
Citation: Christou, A.; Artemiou, A.

Adaptive L0 Regularization for

Sparse Support Vector Regression.

Mathematics 2023, 11, 2808. https://

doi.org/10.3390/math11132808

Academic Editor: María del Carmen

Valls Martínez

Received: 16 May 2023

Revised: 12 June 2023

Accepted: 20 June 2023

Published: 22 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Adaptive L0 Regularization for Sparse Support
Vector Regression
Antonis Christou and Andreas Artemiou *

School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK; christoua1@cardiff.ac.uk
* Correspondence: artemioua@cardiff.ac.uk

Abstract: In this work, we proposed a sparse version of the Support Vector Regression (SVR) al-
gorithm that uses regularization to achieve sparsity in function estimation. To achieve this, we
used an adaptive L0 penalty that has a ridge structure and, therefore, does not introduce additional
computational complexity to the algorithm. In addition to this, we used an alternative approach
based on a similar proposal in the Support Vector Machine (SVM) literature. Through numerical
studies, we demonstrated the effectiveness of our proposals. We believe that this is the first time
someone discussed a sparse version of Support Vector Regression (in terms of variable selection and
not in terms of support vector selection).
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1. Introduction

The Support Vector Machine (SVM), which was introduced by Cortes and Vapnik
(1995) [1], is probably the most popular classification algorithm in the literature. A very
popular variant of SVM is the Support Vector Regression (SVR), which is used for function
estimation, for example, in a regression setting, and it can be used as an alternative algorithm
to the Ordinary Least Squares (OLS) estimation. The main advantage of SVR is the use of a
piecewise linear loss function, which diminishes the effect of outliers on function estimation
(compared to the effect of outliers on OLS estimation) leading to a robust estimation of the
regression function.

As SVR has been introduced alongside SVM, their developments are similar, that is, a
lot of the extensions that were introduced in the classification framework for SVM have
also been discussed in the function estimation framework for SVR. Although sparsity in
terms of variable regularization was discussed extensively in the literature for SVM, there
seems to be a lack of literature for sparse SVR in this context. There are some suggestions
of different two-step procedures where variable selection occurs before the application of
SVR and, therefore, only a reduced number of variables is used to fit the model, see, for
example, Wang et al. (2006) [2], but we have not come across literature that demonstrates
the advantages of using regularization in SVR. Here, it is important to note that in the
literature of SVR, we came across a different type of sparsity where researchers refer to the
sparsity of the support vectors, i.e., the number of points that affect the construction of the
optimal separating hyperplane (see, for example, Ertin and Potter (2005) [3]) rather than
the regularization of the variables.

Sparsity, in terms of variable selection, is very common in the statistics literature. It
is usually introduced through penalization or regularization and, although there are a
number of methods, we briefly discuss the most well-known methodology. L2 (or ridge)
regularization is computationally fast but does not really achieve sparsity. There is also
L0 regularization as well as LASSO (Tibshirani (1996) [4]) or L1 regularization, which are
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computationally more expensive but they are more effective than L2 in achieving sparsity.
Furthermore, there is also a combination of these classic regularization methods, such as
the elastic net, which is a combination of L1 and L2 regularization (see Zou and Hastie
(2005) [5]) and SCAD (see Fan and Li (2001) [6]). This is just a very small sample of the
methodology in the literature. Other algorithms also exist but, in all cases, there is a
trade-off between accuracy and computational cost.

In this work, we combined the classic SVR algorithm with a relatively recently intro-
duced penalization procedure, which is known as an adaptive L0 penalty (Frommlet and
Nuel (2016) [7]). This penalty has the advantage of achieving similar regularization but
without the computational complexity of the classic L0 penalty. In the next section, we
present an overview of the fundamental concepts/elements used in our methodology, that
is, we discuss the SVR and the adaptive L0 penalty. In Section 3, we discuss the mathe-
matical development of the adaptive L0 penalized SVR algorithm and we also provide
an alternative approach based on a similar penalty introduced in the SVM literature. In
Section 4, we have the results of the numerical experiments and we close the paper with
a discussion.

2. Fundamental Concepts

In this section, we discuss the general ideas behind SVR and the adaptive L0 penalty,
which are the major elements we used in our algorithm.

2.1. SVR

As we mentioned above, SVR is a variant of SVM, which is used for function estimation.
Before we start the discussion on SVR, we emphasize that we have changed the classic
SVR notation in this paper to align it with the fact that the optimal vector estimates the
regression coefficients. Therefore, instead of denoting the normal vector with w, which is
the usual notation in the literature, we denote it with β. The main idea is that a bilinear
function is used, which provides an area where all the residuals in a regression framework
will lie. Mathematically, this means that if y is the output and f (x) is the function we are
trying to estimate, then one defines the residuals r(x, y) = y− f (x) and tries to find the
function f (x) such that all the absolute residuals are less than ε > 0, that is, |r(x, y)| ≤ ε.
To help visualize this, it means that there is an area of radius ε around f (x) where all the
outputs y lie. In the SVR literature, ε is also called the margin. As one can change the
value of the margin, it means there are many functions f (x) that can satisfy the condition
|r(x, y)| ≤ ε. At the same time, our purpose in SVR is to find f (x), which has the maximum
generalization ability. This is achieved by maximizing ε or, equivalently, if we minimize
‖β‖2 where β is the coefficient vector satisfying f (x) = βTx + b0, where b0 is the offset.
One can see f (x) as the equation of the hyperplane that passes from the middle of the area
that contains all of the output y.

Let us assume we have n pairs of datapoints (xi, yi), where i = 1, . . . , n. In an ideal
world, where all the points lie within ε distance of f (x), we have the hard-margin optimiza-
tion, which is:

min
1
2
‖β‖2

subject to : yi − βTx− b0 ≤ ε, i = 1, . . . , n

βTx + b0 − yi ≤ ε, i = 1, . . . , n.

In reality, though, the optimal f (x) might be one that has some of its residuals bigger
than ε or, in other words, one that allows for points to lie beyond the margin. In that case,
one needs to solve the soft-margin optimization as follows:
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min
1
2
‖β‖2 + λ

n

∑
i=1

ξi + ξ∗i

subject to : yi − βTx− t ≤ ε + ξi, i = 1, . . . , n

βTx + t− yi ≤ ε + ξ∗i , i = 1, . . . , n (1)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , n

where λ is the margin parameter, i.e., a value that assigns a trade-off between having a large
margin, or a larger additive distance between all the possible points outside the margin,
and ξi and ξ∗i are slack variables, which measure how far outside the margin a point is or,
mathematically, ξi = max{0, r(x, y)− ε} and ξ∗i = max{0,−r(x, y)− ε}.

To solve the above soft-margin optimization, one uses the Lagrangian approach,
then finds the KKT equations, and finally uses quadratic programming optimization.
This procedure is standard in the SVM and SVR literature. First, one needs to find the
Lagrangian, which we express below in matrix form to simplify the notation:

L(β, b0, ξ, ξ∗, α, α∗, η, η∗) =

=
1
2

βTβ + λ1T
n(ξ + ξ∗)− αT(εn + ξ − y + Xβ + bn) (2)

−(α∗)T(εn + ξ∗ + y− Xβ− bn)− ηTξ − (η∗)Tξ∗

where ξ = (ξ1, . . . , ξn)T and ξ∗ = (ξ∗1 , . . . , ξ∗n)
T are the vectors with the slack variables,

α = (α1, . . . , αn)T, α∗ = (α∗1 , . . . , α∗n)
T and η = (η1, . . . , ηn)T, η∗ = (η∗1 , . . . , η∗n)

T are the
Lagrangian multipliers, y = (y1, . . . , yn)T denotes the response vector, X = (xT

1 , . . . , xT
n)

T

is the p× n predictor matrix where each row vector denotes the predictor vector of each
observation, 1n ∈ Rn is the n-dimensional vector with all entries equal to one, bn ∈ Rn, an
n-dimensional vector with all entries equal to b0, and εn ∈ Rn, an n-dimensional vector
with all entries equal to ε.

To find the solution to the Lagrangian in (2), one needs to take the partial derivatives
with respect to β, t, ξ, and ξ∗ and set them equal to zero. Therefore, we have:

∂L
∂β

= β− XT(α− α∗) = 0⇒ β = XT(α− α∗)

∂L
∂b0

= 1T
n(α
∗ − α) = 0

∂L
∂ξ

= λ1n − α− η = 0 (3)

∂L
∂ξ∗

= λ1n − α∗ − η∗ = 0

Substituting the equations of the four derivatives in (3) into the Lagrangian in (2) gives
the following dual optimization problem where one tries to maximize:

Q(α, α∗) = −1
2
(α− α∗)TXXT(α− α∗)− εT

n(α + α∗) + yT(α− α∗) (4)

subject to the following conditions:

1T
n(α− α∗) = 0, 0n ≤ α ≤ λ1n, 0n ≤ α∗ ≤ λ1n

Note that the optimization problem in (4) finds the values for (α− α∗) and, therefore,
this allows us to estimate the β based on the solution of the equation of the first partial
derivative of the Lagrangian with respect to β. Here, we emphasize that there are a number
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of variants of SVM that can be extended in the SVR framework and their solution is found
using a similar procedure to the above.

2.2. L0 Penalty

In this section, we will introduce the adaptive L0 penalty, which was introduced by
Frommlet and Nuel (2016) [7] for the linear regression model. The main idea of the adaptive
L0 penalty is to find a differentiable approach to approximate the L0 penalty. This will give
us a penalty that achieves regularization, that is, reduces the coefficients of the irrelevant
variables to zero (a very well-known property of the L0 penalty) without the computational
complexity the L0 penalty introduces. It is also called a ridge-type L0 penalty.

First, let us discuss the L0 penalty. The L0 penalty is the most explicit penalty one
can use, in the sense that it is penalizing the number of nonzero coefficients among the
variables used in the function estimation. Therefore, in this case, it takes the form ‖β‖0 =

∑
p
i=1 |βi > 0|. Frommlet and Nuel (2016) [7] suggest roughly (we only roughly state the

suggestion by Frommlet and Nuel (2016) [7] and we will discuss the details in later sections)
replacing the penalty with the function βTΛβ, where Λ is a p× p dimensional diagonal
matrix and the (i, i)th element is Λ(i,i) = 1/β2

i . One can see that for each j when β j = 0 then
β jΛ(j,j)β j = 0 and when β j 6= 0, then β jΛ(j,j)β j = 1. Putting these together, one can show
that βTΛβ = ∑

p
i=1 |βi > 0|.

The idea here is to use the above development to obtain a sparse β vector after iteratively
applying the penalization. Therefore, for the adaptive L0 penalty, we try to minimize:

Fλ,w = f (β) + λ
p

∑
i=1

wiβ
2
i (5)

where λ > 0 is a constant that forces more sparsity as it becomes larger, f (·) is the main
objective function we are trying to minimize to obtain the coefficients β (for example, in
Ordinary Least Squares regression, this is (y− βTX)), and wi is the ith weight. Frommlet
and Nuel (2016) [7] suggest using the weight:

wi = (|βi|γ + δγ)
q−2

γ

where γ > 0 is a constant used to define the quality of the estimation of the function Fλ,w
in (5) and, to maintain the approximation, we want it set as γ = 2, δ > 0, which is a
constant that calibrates the size that is considered significant (and makes sure weight is not
set to zero as we divide with it) and it is set to δ = 10−5 and q = 2. Here, we note that, for
example, q = 1 would have given an approximated LASSO penalty. Finally, we note that
we need an iterative procedure and, therefore:

p

∑
i=1

wiβ
2
i

is actually written as:

p

∑
i=1

w(k−1)
i

(
β
(k)
i

)2

where superscript (k) denotes the kth iteration. Therefore, we use β
(k−1)
i to estimate w(k−1)

i ,

which we use as a weight to estimate β
(k)
i , and then we repeat the process until convergence.

As a starting point, we set all the weights equal to one, which is equivalent to running the
classic SVR algorithm without regularization.
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3. Adaptive L0 Support Vector Regression

In this section, we discuss the main method we introduced in this paper, where we try
to have a sparse function estimation in SVR by applying the adaptive L0 penalty. This will
change the Lagrangian we presented before in Equation (2). In this section, we could have
added a subscript L0 to differentiate the optimization problem presented in SVR but, to keep
things simple (as the development is relatively clear), we omitted it throughout this section.

The main idea comes by combining the adaptive L0 penalty of Frommlet and Nuel
(2016) [7] with the optimization of SVR. Therefore, the new optimization problem takes the
following form expressed in matrix form:

min
1
2

βTΛβ + λ1T
n(ξ + ξ∗) (6)

subject to :y− Xβ− bn ≤ εn + ξ,

Xβ + bn − y ≤ εn + ξ∗,

ξ ≥ 0, ξ∗ ≥ 0

Similarly to the SVM and SVR literature, we have the following Lagrangian:

L0(β, b0, Λ, ξ, ξ∗, α, α∗, η, η∗) =

=
1
2

βTΛβ + λ1T
n(ξ + ξ∗)− αT(ε + ξ − y + Xβ + bn)

−(α∗)T(ε + ξ∗ + y− Xβ− bn)− ηTξ − (η∗)Tξ∗ (7)

and, as in SVR, we take the derivatives to obtain the KKT equations in this problem:

∂L0

∂β
=Λβ− XT(α− α∗) = 0⇒ β = Λ−1XT(α− α∗)

∂L0

∂b0
=1T

n(α
∗ − α) = 0

∂L0

∂ξ
=λ1− α− η = 0 (8)

∂L0

∂ξ∗
=λ1− α∗ − η∗ = 0

Substituting the equations of the four derivatives in (8) into the Lagrangian L0 in (7),
one obtains the following dual optimization problem:

Q(α, α∗) = −1
2
(α− α∗)TXΛ−1ΛΛ−1XT(α− α∗)− εT

n(α + α∗) + yT(α− α∗)

subject to the following conditions:

1T
n(α− α∗) = 0, 0n ≤ α ≤ λ1n, 0n ≤ α∗ ≤ λ1n

The solution of the optimization problem will give us the values of the vector (α− α∗),
which we will put into the equation for β in the first derivative in (8).

3.1. Estimation Procedure

In this section, we discuss the estimation procedure. There are a number of issues that
need to be addressed. We will discuss them one by one and, at the end of the section, we
will give a detailed outline of the algorithm.
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The first thing we need to discuss is adjusting the algorithm to demonstrate how
existing packages can be used. Although our objective function looks similar to the objective
function for SVR, there is a very important difference since the first term includes the weight
matrix Λ. Packages in R, which run SVR, such as e1071 (Meyer and Wien (2015)) [8] and
kernlab (Karatzoglou et al. (2023) [9]) are able to solve the classic SVR optimization problem
given in Section 2.1 rather than the new optimization problem with the adaptive L0 penalty
that includes Λ and was presented at the beginning of Section 3. By setting β̃ = Λ1/2β and
X̃ = XΛ−1/2, one can rewrite the optimization in (6) as follows:

min
1
2

β̃Tβ̃ + λ1T
n(ξ + ξ∗) (9)

subject to : y− X̃ β̃− bn ≤ εn + ξ,

X̃ β̃ + bn − y ≤ εn + ξ∗,

ξ ≥ 0, ξ∗ ≥ 0

which is exactly the same as the objective function for SVR presented in (1), where β and X
have been replaced with β̃ and X̃, respectively. This modification allows us to use existing
software to solve the optimization to obtain β̃ by using X̃ as the predictors and then using
β = Λ−1/2β̃ to find β.

The second point we need to address is the fact that the procedure is an iterative
process. By definition, Λ has entries that depend on the entries of vector β, which is
essentially the vector we are trying to estimate. Therefore, one approach to alleviate this
technicality here is to set all initial weights to one, which is equivalent to running the
standard SVR algorithm without the adaptive L0 penalty. Then, based on this estimator,
we construct an initial estimate for Λ(0), which we use to estimate β(1). We need to set a
stopping rule that will stop when ‖β(t) − β(t−1)‖ ≤ κ, where κ in our simulation is usually
set to something smaller than 10−3.

This also leads to another modification of the optimization problem. To have an
accurate optimization problem, we need to indicate the iterative nature of this procedure
by using superscripts β̃(t) and X̃(t). Therefore, the optimization takes the following form:

min
1
2
(β̃(t))Tβ̃(t) + λ1T

n(ξ
(t) + (ξ∗)(t)) (10)

subject to :y− X̃(t−1) β̃(t) − b(t)
n ≤ εn + ξ(t),

X̃(t−1) β̃(t) + b(t)
n − y ≤ εn + (ξ∗)(t),

ξ(t) ≥ 0, (ξ∗)(t) ≥ 0

where we use Λ(t−1) to construct X̃(t−1) as X̃(t−1) = X(Λ(t−1))−1/2. Then, we put these in
the optimization problem in (10) to obtain the solution β̃(t). Based on β̃(t), we obtain β(t),
which we use to obtain an updated estimate Λ(t), and we use it to construct X̃(t), which is
plugged into the optimization problem in (10) to obtain a solution β(t). This becomes more
clear in the following estimation procedure:

• Step 1: Obtain an initial estimate β(0) for the coefficients of the function using any
method you like (one example is the OLS approach or the classic SVR approach).

• Step 2: At iteration t, where t = 1, . . . , k, calculate Λ(t−1) and X̃(t−1) and solve the
optimization in (10) to obtain β(t).

• Step 3: Compare whether the distance between β(t) and β(t−1) is less than the cutoff
point κ. If yes, stop, otherwise, increase t by one and repeat Step 2.

3.2. Alternative Approach to Adaptive L0 SVR

In this section, we discuss an alternative approach to adaptive L0 SVR. A similar
approach to the one proposed in this manuscript has been presented in the SVM literature,
although it was not discussed at all in the SVR literature. In Li et al. (2015) [10], the authors
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proposed what they call a sparse Least Squares SVM using L0 in the primal state. We
introduce this approach into the SVR method in a similar way and we call it the Alternative
Adaptive L0 (AAL0) penalty. The starting point for this is the optimization problem:

min
1
2

βTβ +
c
2

βTΛβ + λ1T
n(ξ + ξ∗) (11)

subject to : y− Xβ− bn ≤ εn + ξ,

Xβ + bn − y ≤ εn + ξ∗,

ξ ≥ 0, ξ∗ ≥ 0

where, if one compares it to the method introduced in the previous section, it is clear that
there is an extra term (1/2)βTβ and it also introduces a constant c, which gives different
weights to the second term and is an additional parameter that needs to be tuned. If one
combines the first two terms in the optimization above, then we have a similar problem as
in (6), which is:

min
1
2

βTΛ̃β + λ1T
n(ξ + ξ∗) (12)

subject to : y− Xβ− bn ≤ εn + ξ,

Xβ + bn − y ≤ εn + ξ∗,

ξ ≥ 0, ξ∗ ≥ 0

where Λ̃ = I + cΛ and I is the identity matrix. This last optimization is equivalent to
(6), where Λ is replaced with Λ̃. The development of the dual optimization solution is,
therefore, very similar and we omit it here.

4. Numerical Experiments

In this section, we demonstrate the performance of our method in a variety of numer-
ical experiments. We first discuss a number of simulated models and then we discuss a
number of real data.

4.1. Simulated Data

First, we ran a few experiments with simulated data to see how well our algorithm
performs. We chose similar settings to the ones Frommlet and Nuel (2016) [7] used in their
work for the linear model. To demonstrate how well the methods work, we used two metrics,
the percentage of actual predictors that have nonzero coefficients that are recovered from
the algorithm (one can see them as true positives) and the percentage of the zero coefficients
where the algorithm correctly puts a zero coefficient (one can see them as true negatives).
Therefore, the closer these percentages are to one, the better the model is at recovering the
true solution.

We have the following models:

• Model 1: Y = X1 + X2 + ε.
• Model 2: Y = X2 + X5 + X8 + X11 + X14 + ε.
• Model 3: (p) Y = ∑20

i=1 βiXi + ε.

For Model 1, p = 20, for Model 2, p = 24, and, for Model 3, p = 100, 250, 500, 1000, 2500
and βi = 0.5. We used the Toeplitz structure for the covariance matrix with ρ = 0, 0.5, 0.8,
n = 100, ε ∼ N(0, 1) and we ran 500 simulations. We compared the performance of the new
approaches, the Adaptive L0 SVR method (SVR-AL0), and the Alternative Adaptive L0 SVR
method (SVR-AAL0) we discussed in the previous section with the performance of the Adaptive
L0 OLS approach (OLS-AL0) of Frommlet and Nuel (2016) [7]. For the SVR-AAL0 method, we
used the value of c = 1 unless otherwise noted.
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As we can see in Table 1, there are very good results in the estimates by all three
methods. The three methods seem to have similar performances when identifying the true
positives, that is, the coefficients that are different than zero. There seem to be different
results when we try to find the true negatives, that is, the coefficients that are actually zero.
The SVR- AL0 seems to perform well for Model 1 and Model 2 when there is no correlation
between the predictors (ρ = 0), but not as well as the OLS-AL0 when there is a correlation.
In Model 3, this is reversed and the SVR-AL0 seems to work better than the OLS-AL0 in
recovering the true negatives.

Table 1. Comparing performance of true recovery of nonzero (true positives) and zero (true negatives)
coefficients for the three methods.

True Positives True Negatives

Model p ρ SVR-AL0 SVR-AAL0 OLS-AL0 SVR-AL0 SVR-AAL0 OLS-AL0

0 1.0000 1.0000 0.9990 0.9953 0.9948 1.0000

I 20 0.5 1.0000 1.0000 1.0000 0.9650 0.9593 1.0000

0.8 1.0000 1.0000 1.0000 0.8528 0.8455 1.0000

0 1.0000 0.9988 1.0000 0.9465 0.9384 1.0000

II 24 0.5 0.9996 0.9988 1.0000 0.8469 0.8389 1.0000

0.8 1.0000 0.9956 1.0000 0.8503 0.5343 1.0000

0 0.7536 0.7574 0.7227 0.9140 0.9151 0.7562

100 0.5 0.9349 0.9485 0.7397 0.9764 0.9821 0.7470

0.8 0.9876 0.9894 0.7197 0.9874 0.9861 0.7514

0 0.7437 0.8806 0.9347 0.8806 0.8839 0.8332

250 0.5 0.9380 0.9572 0.9971 0.9572 0.9604 0.8877

III (p) 0.8 0.9958 0.9864 0.9993 0.9864 0.9871 0.9161

0 0.7125 0.7138 0.7005 0.8903 0.8927 0.9605

500 0.5 0.9350 0.9473 0.9777 0.9561 0.9495 0.9910

0.8 0.9955 0.9963 0.9987 0.9852 0.9838 0.9992

0 0.5969 0.9135 0.8029 0.9135 0.9166 0.8650

1000 0.5 0.9276 0.9599 0.9935 0.9599 0.9530 0.9123

0.8 0.9946 0.9843 0.9993 0.9844 0.9843 0.9815

4.2. Real Data

Now, we discuss a number of real datasets from the UC Irvine Machine Learning
Repository (Dua and Graff, 2019) [11].

To perform the comparison, we ran the SVR method and we obtained the regression
function estimation, which is produced by the non-regularized procedure. Then, we ran
the regularized SVR methods, including both SVR-AL0 and SVR-AAL0. The scalar c is set
to take three different values, i.e., 0.1, 1, and 10, in the SVR-AAL0 algorithm. If we only
present one answer, that means the three different values have shown the same answers.

We ran the algorithms on three datasets and, here, we present the results. The datasets
are the Concrete Compression Strength (I-Cheng, 1998) [12], the power plant (Tüfeksi,
2014 [13]), and the wine quality (Cortez et al., 2009 [14]). In the Concrete Compression
Strength data (Table 2), we see that the classic SVR algorithm produces a vector of nonzero
coefficients, which means all the variables are important while both the sparse algorithms
push five of the eight coefficients to zero. Furthermore, to demonstrate the effect of the
value of scalar c in SVR-AAL0 on the results, we show that if we change c and set it equal
to 0.1, two of the five zero coefficients are nonzero (although very close to zero). Similarly,
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for the wine quality data (Table 3), the Adaptive L0 SDR shows clear evidence for five out
of the eleven predictors to be equal to zero (and another two very close to zero) while the
Alternative Adaptive L0 finds the same answer as the classic SVR for all three values of
c (0.1, 1, and 10—only value 1 is shown on the results). To see if increasing c will change
anything for this dataset, we tried c = 100 and we noticed the difference in the results,
which is shown in Table 3. As we gave more significant weight to the number of nonzero
coefficients by increasing c, the number of zero coefficients increased to eight and only
the three larger coefficients have now clear nonzero coefficients. Finally, the power plant
dataset (Table 4) shows a similar performance between the two sparse algorithms where
there is one predictor with a zero coefficient and two very small coefficients (one can claim
they are almost zero). It is important to note though, that in the alternative adaptive L0
SVR algorithm for c = 0.1, there are different results, as two predictors have, in this case,
significant coefficients and the other two predictors have clearly zero coefficients.

Table 2. Comparing coefficients of the different methods in the Concrete Compressive Strength
real dataset.

Predictors

Method Cement Slag Ash Water Superplasticizer Coarse Aggr. Fine Aggr. Age

SVR 0.75531 0.20537 −0.12401 −0.05053 0.01467 −0.08858 −0.11367 0.59027
SVR-AL0 0.77107 0.20580 0 0 0 0 0 0.60258

SVR-AAL0 (c = 1) 0.77046 0.20941 0 0 0 0 0 0.60211
SVR-AAL0 (c = 0.1) 0.77380 0.18856 0.00004 0 0 0 0.00001 0.60471
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Table 3. Comparing coefficients of the different methods in the wine quality dataset.

Predictors

Response Method Fixed Acid Volatile
Acid

Citric
Acid

Residual
Sugar Chlorides

Free
Sulfur

Dioxide

Total
Sulfur

Dioxide
Density pH Sulphates Alcohol

SVR 0.00915 −0.01096 0.00351 0.05674 −0.00357 0.23292 0.96777 −0.00009 −0.00110 0.00379 0.07556
Red SVR-AL0 0.00010 −0.00024 0 0.05345 0 0.23297 0.96818 0 0 0 0.07414

Wine SVR-AAL0 (c = 1) 0.00915 −0.01096 0.00351 0.05674 −0.00357 0.23292 0.96777 −0.00009 −0.00110 0.00379 0.07556
SVR-AAL0 (c = 100) 0 0 0 0 0 −0.38130 0.91549 0 0 0 0.12843

SVR −0.01372 −0.00485 0.00249 0.08978 −0.00066 −0.17769 −0.97910 −0.00005 0.00137 0.00116 0.03885
White SVR-AL0 0.00384 −0.00003 0 0.08967 0 −0.17770 −0.97927 0 0 0 0.03736
Wine SVR-AAL0 (c = 1) −0.01372 −0.00485 0.00249 0.08978 −0.00066 −0.17769 −0.97910 −0.00005 0.00137 0.00116 0.03885

SVR-AAL0 (c = 100) 0 0 0 0.05853 0 −0.25981 −0.96388 0 0 0 0
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Table 4. Comparing coefficients of the different methods in the power plant dataset.

Predictors

Method Temperature Pressure Humidity Vacuum

SVR −0.81683 −0.36372 0.18267 0.40881
SVR-AL0 −1.0000 −0.00004 0 0.00050

SVR-AAL0 (c = 1) −1.0000 −0.00004 0 0.00045
SVR-AAL0 (c = 0.1) −0.89426 0 0 0.44755

5. Discussion

In this work, we proposed what is possibly the first application of regularization
to SVR to obtain sparse function estimation in statistical procedures, such as regression.
We combined the classic SVR algorithm with a newly proposed adaptive L0 penalty. We
also proposed an alternative approach to the adaptive L0 regularization of SVR, which
led to a slightly different optimization and solution. We demonstrated in our numerical
experiments that, although both of the methods we proposed performed very well, the
alternative approach depends on the value of the parameter c that needs to be tuned.

The adaptive L0 procedure applied to SVR in this paper has been applied to linear
regression by Frommlet and Nuel (2016) [7] and variations of this idea have been im-
plemented in the SVM literature, see, for example, Li et al. (2015) [10] and Huang et al.
(2008) [15]. It has also been used by Smallman et al. (2020) [16] for sparse feature extraction
in principal component analysis (PCA) for Poisson distributed data, which is useful in
dimension reduction for text data. It is a very appealing approach as it is computationally
efficient (although it needs to be applied iteratively) to obtain an accurate solution and it is
also efficient in providing sparse solutions. It has the potential to be applied to different
settings and we are actively working toward this direction. In addition, this methodology
depends on a number of parameters that need to be tuned and an interesting direction we
have not explored is whether different settings will require different optimal parameters.
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