and pharmaceutical industries, which is consistent 

with Schumpeter’s hypothesis. In addition, technological regime such as laws on 

intellectual property right also matters for the R&D productivity of firms with different 

size. Antonio and Zulima (2012) found that larger firms’ R&D productivity is higher 

with limited use of intellectual property rights while small firms’ innovation performs 

better under the regime which uses intellectual property rights as a means of 

appropriation. Scholars use different indicators to measure firm size. Boeing (2016) 

adopts the log of the number of employees to measure firm size while Guo et al. (2016) 

measure firm size by the natural logarithm of the annual sales of the firm each year. 

 

4.2.4.2 Board size and firm management  

Literature shows the importance of board size on R&D and productivity. As board size 

is closely related to a firm’s management, some studies note that the board size has a 

negative effect on a firm’s performance. The board size is related to a firm’s 

management and decision making, which would later affect its R&D activities. Jensen 

(1993) illustrated that a larger board, which includes more directors, would cause a 

lower efficiency in the communication about the firm’s management decision making. 

It is more difficult to achieve the consensus and the final decision would be more 

compromised than in those firms with less directors (Sah and Stiglitz, 1991). This 

hypothesis is supported by Cheng (2008)’s empirical study, which shows that the board 

size id negatively related to the variability of the firm’s performance. He explained this 

result by noting that a larger board make more moderate decisions and thus the firm’s 

performance is more stable. There are also empirical studies showing that the board 

size has a negative impact on the firm’s performance. Yermack (1996), Eisenberg et al. 

(1998), Mak and Kusnadi (2005) and Guest (2009) found the negative impact of a larger 

board size on the firm value or profitability in the case of the US, Finland, Singapore 

and Malaysia, and the UK, respectively. Another way a larger board influence on the 

firm’s management, can be considered as the outcome of the “agency problem”, which 

would cause the under-investment in R&D. The CEO has more power in decision 

making and controlling the board when the board size is larger (Jensen, 1993). Then the 

firm would opt for a lower level of R&D investment. This is because the R&D activities 

are more uncertain, but the CEO aims to conduct low-risk activities and acquire short-

term profits (Jensen and Meckling, 1976). Chen (2012) found that board size has a 
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negative effect on firms’ R&D investment in the electronic industry in Taiwan. The 

author suggests that firms should consider having a smaller board size if they are 

competing in innovation. Kao and Chen (2020) found high-tech firms which have their 

CEO in duality or longer tenure tends to invest more in R&D. On the other hands, there 

are also other researches suggesting that a larger board size has a positive effect on 

firms’ management. Haynes and Hillman (2010) and Goodstein et al. (1994) explained 

board size should have a beneficial effect on firms whose main business focuses on 

innovation because a larger board size would make the firm have more experts. This 

provides the firm with more professional information on their product development, 

industry prospects and development strategies. Ruigrok et al. (2006) suggested that the 

quality of strategic decision on innovation and R&D activities can be improved with 

more experts providing valuable information. Also, Kackling and Johl (2009) made a 

point that a larger board size often comes with more external financial resources, which 

might stimulate the firm’s R&D activities and productivity. Pfeffer and Salancik (1978) 

mentioned another benefit with larger board size. That is, more experts can provide 

more intellectual information and reduce the risk of uncertainty. Given these conflicting 

arguments and empirical evidence vis-a-vis firm’s board size, R&D and productivity, 

we would like to evaluate this issue across Chinese listed firms.  

 

4.2.4.3 Ownership concentration 

Ownership concentration could be another important factor determining a firm’s R&D, 

innovation, and hence the productivity. Due to the information asymmetry between a 

firm’s manager and owners, they always have different opinions on operating strategy 

and decision on R&D activity investment. The separation of ownership and actual 

control would cause agency problem, which might harm a firm’s development (Ortega-

Argiles et al., 2005). Jensen and Meckling (1976) and Berle and Means (1991) indicated 

that there would be conflict between managers and owners because managers are more 

willing to take low-risk activities and get short-term profits while owners are more 

interested in the firm’s further development. The different objectives make managers 

and owners have different attitudes to R&D investment because R&D activities are 

always considered as high-risk and cannot be treated as other normal business. 

Literature shows there is a negative impact of low ownership concentration on 

innovation activities. Holmstrom (1989) explained this by noting the high contracting 
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costs of R&D activities. Such contracting costs in firms with low ownership 

concentration would cause the reduction in investment in innovative activity. Due to 

the characteristics of innovation activities, which include high risk and unpredictability, 

a firm with low ownership concentration would prefer short-term projects with more 

immediate and certain returns if it has little management ownership. Other literature 

suggests that concentrated ownership is effective in reducing the high agency and 

contracting costs in R&D activities. They indicated that a firm with high ownership 

concentration would be more innovative (Francis and Smith, 1995; Harris and Raviv, 

2008). By contrast, Ortega-Argiles et al. (2005) analysed the link between a firm’s 

ownership structure and their innovation activities. Their results show that a high degree 

of ownership concentration reduces firm’s R&D expenditure and harms R&D output. 

They illustrated that the management team is more likely to be controlled in a firm with 

the high concentrated ownership, which would limit managers to provide professional 

advice on innovation activities. They concluded that the lack of specialisation in 

decision making is not good for R&D projects investment and performance and 

diffusely held firms are more likely to invest in R&D projects as the managers are more 

flexible. Due to the contradictory evidence on the effect of ownership concentration on 

R&D, we would also consider this factor in this chapter. 

 

4.2.4.4 Source of finance 

Bank finance plays a role in easing the resource constraints in R&D firms. In the 

analysis of the relationship between financial constraints and firm productivity, the 

mainstream literature illustrates that financial constraints do affect firm productivity by 

influencing the firm’s investment decision and R&D activities. 

 

One of the main issues is to explore how far financial constraints inhibit firms’ 

innovations. Once this relationship is determined, the influence on the firm productivity 

is then determined because the technology is driven by R&D activities. Although the 

famous M-M theory (Modigliani & Miller, 1958) indicates that firm’s investment 

decisions both in physical capital and innovation activities are not affected by its capital 

structure and liquidity, it just holds for a perfect capital market scenario. In real world, 

capital market is imperfect, and more so in emerging countries like China. Financial 

constraints would influence firms’ investment behaviours and innovativeness, and 
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hence firm productivity (Jin, Zhao & Kumbhakar, 2019). Due to the characteristics of 

innovative activities, such as high risk and information asymmetry, Hall (1993) 

concluded that the firm with a higher level of debt finance does not favour innovation 

projects. Literature also suggests the opposite, however. Denis and Sibilkov (2010) 

found that unconstrainted firms invest less in R&D activities. They explain this as the 

outcome of agency problem, indicating that agents are more likely to ‘waste’ money 

instead of investing in productivity-increasing activities. 

 

Besides, there is a strand of literature which adopts nonparametric DEA approach and 

shows a positive effect of financial constraints on firm performance efficiency. This 

approach does not set the specific parametric function. Instead, it uses the concept of 

production frontier. The efficiency is measured as a ratio of the productivity of a specific 

firm to the productivity of the firms on the production frontier. The economic activity 

is defined as efficient when the ratio equals to one and inefficient when the ratio is less 

than one. Färe, Grosskopf, and Lee (1990) firstly apply this approach to construct a 

deterministic frontier profit function with and without expenditure constraints. The 

results show that firms with financial constraint are more efficient. They explain this as 

unconstrainted firms are more likely to use excessive inputs in the production process, 

which causes lower efficiency than financially constrained firms. Later researches by 

Arnade and Gopinath (2000), Blancard et al. (2006), Fletschner et al. (2010) and Smith 

et al. (2011) also use the DEA approach to analyse the relationship between efficiency 

or productivity and financial constraints for Russian, French, Peruvian and Indian firms, 

respectively. 

 

The relationship between financial constraints and firm productivity might be non-

monotonic as some researchers show it to be positive while others negative. Following 

Whited (1992) and Love (2003)’s model structure, Jin et al. (2019) generate an 

endogenous relationship between financial constraints and productivity through the 

channel of R&D investment for Chinese manufacturing firms. They find that this 

relationship appears to be an inverse U-shaped, which implies that there will be 

threshold (turning point) of financial constraint beyond which constraint hurts 

productivity. Financial constraint increases productivity before it reaches the threshold. 

By adjusting an unconstrainted firm’s financial constraint to the productivity-
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maximising level, the firm’s productivity can be increased both in long and short runs. 

 

Innovative firms might be resource constrained due to the uncertainty associated with 

innovation activities, particularly the low probability associated with the success of 

R&D projects (Carpenter and Petersen 2002), information asymmetries between 

researchers and investors (Guiso 1998), and limited collateral value of innovations 

((Kamien and Schwartz 1978; Honjo et al. 2014). Galende and De la Fuente（2003）

examined the factors affecting innovative firms in Spain. They found that firms in a 

higher level of financial debt generated more incremental innovations rather than 

radical innovation, where a radical innovation refers to those creating major disruptive 

change to the market or firms’ economic activities and an incremental innovation refers 

to those enhancing or upgrading an existing product or service continuously 

(Schumpeter, 1942). This is because radical innovation has high information 

asymmetries and transaction cost, and such R&D activities have high risk and are 

intangible. This characteristic of investment in R&D leads to the difficulty of debt 

financing. This implies that firms with higher level of financial constraints might invest 

less in R&D activities than unconstrainted firms and thus their firm productivity is 

lower. But internal financing can overcome this problem. Also, internal financing can 

effectively prevent their innovation and important technologies leaking in the 

competitive market. 

 

4.2.4.5 Government subsidy 

Arrow (1972) explained the importance of the government subsidies on firms’ R&D. 

Due to the high risk and moral hazard problem in R&D activities, there would be 

difficulties in financing innovation activities for firms. This would lead to an 

underinvestment in R&D activities. Government R&D subsidies could correct such 

sub-optimal investment in R&D and thereby incentivize firm’s own R&D investment. 

In China, firms receive government subsidies through a competitive proposing process. 

R&D projects that are more relevant to policy goals have higher chance to be selected 

by the central government. However, in the process of China’s reform, provincial 

governments become more powerful in implementing the innovation policies (Springut 

et al. 2011). This may cause the implementation results not completely consistent with 

the plan of the central government (Boeing, 2016). Therefore, we also consider the 
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government subsidies in this chapter. 

 

Government subsidies are related to the firm’s ownership type in China. Hu (2001) 

pointed out that the government’s science development policies are in favour of State-

owned enterprises (SOEs). However, the results showed that SOEs are less efficient in 

R&D activities than Privately-owned enterprises (POEs), which suggests that the 

government should reallocate subsidies between firms with different ownerships. 

Cheng et al. (2019) found that innovation subsidies are more likely to be allocated to 

SOEs and politically connected firms. Their results also suggest that subsidised firms 

do not necessarily have higher productivity, which implies the inefficiency in the 

innovation subsidy allocation in China. Whether a firm would obtain the subsidies not 

only relates to its ownership, but also the political connection of its managers. Wu et al. 

(2012) found privately-owned firms with politically connected managers in the private 

firms help the firm to gain favourable treatment such as subsidy from the government, 

while this does not happen in SOEs as the main function of state-owned enterprises is 

more likely to carry out government policies such as ensuring employment rather than 

increasing earnings. Haley and Haley (2013) revealed that the Chinese government 

generally would not apply its industrial strategies directly. Instead, it tends to achieve 

its macroeconomics policy goals by ensuring that firms are dependent on its financial 

assistance. This is easier to take place in state-owned enterprises. Cull et al. (2014) 

explained that SOEs and government have a closer relationship than privately-owned 

firms. Boeing (2016) also gave similar interpretations. The goal of privately-owned 

firms is to maximize short-term profit. Although they also need financial assistance, 

they might reject joining government’s R&D programs to keep themselves dependent 

on government’s control. Thus, whether a firm would get subsidies from the 

government depends on its type of ownership. But Harris and Li (2019) reported a 

different result, where foreign-owned firms received the highest rate of government 

assistance while SOEs received the lowest level of assistance between 1998-2007 in 

China. Due to the contradictory empirical results, we include the factor of the firm’s 

ownership type into our model. 

 

Government subsidies might affect firms’ R&D behaviour by reducing the marginal 

cost of firms’ innovation activities. Therefore, firms are more likely to invest more in 
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R&D projects (David et al. 2000). Xie et al. (2009) concluded that the effect of the 

subsidy on a firm’s own R&D investment is significantly positive. But in their model, 

R&D effect is picked by a dummy variable. The dummy variable equals to 1 when the 

firm reports R&D investment and equals to zero when it does not report R&D activities. 

Therefore, the result in this model is less substantive compared to other models, which 

capture this effect not by a dummy variable but by the accurate data on firm’s R&D 

expenditure or R&D stock. Hu and Jafferson (2008) found that government subsidies 

drive firms’ R&D spending in China, and Howell (2017) pointed out that subsidized 

high-tech firms spend more on R&D. Audretsch et al. (2002), Lach (2002), Görg and 

Strobl (2007), Aerts and Schmidt (2008), Czarnitzki and Lopes Bent (2011) and Huergo 

and Moreno (2017) also found that subsidized firms invest more in their R&D than 

firms without subsidies in US, Israel, Ireland, Germany and Spain respectively. Also, 

Li et al. (2019) found there is a signalling effect of government subsidy for firms. 

Government subsidy can be considered as a certificate or guarantee for a firm, which 

reduces information asymmetry and helps them to get external finance more easily. 

Thus, firms might get more bank loans or other external finance once they are 

subsidised by the government. Also, the government can better identify firms with good 

R&D projects or innovation than outside investors. This is because firms are more 

willing to provide relevant R&D information to the government to get subsidies, not 

worrying about competition or information leakage to competitors (Bhattacharya and 

Ritter, 1983 and Ueda, 2004). This indicates that the government subsidy certificate 

helps firms to ease the financial constraints in R&D activities. Wu (2017) proved that 

firms are more likely to get more external finance after certificated by the government. 

 

However, there are studies which suggest the opposite. The market imperfections and 

the externalities of innovation activities would affect the implementation of R&D 

policy (Montmartin and Massard, 2015), which might cause the failure in stimulating 

firms’ private R&D spending. If the public subsidies are the perfect substitutes for firms’ 

private R&D investment, there would be a crowding-out effect of the government 

subsidies on firms’ private R&D expenditure. Boeing (2016) explained a possible 

reason for the failure in promoting firms’ private R&D spending by the government 

subsidies. That is, the government cannot be sure the selected R&D projects would not 

be undertaken without government support. He investigated the effectiveness of 
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government’s subsidy to R&D activities in Chinese listed firms. The result shows that 

the R&D subsidies have a crowding-out effect on firm’s own R&D investment in short 

run but become neutral later. He suggests that if the subsidy results in crowding-out or 

neutrality instead of a net addition, then the subsidy policy cannot be considered as 

successful and should be adjusted to achieve higher efficiency. He also mentioned that 

the effectiveness of R&D subsidy varies with firm’s type of industry and type of 

ownership. The results show that the crowding-out effect generally does not take place 

across high-tech firms or state-owned firms. Likewise, by using the data of renewable 

energy firms listed on Chinese stock exchanges, Yu et al. (2016) found the government 

subsidies have a significant crowding-out effect on firms’ R&D investment. David et 

al. (2000), Wallsten (2000) and Lv and Yu (2011) also found the crowding-out effect of 

government subsidies on firms’ own R&D expenditure. In addition, there are also 

researches undertaken by Klette and Møen (1999), Brander et al. (2008), Lööf and 

Hesmati (2005) and Clausen (2009) which find that government R&D program does 

not help much to increase firms’ own R&D investment and their economic performance. 

 

The total amount of the Chinese government subsidy to enterprises increased from 

18.39 billion yuan in 2009 to 49.13 billion yuan in 2018. In order to promote R&D by 

enterprises, the Chinese government developed specific R&D policies to help R&D 

conducting firms in purchasing equipment, talent accumulation, innovation activities, 

and enterprise development (Jia et al., 2021). According to the National Statistics 

Bureau of China, government subsidies to R&D for enterprises have been increasing at 

an annual growth rate of 30% from 1997 to 2012 (Zhang and Wu, 2014). 

 

In terms of the impact of government subsidies, Huang (2015) shows that TFP of firms 

after enjoying tax credit could be stimulated. Regarding subsidy, many studies are 

testing whether subsidies from the government have a direct impact on the firm’s TFP 

or output. Griliches and Regev (1998) found that government subsidies could lead to a 

higher level of TFP in Israel. And Branstetter and Sakakibara (1998) obtained a similar 

conclusion for Japan. However, Managi (2010) shows that there exists a negative effect 

of government subsidy on firm’s TFP. Koski and Pajarinen (2015) show that 

government subsidy for enterprises R&D activities does not have a significant effect on 

labour productivity in Finland. Howell (2015) found that fewer subsidy drives TFP 
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while more subsidies harm TFP. For empirical evidence in Chinese industry, Harris and 

Li (2019) test whether receiving government’s assistance has an impact on the firm’s 

productivity in China. They claim that government assistance would reduce the cost of 

capital, which encourages them to improve their product quality and increase capital 

stock and then their productivity would be increased. The results vary with the level of 

assistance. But generally receiving government assistance helps to increase firm’s 

productivity growth. They also mentioned that the effect is partly determined by firms’ 

political connections and their type of ownership. Guo et al. (2016) reported that 

government R&D program stimulates firms R&D output for small and medium size 

firm in Chinese manufacturing sector. Howell (2017) also found that public subsidies 

promote innovation in high-tech industries but would decrease firms’ TFP for both low-

tech and medium-tech industries. He explained this in terms of government’s hope that 

some subsidized firms become successful in innovation, which could have social 

welfare and spillover effect. However, David et al. (2000) pointed out that there is an 

endogeneity problem caused by selection. In China’s R&D programs, the government 

are more likely to choose high-tech firms, for which TFP is already higher than that for 

other firms. This causes an overestimation of the effect of government subsidy. 

 

 

4.3. Model 

4.3.1 Measurement of Total Factor Productivity (TFP)  

To analyse the relationship between R&D knowledge stock and firm-level productivity, 

we firstly adopt a Cobb-Douglas production function: 

𝑌𝑖𝑡 = 𝐴𝑖𝑡𝐾𝑖𝑡
𝛽𝑘𝐿𝑖𝑡

𝛽𝑙                             (1) 

Where 𝑌𝑖𝑡  is output, 𝐾𝑖𝑡  is physical capital stock, and 𝐿𝑖𝑡  is labour input. 𝐴𝑖𝑡  is 

productivity. After taking logs, the linearized production function becomes: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝑒𝑖𝑡                    (2) 

where 𝑦𝑖𝑡  is sales deflated by producer price index, 𝑘𝑖𝑡 is tangible assets and 𝑙𝑖𝑡 is 

the number of employees. 𝑒𝑖𝑡  is total factor productivity. All the variables are in 

logarithm. 

 

Solow (1957) decomposed economic growth into the part explained by factor inputs 

(capital and labour), and the residual explained by productivity. The literature (Griliches, 
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1979,1988; Grossman and Helpman, 1991; Coe and Helpman, 1995) models R&D as 

one of the main factors driving productivity. We measure Total Factor Productivity 

(TFP) as the residual of the linearized production function (2): 

𝑒𝑖𝑡 = 𝑇𝐹𝑃𝑖𝑡 = 𝑦𝑖𝑡 − 𝛽0 − 𝛽𝑘𝑘𝑖𝑡 − 𝛽𝑙𝑙𝑖𝑡                 (3) 

 

Equation (3) gives a measure of the level of TFP. To model the short run R&D-

productivity relationship, we follow O’Mahony and Vecchi (2009) and take the first 

difference of production function (2): 

∆𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑘∆𝑘𝑖𝑡 + 𝛽𝑙∆𝑙𝑖𝑡 + ∆𝑒𝑖𝑡                  (4) 

Where ∆𝑦𝑖𝑡 is output growth and ∆𝑒𝑖𝑡 is the growth rate of productivity. The TFP 

growth rate is estimated from the first difference equation: 

∆𝑒𝑖𝑡 = ∆𝑇𝐹𝑃𝑖𝑡 = ∆𝑦𝑖𝑡 − 𝛽0 − 𝛽𝑘∆𝑘𝑖𝑡 − 𝛽𝑙∆𝑙𝑖𝑡              (5) 

 

We do not choose the Ordinary Least Squares (OLS) method to estimate the production 

functions (2) and (4) due to simultaneity bias. This is because the factor inputs are not 

exogenous and are correlated with unobservable productivity shock. This can be 

explained as follows. Producers could get some information about the productivity 

change in advance and then change their inputs of capital and labour depending on the 

productivity shock. Thus, capital and labour input are endogenous, which violates the 

assumption of OLS. Instead, we adopt the method proposed by Levinson and Petrin 

(2003) as it addresses the simultaneity problem. They use an indicator for intermediate 

goods inputs as a proxy variable for the productivity shock. They show that in order for 

the intermediate inputs to be a valid proxy/instrument, two conditions must be met: (i) 

intermediate inputs are affected only by capital and productivity; and (ii) a 

monotonicity condition requiring that, for a fixed amount of capital, more intermediate 

inputs are used by firms with higher productivity. Under these assumptions/conditions 

intermediate input is a valid instrument to address the simultaneity problem while 

estimating the production function. We adopt the LP method to generate TFP in the 

production functions shown in equations (2) and (4). 

 

4.3.2 Construction of knowledge stocks and spillover pools 

We convert the real flow of each firm’s R&D expenditures to stock measures by 

perpetual inventory method, which is standard and widely used in the literature. The 
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initial R&D capital stock for the ith firm is calculated as: 

𝑆𝑖,0
𝐹 =

𝑆𝑖,𝑡
�̇�̅̅ ̅̅

𝑔𝑖 + 𝛿
 

where 𝑔𝑖 is the average annual growth rate of R&D expenditure in the sample; 𝛿 is 

the depreciation rate of R&D capital stock; 𝑆𝑖,𝑡
�̇�̅̅ ̅̅   is the mean value of the R&D 

expenditure over the seven years in the sample. The calculated R&D capital stock 𝑆𝑖,0
𝐹  

is used as the initial value in R&D expenditure flow. We calibrate the depreciation rate 

of R&D stock to be 15% as the most researchers do (Hall, 2007). 

 

With the initial R&D capital stock 𝑆𝑖,0
𝐹 , we then generate the R&D stock for the next 6 

years as: 

𝑆𝑖,𝑡
𝐹 = 𝑙𝑜𝑔[(1 − 𝛿)𝑆𝑖,𝑡−1

𝐹 + 𝑆𝑖,𝑡
�̇� ] 

 

To measure the spillover effect across firms undertaking R&D, we generate intra- and 

inter-industry R&D knowledge stocks relevant to each firm in the sample. The intra- 

and inter-industry is also known as within- and between- industry R&D in the literatures. 

The relevant intra-industry R&D stock for the ith firm is measured as: 

𝑆𝑖,𝑡
𝐼−𝑇𝑅𝐴 = ∑ 𝑆𝑗,𝑡

𝐹 𝑆𝑚
𝑗=1 − 𝑆𝑖,𝑡

𝐹                       (6) 

Where ‘j’ denotes all firms in an industry such that 𝑗 = 1, 2, … , 𝑖 … ,𝑚 ; and,  𝑆𝑖,𝑡
𝐹  

denotes the ith firm’s own R&D capital stock. Thus, 𝑆𝑖,𝑡
𝐼−𝑇𝑅𝐴  is the sum of R&D stock 

of all firms in an industry excluding that of the ith firm.  

 

The relevant inter-industry R&D for the ith firm is measured as: 

 

𝑆𝑖,𝑡
𝐼−𝑇𝐸𝑅 = ∑ ∑ 𝑆𝑗,𝑘,𝑡

𝐹𝑚𝑘
𝑗=1

𝑛
𝑘=1 −∑ 𝑆𝑗,𝑘(𝑖),𝑡

𝐹𝑚𝑘(𝑖)

𝑗=1
               (7) 

Where 𝑆𝑗,𝑘,𝑡
𝐹  denotes the R&D stock of firm 𝑗 in industry 𝑘, while 𝑘(𝑖) denotes the 

industry which firm 𝑖 belongs to. It is assumed that there are 𝑛 industries in total and 

industry 𝑘 has 𝑚𝑘 firms.  

 

 

4.3.3. Model Specifications  

Our general econometric model of the knowledge-productivity relationship is as 
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follows:  

 

𝑇𝐹𝑃𝑖𝑡 = 𝛼0 + 𝛽𝑇𝐹𝑃𝑇𝐹𝑃𝑖,𝑡−1 + 𝛽𝐹𝑆𝑖,𝑡
𝐹 + 𝛽𝐼−𝑇𝑅𝐴𝑆𝑖,𝑡−1

𝐼−𝑇𝑅𝐴 + 𝛽𝐼−𝑇𝐸𝑅𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅 + 𝛽𝐹𝐷𝑆𝑖,𝑡

𝐹 ∗

𝐷𝑠 + 𝛽𝐼−𝑇𝑅𝐴𝐷𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴 ∗ 𝐷𝑠 + 𝛽𝐼−𝑇𝐸𝑅𝐷𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅 ∗ 𝐷𝑠 + 𝛾′𝑋𝑖𝑡 + 𝑣𝑖𝑡                 (8) 

𝐷𝑠 = 𝐷1,𝐷2,𝐷3,𝐷4 

 

Where 𝑇𝐹𝑃𝑖𝑡 is the total factor productivity calculated from equation (3); 𝑆𝑖,𝑡
𝐹  is the 

R&D capital stock; 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴   is the lagged value of intra-industry knowledge stock; 

𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅   is lagged value of the inter-industry knowledge stock. 𝑆𝑖,𝑡

𝐹  , 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴   and 

𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  are calculated in section 3.2. 𝑋𝑖𝑡 is the vector of other (non-R&D) covariates 

(determinants) of productivity. They include government subsidy ratio, firm size, loan 

growth ratio, concentration ratio and board size. D1, …, D4 respectively, are dummy 

variables for state-owned firms, private firms, foreign firms, and joint venture (private 

and foreign owned) firms. 𝑆𝑖,𝑡
𝐹 ∗ 𝐷𝑠 is the interaction term between firm’s own R&D 

capital stock and the ownership dummy variable. 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴 ∗ 𝐷𝑠 is the interaction term 

between lagged intra-industry spillover and the firm’s ownership structure. Likewise, 

𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅 ∗ 𝐷𝑠  is the interaction term between the lagged inter-industry spillover and 

firm’s ownership dummy. All variables are in logarithm except for the ratio of credit 

flow to sales and board size, as both of these are small numbers. 

 

We specify a contemporaneous relationship between the productivity and firm’s own 

R&D stock. The change in lags does not affect the result (Hall and Mairesse,1995; 

Mairesse and Sassenou, 1991). Besides, one can also use lagged output (Harhoff, 1998). 

As the knowledge diffusion cross firms and industries takes time (Luintel and Khan, 

2017), we choose first order lag of the variables of intra-industry and inter-industry 

R&D capital stocks. Research shows that it takes one or two years for the knowledge 

diffusion (Mansfield, 1985; Caballero and Jaffe, 1993), though it is in the international 

dimension. 𝛽𝐹  is the parameter that measures the elasticity of the productivity with 

respect to the ith firm’s own knowledge stock. It is supposed to be positive as firms 

would not conduct R&D projects that hurt their productivity. 𝛽𝐼−𝑇𝑅𝐴  is the spillover 

parameter associated with the intra-industry knowledge spillover pool. A significantly 

positive 𝛽𝐼−𝑇𝑅𝐴   implies that firms can benefit from other firms’ R&D knowledge 
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stocks within the same industry. This implies there are formal conduits including 

employee mobility (Franco and Filson, 2000) or informal networks such as information 

trading (Von Hippel, 1987) or the exchange of innovation information that promote the 

knowledge diffusion (Luintel and Khan, 2017). Due to lack of data on inter- and intra-

firm and/or industry transactions, we use disembodied measures of inter- and intra-

industry knowledge pools relevant to each of the firms in the sample. A significantly 

negative 𝛽𝐼−𝑇𝑅𝐴  indicates intense competition across firms within the same industry 

whereby innovation of other firms hurts the productivity of the ith firm. The technology 

competition inhibits the increase in rival’s productivity as there might be “patent 

blocking” to increase the rivals’ R&D cost (Luintel and Khan, 2017). Similarly, an inter-

industry knowledge spillover requires the coefficient 𝛽𝐼−𝑇𝐸𝑅   to be significantly 

positive for positive externality across industries. 

 

The above model measures the effect of a firm’s own R&D knowledge stock and 

knowledge spillovers from intra- and inter- industry R&D knowledge stocks on firm-

level productivity. We also examine if firms that are not involved in R&D activities 

benefit from the inter- and intra-industry knowledge spillovers accruing from firms 

engaged in R&D. We generate industry-specific total R&D capital stock as intra-

industry knowledge pool and match it to the firms in the same industry which are not 

engaged in R&D activities. (E.g., a pharmaceutical firm not undertaking R&D is 

matched with the sum of R&D capital stocks of all pharmaceutical firms involved in 

R&D.) Similarly, we sum R&D from all industries excluding the industry of the ith firm 

as the inter-industry R&D stock pool for firms not involved in R&D activities. 

 

We also generate dummy variables of types of ownership of a firm to see whether the 

ownership structure plays any role in determining the effect of a firm’s own R&D and 

knowledge spillovers on productivity. There are four types of ownership: state-owned, 

private-owned, foreign-owned and private-and-foreign-jointly-owned. Since state-

owned firms are controlled by the government and the main objective of this kind of 

firms is to achieve public policy goals, it can obtain special help from the government 

(e.g., experts and R&D subsidy) for some R&D projects that private firms are not 

allowed to take, e.g., in transportation or electricity area. State-owned firms might 

generate higher productivity. On the contrary, it is also possible for them to be 
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inefficient in R&D activities because most SOEs have a closer relation to the 

government than private firms so that they can get more subsidies to invest in R&D 

activities even though they get the same innovation output as that of other types of firms 

in the end. Yue and Zhang (2017) found that the main source of R&D expenditure for 

state-owned firms is from government subsidy and that for the non-state-owned firms 

is from internal finance. This might generate different efficiency in R&D activities for 

firms with different types of ownership. The knowledge spillover effect can also differ 

for different types of ownership; hence, we add slope dummy variables of four types of 

ownership into the model. 

 

Our general specification is equation (8), in which we measure how firm’s own R&D 

knowledge stock and spillover from intra- and inter-industry knowledge pools affect 

firm-level TFP in the long run. Besides this general model, we also estimate different 

versions of it to account for R&D as well as ownership structure in the short- and long-

run relationships. We examine the short-run knowledge-productivity relationships by 

replacing all variables except for board size, from levels to first-order differences in the 

alternative specifications. 

 

In equation (9), we measure the direct effect of R&D stocks on firm’s output, instead 

of productivity: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑦𝑦𝑖,𝑡−1 + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝐹𝑆𝑖,𝑡
𝐹 + 𝛽𝐼−𝑇𝑅𝐴𝑆𝑖,𝑡−1

𝐼−𝑇𝑅𝐴 + 𝛽𝐼−𝑇𝐸𝑅𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅 +

𝛾′𝑋𝑖𝑡 + 𝛽𝐹𝐷𝑆𝑖,𝑡
𝐹 ∗ 𝐷𝑠 + 𝛽𝐼−𝑇𝑅𝐴𝐷𝑆𝑖,𝑡−1

𝐼−𝑇𝑅𝐴 ∗ 𝐷𝑠 + 𝛽𝐼−𝑇𝐸𝑅𝐷𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅 ∗ 𝐷𝑠 + 𝑣𝑖𝑡          (9) 

Where 𝑦𝑖𝑡  denotes output, 𝑘𝑖𝑡 denotes tangible assets and 𝑙𝑖𝑡 denotes the number of 

employees. 

 

 

4.4 Data 

All data used in this study are collected from CSMAR database (China Stock Market 

and Accounting Research Database). This database is one of the largest data providers 

for the Chinese economy and is widely used both in macro and micro (firm-level) 

research. All data on Chinese Listed Firms Research Series and Chinese Stock Market 

Series are available in the CSMAR database. 
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The main data for the analysis include sales, number of employees, tangible assets, 

intangible assets, R&D expenditure and others control variables. Output is measured as 

the total sales, which is listed as the real total operating revenue in each firm’s income 

statement. The nominal sales and R&D expenditure are deflated by Purchasing Price 

Index for Industrial Producers. The perpetual inventory method is adopted to calculate 

R&D capital stock, with a depreciation rate of 15%. The intermediate input is calculated 

as the difference between output and value-added, where value-added is measured as 

the depreciation of fixed assets + payment to employment + taxes + operating profit 

(Ren and Sun, 2014). The capital stock is measured by tangible assets, which is 

calculated as: total assets minus intangible assets minus goodwill. These data series are 

available from the firms’ financial statements and income statements provided in 

CSMAR database. Firm size is measured by the firm’s market value. Government 

subsidy ratio is defined as government subsidy over sales. The data on government 

subsidies in the database is the sum of all types of subsidies that enterprises received 

from the government, including tax rebates, financial appropriation, R&D tax 

incentives, etc. The ownership concentration ratio is total assets over the number of the 

firm’s equity owners. Financial constraint is considered as another factor that might 

affect firm-level productivity, which is measured by the ratio of credit flow from bank 

to total sales. All indicators are collected from financial statements and other sectors in 

the CSMAR database.  

 

We drop sample firms with abnormal data such as zero and/or negative sales, costs, 

intangible assets, employees. This is because if, for instance, the number of a firm 

employees is reported to be zero, it only means the employment data is missing, rather 

than that it does not have any worker. For such firms with missing employment data, 

they are removed from the sample. The resulting sample of 1897 firms covering 7 years 

from 2012 to 2018 is divided into four subgroups: 1183 innovating firms and 399 non-

innovating firms in manufacturing sector as well as 29 innovating firms and 286 non-

innovating firms in non-manufacturing sector. 

 

Table 4.1 presents the descriptive statistics for the four subgroups respectively. The 

mean value of firm-level productivity for both innovating and non-innovating firms is 

higher in manufacturing sector. The standard deviation is also a little higher in 
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manufacturing sector. The mean value of output for non-manufacturing firms is 

significantly higher than that for manufacturing sector. Because the output is measured 

by the total sales, a possible explanation could be that the financial and insurance 

industries are included in non-manufacturing sector and their main businesses with 

large cash flow cause their total sales to be higher than firms in other industries. There 

is a considerable variation in output in all the four subgroups, ranging from 1 million 

to around 1,200,000 million Yuan. A similar characteristic can also be observed for 

tangible assets and ownership concentration ratio, due to the same reason of the larger 

cash flow in financial and insurance firms in non-manufacturing sector. 
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Table 4.1 Descriptive statistics 

Part A: Manufacturing firms that report R&D expenditure 

Descriptive Statistics Definitions Obs Mean Std. Dev. Min Max 

𝑇𝐹𝑃 

Total factor productivity 8416 3.579 2.709 0.061 34.986 

Output 

Total operating revenue 8421 6500.472 25209.881 41.87 898631.47 

R&D capital stock 

Firm's own R&D knowledge stock 8421 2303.202 41606.835 0.465 2044292.3 

Intra-industry R&D 

capital stock 

The sum of R&D stocks of all firms (excluding the ith 

firm) in the same industry 

8421 98195.838 176419.84 199.514 2047293.4 

Inter-industry R&D 

capital stock 

The sum of R&D stocks of all industries (excluding ith 

firm’s industry) 

8421 2670253.3 460132.23 1397786.1 3537283.3 

Physical capital 
Tangible asset 8421 9422.942 25787.768 217.71 782769.85 

Employment 
Number of employees 8416 5133.925 10558.552 58 220152 

Government subsidy 

ratio 

Government subsidy/Output 8421 0.015 0.034 0 1.249 

Firm size 

Market value 8415 10424.715 21377.226 149.93 876185.4 

Ownership 

concentration ratio 

Total assets/Number of shareholders 8421 0.199 0.296 0.006 6.819 

Financial constraint 
Bank loan growth/Total operating revenue 7780 0.027 0.413 -13.281 6.338 

Board size 

Number of directors 8420 8.582 1.644 4 18 
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Part B: Non-manufacturing firms that report R&D expenditure 

Descriptive 

Statistics 

Definitions  Obs  Mean  Std. Dev.  Min  Max 

𝑇𝐹𝑃 
Total factor productivity 2791 2.275 2.434 0.133 42.155 

Output 
Total operating revenue 2793 15070.785 69889.784 36.084 1199324.5 

R&D capital stock 
Firm's own R&D knowledge stock 2793 1759.586 19508.927 0.67 565457.88 

Intra-industry R&D 

capital stock 

The sum of R&D stocks of all firms (excluding the ith 

firm) in the same industry 

2793 36473.319 58794.923 0 568314.75 

Inter-industry R&D 

capital stock 

The sum of R&D stocks of all industries (excluding ith 

firm’s industry) 

2793 663842.1 79816.626 231403.94 799897.88 

Physical capital 
Tangible asset 2793 23526.317 98112.101 177.833 1861840.3 

Employment 
Number of employees 2791 8856.413 28868.825 64 302827 

Government subsidy 

ratio 

Government subsidy/Output 2793 0.015 0.024 0 0.375 

Firm size 
Market value 2790 14201.566 25402.221 694.5 349360 

Ownership 

concentration ratio 

Total assets/Number of shareholders 2793 0.254 0.443 0.005 7.259 

Financial constraint 
Bank loan growth/Total operating revenue 2558 0.052 0.458 -6.805 9.238 

Board size 
Number of directors 2793 8.602 1.791 3 17 
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Part C: Manufacturing firms that do not report R&D expenditure  

Descriptive Statistics Definitions  Obs  Mean  Std. Dev.  Min  Max 

TFP 
Total factor productivity 202 74.823 91.575 0.256 821.004 

Output 
Total operating revenue 203 975.578 1462.439 1.003 14138.028 

Intra-industry R&D capital 

stock 

The sum of R&D stocks of all firms (excluding 

the ith firm) in the same industry 

203 32498.425 41363.63 1190.093 229000.52 

Inter-industry R&D capital 

stock 

The sum of R&D stocks of all industries 

(excluding ith firm’s industry) 

203 2738253.9 427903.7 2099020 3536438.3 

Physical capital 
Tangible asset 203 2038.861 2286.426 25.361 13563.173 

Employment 
Number of employees 202 1293.901 1517.989 11 7647 

Government subsidy ratio 
Government subsidy/Output 203 0.121 0.737 0 9.255 

Firm size 
Market value 199 3924.761 3196.617 746.46 22849.769 

Ownership concentration 

ratio 

Total assets/Number of shareholders 203 0.078 0.114 0.001 0.732 

Financial constraint 
Bank loan growth/Total operating revenue 203 0.522 8.176 -18.261 110.109 

Board size 
Number of directors 203 8.034 1.123 4 10 
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Part D: Non-manufacturing firms that do not report R&D expenditure  

Descriptive Statistics Definitions  Obs  Mean  Std. Dev.  Min  Max 

TFP 
Total factor productivity 1927 11.644 16.816 0.102 301.371 

Output 
Total operating revenue 2044 20409.107 78685.922 3.481 928726 

Intra-industry R&D 

capital stock 

The sum of R&D stocks of all firms (excluding the 

ith firm) in the same industry 

1834 5324.308 17948.624 3.729 244661.44 

Inter-industry R&D 

capital stock 

The sum of R&D stocks of all industries 

(excluding ith firm’s industry) 

1834 696750.69 50205.937 461181.13 799897.88 

Physical capital 
Tangible asset 2044 440128.35 2383322.1 9.986 27699540 

Employment 
Number of employees 2044 13397.002 81503.776 10 2869967 

Government subsidy 

ratio 

Government subsidy/Output 2044 0.013 0.192 0 8.468 

Firm size 
Market value 2035 30797.941 116966.76 75.867 1671595.7 

Ownership 

concentration ratio 

Total assets/Number of shareholders 2042 1.518 5.638 0 67.082 

Financial constraint 
Bank loan growth/Total operating revenue 2040 0.104 2.114 -19.011 63.656 

Board size 
Number of directors 2044 9.174 2.398 5 22 
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Regarding R&D stock-related variables, manufacturing firms invest more in innovation 

activities as the mean value of firm’s own R&D stock is higher. The intra-industry R&D 

stock in manufacturing sector is three times higher than for the firms in the non-

manufacturing sector. This is mainly due to the reason that the amount of manufacturing 

firms which are engaged in innovation activities is much larger than that of non-

manufacturing firms. This also leads to a larger inter-industry R&D capital stock in 

manufacturing sector as in our model we only allow inter-industry R&D spillover 

within each sector. For the non-R&D variables, non-manufacturing firms hire more 

workers as the mean value is higher, while the standard deviation is also higher. And, 

the subgroup of manufacturing firms not undertaking R&D activities tend to have the 

highest government subsidy ratio than the other three counterparts, which implies a 

significant government policy preference to this kind of firms. The growth of the loan 

ratio from the bank and other financial institutions is higher in non-manufacturing 

sector, indicating an easier access to loans. This could ease the financial constraint for 

firms and then promote their productivity. Firm size and board size appear to have 

similar value in both sectors, though the firm size for firms not undertaking R&D 

activities is much smaller in manufacturing sector. 

 

In Table 4.2, we report the composition of firms’ ownership type (State-owned firms, 

Private firms, Foreign-owned firms and Private-and-foreign-jointly owned firms) in 

each subgroup. It is noticeable that, in both manufacturing and non-manufacturing 

sectors, private firms take up the largest part, followed by SOEs (state-owned 

enterprises). Firms with foreign-related ownership only account for a small proportion 

in all kinds of firms. Since the R&D performance might differ with the ownership type 

(Boeing et al., 2016; Howell, 2017), one of the objectives in this chapter is to gauge 

whether the relationship between R&D knowledge stock and productivity is related to 

firms’ ownership type. 
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Table 4.2 Composition of the sample: type of ownership 

  firms reporting R&D expenditure 

 manufacturing non-manufacturing 

state-owned 389 144 

Privately-owned 731 240 

Foreign-owned 39 9 

Private and foreign jointly-owned 24 6 

Total 1183 399 

   

 firms not reporting R&D expenditure 

 manufacturing non-manufacturing 

state-owned 9 187 

private 20 85 

foreign 0 14 

Private and foreign jointly-owned 0 0 

Total 29 286 

 

 

4.5 Econometric methodology 

Since productivity is taken as the unobservable part that cannot be explained by input 

factors such as capital stock or labour, following the literature, we use residuals from 

production function to measure productivity. One of the assumptions in OLS estimator 

is the uncorrelation between the prior information set X and the error term: 

𝐸(𝑋′휀) = 0 

where X is the information set of physical capital and labour inputs. 휀 is the forecast 

error in predicting the output at time t. This assumption implies the change in the output 

is only caused by the productivity shock at time t. Therefore, it is unforecastable. But 

in reality, producers have prior knowledge about their productivity, which means they 

could get some information about the productivity shock in advance. This makes their 

decision on capital and labour inputs related to productivity shock. Firms with higher 

productivity might invest more in physical capital and labour, which implies an issue 

of reverse causality while estimating firm level productivity (Baum and Schaffer, 2003; 
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Levinson and Petrin, 2003). In this production function estimation, capital and labour 

inputs become endogenous as they are correlated with the error term. Since the OLS 

estimator requires all explanatory variables to be exogenous, this orthogonality 

condition is violated and cause the estimated parameters to be biased and inconsistent: 

𝐸(𝑋′휀) ≠ 0 

 

In our model, we estimate  

𝑇𝐹𝑃𝑖𝑡 = 𝛽0 + 𝛽𝑇𝐹𝑃𝑇𝐹𝑃𝑖,𝑡−1 + 𝛽𝐹𝑆𝑖,𝑡
𝐹 + 𝛽𝐼−𝑇𝑅𝐴𝑆𝑖,𝑡−1

𝐼−𝑇𝑅𝐴 + 𝛽𝐼−𝑇𝐸𝑅𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅 + 𝛽𝐹𝐷𝑆𝑖,𝑡

𝐹 ∗

𝐷𝑠 + 𝛽𝐼−𝑇𝑅𝐴𝐷𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴 ∗ 𝐷𝑠 + 𝛽𝐼−𝑇𝐸𝑅𝐷𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅 ∗ 𝐷𝑠 + 𝛾′𝑋𝑖𝑡 + 𝑣𝑖𝑡                 (8) 

 

We use both the Ordinary Least Squares (OLS) and the Generalised Method of 

Moments (GMM) estimators to estimate the knowledge-productivity relations outlined 

above. Despite the potential issue of simultaneity, we have used OLS for its simplicity 

and intuition. Nevertheless, Motohashi et al. (2009) and Yang et al. (2010) suggest that 

there might be reverse causality when estimating the relationship between firm-level 

TFP and input factors, including R&D stock. Firms with higher productivity might 

invest more in R&D. To avoid biased estimates of coefficients, we deal with this 

endogeneity problem using GMM estimation approach.  

 

Here we note that GMM is a more general estimator of which IV is a special case. In 

the presence of heterogeneity, the general formula for the asymptotic variance of a 

general GMM estimator still holds (Baum et al., 2003) and GMM estimator is more 

asymptotically efficient than IV estimator (Dinardo and Johnston, 1997). Although the 

estimated coefficients of IV estimator are still consistent, the standard errors of the IV 

estimator become inconsistent, which causes the inference to be invalid. In this case, 

IV estimator is inefficient and it is a special case of GMM estimator with a suboptimal 

weighting matrix. And if there is homoscedasticity in the error term, the GMM 

estimator is equivalent to IV estimator. Therefore, we employ GMM estimator 

introduced by Hansen (1982) to achieve the estimator efficiency as GMM estimator is 

robust to the presence of heteroskedasticity. Though the use of it has a price that GMM 

estimator has poor small sample properties (Baum et al., 2003), this shortcoming can 

be ignored as we have enough observations. 
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One is able to generate efficient estimates of the coefficients and efficient standard 

errors by minimizing the GMM criterion function  

𝐽 = 𝑁 ∗ 𝑔′ ∗ 𝑊 ∗ 𝑔 

, where N is the sample size. g is the orthogonality or moment condition, which implies 

that all the exogenous or instrument variables are independent with the error term. W is 

the weighting matrix. In the two-step efficient GMM estimator, the efficient matrix is 

the inverse of an estimate of the covariance matrix of orthogonality conditions. The 

efficiency gains of this estimator are from the use of optimal weighting matrix, the 

overidentifying restrictions of the model, and the relaxation of the i.i.d. assumption. 

 

In our model, we adopt lagged productivity 𝑇𝐹𝑃𝑖,𝑡−3  and 𝑇𝐹𝑃𝑖,𝑡−4  as instruments. 

The instrumental variables must satisfy two conditions: to be correlated to endogenous 

variables and uncorrelated to the error term. Lagged productivity is correlated to 

contemporaneous productivity and uncorrelated to the “news” in time t. The latter is 

the orthogonality condition that instrumental variables must satisfy: 

𝐸[𝑍′𝑣] = 0 

 

We express the instrumental variables in the form of matrix: 

𝑋 = [1    𝑇𝐹𝑃𝑖,𝑡−1] 

𝑍 = [1    𝑇𝐹𝑃𝑖,𝑡−3    𝑇𝐹𝑃𝑖,𝑡−4] 

There is overidentification when the number of restrictions that the instruments give is 

larger than the number of endogenous variables. GMM estimator addresses 

overidentification by weighting each restriction. The weight for restrictions of less 

efficient estimates is smaller than that for restrictions of more efficient estimates 

(smaller variance). 

 

Johnston and Dinardo (1997) illustrate the detailed process for GMM estimator. From 

the orthogonality condition, we can have the efficient estimates of the coefficients that 

are generated by minimizing the GMM criterion function: 

min
𝛽
(
1

𝑛
𝑍′(𝑦 − 𝑋𝛽))′𝑊(

1

𝑛
[𝑍′(𝑦 − 𝑋𝛽)])) 

, where W is the optimal weighting matrix. Hansen (1982) suggests that the optimal 

weighting matrix is the heteroskedasticity-consistent estimate of the matrix 

𝐸[𝑍′𝑣(𝑍′𝑣)′]−1 = Ω−1 . The estimate of the inverse asymptotic variance matrix 



148 

 

[𝑣𝑎𝑟(
1

𝑛
)(𝑍′𝑣)]−1  can be denoted as [(

1

𝑛2
)(𝑍′Ω�̂�)]−1 . The consistent estimate is 

generated in two steps: Firstly, we generate the consistent estimate �̂�𝑖,𝑡  by 2SLS 

regression, taking (𝑍′𝑍)−1 as W. Then we calculate the residual using the estimated 

coefficients: 

𝑟𝑖,𝑡 = 𝑦𝑖,𝑡 − 𝑋�̂�𝑖,𝑡 

The estimate of the matrix [(
1

𝑛2
)(𝑍′Ω𝑍)]−1 is  

𝑊𝑛 = [(
1

𝑛2
)∑𝑧𝑖,𝑡𝑧𝑖,𝑡′𝑟𝑖,𝑡

2

𝑖

]−1 

, where 𝑧𝑖,𝑡 is a column of the matrix Z. 

 

With the estimated optimal weighting matrix 𝑊𝑛 , the minimization of the GMM 

criterion function can be solved by selecting the GMM estimate of the coefficients 𝛽: 

�̂�𝐺𝑀𝑀 = [𝑋′𝑍(𝑍′Ω�̂�)
−1𝑍′𝑋]−1𝑋′𝑍(𝑍′Ω�̂�)−1𝑍′𝑦 

 

Hansen J statistic is reported to test whether the chosen instrumental variables are valid 

in GMM estimation. The J statistic is consistent in the presence of heteroskedasticity 

and autocorrelation. The null hypothesis of the test is that the instruments are valid and 

a rejection of the null implies the chosen instruments are not suitable. 

 

 

4.6 Results 

Results for specifications (8) and (9) are reported in this section. In the literature, 

researchers model the relationship either between R&D stock and productivity 

(Griliches and Mairesse, 1991; Wakelin, 2001; Ortega-Argilés, 2011; Kancs et al., 2016) 

or between R&D stock and output (O’Mahony and Vecchi, 2009; Boeing et al., 2016), 

while we model both. This will reveal if benefits of R&D are fully reflected in firm’s 

TFP or not.  

 

We report the results of estimation of (2) and (4) in Table 4.3. The results of both (2) 

and (4) are estimated with the method that Levinson and Petrin (2003) provided.  
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Table 4.3 The estimation results of production in the long run and short run 

long run 

Firms that report R&D expenditure Firms that do not report R&D expenditure 

Manufacturing Non-manufacturing Manufacturing Non-manufacturing 

(1) (2) (3) (4) 

VARIABLES 𝑦𝑖𝑡  𝑦𝑖𝑡  𝑦𝑖𝑡  𝑦𝑖𝑡  

𝑘𝑖𝑡 0.729*** 0.772*** 0.204 0.776*** 

 (0.0255) (0.0546) (0.277) (0.196) 

𝑙𝑖𝑡 0.0688*** 0.0808*** 0.132 0.0243 

 (0.00675) (0.0150) (0.107) (0.0411) 

Observations 8,405 2,771 174 198 

 

short run 

Firms that report R&D expenditure Firms that do not report R&D expenditure 

Manufacturing Non-manufacturing Manufacturing Non-manufacturing 

(1) (2) (3) (4) 

VARIABLES 𝑦𝑖𝑡  𝑦𝑖𝑡  𝑦𝑖𝑡  𝑦𝑖𝑡  

𝑘𝑖𝑡 0.614*** 0.683*** -0.184 0.894*** 

 (0.0338) (0.0613) (0.379) (0.208) 

𝑙𝑖𝑡 0.0479*** 0.0875*** 0.100 -0.0658 

 (0.0133) (0.0225) (0.199) (0.127) 

Observations 7,191 2,368 140 157 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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There are two parts in Table 4.3. The upper part is the estimation results of the long-run 

production function in (2), while the lower part is the ones of the short-run production 

function. In columns (1) and (2), it can be seen that the estimated coefficients for firms 

that report R&D expenditure are significant no matter whether it is the long run or short 

run. However, due to a small sample size, the results are not significant for 

manufacturing firms with no R&D expenditure in column (3). Therefore, we mainly 

focus on all non-manufacturing firms as well as manufacturing firms that conduct R&D 

activities when analyzing the effect of R&D. 

 

4.6.1 Firm’s own R&D, knowledge spillover and other factors 

Table 4.4 presents the knowledge-productivity relationship (Eq. (8)) and knowledge-

output relationship (Eq. (9)) at the firm level for both manufacturing sector and non-

manufacturing sector in the long run. The knowledge stocks consist of firm’s own 

knowledge (own R&D) stock, and intra- and inter-industry knowledge pools as the 

sources of spillovers. As stated above, we present results from two estimators: OLS and 

GMM estimators but focus of the results from GMM as our preferred estimator.
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Table 4.4 Effects of R&D knowledge stock on productivity and output in the long run 

         

 Manufacturing Non-manufacturing 

 OLS GMM OLS GMM 

long run (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES 𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  

         

𝑦𝑖,𝑡−1  0.700***  0.708***  0.602***  0.683*** 

  (0.016)  (0.0235)  (0.0421)  (0.0515) 

𝑘𝑖𝑡  0.167***  0.178***  0.216***  0.133*** 

  (0.0149)  (0.0205)  (0.0378)  (0.0454) 

𝑙𝑖𝑡  0.115***  0.111***  0.145***  0.145*** 

  (0.0105)  (0.0132)  (0.0245)  (0.0283) 

𝑆𝑖,𝑡
𝐹  0.0439*** 0.00806 0.0575** -0.000471 -0.000204 -0.00888 -0.00491 -0.00739 

 (0.012) (0.00544) (0.0261) (0.00915) (0.0204) (0.0101) (0.019) (0.0132) 

𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  -0.000839 0.00482 -0.0563*** -0.00916* -0.0175 0.00761 0.00809 0.0114 

 (0.00907) (0.00352) (0.0187) (0.00536) (0.0114) (0.00598) (0.0163) (0.00915) 

𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  -0.458*** -0.0336 -2.518*** -0.517*** -0.431*** 0.099 0.681*** 0.224 

 (0.0719) (0.0206) (0.362) (0.0833) (0.167) (0.0747) (0.241) (0.162) 

𝑠𝑢𝑏𝑖,𝑡 -0.119*** -0.0619*** -0.167*** -0.0664*** -0.0836*** -0.0782*** -0.0981*** -0.0709*** 

 (0.0114) (0.00466) (0.0203) (0.00659) (0.0175) (0.01) (0.0291) (0.0136) 

𝑟𝑐𝑓𝑖,𝑡 0.0759 0.123*** 0.110* 0.144*** -0.0135 0.0466** 0.00357 0.0658 

 (0.0501) (0.0284) (0.0562) (0.0335) (0.0217) (0.0206) (0.0419) (0.0461) 



152 

 

𝑠𝑖𝑧𝑒𝑖,𝑡 -0.0466*** 0.0191*** -0.0399 0.0117 -0.0413* 0.0580*** -0.128*** 0.0209 

 (0.0173) (0.00675) (0.0275) (0.00982) (0.0224) (0.017) (0.0318) (0.0271) 

𝑐𝑜𝑛𝑐𝑟𝑖,𝑡 0.0477*** 0.0610*** 0.0619** 0.0564*** -0.0141 0.0955*** -0.00303 0.117*** 

 (0.0151) (0.0062) (0.0261) (0.00854) (0.0403) (0.0153) (0.0628) (0.0215) 

𝑏𝑠𝑖,𝑡 0.0184** 0.00365 0.0116 -0.000107 -0.0143 -0.0045 -0.000562 -0.00464 

 (0.00728) (0.00278) (0.0109) (0.00346) (0.00986) (0.00656) (0.0126) (0.00751) 

𝑇𝐹𝑃𝑖,𝑡−1 0.911***  0.895***  0.954***  1.005***  

 (0.00977)  (0.0156)  (0.0324)  (0.0459)  

Constant 6.656*** 0.1 37.25*** 7.335*** 6.131*** -1.849* -8.392** -3.069 

 (1.131) (0.336) (5.343) (1.241) (2.375) (1.113) (3.284) (2.242) 

         

Observations 7,100 7,103 3,524 3,532 2,299 2,300 1,155 1,159 

sample size 1,203 1,203 1201 1202 392 392 392 392 

R-squared 0.8875 0.9612   0.8388 0.9528   

Hansen   2.347 2.354   2.062 5.043 

Hansen P-value   0.126 0.125   0.151 0.0247 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of fit statistics. R-squared 

in GMM estimator is uninformative so it is not reported for GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the overidentification. Hansen P-values of the null 

hypothesis of instruments validity are reported under the Hansen J statistic. 

This table reports the results of the regression of firm-level productivity 𝑇𝐹𝑃𝑖𝑡  and firm-level output (proxied by sales) 𝑦𝑖𝑡 on firm’s own R&D knowledge stock 𝑆𝑖,𝑡
𝐹 , intra-industry 

R&D knowledge stock 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴 , inter-industry R&D knowledge stock 𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅  as well as other firm characteristics in the long run. Firm’s own R&D knowledge stock is converted from 

firm’s own R&D expenditure using perpetual inventory method. Reported stock measures are calculated at 15% depreciation rate. Intra-industry R&D knowledge stock 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  is the 

sum of all firms’ R&D knowledge stock within the same industry, the calculation is show in equation (6) in the text. Inter-industry R&D knowledge stock 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅 is the sum of all 

firms’ R&D knowledge stock from all industries except its own industry, this is shown in equation (7) in the text. Subsidy ratio 𝑠𝑢𝑏𝑖,𝑡 is the ratio of firm-level government subsidy 
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over total sales. 𝑟𝑐𝑓𝑖,𝑡 is the ratio of the credit flow (first difference of the bank loan stock) to total sales. Since TFP and firm’s output are flow concepts therefore it makes sense to use 

the flow of bank credit. Firm size 𝑠𝑖𝑧𝑒𝑖,𝑡 is the market value of the firm. Ownership concentration ratio 𝑐𝑜𝑛𝑐𝑟𝑖,𝑡  is measured by the firm-level total assets over the number of equity 

owners. 𝑏𝑠𝑖,𝑡   is the board size. The output and the three R&D related variables are deflated from nominal value to real value by the industrial producer price index in the 

contemporaneous year. All variables are in logarithm except for the ratio of credit flow to sales and board size, as both of these are small numbers.  

In view of the data dimension, the 3rd and the 4th order lags of TFP are chosen as the instrumental variables in regressions of columns (3) and (7). The output estimates are instrumented 

accordingly in regressions (4) and (8). 

 

 

  



154 

 

 

Taking the manufacturing sector first, both OLS and GMM estimates reveal a 

significantly positive effect of firm’s own R&D stock 𝑆𝑖,𝑡
𝐹   on 𝑇𝐹𝑃𝑖𝑡 , with the 

estimated point elasticity of 0.044 and 0.058, respectively. But there is no evidence 

showing that the firm’s own R&D stock 𝑆𝑖,𝑡
𝐹  has a significant effect on its output 𝑦𝑖𝑡 . 

This implies that the output effect of firms' R&D is not picked with precision up by our 

estimates whereas TFP effects are. Instead, the firm’s R&D stock indirectly benefits the 

output by transmitting to increased productivity. However, the intra-industry 

knowledge spillover 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴   and inter-industry knowledge spillovers 𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅   both 

appear negative and significant in explaining the firm level TFP under GMM while only 

inter-industry knowledge spillovers 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅   appear negative and significant under 

OLS. We interpret these parameters similar to Luintel and Khan (2017), although their 

research is based on country-level rather than firm-level knowledge spillover. The 

negative signs of the parameters of 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  and 𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅  implies competitive pressure 

and technology rivalry between firms undertaking R&D activities. It does not mean that 

the ‘pure’ R&D knowledge spillovers are negative, instead, it may reflect the spiraling 

cost of innovative activities and technology blocking by other firms which inhibit rivals 

benefiting from technological externalities. There is no evidence showing that a firm’s 

R&D stock has a direct effect on output even though it contributes to the increase in 

productivity. This indicates that a firm’s R&D activities promote their output indirectly 

via productivity routes. In contrast, the competitive pressure evidenced from the 

negative intra- and inter-industry knowledge spillover parameters appear to affect both 

firm level productivity as well as output.  

 

Although non-manufacturing firms also made some R&D effort, it does not appear to 

enhance productivity, as the coefficients for a firm’s own R&D 𝑆𝑖,𝑡
𝐹  are insignificant 

under both OLS and GMM estimates. 

 

There is no evidence of significant knowledge spillover between firms in the same 

industry as the coefficients for 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  are insignificant. However, the inter-industry 

R&D 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  appears positive and significant in explaining TFP under GMM estimate. 

The output is not affected by either the firm’s own R&D stock or the spillovers 

originating from the intra- and inter- industry knowledge pools. Overall, results do not 
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show productivity effects accruing from own knowledge stocks as well as from intra-

industry knowledge spillover pool but show significant spillover effect from inter-

industry knowledge pool for the panel of Chinese non-manufacturing firms involved in 

R&D activities. 

 

There are other factors included in Eq. (8) and Eq. (9) that might affect productivity. 

The results show that the sources of firms’ finance matters for their productivity and 

output. Managi (2010) and Howell (2015) suggest that government subsidies have a 

negative effect on firms’ productivity. Similarly, government subsidy ratio 𝑠𝑢𝑏𝑖,𝑡 in 

our model also shows a significant negative effect on both productivity 𝑇𝐹𝑃𝑖𝑡  and 

output 𝑦𝑖𝑡   in manufacturing and non-manufacturing sectors. These estimates are 

robust across specifications and estimators. This indicates that government subsidy 

does not contribute to firms’ innovation activities for most Chinese listed firms, but 

instead it appears to discourage innovation, which is rather surprising. This might 

indicate the issue of misallocation of resources and this problem appears more serious 

in manufacturing sector. At the same time, the parameters of the flow of credit from 

banks 𝑟𝑐𝑓𝑖,𝑡 appear significantly positive in productivity 𝑇𝐹𝑃𝑖𝑡 and output 𝑦𝑖𝑡  but 

only in manufacturing sector. This reveals that the ease of financial constraints can 

stimulate the productivity and output only for manufacturing firms. Our results have 

the same implication as that of Whited (1992), Love (2003) and Hottenrott and Peters 

(2012). The financial constraints lead to a loss in R&D investment, which causes a 

lower productivity. The insignificance of credit flows 𝑟𝑐𝑓𝑖,𝑡 in explaining productivity 

𝑇𝐹𝑃𝑖𝑡 and output 𝑦𝑖𝑡  of non-manufacturing firms is rather unexpected. 

 

Firm size 𝑠𝑖𝑧𝑒𝑖,𝑡 is another factor that influences firms’ innovation. It is measured by 

the market value of a firm. The elasticity of productivity with respect to firm size in 

non-manufacturing sector is negative and significant in both estimate methods. In the 

manufacturing sector, the firm size is also negatively correlated to the productivity, but 

only significant in OLS estimate. This result is in consistent with Crespi and Zuniga 

(2012)’s results, indicating that larger firms are less likely to undertake innovation as 

they are monopolies and could obtain more output and profits with current business. 

Smaller firms are more willing to invest in R&D, hoping innovation could increase their 

productivity. Therefore, ceteris paribus, R&D productivity in small firms is higher in 
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the long run for Chinese listed firms. 

 

Firm’s ownership concentration ratio 𝑐𝑜𝑛𝑐𝑟𝑖,𝑡  is another factor which matters for 

productivity 𝑇𝐹𝑃𝑖𝑡. In manufacturing sector, the parameters of 𝑐𝑜𝑛𝑐𝑟𝑖,𝑡 are positive 

and significant for both productivity 𝑇𝐹𝑃𝑖𝑡 and output 𝑦𝑖𝑡  under both OLS and GMM, 

indicating that the concentrated ownership of firms could increase both productivity 

and output. This result is consistent with the findings of Holmstrom (1989), Francis and 

Smith (1995), Harris and Raviv (2008), suggesting that a higher concentration could 

reduce the high agency and contracting costs. Therefore, firms would invest more in 

R&D activities and this would increase their productivity and output. But this result is 

different from the alternative opinion that highly concentrated ownership would limit 

managers to provide professional advice on R&D projects and harms the R&D 

performance (Hill and Snell, 1988; Burhart et al., 1997; Ortega-Argiles et al., 2005). 

However, in non-manufacturing sector, a higher 𝑐𝑜𝑛𝑐𝑟𝑖,𝑡 only contributes to the output 

𝑦𝑖𝑡  but not to the firm’s productivity 𝑇𝐹𝑃𝑖𝑡, which is hard to explain. Board size 𝑏𝑠𝑖,𝑡 

does not appear to affect firms’ TFP and output in both sectors in the long run as almost 

all the results are insignificant. 

 

Table 4.5 presents the short-run relationship between R&D knowledge stock and 

productivity at firm level for manufacturing sector and non-manufacturing sector. In 

order to estimate the short-run relationship, we modify the model (8) to a first difference 

specification. Specifically, TFP, output, firm’s own R&D knowledge stock, intra- and 

inter-industry R&D stocks are all changed to first order differences:  ∆𝑇𝐹𝑃𝑖𝑡, ∆𝑦𝑖𝑡, 

∆𝑆𝑖,𝑡
𝐹 , ∆𝑆𝑖,𝑡−1

𝐼−𝑇𝑅𝐴 and ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅 . In the manufacturing sector, the growth rate of firm’s 

own knowledge stock ∆𝑆𝑖,𝑡
𝐹  shows significant positive effect on TFP growth ∆𝑇𝐹𝑃𝑖𝑡 

under both OLS (0.413) and GMM (0.245) estimates. Both ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴   and ∆𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅  

exhibit a negative and significant effect on TFP growth ∆𝑇𝐹𝑃𝑖𝑡  and output growth 

∆𝑦𝑖𝑡 under GMM. This implies that the innovation results are not shared among firms 

and they cannot benefit from rivals’ R&D activities in the short run. Innovative 

competition across firms exists not only in the same industrial environment but also 

across different industries in manufacturing sector. In non-manufacturing sector, there 

is no evidence showing that the R&D-related factors could influence TFP growth and 

output growth under both OLS and GMM estimate. 
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The effects of other determinants of productivity and output are also presented in Table 

4.5. Both OLS and GMM estimates indicate that government subsidy significantly 

harms firms’ productivity and output growth in both manufacturing and non-

manufacturing sectors in the short run. The estimate of the effect of government subsidy 

on TFP is -0.0653 in manufacturing sector and this effect is slightly weaker in non-

manufacturing sector (-0.0455). The short-run results are consistent with the long-run 

results, indicating the issue of resource allocation inefficiency brought up by 

government subsidy. Since it does not help increasing firms’ innovation or output, the 

government should change the way of encouraging the firm’s innovation from directly 

allocating subsidies to firms to other policies. The GMM estimates of 𝑟𝑐𝑓𝑖,𝑡  are 

insignificant for both TFP growth ∆𝑇𝐹𝑃𝑖𝑡  (Column 3 and Column 7) and output 

growth ∆𝑦𝑖𝑡 (Column 4 and Column 8) in both sectors. Compared to the significantly 

positive effect in the long run (Table 4.4), credit flow ratio does not affect productivity 

and output for both sector in the short run. Therefore, the effect of the ease of financial 

constraints does not appear significant for both sectors in the short run. 
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Table 4.5 Effects of R&D knowledge stock on productivity and output in the short run 

         

 manufacturing non-manufacturing 

 OLS GMM OLS GMM 

short run (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 

         

∆𝑦𝑖,𝑡−1  0.0234  1.285***  -0.00142  0.313 

  (0.0167)  (0.407)  (0.0238)  (0.414) 

∆𝑘𝑖𝑡  0.374***  0.480***  0.522***  0.455*** 

  (0.0413)  (0.157)  (0.0618)  (0.145) 

∆𝑙𝑖𝑡  0.187***  0.173**  0.308***  0.321*** 

  (0.0327)  (0.0874)  (0.0502)  (0.0716) 

∆𝑆𝑖,𝑡
𝐹  0.413*** 0.310*** 0.245* -0.466* 0.425*** 0.240*** 0.182 0.0628 

 (0.0576) (0.0391) (0.137) (0.239) (0.111) (0.0526) (0.177) (0.192) 

∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  -0.0222 0.0387 -0.491** -0.537** -0.044 -0.0337 -0.164 -0.174 

 (0.0757) (0.0482) (0.193) (0.239) (0.0879) (0.0473) (0.26) (0.317) 

∆𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  1.986*** 1.711*** -3.008** -4.068** 2.643*** 1.265*** -0.078 -0.163 

 (0.266) (0.198) (1.328) (1.601) (0.678) (0.231) (1.483) (0.733) 

∆𝑠𝑢𝑏𝑖,𝑡 -0.0548*** -0.0449*** -0.0653*** -0.0586*** -0.0744*** -0.0488*** -0.0455* -0.0283** 

 (0.00816) (0.00495) (0.0123) (0.0142) (0.0151) (0.00853) (0.0232) (0.0121) 

𝑟𝑐𝑓𝑖,𝑡 0.0275 0.0801** 0.0193 0.0151 0.0153 0.0237 0.034 0.0195 
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 (0.0183) (0.0394) (0.0379) (0.0729) (0.0235) (0.0197) (0.06) (0.0579) 

∆𝑠𝑖𝑧𝑒𝑖,𝑡 0.0371** 0.0451*** 0.0726* 0.0735** 0.159** 0.0784*** 0.223 0.0869 

 (0.0163) (0.0118) (0.0385) (0.036) (0.0643) (0.0217) (0.181) (0.0808) 

∆𝑐𝑜𝑛𝑐𝑟𝑖,𝑡 -0.0338** -0.00156 0.05 0.0973** -0.057 -0.0639*** -0.25 -0.0279 

 (0.0152) (0.00896) (0.06) (0.0472) (0.0913) (0.02) (0.329) (0.0651) 

𝑏𝑠𝑖,𝑡 -0.00292 -0.00116 -0.00909** -0.00786 -0.00920* -0.00274 -0.0183** -0.00706 

 (0.00234) (0.00168) (0.00425) (0.0054) (0.00504) (0.00281) (0.00929) (0.0065) 

∆𝑇𝐹𝑃𝑖,𝑡−1 -0.0344  0.804***  -0.0866***  0.556  

 (0.0269)  (0.278)  (0.0257)  (0.443)  

Constant 1.239*** 0.156*** 0.212 -0.0883 1.301*** 0.0756** 0.798* 0.147** 

 (0.0476) (0.0234) (0.336) (0.107) (0.0717) (0.0301) (0.416) (0.057) 

         

Observations 5,839 5,842 2,262 2,269 1,895 1,896 748 752 

sample size 1,202 1,202 1133 1136 392 392 375 377 

R-squared 0.0913 0.378   0.0728 0.5346   

Hansen   0.211 1.537   0.016 0.128 

Hansen P-value   0.6457 0.2151   0.8987 0.7209 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null of instruments validity are reported under the Hansen J statistic. 
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Firm size appears to have a significantly positive short-run effect on both productivity 

(0.0726) and output (0.0735) in manufacturing sector under GMM estimate. And this 

result is also seen in OLS estimates. In non-manufacturing sector, both OLS and GMM 

estimates of firm size for TFP and output are positive but they are significant only under 

OLS. Concentration ratio ∆𝑐𝑜𝑛𝑐𝑟𝑖,𝑡shows the short-run positive effect on output but 

insignificant on TFP growth for manufacturing firms under GMM. Board size reveals 

a significantly negative but very small effect on TFP growth in manufacturing sector (-

0.00909, Column 3) and in non-manufacturing sector (-0.0183, Column 7) under GMM 

estimate. This result is consistent with Chen (2012). He provides the empirical evidence 

of a negative effect of a larger board size on R&D investment, which could decrease 

the firm’s productivity. Jensen (1993) attributes the negative effect of a larger board 

size on productivity to a larger power of CEO in decision making and controlling the 

board. Therefore, firms with a larger power of CEO would invest less in high-risk 

projects such as R&D activities as their target is to avoid high-risk activities and make 

short-term profits. 

 

 

4.6.2 Knowledge spillover to firms not reporting R&D 

4.6.2.1 Intra-industry knowledge spillover 

Table 4.6 presents the results of the regression of the productivity and the output on 

intra-industry R&D stock and other firm characteristic variables for firms that do not 

report R&D expenditures. The variable intra-industry R&D 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  is measured by in 

the sum of R&D stock of all firms in the same industry sector. A significantly positive 

result indicates that firms which do not undertake their own innovation projects could 

benefit from other firms’ R&D activities. However, the estimated coefficients for 

𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  are insignificant, implying there is no significant spillovers with the industry. 

The insignificance may be due to the small sample as there are only 28 firms with 137 

observations. In our samples, most of firms in manufacturing sector report their R&D 

expenditure and only a small proportion do not have R&D activities. Therefore, we lay 

emphasis on the sub-group of non-manufacturing sector, of which the sample size is 

large enough to provide a reliable result. In non-manufacturing sector, both OLS and 

GMM estimates of coefficients for 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  show the negative effect of intra knowledge 
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spillovers. This implies firms not undertaking R&D activities cannot benefit from other 

firms’ innovation results. It suggests that competitive pressure from firms engaged in 

R&D appears important. Firms are preventing their technological information leaking 

to their competitors. For other non-R&D factors, estimated coefficients for government 

subsidy ratio 𝑠𝑢𝑏𝑖,𝑡 are significantly negative. This indicates that the direct subsidies 

from the government hurt both firm-level TFP and output under OLS and GMM, 

implying that the government subsidies are misallocated. The ratio of credit flow 𝑟𝑐𝑓𝑖,𝑡 

has a negative effect on the output 𝑦𝑖𝑡  in non-manufacturing sector. This means that 

the ease of financial constraint does not affect the firm-level productivity but hurt the 

output of firms which do not undertake innovation activities in the long run. 
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Table 4.6 Long-run effects of intra-industry knowledge stock on productivity and output for firms not reporting R&D 

         

 manufacturing non-manufacturing 

 OLS GMM OLS GMM 

long run (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES 𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  

         

𝑦𝑖,𝑡−1  0.655***  0.625***  0.583***  0.859*** 

  (0.0929)  (0.16)  (0.0458)  (0.0443) 

𝑘𝑖𝑡  0.534***  0.574***  0.131***  -0.0035 

  (0.183)  (0.194)  (0.0406)  (0.0423) 

𝑙𝑖𝑡  0.139  0.145  0.180***  0.0519** 

  (0.117)  (0.127)  (0.0309)  (0.0221) 

𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  6.568 0.0484 10.28 -0.0164 -0.130** 0.022 -0.260*** -0.0019 

 (5.299) (0.0672) (10.23) (0.0447) (0.0599) (0.015) (0.0911) (0.0128) 

𝑠𝑢𝑏𝑖,𝑡 -5.440* -0.109** -10.54 -0.0669 -0.225*** -0.0803*** -0.308*** -0.0591*** 

 (3.053) (0.0491) (9.007) (0.0492) (0.057) (0.0128) (0.0836) (0.0128) 

𝑟𝑐𝑓𝑖,𝑡 0.288 -0.00901*** -0.0555 0.0475 -0.0431 -0.0274*** -0.0159 -0.0191** 

 (0.274) (0.00225) (1.555) (0.0404) (0.0314) (0.00792) (0.0212) (0.0092) 

𝑠𝑖𝑧𝑒𝑖,𝑡 6.439 0.0583 6.413 -0.029 -0.0226 0.019 -0.0982 0.00586 

 (5.155) (0.0926) (14.28) (0.112) (0.142) (0.0296) (0.191) (0.0327) 

𝑐𝑜𝑛𝑐𝑟𝑖,𝑡 0.303 -0.146 6.435 0.0612 0.0307 0.112*** 0.021 0.116*** 
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 (5.798) (0.107) (10.11) (0.153) (0.111) (0.0294) (0.142) (0.0372) 

𝑏𝑠𝑖,𝑡 7.533 -0.0253 10.15 -0.191* 0.00521 0.00248 -0.0487 0.00154 

 (5.793) (0.0659) (8.688) (0.102) (0.0651) (0.0101) (0.0904) (0.0113) 

𝑇𝐹𝑃𝑖,𝑡−1 1.071***  0.996***  1.011***  1.037***  

 (0.171)  (0.125)  (0.0226)  (0.0272)  

Constant -203.8 -4.559*** -258.4 -0.985 -0.134 0.123 1.066 0.538 

 (137.8) (1.411) (261.4) (1.275) (1.81) (0.347) (2.058) (0.34) 

         

Observations 137 137 67 67 1299 1299 658 658 

sample size 28 28 26 26 255 255 251 251 

R-squared 0.7851 0.9048   0.919 0.9144   

Hansen   1.403 1.899   0.778 4.45 

Hansen P-value   0.236 0.168   0.3779 0.0349 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null of instruments validity are reported under the Hansen J statistic. 
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Table 4.7 Short-run effects of intra-industry knowledge stock on productivity and output for firms not reporting R&D 

         

short run (1) (2) (3) (4) (5) (6) (7) (8) 

 manufacturing non-manufacturing 

 OLS GMM OLS GMM 

VARIABLES ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 

         

∆𝑦𝑖,𝑡−1  0.176***  -0.239  -0.052  -0.478 

  (0.054)  (0.37)  (0.0555)  (0.359) 

∆𝑘𝑖𝑡  0.408  0.639  0.377***  0.722** 

  (0.3)  (0.381)  (0.0889)  (0.328) 

∆𝑙𝑖𝑡  0.00771  0.16  0.294***  0.301* 

  (0.129)  (0.313)  (0.0782)  (0.162) 

∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  3.12 -0.105 0.473 1.277 -0.33 -0.0315 -0.16 0.343 

 (4.133) (0.998) (1.778) (1.173) (0.219) (0.0843) (0.38) (0.218) 

∆𝑠𝑢𝑏𝑖,𝑡 -0.217 -0.0393 -0.0864 -0.0661 -0.122*** -0.0714*** -0.147** -0.0441** 

 (0.267) (0.0632) (0.0676) (0.0459) (0.0332) (0.0126) (0.0672) (0.0187) 

𝑟𝑐𝑓𝑖,𝑡 -0.00506 -0.00256 0.595 0.392 -0.0472 0.00116 -0.077 0.019 

 (0.00321) (0.00255) (0.401) (0.271) (0.0411) (0.0274) (0.103) (0.0494) 

∆𝑠𝑖𝑧𝑒𝑖,𝑡 0.351 -0.0359 0.0102 -0.135 -0.0106 0.011 0.103 0.123 

 (0.442) (0.0774) (0.282) (0.226) (0.0692) (0.0371) (0.245) (0.128) 

∆𝑐𝑜𝑛𝑐𝑟𝑖,𝑡 0.0629 -0.00699 -0.16 -0.402 -0.054 -0.0414 -0.318 -0.296** 

 (0.263) (0.126) (0.424) (0.307) (0.0676) (0.048) (0.224) (0.147) 
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𝑏𝑠𝑖,𝑡 0.0187 0.0153 0.109 0.069 -0.0526** -0.000466 -0.0986** -0.00844 

 (0.0812) (0.0216) (0.0875) (0.0768) (0.0223) (0.00541) (0.0442) (0.0134) 

∆𝑇𝐹𝑃𝑖,𝑡−1 0.0253  -0.0551  -0.149*  -0.166***  

 (0.043)  (0.154)  (0.0767)  (0.0612)  

Constant 1.012 -0.0399 0.573 -0.414 1.799*** 0.0254 2.322*** 0.165 

 (0.689) (0.172) (0.868) (0.578) (0.269) (0.0543) (0.402) (0.14) 

         

Observations 100 100 37 37 966 966 368 368 

sample size 24 24 20 20 236 236 193 193 

R-squared 0.0266 0.0889   0.052 0.21   

Hansen   0.668 0.505   0.415 3.626 

Hansen P-value   0.4136 0.4773   0.5193 0.0569 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null of instruments validity are reported under the Hansen J statistic. 

 

  



166 

 

The result of the short-run effect of intra-industry R&D spillover to firms not 

undertaking R&D activities is shown in Table 4.7. It is evident that the effect of intra-

industry R&D stock ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  on productivity is insignificant in both types of firms 

under both OLS and GMM. Firms’ output is also not affected by other firms’ R&D 

stock in the short run. Besides, for non-manufacturing firms, the effect of short-run 

government subsidies ∆𝑠𝑢𝑏𝑖,𝑡 remains negative and significant while the effect of the 

credit flow 𝑟𝑐𝑓𝑖,𝑡 on the output becomes insignificant in the short run. 

 

4.6.2.2 Inter-industry knowledge spillover 

Table 4.8 shows the results of the relationship between the inter-industry R&D stock 

𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  and the productivity 𝑇𝐹𝑃𝑖𝑡 as well as the output 𝑦𝑖𝑡  for firms without R&D 

activities, where the inter-industry R&D stock 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  is measured by the sum of firm-

level R&D stocks in all industries except for the industry of the firm. We still mainly 

focus on the results in non-manufacturing sector and ignore those reported in the 

manufacturing sector as they are insignificant and inaccurate due to a too-small sample 

size (28 firms). In the non-manufacturing sector, the estimated coefficient of 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  

is significantly negative (-7.988, Column 7). We got a similar conclusion as that for 

intra-industry R&D 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  : Firms which do not have R&D activities in non-

manufacturing industries cannot benefit from the R&D result conducted by firms from 

other industries. This conclusion is different from that for firms with R&D expenditure, 

where they can benefit from the knowledge spillover effect on productivity from other 

industries (Table 4.4) in the long run. However, in the short run, non-manufacturing 

firms without R&D investment can benefit from the R&D knowledge spillover 

originating from other industries to increase both productivity (4.367, Column 7) and 

output (2.264, Column 8) under GMM in Table 4.9. From the results of the short run 

specification for both intra- and inter-industry R&D spillover in Table 4.7 and Table 

4.9, almost all estimates of regressors are insignificant. 
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Table 4.8 Long-run effects of inter-industry knowledge stock on productivity and output for firms not reporting R&D 

         
long run (1) (2) (3) (4) (5) (6) (7) (8) 

 manufacturing non-manufacturing 

 OLS GMM OLS GMM 

VARIABLES 𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  

         

𝑦𝑖,𝑡−1  0.670***  0.618***  0.586***  0.859*** 

  (0.0946)  (0.157)  (0.0451)  (0.0426) 

𝑘𝑖𝑡  0.482**  0.649***  0.135***  -0.00208 

  (0.189)  (0.203)  (0.04)  (0.0424) 

𝑙𝑖𝑡  0.164  0.135  0.172***  0.0515** 

  (0.107)  (0.128)  (0.0304)  (0.0221) 

𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  -72.34** -0.318 -557.9 1.523 0.525 0.678*** -7.988* -0.362 

 (33.7) (0.465) (336.9) (1.929) (1.217) (0.15) (4.279) (0.378) 

𝑠𝑢𝑏𝑖,𝑡 -4.128 -0.101* -10.05 -0.0753 -0.219*** -0.0823*** -0.277*** -0.0582*** 

 (2.631) (0.054) (8.05) (0.0485) (0.0569) (0.0129) (0.0873) (0.0131) 

𝑟𝑐𝑓𝑖,𝑡 0.245 -0.00857*** -1.083 0.0505 -0.0432 -0.0281*** -0.0162 -0.0191** 

 (0.239) (0.00239) (2.19) (0.0396) (0.0319) (0.0075) (0.0221) (0.00919) 

𝑠𝑖𝑧𝑒𝑖,𝑡 0.608 0.0389 40.37 -0.118 0.0253 0.0335 0.0206 0.0075 

 (4.942) (0.0983) (33.22) (0.105) (0.134) (0.0299) (0.191) (0.0311) 

𝑐𝑜𝑛𝑐𝑟𝑖,𝑡 -1.071 -0.123 8.592 0.0281 0.0401 0.114*** 0.0532 0.116*** 
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 (5.429) (0.113) (10.97) (0.139) (0.111) (0.0295) (0.144) (0.0369) 

𝑏𝑠𝑖,𝑡 8.271 -0.0227 7.457 -0.203* 0.00887 -0.00423 -0.037 0.0019 

 (5.535) (0.0683) (7.039) (0.104) (0.0653) (0.0101) (0.0925) (0.0114) 

𝑇𝐹𝑃𝑖,𝑡−1 1.125***  0.894***  1.009***  1.030***  

 (0.205)  (0.157)  (0.0228)  (0.0275)  

Constant 974.0** 0.999 7812 -23.33 -8.554 -8.905*** 105.3* 5.356 

 (439.5) (7.762) (4677) (27.86) (15.82) (2.084) (57.16) (5.025) 

         

Observations 137 137 67 67 1299 1299 658 658 

sample size 28 28 26 26 255 255 251 251 

R-squared 0.7894 0.9072   0.9189 0.9142   

Hansen   1.202 1.787   0.764 4.464 

Hansen P-value   0.273 0.1813   0.3822 0.0346 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null of instruments validity are reported under the Hansen J statistic. 
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Table 4.9 Short-run effects of inter-industry knowledge stock on productivity and output for firms not reporting R&D 

         
short run (1) (2) (3) (4) (5) (6) (7) (8) 

 manufacturing non-manufacturing 

 OLS GMM OLS GMM 

VARIABLES ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 

         

∆𝑦𝑖,𝑡−1  0.141***  -0.268  -0.0508  -0.55 

  (0.05)  (0.384)  (0.0554)  (0.372) 

∆𝑘𝑖𝑡  0.408  0.897**  0.367***  0.712** 

  (0.296)  (0.4)  (0.0897)  (0.329) 

∆𝑙𝑖𝑡  0.00628  -0.00539  0.291***  0.310* 

  (0.125)  (0.328)  (0.0773)  (0.164) 

∆𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  21.11 6.884 -2.589 8.973 1.249 0.486 4.367* 2.264* 

 (20.58) (4.634) (12.98) (5.953) (0.771) (0.447) (2.322) (1.223) 

∆𝑠𝑢𝑏𝑖,𝑡 -0.228 -0.0453 -0.0953 -0.0713 -0.126*** -0.0722*** -0.157** -0.0484*** 

 (0.27) (0.06) (0.079) (0.0428) (0.034) (0.0126) (0.0676) (0.018) 

𝑟𝑐𝑓𝑖,𝑡 -0.0000371 -0.00139 0.666 0.408 -0.0464 0.00144 -0.0726 0.0255 

 (0.0031) (0.00199) (0.475) (0.292) (0.0416) (0.0276) (0.103) (0.0503) 

∆𝑠𝑖𝑧𝑒𝑖,𝑡 0.91 0.14 0.00885 -0.0503 0.0656 0.0396 0.221 0.16 

 (0.976) (0.179) (0.267) (0.237) (0.0795) (0.0475) (0.251) (0.116) 

∆𝑐𝑜𝑛𝑐𝑟𝑖,𝑡 0.212 0.0362 -0.247 -0.344 -0.0633 -0.04 -0.367 -0.325** 
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 (0.31) (0.12) (0.603) (0.262) (0.0665) (0.0484) (0.231) (0.152) 

𝑏𝑠𝑖,𝑡 0.00436 0.0121 0.103 0.0377 -0.0512** -0.00038 -0.102** -0.0112 

 (0.0768) (0.0203) (0.0844) (0.0646) (0.0218) (0.00537) (0.0444) (0.0136) 

∆𝑇𝐹𝑃𝑖,𝑡−1 0.0201  -0.0764  -0.143*  -0.185***  

 (0.0412)  (0.179)  (0.0761)  (0.0712)  

Constant 3.094 0.556 0.52 0.514 1.802*** 0.0409 2.416*** 0.242* 

 (2.267) (0.395) (0.828) (0.612) (0.273) (0.0591) (0.399) (0.134) 

         

Observations 100 100 37 37 966 966 368 368 

sample size 24 24 20 20 236 236 193 193 

R-squared 0.0342 0.1238   0.0544 0.2108   

Hansen   0.535 0.289   0.546 3.864 

Hansen P-value   0.4644 0.591   0.46 0.0493 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null of instruments validity are reported under the Hansen J statistic. 
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4.6.3 Interaction between R&D-related factors and ownership 

In the literature review section, we have discussed that firm’s ownership could capture 

extra forces that are influencing the effect of R&D on the firm-level productivity and 

output. To measure this difference caused by a firm’s ownership, we add interaction 

terms between the ownership dummies and R&D stock-related variables in 

specifications (8) and (9). There are four types of ownership: state-owned, private-

owned, foreign-owned and jointly-owned. In the result Tables, the regression is 

estimated for both manufacturing and non- manufacturing sectors, respectively. Firms 

which are reporting/not reporting R&D expenditure, are in separate sub-groups. For the 

firms which do not have R&D activities, we only measure the effect of knowledge 

spillover emanating from intra-industry and inter-industry R&D stock pools for them, 

while for firms reporting their own R&D expenditure, we also take the firm-specific 

R&D stock as one of productivity determinants. To simplify the exposition, we only 

report the results of the interaction between R&D-related variables and ownership 

dummies. The rest of the parameter estimates appear similar (largely robust) to the 

previous estimates which did not include ownership dummies. 

 

4.6.3.1 State-owned firms 

Table 4.10 presents the results of measuring whether state-owned firms have different 

productivity (TFP) benefits from R&D and whether they could benefit more from 

knowledge spillover originating from other firms and industries. In both long run and 

short run, state-owned firms which do not undertake R&D activities can neither enjoy 

extra knowledge spillover within and between the industries, nor have more intense 

competition with firms conducting innovation activities because the estimated 

coefficients of 𝐷1 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴 and 𝐷1 ∗ 𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅  (from Column 5 to Column 12) for the 

firm-level TFP and the output are all insignificant in both sectors. 

 

For firms’ own R&D productivity 𝐷1 ∗ 𝑆𝑖,𝑡
𝐹 , there is no difference between state-owned 

firms and other three types of firms in manufacturing sector (Column1) and non-

manufacturing sector (Column 3) in the long run. So does their R&D effect on output 

𝑦𝑖𝑡  (Column 2 and Column 4). In the short run, state-owned firms can generate more 

output benefits from R&D but not higher productivity in manufacturing sector. On the 

contrary, firms in non-manufacturing sector are shown to benefit less from R&D in 
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terms of productivity and generate less output due to this ownership. 

 

State-owned firms are not enjoying extra knowledge spillover than the other three types 

of firms in the short run. But in the long run, the positive and significant coefficient of 

𝐷1 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅   is 0.0505, implying that a positive knowledge spillover emanating from 

other industries would cause a higher TFP for state-owned firms in manufacturing 

sector. Meanwhile, the negative and significant coefficient for the interaction between 

intra-industry R&D stock and state-ownership dummy 𝐷1 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴   (-0.0629 in 

Column 1) indicates that TFP of state-owned firms benefit less from R&D within the 

industry. Other types of firms are preventing their R&D results being shared to state-

owned firms and this raises the innovation bar for state-owned firms in the similar 

technological environment. 
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Table 4.10 Effect of the interaction between R&D knowledge stock and state-owned ownership dummy on productivity and output (GMM estimates) 

 
            

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 firms reporting R&D expenditure firms not reporting R&D expenditure 

long run manufacturing non-manufacturing manufacturing non-manufacturing manufacturing non-manufacturing 

VARIABLES 𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  

𝐷1 ∗ 𝑆𝑖,𝑡
𝐹  -0.0183 -0.00952 0.0282 -0.0147         

 (0.024) (0.00625) (0.0573) (0.0152)         

𝐷1 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴 -0.0629** -0.00773 -0.0266 0.0132 -1.028 0.0262 -0.0371 -0.00676     

 (0.0315) (0.00995) (0.0233) (0.0119) (1.847) (0.0189) (0.0587) (0.005)     

𝐷1 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  0.0505** 0.00772 -0.0028 -0.0085     0.423 0.0186 -0.0219 -0.00392 

 (0.023) (0.00741) (0.0248) (0.00938)     (1.103) (0.0123) (0.0325) (0.00295) 

             

Observations 3,524 3,532 1,155 1,159 67 67 658 658 67 67 658 658 

sample size 1201 1202 392 392 26 26 251 251 26 26 251 251 

Hansen 2.575 3.609 1.955 2.895 1.303 3.022 0.778 4.56 1.269 3.31 0.765 4.612 

Hansen P-value 0.1085 0.0575 0.162 0.0889 0.2537 0.0821 0.3777 0.0327 0.26 0.0688 0.3819 0.0318 
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 firms reporting R&D expenditure firms not reporting R&D expenditure 

short run manufacturing non-manufacturing manufacturing non-manufacturing manufacturing non-manufacturing 

VARIABLES ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 

𝐷1 ∗ ∆𝑆𝑖,𝑡
𝐹  0.23 0.503*** -0.662* -0.285**         

 (0.219) (0.169) (0.351) (0.144)         

𝐷1 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  -0.156 -0.371 0.889 0.413 2.072 1.582 -0.944 -0.689     

 (0.277) (0.273) (0.638) (0.278) (3.673) (2.934) (0.64) (0.428)     

𝐷1 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  0.0613 -0.156 1.342 0.208     1.301 0.91 1.278 3.512 

 (0.442) (0.411) (1.574) (0.898)     (4.798) (2.887) (5.927) (2.234) 

             

Observations 2,262 2,269 748 752 37 37 368 368 37 37 368 368 

sample size 1133 1136 375 377 20 20 193 193 20 20 193 193 

Hansen 0.222 1.431 0.031 0.186 0.521 0.388 0.356 3.98 0.567 0.337 0.531 4.232 

Hansen P-value 0.6374 0.2316 0.8613 0.6665 0.4704 0.5332 0.5508 0.046 0.4513 0.5619 0.466 0.0397 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null hypothesis of instruments validity are reported under the Hansen J statistic. 

This Table reports the effect of the R&D stock variables for state-owned firms. The dummy variable for state-owned firms is 𝐷1. We only pick out and present 

the parts that are relative to dummy variables in the regression of eq.(8) and eq.(9). 
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Table 4.11 Effect of the interaction between R&D knowledge stock and privately-owned ownership dummy on productivity and output (GMM estimates) 

 
            

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 firms reporting R&D expenditure firms not reporting R&D expenditure 

long run manufacturing non-manufacturing manufacturing non-manufacturing manufacturing non-manufacturing 

VARIABLES 𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  

𝐷2 ∗ 𝑆𝑖,𝑡
𝐹  -0.00879 0.00794 0.0361 0.0284**         

 (0.0207) (0.00503) (0.0265) (0.0139)         

𝐷2 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  0.0326 -0.00134 0.00349 -0.0157 0.772 -0.0258 0.0324 0.0109*     

 (0.0297) (0.00917) (0.0214) (0.0112) (1.608) (0.0186) (0.0706) (0.00615)     

𝐷2 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  -0.0186 -0.00035 -0.0128 0.00197     -0.369 -0.0194 0.0171 0.00636* 

 (0.0211) (0.00672) (0.0207) (0.0099)     (1.039) (0.0119) (0.0394) (0.00359) 

             

Observations 3,524 3,532 1,155 1,159 67 67 658 658 67 67 658 658 

sample size 1201 1202 392 392 26 26 251 251 26 26 251 251 

Hansen 2.482 3.731 2.03 3.792 1.297 3.683 0.778 4.6 1.281 4.28 0.764 4.685 

Hansen P-value 0.1151 0.0534 0.1542 0.0515 0.2548 0.055 0.3779 0.032 0.2576 0.0386 0.3821 0.0304 
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 firms reporting R&D expenditure firms not reporting R&D expenditure 

short run manufacturing non-manufacturing manufacturing non-manufacturing manufacturing non-manufacturing 

VARIABLES ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 

𝐷2 ∗ ∆𝑆𝑖,𝑡
𝐹  -0.219 -0.497*** 0.616* 0.217         

 (0.212) (0.157) (0.328) (0.136)         

𝐷2 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  0.00485 0.331 -0.851 -0.379* -0.606 -0.365 0.922 0.505     

 (0.256) (0.262) (0.575) (0.22) (3.427) (2.285) (0.707) (0.415)     

𝐷2 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  -0.289 0.0528 -1.594 -0.393     1.193 -0.0987 -5.004 -2.813 

 (0.38) (0.38) (1.577) (0.912)     (8.527) (3.546) (8.194) (2.274) 

             

Observations 2,262 2,269 748 752 37 37 368 368 37 37 368 368 

sample size 1133 1136 375 377 20 20 193 193 20 20 193 193 

Hansen 0.235 1.588 0.039 0.148 0.57 0.469 0.351 3.943 0.429 0.286 0.453 4.048 

Hansen P-value 0.6281 0.2075 0.844 0.7006 0.4502 0.4933 0.5536 0.0471 0.5125 0.5929 0.5008 0.0442 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null of instruments validity are reported under the Hansen J statistic. 

This Table reports the effect of the R&D stock variables for privately-owned firms. The dummy variable for privately-owned firms is 𝐷2. We only pick out and 

present the parts that are relative to dummy variables in the regression of eq.(8) and eq.(9). 
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4.6.3.2 Privately-owned firms 

The results for private firms are shown in Table 4.11. We firstly discuss the firms not 

reporting R&D expenditures. There is no significant extra spillover effect 𝐷2 ∗

∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴 and 𝐷2 ∗ ∆𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅  for them in the short run (Column 5 to Column 12, the 

bottom half of Table 4.10). In the long run (the upper part of Table 4.10), both intra-

industry R&D 𝐷2 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴   and inter-industry R&D 𝐷2 ∗ 𝑆𝑖,𝑡−1

𝐼−𝑇𝐸𝑅   generate higher 

output 𝑦𝑖𝑡  for private-owned firms but it only happens in non-manufacturing sector 

(Column 8 and Column 12). Results for the extra effect of R&D spillover on the 

productivity for private firms is not significant (Colum 7 and Column 11). 

 

Now we discuss firms which conduct R&D activities. In the manufacturing sector, 

private-owned firms do not have different TFP benefits from their own R&D in both 

long run and short run as the coefficients for the interaction between firm’s own R&D 

stock and the ownership dummy 𝐷2 ∗ 𝑆𝑖,𝑡
𝐹  and 𝐷2 ∗ ∆𝑆𝑖,𝑡

𝐹  are insignificant (Column 

1). The coefficient of the output is significantly lower than that of other types of firms 

(-0.497 in Column 2) in the short run and becomes similar to other firms in the long 

run. This implies that the extra effect for the output from firm’s own R&D stock for 

private-owned manufacturing firms disappear in the long run. In the non-manufacturing 

sector, increase in the firm-level R&D stock generates higher TFP in the short run

（0.616 in Column 3）and higher output in the long run (0.0284 in Column 4). This is 

consistent with Boeing et al. (2016) to some extent. In their research private firms have 

higher return on R&D than state-owned firms, while in our model the return for private 

firms is larger than the other three types of firms. 

 

For knowledge spillover effect, privately-owned firms are more competitive in R&D 

than other types of firms in the short run within the industry in non-manufacturing 

sector. They have less output benefits from intra-industry R&D pool than the other three 

types of firms as the significant and negative coefficient for 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  is -0.379 (Column 

4). There is no positive knowledge spillover found in the long run and short run for both 

sectors, no matter it is within-industry or between-industry, implying that privately-

owned firms make more effort to prevent R&D information leakage and protect 

innovation results. 
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4.6.3.3 Foreign-owned firms 

Table 4.12 shows the results for foreign-owned firms. For firms which report R&D 

expenditure, the extra knowledge spillover effect is significant in manufacturing sector. 

In the short run, the coefficient of interaction between the foreign ownership dummy 

and inter-industry R&D 𝐷3 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅   to 𝑇𝐹𝑃𝑖𝑡  is significantly positive at 2.708 

(Column 1), indicating that there is a significant extra knowledge spillover for foreign-

owned firms between industries contributing to the firm-level productivity. In the long 

run, the coefficient of interaction between intra-industry R&D stock and the foreign 

ownership dummy 𝐷3 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  is significantly positive at 0.036 (Column 2), which 

means R&D spillovers emanating from other firms in the same industry generates more 

output for foreign-owned firms than for the other three counterparts. However, there is 

a significant negative effect of foreign ownership on the output. When firms in other 

industries increase their R&D stock 𝐷3 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  by 1%, foreign-owned firms would 

generate a lower output 𝑦𝑖𝑡  by 0.0271% (Column 2) than other types of firms. 

 

Firms in non-manufacturing sector do not have a significant difference with other types 

of firms in both long run and short run as the coefficients for all R&D related interaction 

variables are insignificant (Column 3 and Column 4).  

 

There is no evidence showing that foreign-owned firms which do not conduct R&D 

activities could benefit more from knowledge spillover than other firms with different 

types of ownership in both sectors (Column 5 to Column 12). 

  



179 

 

Table 4.12 Effect of the interaction between R&D knowledge stock and foreign-owned ownership dummy on productivity and output (GMM estimates) 

 
            

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 firms reporting R&D expenditure firms not reporting R&D expenditure 

long run manufacturing non-manufacturing manufacturing non-manufacturing manufacturing non-manufacturing 

VARIABLES 𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  

𝐷3 ∗ 𝑆𝑖,𝑡
𝐹  0.0362 0.00484 -0.103 -0.027         

 (0.0303) (0.0125) (0.0656) (0.0662)         

𝐷3 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  0.0555 0.0360* 0.475 0.133 -0.259 0.0122 0.091 -0.0083     

 (0.0449) (0.0203) (0.346) (0.133) (1.85) (0.0137) (0.0776) (0.014)     

𝐷3 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  -0.0502 -0.0271* -0.227 -0.0604     0.293 0.0057 0.0525 -0.0047 

 (0.031) (0.0157) (0.182) (0.0684)     (1.587) (0.0148) (0.0422) (0.0075) 

             

Observations 3,524 3,532 1,155 1,159 89 89 875 875 89 89 875 875 

sample size 1201 1202 392 392 26 26 251 251 26 26 251 251 

Hansen 2.343 2.428 2.057 4.809 0.275 0.015 0.779 4.475 1.207 1.789 0.765 4.49 

Hansen P-value 0.1258 0.1192 0.1515 0.0283 0.5999 0.9036 0.3774 0.0344 0.2719 0.1811 0.3816 0.0341 
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 firms reporting R&D expenditure firms not reporting R&D expenditure 

short run manufacturing non-manufacturing manufacturing non-manufacturing manufacturing non-manufacturing 

VARIABLES ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 

𝐷3 ∗ ∆𝑆𝑖,𝑡
𝐹  0.474 0.732* -0.184 -0.00022         

 (0.376) (0.4) (0.309) (0.234)         

𝐷3 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  1.322 0.391 0.64 0.742 8.698 2.297 -0.688 1.317     

 (0.804) (0.687) (1.58) (0.74) (9.046) (0.916) (0.913) (0.835)     

𝐷3 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  2.708* 1.624 -5.381 -5.319     16.631 2.703 1.112 -0.896 

 (1.453) (1.126) (7.631) (4.08)     (20.55) (3.334) (7.393) (4.405) 

             

Observations 2,262 2,269 748 752 77 77 776 776 77 77 776 776 

sample size 1133 1136 375 377 20 20 193 193 20 20 193 193 

Hansen 0.214 1.548 0.036 0.041 0.038 0.339 0.411 3.522 0.012 0.89 0.544 3.86 

Hansen P-value 0.6433 0.2134 0.8486 0.8397 0.845 0.5605 0.5213 0.0606 0.9127 0.3454 0.4609 0.0495 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null of instruments validity are reported under the Hansen J statistic. 

This Table reports the effect of the R&D stock variables for foreign-owned firms. The dummy variable for foreign-owned firms is 𝐷3. We only pick out and 

present the parts that are relative to dummy variables in the regression of eq.(8) and eq.(9).  
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Table 4.13 Effect of the interaction between R&D knowledge stock and private-and-foreign-jointly owned ownership dummy on productivity and output 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 firms reporting R&D expenditure firms not reporting R&D expenditure 

long run manufacturing non-manufacturing manufacturing non-manufacturing manufacturing non-manufacturing 

VARIABLES 𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  𝑇𝐹𝑃𝑖𝑡 𝑦𝑖𝑡  

𝐷4 ∗ 𝑆𝑖,𝑡
𝐹  0.0668* 0.0162* 0.00254 0.00417         

 (0.0346) (0.00939) (0.0387) (0.0252)         

𝐷4 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  0.0237 0.000948 0.146** 0.044   0.275* 0.0416     

 (0.0579) (0.0243) (0.0647) (0.0453)   (0.162) (0.0439)     

𝐷4 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  -0.0452 -0.00789 -0.0962** -0.0241       0.16 0.0232 

 (0.0398) (0.0167) (0.0449) (0.0319)       (0.111) (0.0298) 

             

Observations 3,524 3,532 1,155 1,159 67 67 658 658 67 67 658 658 

sample size 1201 1202 392 392 26 26 251 251 26 26 251 251 

Hansen 2.281 2.26 2.071 5.106 1.403 1.899 0.773 4.189 1.202 1.787 0.758 4.246 

Hansen P-value 0.131 0.1328 0.1501 0.0238 0.2361 0.1682 0.3793 0.0407 0.2729 0.1813 0.3838 0.0394 
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 firms reporting R&D expenditure firms not reporting R&D expenditure 

short run manufacturing non-manufacturing manufacturing non-manufacturing manufacturing non-manufacturing 

VARIABLES ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 ∆𝑇𝐹𝑃𝑖𝑡 ∆𝑦𝑖𝑡 

𝐷4 ∗ ∆𝑆𝑖,𝑡
𝐹  -0.441 -0.852 0.964 0.509         

 (0.492) (0.603) (0.84) (0.525)         

𝐷4 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  2.160*** 1.227 -0.567 -0.522   43.66 11.01     

 (0.809) (0.828) (1.868) (1.409)   (43.67) (13.56)     

𝐷4 ∗ ∆𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  2.635** 0.659 2.66 3.875       32.79 6.158 

 (1.117) (1.223) (6.084) (4.758)       (65.04) (19.69) 

             

Observations 2,262 2,269 748 752 37 37 368 368 37 37 368 368 

sample size 1133 1136 375 377 20 20 193 193 20 20 193 193 

Hansen 0.209 1.615 0.023 0.107 0.668 0.505 0.558 3.269 0.535 0.289 0.627 3.822 

Hansen P-value 0.6475 0.2037 0.8789 0.7434 0.4136 0.4773 0.4549 0.0706 0.4644 0.591 0.4285 0.0506 

Note: Standard errors (in brackets) are reported below the coefficient estimates. ***, ** and * denote significance at 1%, 5% and 10%. R-squared is goodness of 

fit statistics. R-squared in GMM estimator is uninformative so it is not reported in GMM estimator (Wooldridge, 2012). Hansen is the Hansen test of the 

overidentification. Hansen P-values of the null of instruments validity are reported under the Hansen J statistic. 

This Table reports the effect of the R&D stock variables for private-and-foreign-jointly owned firms. The dummy variable for private-and-foreign-jointly owned 

firms is 𝐷4. We only pick out and present the parts that are relative to dummy variables in the regression of eq.(8) and eq.(9). 

The variables of the interaction between the intra-/ inter-industry R&D stocks and the ownership dummy are dropped in the regression for manufacturing firms 

not reporting R&D expenditure due to the detected collinearities. Thus, there is no estimated coefficients for the variables of intra-industry R&D*D4 and inter-

industry R&D*D4 for manufacturing firms not reporting R&D expenditure.  
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4.6.3.4 Private-and-foreign-jointly owned firms 

Table 4.13 presents the results for firms controlled by both private and foreign owners 

and we refer them as jointly owned firms. For firms not undertaking R&D activities, 

since there are collinearities in the regressions in the manufacturing group, we could 

not do the estimation for them. Therefore, we only report the results for non-

manufacturing sector. The jointly owned firms can generate a significantly higher TFP 

benefits from intra-industry R&D pool than other types of firms in the long run as the 

coefficient for 𝐷4 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  is positive and significant (0.275 in Column 7). 

 

Compared with other types of firms, jointly owned firms engaged in R&D activities 

have significant differences in both productivity and output benefits from firms’ own 

R&D and R&D spillovers. In the manufacturing sector, jointly owned firm’s own R&D 

stock 𝐷4 ∗ 𝑆𝑖,𝑡
𝐹 ’s effects on productivity 𝑇𝐹𝑃𝑖𝑡 and output 𝑦𝑖𝑡  are significantly larger 

than those on other types of firms, with a higher effect of 0.0668 (Column 1) for TFP 

and 0.0162 (Column 2) for output in the long run. Therefore, the firm’s own R&D stock 

benefit its productivity as well as the output in the long run. Our result is consistent 

with Zhou and Deng (2009), suggesting R&D efficiency in foreign-funded firms is 

higher. In the short run, jointly owned manufacturing firms have positive and significant 

extra intra- and inter-industry R&D spillover on the productivity, with the coefficients 

to be 2.16 and 2.635 (Column 1) respectively. In the non-manufacturing sector, jointly 

owned firms enjoy an extra positive intra-industry R&D spillover contributing to their 

TFP, with the significant and positive coefficient of 𝐷4 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝑅𝐴  at 0.146 (Column 3). 

But the TFP contribution from inter-industry R&D spillover 𝐷4 ∗ 𝑆𝑖,𝑡−1
𝐼−𝑇𝐸𝑅  is lower than 

for the other three types of firms, with the significant and negative coefficient of -0.0962 

(Column 3). An extra effect of a positive intra-industry R&D spillover indicates that 

jointly owned firms are more likely to create knowledge networks within the industry, 

which contribute to their productivity. However, technological rivalry appears to be 

more intense for jointly owned firms between the industries. 
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To sum up, firms which are entirely or partly related to private ownership (privately-

owned firms and private-and-foreign-jointly owned firms) are more likely to have extra 

TFP or output benefits from firm’s own R&D. Firms with foreign-related ownership 

(foreign-owned firms and private-and-foreign-jointly owned firms) can benefit more 

from other firms’ R&D activities within the industry than state-owned and privately-

owned firms, while the inter-industry knowledge spillover effect is weaker in firms with 

foreign ownership. State-owned firms, on the contrary, benefit more from knowledge 

spillover originating from other industries but face more intense technological rivalries 

in the same industry than other types of firms. 

 

 

4.7 Conclusion 

In recent years, China has achieved a new stage of development, which implies that 

economic growth should not be driven simply by accumulating physical capital as this 

development model may cause resource allocation inefficiency. Instead, economic 

development focused on a high-quality output may be preferred in this stage. This 

requires economic growth to be driven by a higher level of productivity, where R&D 

and innovation come into play. 

 

In this chapter we analyze factors which might affect the firm-level productivity and 

output. Factors include firm’s own R&D expenditure as well as other factors such as 

the government subsidy ratio, debt ratio, firm size, etc. In addition, we also consider 

intra- and inter-industry knowledge spillovers. The externality of knowledge implies 

that R&D activities conducted by other firms or in other industries could also influence 

a firm’s productivity or output. We measure the effect of these relative factors on TFP 

and output for manufacturing sector and non-manufacturing sector separately. The 

effects are estimated both in the long run and in the short run. In addition, we examine 

whether the magnitudes of R&D and knowledge spillovers differ across firms with 
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different types of ownership by generating an interaction variable between the R&D 

stock and the ownership dummies into the model. The extra effect brought up by the 

four types of ownership are measured separatelyfor state-owned firms, privately-owned 

firms, foreign-owned firms and private-and-foreign joint ownership firms. 

 

We found that R&D-related factors play an important role in determining firms’ 

productivity. In the manufacturing sector, a firm’s own R&D stock significantly 

increases its productivity both in long and short runs. In the non-manufacturing sector, 

the impact of a firm’s own R&D stock on both productivity and output is insignificant, 

which indicates that innovation activities might not be the best way to increase the firm-

level productivity and output. 

 

Technological rivalry is observed no matter in the same industrial environment or 

across different industries in manufacturing sector. Significantly negative coefficients 

for both intra-industry and inter-industry R&D indicate the fact that manufacturing 

firms protect their innovation by preventing technological information leaking out to 

other firms. However, in the non-manufacturing sector, there are significant knowledge 

spillovers across firms in different industries. This spillover effect also exists for firms 

not engaged in any R&D activities but only in the short run. The results show that there 

is innovation competition for Chinese listed manufacturing firms while non-

manufacturing firms are more likely to communicate and cooperate rather than compete 

in R&D activities as the estimated results of the effect of R&D spillover for 

manufacturing firms are significantly negative and those for non-manufacturing firms 

are either significantly positive or insignificant.  

 

We have also analyzed the effect of other factors that may affect firm-level productivity 

and output. We found that there is a negative relationship between the government 

subsidy and the productivity for both manufacturing and non-manufacturing sectors, 

which indicates the inefficiency in resource allocation. The government should change 
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the way of directly subsidizing firms as this approach cannot promote firms’ 

productivity. Besides, loans from the banks are another financing channel for firms’ 

R&D activities. The results show that the ease of financial constraints has a positive 

effect on both TFP and output only in the manufacturing sector. In the manufacturing 

sector, the productivity of larger firms is higher, but only in the short run. However, in 

the non-manufacturing sector, smaller firms are more productive. Firms with a higher 

ownership concentration ratio generate higher TFP in manufacturing sector while the 

effect of this factor is insignificant in non-manufacturing sector. 

 

In the last part, we consider an interaction between R&D related factors and ownership 

dummies to figure out whether R&D activities and knowledge spillover effect perform 

differently with different ownership. State-owned manufacturing firms face a more 

intense innovation competition than other types of firms within the industry but can 

enjoy more knowledge spillover emanating from inter-industry R&D stock pool to 

increase the productivity. Their R&D productivity has the same magnitude as the other 

types of firms, ceteris paribus. However, in the non-manufacturing sector, state-owned 

firms are less productive in R&D activities than other firms in the short run but become 

similar to others later. Privately-owned firms in non-manufacturing sector are more 

productive in R&D activities to increase TFP in the short run and their own R&D stock 

contributes to the output in the long run. Also, firms not investing in R&D can enjoy 

higher intra-industry and inter-industry knowledge spillover than other types of firms 

to increase the output in the long run. But this only happens in non-manufacturing sector. 

Foreign-owned manufacturing firms generate higher return from their own R&D stock 

on the output and receive more inter-industry knowledge spillover to increase TFP in 

the short run. In the long run, there are extra positive intra-industry knowledge spillover 

but negative inter-industry R&D knowledge externality. Private-and-foreign-jointly 

owned firms in the manufacturing sector exhibit a distinctly higher R&D productivity 

in the long run. Also, the intra- and inter-industry knowledge pools generate extra 

positive knowledge spillover for them in the short run. Non-manufacturing jointly 
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owned firms can better absorb R&D results than other types firms in the same industry 

even if they do not invest in R&D themselves. 

 

By comparing the results for firms with four different types of ownership, we conclude 

that in the manufacturing sector, jointly owned firms are the most productive in R&D 

activities. State-owned firms can better receive positive inter-industry knowledge 

spillover than other types of firms. Foreign- and private-and-foreign-jointly owned 

firms have extra intra-industry knowledge spillover effect. In the non-manufacturing 

sector, privately-owned firms appear to have the highest R&D elasiticity. Jointly owned 

firms benefit more from an extra intra-industry R&D spillover than the other three 

counterparts. 

 

Above results implicitly indicate some policy suggestions. Manufacturing firms should 

be encouraged to transfer their innovation results into commercialization process, 

which later increase the output growth. The inefficiency of government subsidy in 

promoting the productivity requires that the government should find alternative policies 

to stimulate firms’ incentive to innovate rather than directly subsidizing them. State-

owned firms need reforms such as evaluating innovation results and make CEO to be 

more responsible for R&D efficiency in their R&D activities. Jointly owned firms have 

more advanced technologies and are good at applying the advanced knowledge to the 

final commercialization process. Also, the magnitude of R&D spillover effect is higher 

in firms which are partly or entirely owned by foreign investors. Thus, the government 

should make policies to encourage trade and cooperation between domestic and foreign 

firms as the productivity of the former can be increased by communication and 

cooperation. 

 

Now we have a brief discussion about the directions for further research. In further 

research, since the correlation between industries is different, we could find a way to 

generate a weight for each industry. Then intra- and inter-industry spillover could be 
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generated by a weighted sum of R&D stock from other firms and industries instead of 

simply summing all firms’ R&D stock with the same weight. Also, since we only use 

disembodied measures of inter- and intra-industry knowledge pools relevant to each of 

the firms in the sample, addressing embodies knowledge pools will be an extension of 

this work. Another development we could consider is that the R&D activities might be 

more efficient in high-tech industries than in other industries, such as labour-intensive 

or advertising-intensive industries. Thus, one inspiration for further research is to 

analyse the knowledge spillover effect for industries categorised by different 

taxonomies separately. 

  



189 

 

4.8 Reference 

Acs, Z.J. and Audretsch, D.B. 1987. Innovation, Market Structure, and Firm Size. The 

Review of Economics and Statistics 69(4), pp. 567–574. doi: 10.2307/1935950. 

 

Aerts, K. and Schmidt, T. 2008. Two for the price of one?: Additionality effects of 

R&D subsidies: A comparison between Flanders and Germany. Research Policy 

37(5), pp. 806–822. doi: 10.1016/j.respol.2008.01.011. 

 

Aghion, P. and Howitt, P. 1990. A Model of Growth Through Creative Destruction. 

National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w3223 [Accessed: 14 February 2022]. 

 

Aitken, B.J. and Harrison, A.E. 1999. Do Domestic Firms Benefit from Direct 

Foreign Investment? Evidence from Venezuela. American Economic Review 89(3), 

pp. 605–618. doi: 10.1257/aer.89.3.605. 

 

Anwar, S. and Sun, S. 2014. Heterogeneity and curvilinearity of FDI-related 

productivity spillovers in China’s manufacturing sector. Economic Modelling 41, pp. 

23–32. doi: 10.1016/j.econmod.2014.03.021. 

 

Arnade, C. and Gopinath, M. 2000. Financial constraints and output targets in Russian 

agricultural production. Journal of International Development 12(1), pp. 71–84. doi: 

10.1002/(SICI)1099-1328(200001)12:1<71::AID-JID614>3.0.CO;2-H. 

 

Arrow, K. J. (1962). The economic implications of learning by doing. The review of 

economic studies 29(3), pp.155–173. 

 

Audretsch, D.B. and Feldman, M.P. 1996. R&D Spillovers and the Geography of 

Innovation and Production. The American Economic Review 86(3), pp. 630–640. 

https://doi.org/10.2307/1935950
https://doi.org/10.1016/j.respol.2008.01.011
https://www.nber.org/papers/w3223
https://doi.org/10.1257/aer.89.3.605
https://doi.org/10.1016/j.econmod.2014.03.021
https://doi.org/10.1002/(SICI)1099-1328(200001)12:1%3c71::AID-JID614%3e3.0.CO;2-H


190 

 

 

Audretsch, D.B., Link, A.N. and Scott, J.T. 2019. Public/private technology 

partnerships: evaluating SBIR-supported research. The Social Value of New 

Technology. Available at: 

https://www.elgaronline.com/view/edcoll/9781788116329/9781788116329.00021.xm

l [Accessed: 14 February 2022]. 

 

Baum, C.F., Schaffer, M.E. and Stillman, S. 2003. Instrumental Variables and GMM: 

Estimation and Testing. The Stata Journal 3(1), pp. 1–31. doi: 

10.1177/1536867X0300300101. 

 

Benson, J.K. 1978. Review of The External Control of Organizations. Administrative 

Science Quarterly 23(2), pp. 358–361. doi: 10.2307/2392573. 

 

Berle, A. A., and Means, G. G. C. 1991. The modern corporation and private 

property. Transaction publishers. doi: 10.4324/9781315133188. 

 

Bhattacharya, S. and Ritter, J.R. 1983. Innovation and Communication: Signalling 

with Partial Disclosure. The Review of Economic Studies 50(2), pp. 331–346. doi: 

10.2307/2297419. 

 

Blancard, S., Boussemart, J.-P., Briec, W. and Kerstens, K. 2006. Short- and Long-

Run Credit Constraints in French Agriculture: A Directional Distance Function 

Framework Using Expenditure-Constrained Profit Functions. American Journal of 

Agricultural Economics 88(2), pp. 351–364. doi: 10.1111/j.1467-8276.2006.00863.x. 

 

Boeing, P. 2016. The allocation and effectiveness of China’s R&D subsidies - 

Evidence from listed firms. Research Policy 45(9), pp. 1774–1789. doi: 

10.1016/j.respol.2016.05.007. 

https://www.elgaronline.com/view/edcoll/9781788116329/9781788116329.00021.xml
https://www.elgaronline.com/view/edcoll/9781788116329/9781788116329.00021.xml
https://doi.org/10.1177/1536867X0300300101
https://doi.org/10.2307/2392573
https://doi.org/10.2307/2297419
https://doi.org/10.1111/j.1467-8276.2006.00863.x
https://doi.org/10.1016/j.respol.2016.05.007


191 

 

 

Boeing, P., Mueller, E. and Sandner, P. 2016. China’s R&D explosion—Analyzing 

productivity effects across ownership types and over time. Research Policy 45(1), pp. 

159–176. doi: 10.1016/j.respol.2015.07.008. 

 

Brander, J.A., Egan, E. and Hellmann, T.F. 2010. Government Sponsored versus 

Private Venture Capital: Canadian Evidence. In: International Differences in 

Entrepreneurship. University of Chicago Press, pp. 275–320. Available at: 

https://www.nber.org/books-and-chapters/international-differences-

entrepreneurship/government-sponsored-versus-private-venture-capital-canadian-

evidence [Accessed: 14 February 2022]. 

 

Branstetter, L. and Sakakibara, M. 1998. Japanese Research Consortia: A 

Microeconometric Analysis of Industrial Policy. The Journal of Industrial Economics 

46(2), pp. 207–233. doi: 10.1111/1467-6451.00069. 

 

Burkart, M., Gromb, D. and Panunzi, F. 1997. Large Shareholders, Monitoring, and 

the Value of the Firm*. The Quarterly Journal of Economics 112(3), pp. 693–728. 

doi: 10.1162/003355397555325. 

 

Caballero, R.J. and Jaffe, A.B. 1993. How High Are the Giants’ Shoulders: An 

Empirical Assessment of Knowledge Spillovers and Creative Destruction in a Model 

of Economic Growth. NBER Macroeconomics Annual 8, pp. 15–74. doi: 

10.1086/654207. 

 

Carpenter, R.E. and Petersen, B.C. 2002. Capital Market Imperfections, High‐Tech 

Investment, and New Equity Financing. The Economic Journal 112(477), pp. F54–

F72. doi: 10.1111/1468-0297.00683. 

 

https://doi.org/10.1016/j.respol.2015.07.008
https://www.nber.org/books-and-chapters/international-differences-entrepreneurship/government-sponsored-versus-private-venture-capital-canadian-evidence
https://www.nber.org/books-and-chapters/international-differences-entrepreneurship/government-sponsored-versus-private-venture-capital-canadian-evidence
https://www.nber.org/books-and-chapters/international-differences-entrepreneurship/government-sponsored-versus-private-venture-capital-canadian-evidence
https://doi.org/10.1111/1467-6451.00069
https://doi.org/10.1162/003355397555325
https://doi.org/10.1086/654207
https://doi.org/10.1111/1468-0297.00683


192 

 

Chen, H.-L. 2012. Board Characteristics and R&D Investment: Evidence from 

Taiwan’s Electronics Industry. Advances in Management and Applied Economics 

2(4), pp. 161–170. 

 

Cheng, H., Fan, H., Hoshi, T. and Hu, D. 2019. Do Innovation Subsidies Make 

Chinese Firms More Innovative? Evidence from the China Employer Employee 

Survey. National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w25432 [Accessed: 14 February 2022]. 

 

Cheng, S. 2008. Board size and the variability of corporate performance. Journal of 

Financial Economics 87(1), pp. 157–176. doi: 10.1016/j.jfineco.2006.10.006. 

 

Clausen, T.H. 2009. Do subsidies have positive impacts on R&D and innovation 

activities at the firm level? Structural Change and Economic Dynamics 20(4), pp. 

239–253. doi: 10.1016/j.strueco.2009.09.004. 

 

Coe, D.T. and Helpman, E. 1995. International R&D spillovers. European Economic 

Review 39(5), pp. 859–887. doi: 10.1016/0014-2921(94)00100-E. 

 

Cohen, W.M. and Klepper, S. 1996. Firm Size and the Nature of Innovation within 

Industries: The Case of Process and Product R&D. The Review of Economics and 

Statistics 78(2), pp. 232–243. doi: 10.2307/2109925. 

 

Cohen, W.M., Levin, R.C. and Mowery, D.C. 1987. Firm Size and R&D Intensity: A 

Re-Examination. National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w2205 [Accessed: 14 February 2022]. 

 

Cohen, W.M. and Levinthal, D.A. 1989. Innovation and Learning: The Two Faces of 

R & D. The Economic Journal 99(397), pp. 569–596. doi: 10.2307/2233763. 

https://www.nber.org/papers/w25432
https://doi.org/10.1016/j.jfineco.2006.10.006
https://doi.org/10.1016/j.strueco.2009.09.004
https://doi.org/10.1016/0014-2921(94)00100-E
https://doi.org/10.2307/2109925
https://www.nber.org/papers/w2205
https://doi.org/10.2307/2233763


193 

 

 

Crespi, G. and Zuniga, P. 2012. Innovation and Productivity: Evidence from Six Latin 

American Countries. World Development 40(2), pp. 273–290. doi: 

10.1016/j.worlddev.2011.07.010. 

 

Cull, R., Li, W., Sun, B. and Xu, L.C. 2015. Government connections and financial 

constraints: Evidence from a large representative sample of Chinese firms. Journal of 

Corporate Finance 32, pp. 271–294. doi: 10.1016/j.jcorpfin.2014.10.012. 

 

Cuneo, P. and Mairesse, J. 1983. Productivity and R&D at the Firm Level in French 

Manufacturing. National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w1068 [Accessed: 14 February 2022]. 

 

Czarnitzki, D. and Lopes-Bento, C. 2014. Innovation Subsidies: Does the Funding 

Source Matter for Innovation Intensity and Performance? Empirical Evidence from 

Germany. Industry and Innovation 21(5), pp. 380–409. doi: 

10.1080/13662716.2014.973246. 

 

David, P.A., Hall, B.H. and Toole, A.A. 2000. Is public R&D a complement or 

substitute for private R&D? A review of the econometric evidence. Research Policy 

29(4), pp. 497–529. doi: 10.1016/S0048-7333(99)00087-6. 

 

De Long, J.B. and Summers, L.H. 1991. Equipment Investment and Economic 

Growth*. The Quarterly Journal of Economics 106(2), pp. 445–502. doi: 

10.2307/2937944. 

 

Denicolò, V. and Zanchettin, P. 2014. What Causes Over-investment in R&D in 

Endogenous Growth Models? The Economic Journal 124(581), pp. 1192–1212. doi: 

10.1111/ecoj.12132. 

https://doi.org/10.1016/j.worlddev.2011.07.010
https://doi.org/10.1016/j.jcorpfin.2014.10.012
https://www.nber.org/papers/w1068
https://doi.org/10.1080/13662716.2014.973246
https://doi.org/10.1016/S0048-7333(99)00087-6
https://doi.org/10.2307/2937944
https://doi.org/10.1111/ecoj.12132


194 

 

 

Denis, D.J. and Sibilkov, V. 2010. Financial Constraints, Investment, and the Value of 

Cash Holdings. The Review of Financial Studies 23(1), pp. 247–269. doi: 

10.1093/rfs/hhp031. 

 

Eberhardt, M., Helmers, C. and Strauss, H. 2013. Do Spillovers Matter When 

Estimating Private Returns to R&D? The Review of Economics and Statistics 95(2), 

pp. 436–448. doi: 10.1162/REST_a_00272. 

 

Eichengreen, B., Park, D. and Shin, K. 2012. When Fast-Growing Economies Slow 

Down: International Evidence and Implications for China∗. Asian Economic Papers 

11(1), pp. 42–87. doi: 10.1162/ASEP_a_00118. 

 

Eisenberg, T., Sundgren, S. and Wells, M.T. 1998. Larger board size and decreasing 

firm value in small firms. Journal of Financial Economics 48(1), pp. 35–54. doi: 

10.1016/S0304-405X(98)00003-8. 

 

Elliott, J.W. 1971. Funds Flow vs. Expectational Theories of Research and 

Development Expenditures in the Firm. Southern Economic Journal 37(4), pp. 409–

422. doi: 10.2307/1056203. 

 

Färe, R., Grosskopf, S. and Lee, H. 1990. A Nonparametric Approach to Expenditure-

Constrained Profit Maximization. American Journal of Agricultural Economics 72(3), 

pp. 574–581. doi: 10.2307/1243026. 

 

Fletschner, D., Guirkinger, C. and Boucher, S. 2010. Risk, Credit Constraints and 

Financial Efficiency in Peruvian Agriculture. The Journal of Development Studies 

46(6), pp. 981–1002. doi: 10.1080/00220380903104974. 

 

https://doi.org/10.1093/rfs/hhp031
https://doi.org/10.1162/REST_a_00272
https://doi.org/10.1162/ASEP_a_00118
https://doi.org/10.1016/S0304-405X(98)00003-8
https://doi.org/10.2307/1056203
https://doi.org/10.2307/1243026
https://doi.org/10.1080/00220380903104974


195 

 

Franco, A.M. and Filson, D. 2000. Knowledge Diffusion through Employee Mobility. 

Claremont Colleges Working Papers in Economics. Available at: 

https://www.econstor.eu/handle/10419/94651 [Accessed: 14 February 2022]. 

 

Frantzen, D. 2002. Cross-Sector and Cross-Country Technical Knowledge Spillovers 

and the Evolution of Manufacturing Productivity: A Panel Data Analysis. Economie 

Appliquée 1, pp. 31–62. 

 

Giudici, G. and Paleari, S. 2000. The Provision of Finance to Innovation: A Survey 

Conducted among Italian Technology-based Small Firms. Small Business Economics 

14(1), pp. 37–53. doi: 10.1023/A:1008187416389. 

 

Goodstein, J., Gautam, K. and Boeker, W. 1994. The effects of board size and 

diversity on strategic change. Strategic Management Journal 15(3), pp. 241–250. doi: 

10.1002/smj.4250150305. 

 

Görg, H. and Strobl, E. 2007. The Effect of R&D Subsidies on Private R&D. 

Economica 74(294), pp. 215–234. doi: 10.1111/j.1468-0335.2006.00547.x. 

 

Gorodnichenko, Y., Svejnar, J. and Terrell, K. 2015. Does Foreign Entry Spur 

Innovation? National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w21514 [Accessed: 14 February 2022]. 

 

Griffith, R., Huergo, E., Mairesse, J. and Peters, B. 2006. Innovation and Productivity 

Across Four European Countries. Oxford Review of Economic Policy 22(4), pp. 483–

498. doi: 10.1093/oxrep/grj028. 

 

https://www.econstor.eu/handle/10419/94651
https://doi.org/10.1023/A:1008187416389
https://doi.org/10.1002/smj.4250150305
https://doi.org/10.1111/j.1468-0335.2006.00547.x
https://www.nber.org/papers/w21514
https://doi.org/10.1093/oxrep/grj028


196 

 

Griffith, R., Redding, S. and Reenen, J.V. 2004. Mapping the Two Faces of R&D: 

Productivity Growth in a Panel of OECD Industries. The Review of Economics and 

Statistics 86(4), pp. 883–895. doi: 10.1162/0034653043125194. 

 

Griliches, Z. 1979. Issues in Assessing the Contribution of Research and 

Development to Productivity Growth. The Bell Journal of Economics 10(1), pp. 92–

116. doi: 10.2307/3003321. 

 

Griliches, Z. 1980. Returns to Research and Development Expenditures in the Private 

Sector. In: New Developments in Productivity Measurement and Analysis. University 

of Chicago Press, pp. 419–462. Available at: https://www.nber.org/books-and-

chapters/new-developments-productivity-measurement-and-analysis/returns-research-

and-development-expenditures-private-sector [Accessed: 14 February 2022]. 

 

Griliches, Z. 1985. Productivity, R&d, and Basic Research at the Firm Level in the 

1970s. National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w1547 [Accessed: 14 February 2022]. 

 

Griliches, Z. and Mairesse, J. 1985. R&D and Productivity Growth: Comparing 

Japanese and U.S. Manufacturing Firms. National Bureau of Economic Research, 

Inc. Available at: https://econpapers.repec.org/paper/nbrnberwo/1778.htm [Accessed: 

14 February 2022]. 

 

Griliches, Z. and Regev, H. 1998. An econometric evaluation of high-tech policy in 

Israel. In: ATP-conference in Washington, DC. 

 

Grossman, G.M. and Helpman, E. 1991. Quality Ladders in the Theory of Growth. 

The Review of Economic Studies 58(1), pp. 43–61. doi: 10.2307/2298044. 

 

https://doi.org/10.1162/0034653043125194
https://doi.org/10.2307/3003321
https://www.nber.org/books-and-chapters/new-developments-productivity-measurement-and-analysis/returns-research-and-development-expenditures-private-sector
https://www.nber.org/books-and-chapters/new-developments-productivity-measurement-and-analysis/returns-research-and-development-expenditures-private-sector
https://www.nber.org/books-and-chapters/new-developments-productivity-measurement-and-analysis/returns-research-and-development-expenditures-private-sector
https://www.nber.org/papers/w1547
https://econpapers.repec.org/paper/nbrnberwo/1778.htm
https://doi.org/10.2307/2298044


197 

 

Guangzhou Hu, A. 2001. Ownership, Government R&D, Private R&D, and 

Productivity in Chinese Industry. Journal of Comparative Economics 29(1), pp. 136–

157. doi: 10.1006/jcec.2000.1704. 

 

Guest, P.M. 2009. The impact of board size on firm performance: evidence from the 

UK. The European Journal of Finance 15(4), pp. 385–404. doi: 

10.1080/13518470802466121. 

 

Guiso, L. 1998. High-tech firms and credit rationing. Journal of Economic Behavior 

& Organization 35(1), pp. 39–59. doi: 10.1016/S0167-2681(97)00101-7. 

 

Guo, D., Guo, Y. and Jiang, K. 2016. Government-subsidized R&D and firm 

innovation: Evidence from China. Research Policy 45(6), pp. 1129–1144. doi: 

10.1016/j.respol.2016.03.002. 

 

Hale, G. and Long, C. 2011. Are There Productivity Spillovers from Foreign Direct 

Investment in China? Pacific Economic Review 16(2), pp. 135–153. doi: 

10.1111/j.1468-0106.2011.00539.x. 

 

Haley, U.C.V. and Haley, G.T. 2013. Subsidies to Chinese Industry: State Capitalism, 

Business Strategy, and Trade Policy. OUP USA. 

 

Hall, B.H. 1989. The Impact of Corporate Restructuring on Industrial Research and 

Development. National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w3216 [Accessed: 14 February 2022]. 

 

Hall, B.H. 1992. Investment and Research and Development at the Firm Level: Does 

the Source of Financing Matter? National Bureau of Economic Research. Available 

at: https://www.nber.org/papers/w4096 [Accessed: 14 February 2022]. 

https://doi.org/10.1006/jcec.2000.1704
https://doi.org/10.1080/13518470802466121
https://doi.org/10.1016/S0167-2681(97)00101-7
https://doi.org/10.1016/j.respol.2016.03.002
https://doi.org/10.1111/j.1468-0106.2011.00539.x
https://www.nber.org/papers/w3216
https://www.nber.org/papers/w4096


198 

 

 

Hall, B.H. 2007. Measuring the Returns to R&D: The Depreciation Problem. 

National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w13473 [Accessed: 14 February 2022]. 

 

Hall, B.H. and Mairesse, J. 1995. Exploring the relationship between R&D and 

productivity in French manufacturing firms. Journal of Econometrics 65(1), pp. 263–

293. doi: 10.1016/0304-4076(94)01604-X. 

 

Hansen, L. P. (1982). Large sample properties of generalized method of moments 

estimators. Econometrica: Journal of the econometric society, pp.1029-1054. 

 

Harhoff, D. 1998. R&D and Productivity in German Manufacturing Firms. Economics 

of Innovation and New Technology 6(1), pp. 29–50. doi: 

10.1080/10438599800000012. 

 

Harhoff, D. 1998. Are There Financing Constraints for R&D and Investment in 

German Manufacturing Firms? Annales d’Économie et de Statistique , pp. 421–456. 

 

Harris, M. and Raviv, A. 2008. A Theory of Board Control and Size. The Review of 

Financial Studies 21(4), pp. 1797–1832. doi: 10.1093/rfs/hhl030. 

 

Harris, R. and Li, S. 2019. Government assistance and total factor productivity: firm-

level evidence from China. Journal of Productivity Analysis 52(1), pp. 1–27. doi: 

10.1007/s11123-019-00559-4. 

 

Haynes, K.T. and Hillman, A. 2010. The effect of board capital and CEO power on 

strategic change. Strategic Management Journal 31(11), pp. 1145–1163. doi: 

10.1002/smj.859. 

https://www.nber.org/papers/w13473
https://doi.org/10.1016/0304-4076(94)01604-X
https://doi.org/10.1080/10438599800000012
https://doi.org/10.1093/rfs/hhl030
https://doi.org/10.1007/s11123-019-00559-4
https://doi.org/10.1002/smj.859


199 

 

 

von HIPPEL, E. 1987. Cooperation between rivals: Informal know-how trading. 

Research Policy 16, pp. 291–302. 

 

Holmstrom, B. 1989. Agency costs and innovation. Journal of Economic Behavior & 

Organization 12(3), pp. 305–327. doi: 10.1016/0167-2681(89)90025-5. 

 

Honjo, Y., Kato, M. and Okamuro, H. 2014. R&D investment of start-up firms: does 

founders’ human capital matter? Small Business Economics 42(2), pp. 207–220. doi: 

10.1007/s11187-013-9476-x. 

 

Hottenrott, H. and Peters, B. 2012. Innovative Capability and Financing Constraints 

for Innovation: More Money, More Innovation? The Review of Economics and 

Statistics 94(4), pp. 1126–1142. doi: 10.1162/REST_a_00227. 

 

Howell, A. 2015. ‘Indigenous’ innovation with heterogeneous risk and new firm 

survival in a transitioning Chinese economy. Research Policy 44(10), pp. 1866–1876. 

doi: 10.1016/j.respol.2015.06.012. 

 

Howell, A. 2017. Picking ‘winners’ in China: Do subsidies matter for indigenous 

innovation and firm productivity? China Economic Review 44, pp. 154–165. doi: 

10.1016/j.chieco.2017.04.005. 

 

Hu, A.G. and Jefferson, G.H. 2008. Science and technology in China. China’s great 

economic transformation , pp. 286–336. 

 

Huang, C.-H. 2015. Tax credits and total factor productivity: firm-level evidence from 

Taiwan. The Journal of Technology Transfer 40(6), pp. 932–947. doi: 

10.1007/s10961-014-9358-7. 

https://doi.org/10.1016/0167-2681(89)90025-5
https://doi.org/10.1007/s11187-013-9476-x
https://doi.org/10.1162/REST_a_00227
https://doi.org/10.1016/j.respol.2015.06.012
https://doi.org/10.1016/j.chieco.2017.04.005
https://doi.org/10.1007/s10961-014-9358-7


200 

 

 

Huergo, E. and Moreno, L. 2017. Subsidies or loans? Evaluating the impact of R&D 

support programmes. Research Policy 46(7), pp. 1198–1214. doi: 

10.1016/j.respol.2017.05.006. 

 

Jackling, B. and Johl, S. 2009. Board Structure and Firm Performance: Evidence from 

India’s Top Companies. Corporate Governance: An International Review 17(4), pp. 

492–509. doi: 10.1111/j.1467-8683.2009.00760.x. 

 

Jaffe, A.B. 1986. Technological Opportunity and Spillovers of R&D: Evidence from 

Firms’ Patents, Profits and Market Value. National Bureau of Economic Research. 

Available at: https://www.nber.org/papers/w1815 [Accessed: 15 February 2022]. 

 

Jaffe, A.B., Trajtenberg, M. and Henderson, R. 1993. Geographic Localization of 

Knowledge Spillovers as Evidenced by Patent Citations*. The Quarterly Journal of 

Economics 108(3), pp. 577–598. doi: 10.2307/2118401. 

 

Jensen, M.C. 1993. The Modern Industrial Revolution, Exit, and the Failure of 

Internal Control Systems. The Journal of Finance 48(3), pp. 831–880. doi: 

10.1111/j.1540-6261.1993.tb04022.x. 

 

Jensen, M.C. and Meckling, W.H. 1976. Theory of the firm: Managerial behavior, 

agency costs and ownership structure. Journal of Financial Economics 3(4), pp. 305–

360. doi: 10.1016/0304-405X(76)90026-X. 

 

Jia, L., Nam, E. and Chun, D. 2021. Impact of Chinese Government Subsidies on 

Enterprise Innovation: Based on a Three-Dimensional Perspective. Sustainability 

13(3), p. 1288. doi: 10.3390/su13031288. 

 

https://doi.org/10.1016/j.respol.2017.05.006
https://doi.org/10.1111/j.1467-8683.2009.00760.x
https://www.nber.org/papers/w1815
https://doi.org/10.2307/2118401
https://doi.org/10.1111/j.1540-6261.1993.tb04022.x
https://doi.org/10.1016/0304-405X(76)90026-X
https://doi.org/10.3390/su13031288


201 

 

Jin, M., Zhao, S. and Kumbhakar, S.C. 2019. Financial constraints and firm 

productivity: Evidence from Chinese manufacturing. European Journal of 

Operational Research 275(3), pp. 1139–1156. doi: 10.1016/j.ejor.2018.12.010. 

 

Jiuqin, L. and Dandan, Y. 2011. Government Subsidies and Enterprises R&D 

Investment Crowding-out, Substitution or Encouragement. In: Forum on Science and 

Technology in China., pp. 21–28. 

 

Kamien, M.I. and Schwartz, N.L. 1978. Self-Financing of an R and D Project. The 

American Economic Review 68(3), pp. 252–261. 

 

Kancs, d’Artis and Siliverstovs, B. 2016. R&D and non-linear productivity growth. 

Research Policy 45(3), pp. 634–646. doi: 10.1016/j.respol.2015.12.001. 

 

Kao, L. and Chen, A. 2020. CEO characteristics and R&D expenditure of IPOs in 

emerging markets: Evidence from Taiwan. Asia Pacific Management Review 25(4), 

pp. 189–197. doi: 10.1016/j.apmrv.2020.01.001. 

 

Keller, W. 2002. Geographic Localization of International Technology Diffusion. 

American Economic Review 92(1), pp. 120–142. doi: 10.1257/000282802760015630. 

 

Keller, W. 2004. International Technology Diffusion. Journal of Economic Literature 

42(3), pp. 752–782. doi: 10.1257/0022051042177685. 

 

Keller, W. 2010. Chapter 19 - International Trade, Foreign Direct Investment, and 

Technology Spillovers. In: Hall, B. H. and Rosenberg, N. eds. Handbook of the 

Economics of Innovation, Volume 2. North-Holland, pp. 793–829. Available at:  

https://www.sciencedirect.com/science/article/pii/S0169721810020034 

 

https://doi.org/10.1016/j.ejor.2018.12.010
https://doi.org/10.1016/j.respol.2015.12.001
https://doi.org/10.1016/j.apmrv.2020.01.001
https://doi.org/10.1257/000282802760015630
https://doi.org/10.1257/0022051042177685


202 

 

Klette, T.J. and Møen, J. 1998. From Growth Theory to Technology Policy - 

Coordination Problems in Theory and Practice. Statistisk sentralbyrå. Available at: 

https://ssb.brage.unit.no/ssb-xmlui/handle/11250/2652737 [Accessed: 15 February 

2022]. 

 

Koski, H. and Pajarinen, M. 2015. Subsidies, the Shadow of Death and Labor 

Productivity. Journal of Industry, Competition and Trade 15(2), pp. 189–204. doi: 

10.1007/s10842-014-0177-1. 

 

Krugman, P. 1979. A Model of Innovation, Technology Transfer, and the World 

Distribution of Income. Journal of Political Economy 87(2), pp. 253–266. doi: 

10.1086/260755. 

 

Kuo, C.-C. and Yang, C.-H. 2008. Knowledge capital and spillover on regional 

economic growth: Evidence from China. China Economic Review 19(4), pp. 594–604. 

doi: 10.1016/j.chieco.2008.06.004. 

 

Lach, S. 2002. Do R&D Subsidies Stimulate or Displace Private R&D? Evidence 

from Israel. The Journal of Industrial Economics 50(4), pp. 369–390. doi: 

10.1111/1467-6451.00182. 

 

Levinsohn, J. and A. Petrin. 2003. Estimating production functions using inputes to 

control for unobservables. Review of Economic Studies 70, pp. 317-342. 

 

Li, L., Chen, J., Gao, H. and Xie, L. 2019. The certification effect of government 

R&D subsidies on innovative entrepreneurial firms’ access to bank finance: evidence 

from China. Small Business Economics 52(1), pp. 241–259. doi: 10.1007/s11187-018-

0024-6. 

 

https://ssb.brage.unit.no/ssb-xmlui/handle/11250/2652737
https://doi.org/10.1007/s10842-014-0177-1
https://doi.org/10.1086/260755
https://doi.org/10.1016/j.chieco.2008.06.004
https://doi.org/10.1111/1467-6451.00182
https://doi.org/10.1007/s11187-018-0024-6
https://doi.org/10.1007/s11187-018-0024-6


203 

 

Liu, H., Xiao, M.F. and Tang, Q.Q. 2012. Incentive and Crowding-out Effects of 

R&D Subsidy on Companies’ R&D Expenditures——Empirical Analysis Based on 

the Data of Chinese Listed Companies. Economic Management Journal 4, pp. 19-28 

(in Chinese). 

 

Liu, X. and Buck, T. 2007. Innovation performance and channels for international 

technology spillovers: Evidence from Chinese high-tech industries. Research Policy 

36(3), pp. 355–366. doi: 10.1016/j.respol.2006.12.003. 

 

Liu, Z. 2009. Empirical research on subsidy policy and investment incentive-evidence 

from chinese listed high-tech firms. In: Forum on Science and Technology in China., 

pp. 57–63. 

 

Lööf, H. and Hesmati, A. 2004. The Impact of Public Funding on Private 

R&amp;amp;D investment. New Evidence from a Firm Level Innovation Study 

(Additionality or Crowding Out? On the effectiveness of R&amp;amp;D subsidies). 

CECIS, KTH Royal Institute of Technology. Available at: 

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-72434 [Accessed: 15 February 

2022]. 

 

López-Pueyo, C., Barcenilla-Visús, S. and Sanaú, J. 2008. International R&D 

spillovers and manufacturing productivity: A panel data analysis. Structural Change 

and Economic Dynamics 19(2), pp. 152–172. doi: 10.1016/j.strueco.2007.12.005. 

 

Love, I. 2003. Financial Development and Financing Constraints: International 

Evidence from the Structural Investment Model. The Review of Financial Studies 

16(3), pp. 765–791. doi: 10.1093/rfs/hhg013. 

 

https://doi.org/10.1016/j.respol.2006.12.003
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-72434
https://doi.org/10.1016/j.strueco.2007.12.005
https://doi.org/10.1093/rfs/hhg013


204 

 

Luintel, K.B. and Khan, M. 2017. Ideas production and international knowledge 

spillovers: Digging deeper into emerging countries. Research Policy 46(10), pp. 

1738–1754. doi: 10.1016/j.respol.2017.07.009. 

 

Mairesse, J. and Sassenou, M. 1991. R&D Productivity: A Survey of Econometric 

Studies at the Firm Level. National Bureau of Economic Research. Available at: 

https://www.nber.org/papers/w3666 [Accessed: 15 February 2022]. 

 

Mak, Y.T. and Kusnadi, Y. 2005. Size really matters: Further evidence on the 

negative relationship between board size and firm value. Pacific-Basin Finance 

Journal 13(3), pp. 301–318. doi: 10.1016/j.pacfin.2004.09.002. 

 

Mansfield, E. 1985. How Rapidly Does New Industrial Technology Leak Out? The 

Journal of Industrial Economics 34(2), pp. 217–223. doi: 10.2307/2098683. 

 

Kim, J., Lee, S.J. and Marschke, G. 2009. Relation of Firm Size to R&D Productivity. 

International Journal of Business and Economics 8(1), pp. 7–19. 

 

Means, G. 2017. The Modern Corporation and Private Property. 2nd ed. New York: 

Routledge. doi: 10.4324/9781315133188. 

 

Miguel Benavente, J. 2006. The role of research and innovation in promoting 

productivity in chile. Economics of Innovation and New Technology 15(4–5), pp. 

301–315. doi: 10.1080/10438590500512794. 

 

Montmartin, B. and Massard, N. 2015. Is Financial Support for Private R&d Always 

Justified? A Discussion Based on the Literature on Growth. Journal of Economic 

Surveys 29(3), pp. 479–505. doi: 10.1111/joes.12067. 

 

https://doi.org/10.1016/j.respol.2017.07.009
https://www.nber.org/papers/w3666
https://doi.org/10.1016/j.pacfin.2004.09.002
https://doi.org/10.2307/2098683
https://doi.org/10.4324/9781315133188
https://doi.org/10.1080/10438590500512794
https://doi.org/10.1111/joes.12067


205 

 

Nelson, R.R. 1959. The Simple Economics of Basic Scientific Research. Journal of 

Political Economy 67(3), pp. 297–306. doi: 10.1086/258177. 

 

O’Mahony, M. and Vecchi, M. 2009. R&D, knowledge spillovers and company 

productivity performance. Research Policy 38(1), pp. 35–44. doi: 

10.1016/j.respol.2008.09.003. 

 

Ortega-Argilés, R., Moreno, R. and Caralt, J.S. 2005. Ownership structure and 

innovation: is there a real link? The Annals of Regional Science 39(4), pp. 637–662. 

doi: 10.1007/s00168-005-0026-6. 

 

Ortega-Argilés, R., Potters, L. and Vivarelli, M. 2011. R&D and productivity: testing 

sectoral peculiarities using micro data. Empirical Economics 41(3), pp. 817–839. doi: 

10.1007/s00181-010-0406-3. 

 

Pfefer, J. and Salancik, G. 1978. The external control of organizations. NY: Harper & 

Row 109. 

 

Rodrik, D. 2006. Industrial development: stylized facts and policies. Harvard 

University, Massachusetts.  

 

Romer, P.M. 1986. Increasing Returns and Long-Run Growth. Journal of Political 

Economy 94(5), pp. 1002–1037. doi: 10.1086/261420. 

 

Romer, P.M. 1990. Endogenous Technological Change. Journal of Political Economy 

98(5, Part 2), pp. S71–S102. doi: 10.1086/261725. 

 

https://doi.org/10.1086/258177
https://doi.org/10.1016/j.respol.2008.09.003
https://doi.org/10.1007/s00168-005-0026-6
https://doi.org/10.1007/s00181-010-0406-3
https://doi.org/10.1086/261420
https://doi.org/10.1086/261725


206 

 

Ruigrok, W., Peck, S.I. and Keller, H. 2006. Board Characteristics and Involvement 

in Strategic Decision Making: Evidence from Swiss Companies*. Journal of 

Management Studies 43(5), pp. 1201–1226. doi: 10.1111/j.1467-6486.2006.00634.x. 

 

Sah, R.K. and Stiglitz, J.E. 1991. The Quality of Managers in Centralized Versus 

Decentralized Organizations. The Quarterly Journal of Economics 106(1), pp. 289–

295. doi: 10.2307/2937917. 

 

Scherer, F.M. 1982. Inter-Industry Technology Flows and Productivity Growth. The 

Review of Economics and Statistics 64(4), pp. 627–634. doi: 10.2307/1923947. 

 

Schumpeter, J. 1942. Creative destruction. Capitalism, socialism and democracy 825, 

pp. 82–85. 

 

Shen, J. and Luo, C. 2015. Overall review of renewable energy subsidy policies in 

China – Contradictions of intentions and effects. Renewable and Sustainable Energy 

Reviews 41, pp. 1478–1488. doi: 10.1016/j.rser.2014.09.007. 

 

Shen, X., Lin, B. and Wu, W. 2019. R&D Efforts, Total Factor Productivity, and the 

Energy Intensity in China. Emerging Markets Finance and Trade 55(11), pp. 2566–

2588. doi: 10.1080/1540496X.2019.1579709. 

 

Shi, Y., Guo, S. and Sun, P. 2017. The role of infrastructure in China’s regional 

economic growth. Journal of Asian Economics 49, pp. 26–41. doi: 

10.1016/j.asieco.2017.02.004. 

 

Smarzynska Javorcik, B. 2004. Does Foreign Direct Investment Increase the 

Productivity of Domestic Firms? In Search of Spillovers Through Backward 

Linkages. American Economic Review 94(3), pp. 605–627. doi: 

10.1257/0002828041464605. 

https://doi.org/10.1111/j.1467-6486.2006.00634.x
https://doi.org/10.2307/2937917
https://doi.org/10.2307/1923947
https://doi.org/10.1016/j.rser.2014.09.007
https://doi.org/10.1080/1540496X.2019.1579709
https://doi.org/10.1016/j.asieco.2017.02.004
https://doi.org/10.1257/0002828041464605


207 

 

 

Smith, R.B.W., Gemma, M. and Palinisami, K. 2011. Profit Based Efficiency 

Measures, with an Application to Rice Production in Southern India. Journal of 

Agricultural Economics 62(2), pp. 340–356. doi: 10.1111/j.1477-9552.2010.00288.x. 

 

Springut, M., Schlaikjer, S. and Chen, D. 2011. China’s Program for Science and 

Technology Modernization:. CENTRA Technology, Incorporated. 

 

Tan, J., Li, S. and Xia, J. 2007. When iron fist, visible hand, and invisible hand meet: 

Firm-level effects of varying institutional environments in China. Journal of Business 

Research 60(7), pp. 786–794. doi: 10.1016/j.jbusres.2007.03.003. 

 

Terleckyj, N.E. 1980. What Do R & D Numbers Tell Us about Technological 

Change? The American Economic Review 70(2), pp. 55–61. 

 

Ueda, M. 2004. Banks versus Venture Capital: Project Evaluation, Screening, and 

Expropriation. The Journal of Finance 59(2), pp. 601–621. doi: 10.1111/j.1540-

6261.2004.00643.x. 

 

Ugur, M., Trushin, E., Solomon, E. and Guidi, F. 2016. R&D and productivity in 

OECD firms and industries: A hierarchical meta-regression analysis. Research Policy 

45(10), pp. 2069–2086. doi: 10.1016/j.respol.2016.08.001. 

 

Vania Sena. 2004. The Return of the Prince of Denmark: A Survey on Recent 

Developments in the Economics of Innovation, The Economic Journal, 114(496), pp. 

312–332. 

 

von HIPPEL, E. 1987. Cooperation between rivals: Informal know-how trading. 

Research Policy 16, pp. 291–302. 

https://doi.org/10.1111/j.1477-9552.2010.00288.x
https://doi.org/10.1016/j.jbusres.2007.03.003
https://doi.org/10.1111/j.1540-6261.2004.00643.x
https://doi.org/10.1111/j.1540-6261.2004.00643.x
https://doi.org/10.1016/j.respol.2016.08.001


208 

 

 

Wakelin, K. 2001. Productivity growth and R&D expenditure in UK manufacturing 

firms. Research Policy 30(7), pp. 1079–1090. doi: 10.1016/S0048-7333(00)00136-0. 

 

Wallsten, S.J. 2000. The Effects of Government-Industry R&D Programs on Private 

R&D: The Case of the Small Business Innovation Research Program. The RAND 

Journal of Economics 31(1), pp. 82–100. doi: 10.2307/2601030. 

 

Wang, L., Meijers, H. and Szirmai, A. 2017. Technological spillovers and industrial 

growth in Chinese regions. Industrial and Corporate Change 26(2), pp. 233–257. doi: 

10.1093/icc/dtw022. 

 

Wang, L. and Szirmai, A. 2008. Technological Inputs and Growth in China’s High-

tech Industries. China economic quarterly 3, pp. 913–932. 

 

Whited, T.M. 1992. Debt, Liquidity Constraints, and Corporate Investment: Evidence 

from Panel Data. The Journal of Finance 47(4), pp. 1425–1460. doi: 10.1111/j.1540-

6261.1992.tb04664.x. 

 

Wooldridge, J.M. 2015. Introductory Econometrics: A Modern Approach. Cengage 

Learning. 

 

Wu, W., Wu, C. and Rui, O.M. 2012. Ownership and the Value of Political 

Connections: Evidence from China. European Financial Management 18(4), pp. 695–

729. doi: 10.1111/j.1468-036X.2010.00547.x. 

 

Xie, W., Tang, Q. and Lu, S. 2009. Public R&D subsidies, corporate R&D 

expenditure and independent innovation. J. Financ. Res. 6, pp. 86–99. 

 

https://doi.org/10.1016/S0048-7333(00)00136-0
https://doi.org/10.2307/2601030
https://doi.org/10.1093/icc/dtw022
https://doi.org/10.1111/j.1540-6261.1992.tb04664.x
https://doi.org/10.1111/j.1540-6261.1992.tb04664.x
https://doi.org/10.1111/j.1468-036X.2010.00547.x


209 

 

Xu, C. 2011. The Fundamental Institutions of China’s Reforms and Development. 

Journal of Economic Literature 49(4), pp. 1076–1151. doi: 10.1257/jel.49.4.1076. 

 

Yermack, D. 1996. Higher market valuation of companies with a small board of 

directors. Journal of Financial Economics 40(2), pp. 185–211. doi: 10.1016/0304-

405X(95)00844-5. 

 

Yu, F., Guo, Y., Le-Nguyen, K., Barnes, S.J. and Zhang, W. 2016. The impact of 

government subsidies and enterprises’ R&D investment: A panel data study from 

renewable energy in China. Energy Policy 89, pp. 106–113. doi: 

10.1016/j.enpol.2015.11.009. 

 

Yue, Y. and Zhang, X. 2017. The Differences and Changes: The Sources of 

Innovation Investment Funds in the Heterogeneous Firms. Stud. Sci. Sci 1, pp. 125–

138. 

 

Zhang, H., Li, L., Zhou, D. and Zhou, P. 2014. Political connections, government 

subsidies and firm financial performance: Evidence from renewable energy 

manufacturing in China. Renewable Energy 63, pp. 330–336. doi: 

10.1016/j.renene.2013.09.029. 

 

Zhang, X. and Wu, J. 2014. Research on Effectiveness of the Government R&D 

Subsidies: Evidence from Large and Medium Enterprises in China. American Journal 

of Industrial and Business Management 04(09), p. 503. doi: 

10.4236/ajibm.2014.49056. 

 

Zhou, L. and Deng, L. 2009. Research on the relationship between ownership and R&D 

efficiency-Empirical study on China high-tech industries with SFA method. Modern 

Economic Science 4, pp. 70–75. 

  

https://doi.org/10.1257/jel.49.4.1076
https://doi.org/10.1016/0304-405X(95)00844-5
https://doi.org/10.1016/0304-405X(95)00844-5
https://doi.org/10.1016/j.enpol.2015.11.009
https://doi.org/10.1016/j.renene.2013.09.029
https://doi.org/10.4236/ajibm.2014.49056


210 

 

Chapter 5 Conclusion 

This thesis aims to explore the reason for economic slowdown in recent years and 

possible ways to improve productivity and output. There is vast literature studying this 

question. We choose two aspects of mainstream literature for further exploration. The 

first aspect of the mainstream literature attributes poor economic performance to 

resource misallocation. The other aspect emphasises the positive role of R&D and its 

spillover effect in generating higher productivity. In the thesis, we combine these two 

aspects. We extend the resource misallocation model by including the externality of 

R&D spillover. 

 

The existing literature on resource misallocation does not consider any externality. 

Resource misallocation is eliminated when the input distortions are equalised across 

firms. After this, the productivity and output will reach a higher level. However, our 

solution is different as we developed the resource misallocation model by considering 

the externality of R&D spillover. The optimal solution suggests that productivity and 

output can be improved when a certain level of dispersion in R&D input distortion is 

kept. In contrast, the distortion should still be equalised for other inputs that do not have 

an externality. This conclusion is generated from the empirical results for Chinese 

manufacturing firms in chapter 2 and UK manufacturing firms in chapter 3. In addition 

to R&D input, we find that among the three types of input misallocations, labour 

misallocation makes the largest contribution to the allocative efficiency loss of Chinese 

manufacturing firms, while the output loss of UK manufacturing firms is mainly 

explained by capital misallocation. 

 

Since R&D activities are another source of productivity improvement, in chapter 4, we 

estimate the firm-level effect of R&D investment and R&D spillover on productivity 

in Chinese manufacturing and non-manufacturing sectors. We find a significant positive 

effect of a firm’s own R&D investment on productivity in the manufacturing sector, 

while that is insignificant in the non-manufacturing sector. Regarding the R&D 
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spillover, a technological rivalry is observed in the manufacturing sector. The negative 

correlation between a firm’s productivity and the R&D efforts of other firms indicates 

innovation competition among manufacturing firms. In the non-manufacturing sector, 

there is significant positive inter-industry R&D spillover, suggesting that firms can 

benefit from the R&D efforts of other industries. 

 

The thesis discusses the effect of R&D and its spillover on productivity, and there are 

policy implications. The role of R&D activities in stimulating productivity cannot be 

ignored. The policymaker should ensure that the R&D input resource is efficiently 

allocated across firms. Due to the externality of R&D spillover, a certain level of R&D 

input distortion should be kept, which implies that it is not a bad thing that more 

productive firms pay a higher price in R&D activities while less productive firms 

receive subsidies on their R&D projects. For other types of resources that do not have 

externality, no firms should receive subsidies or be taxed, that is, all firms should be 

treated as the same in the optimum. 

 

From empirical results, we find that a firm’s own R&D input positively contributes to 

its productivity. Therefore, the policymaker should encourage firms in their R&D 

investment. However, the empirical results show a negative correlation between the 

subsidy in a firm and its productivity, which implies poor resource allocative efficiency. 

In China, this is, in general, related to the ownership type of a firm. Therefore, 

evaluating the project results in firms that receive a subsidy is necessary. In addition, 

the government should create an environment for communication and cooperation 

among firms, increasing the R&D spillover and achieving a win-win situation. 

 


