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Abstract 

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder with a latent 

phase and currently no disease-modifying treatments. Reliable predictive biomarkers that 

could transform efforts to develop neuroprotective treatments remain to be identified. Using 

UK Biobank, we investigated the predictive value of accelerometry in identifying prodromal PD 

in the general population and compared this digital biomarker to models based on genetics, 

lifestyle, blood biochemistry, and prodromal symptoms data. Machine learning models trained 

using accelerometry data achieved better test performance in distinguishing both clinically 

diagnosed PD (N = 153) (area under precision recall curve (AUPRC): 0.14± 0.04) and 

prodromal PD (N = 113) up to seven years pre-diagnosis (AUPRC: 0.07± 0.03) from the 

general population (N = 33009) than all other modalities tested (genetics: AUPRC = 0.01± 

0.00, p-value = 2.2x10-3, lifestyle: AUPRC = 0.03± 0.04, p-value = 2.5x10-3 blood biochemistry: 

AUPRC = 0.01± 0.00, p-value = 4.1x10-3, prodromal signs: AUPRC = 0.01± 0.00, p-value = 
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3.6x10-3). Accelerometry is a potentially important, low-cost screening tool for determining 

people at risk of developing PD and identifying participants for clinical trials of neuroprotective 

treatments. 

Introduction 
 

For most patients diagnosed with Parkinson’s disease (PD), 50-70% of nigral dopaminergic 

neurons will already have degenerated by the time the hallmark motor symptoms manifest and 

a clinical diagnosis is made 1. Thus, there remains a need to identify cheap, reliable, easily 

accessible, and sensitive biomarkers to detect early pathological changes, with success in this 

field likely to be transformative in identifying suitable participants for clinical trials of 

neuroprotective therapeutics. 

 

It is well recognised that at the point of a clinical diagnosis, multiple prodromal symptoms could 

have been present for several years including Rapid-Eye-Movement Sleep Behaviour Disorder 

(RBD), constipation, hyposmia, depression, anxiety, and excessive daytime somnolence with 

urinary dysfunction, orthostatic hypotension, sub-threshold motor symptoms, and abnormal 

dopaminergic molecular brain imaging being more recently added to the criteria for prodromal 

PD 2-4. Multiple previous studies have examined these and other markers to determine their 

sensitivity in identifying prodromal PD 5-7. However, the absence of multi-modal models, which 

combine the predictive power of multiple data sources, has limited this work 4. Furthermore, 

most studies have tended to compare those with prodromal PD to control cohorts lacking any 

comorbidity, limiting the translational validity and real-world applicability of these findings. More 

research is therefore needed to understand the specificity and effective role of prodromal 

markers in the general population. 

 

Digital sensors passively collect data continuously in real-world settings without added cost or 

effort 8, and thus obtain robust estimates of a person’s impairments and capabilities, and detect 

subtle changes at the earliest possible opportunity. Such monitoring cannot be achieved 

through clinical assessments given the limitations of time, cost, accessibility, and sensitivity 9. 
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Preliminary analyses of acceleration and heart rate data collected with digital sensors have 

demonstrated the potential for distinguishing those with a clinical diagnosis of PD from those 

without, as well as the added capabilities of monitoring motor progression, and describing 

sleeping behaviour 10-12. However, these quantitative motor measures remain largely 

understudied 2 with studies often limited by small sample sizes 13, or restricted to analysis only 

after clinical PD diagnosis 14,15. Using digital sensors to detect early movement alterations and 

identify diseases before clinical diagnosis is a largely unexplored field with much potential for 

application in the general population. 

 

This study uses the large, prospective population-based cohort recruited to the UK Biobank 

(UKBB). Since 2006, data has been collected for >500,000 individuals aged 40-69 years with 

ongoing passive follow-up of clinical status 16. Accelerometry data were collected for a 

randomly chosen subset of this cohort who were approached via email (N = 103,712, collected 

2013-2015) 17. Using these data, we sought to determine whether accelerometry data can 

serve as a prodromal marker for PD, examining its specificity by comparing data from those 

receiving a diagnosis of PD or already having a diagnosis of PD to both matched and 

unmatched unaffected controls as well as individuals diagnosed with related disorders, namely 

neurodegenerative disorders, movement disorders, and comorbid clinical disorders (Figure 1). 

We compared the performance of models using accelerometry data to models using data from 

other modalities, such as genetics, blood, lifestyle, and prodromal symptoms to determine the 

best data sources to identify prodromal PD in the general population (Extended Figure 1). 

 

Results 
 

UKBB provides an expanding cohort of individuals with PD 
 

Clinical diagnoses within the UKBB currently derive from multiple sources including self-

reported symptoms and diagnoses, hospital records, death records, and primary care data. 

However, there is no clinical diagnostic validation and the data has incomplete coverage. To 
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ensure that the PD cohort identified was neither an over- or under-estimation, we compared 

the prevalence in our cohort to that expected based on 2015 UK population statistics 18.  

A total of ~0.76% of UKBB participants had been diagnosed with PD by March 2021. Overall, 

the observed number of PD cases was slightly lower than that expected based on 2015 UK 

population statistics (2015 expected: 2252.61, 2015 observed: 1984; Extended Figure 2 and 

Figure 2), with 5255 expected by 2030 assuming no further deaths were to occur. In general, 

we found that the prevalence and incidence of PD in the UKBB cohort closely resembled that 

expected from such a population. 

 

Acceleration is reduced several years prior to diagnosis 

 
We compared the average acceleration for each hour of the day over a 7-day period 

between the diagnostic groups. At the time of or within two years after accelerometry data 

collection, 273 participants were diagnosed with PD (mean years since diagnosis: 

5.04±6.37; Supplementary Table 1, Figure 3A). An additional 196 individuals received a new 

PD diagnosis more than two years after accelerometery data collection (mean years to 

diagnosis: 4.33±1.30, Figure 3A). The prodromal group was significantly older than the 

diagnosed group (t-statistic = 3.26, d.o.f. = 453, p-value = 1.2x10-3, 95% CI = [0.65, 2.61], 

Cohen’s d = 0.298) and were therefore not directly compared in this initial analysis. We 

randomly sampled age- and sex-matched unaffected controls (1:1) for each participant 

diagnosed with PD and each participant that would go on to get a diagnosis of PD. 

Prodromal (from 7am: p-value = 1.9x10-4 to 12am: p-value = 4.5x10-4) and diagnosed PD 

cases (from 7am: p-value = 3.7x10-5 to 12am: p-value = 1.4x10-3) both showed a significantly 

reduced acceleration profile over all hours between 7am and 12am than their age- and sex-

matched unaffected controls (Figure 3B, Supplementary Table 3). No differences in average 

acceleration during the hours from 12am to 7am were found (Supplementary Table 3). A 

reduction in acceleration during daytime could thus be observed several years prior to clinical 

diagnosis. 
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No other disorder shows a similar reduction before diagnosis 

 

As physical activity varies between individuals irrespective of health status, we explored 

whether the observed reduction in acceleration was unique to PD or whether it could also be 

observed in other clinical disorders, notably other neurodegenerative and/or movement 

disorders (Supplementary Table 1). We calculated residual average acceleration corrected for 

age, sex, and BMI via linear regression models trained on unaffected controls (N = 36058) 

(Supplementary Table 4). As anticipated, several participants were diagnosed with multiple 

comorbidities, hence those with a comorbid PD diagnosis or a co-diagnosis of depression were 

removed. 

 

There was a significant reduction in residual average acceleration in diagnosed PD (t-statistic 

= 6.25, p-value = 4.17x10-10) and prodromal PD (t-statistic = 5.69, p-value = 1.3x10-8) 

compared to unaffected controls (Figure 3C, Supplementary Table 10), but no significant 

difference between individuals with prodromal and diagnosed PD (p-value = 0.88). We did not 

find a significant effect of PD treatment on average acceleration in those diagnosed with PD 

(Supplementary Figure 4). Of those investigated, ‘Depression’ was the only other disorder 

found to show a reduction in acceleration following diagnosis. None of the disorders 

investigated were found to have a reduction in acceleration prior to diagnosis, as was observed 

for PD (Figure 3C, Supplementary Table 10). Overall, the finding of a reduction in acceleration 

both prior to and following diagnosis was unique to PD, suggesting this measure to be disease 

specific with potential for use in early identification of individuals likely to be diagnosed with 

PD.   

 

Sleep is more disrupted in PD than in other disorders 

 
We downloaded and extracted sleep features from raw accelerometry data for individuals with 

any of the discussed disorders and unaffected controls; data from a total of 65901 individuals 

were processed. We labelled physical activity classes using a pretrained Random Forest 19 

and derived features for each activity class with night-time 11pm to 6:59am and daytime 07am 
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to 10:59pm. We corrected these extracted features for age, sex, and BMI as learned from the 

unaffected controls (N = 36058) with linear regression models. Sleep features derived from 

acceleration data indicated reduced quality and duration of sleep both in the prodromal phase 

and after having been diagnosed with PD (Figure 4, Supplementary Tables 11-15). Compared 

to both unaffected controls and the prodromal PD group, individuals with a diagnosis of PD 

slept for fewer hours overall (controls: p-value = 1.59x10-10, prodromal: p-value = 1.78x10-5), 

had fewer consecutive hours of sleep (controls: p-value = 9.66 x10-38, prodromal: p-value = 

2.98 x10-5), and slept more frequently during the day (controls: p-value = 1.02x10-30, prodromal: 

p-value = 3.13x10-5). Prodromal PD cases (p-value = 5.62x10-7) and those diagnosed with PD 

(p-value = 6.5x10-4) woke up more frequently during the night compared to unaffected controls, 

with no significant difference between prodromal and diagnosed PD cohorts (p-value = 0.22). 

Individuals with prodromal PD slept longer than unaffected controls (p-value = 1.59x10-10) and 

diagnosed PD cases (p-value = 1.78x10-5). 

 

Examination of the other diagnostic cohorts identified less deterioration in the sleep measures 

than were found in PD (Figure 4, Supplementary Tables 11-15). Across the distinct diagnostic 

groups, the length of uninterrupted sleep was the most frequently observed feature to differ 

between groups. The number of nocturnal awakenings were higher in those in the 

‘AllCauseDementia’, ‘Osteoarthritis’, and ‘Depression’ cohorts following diagnosis however, 

none of the diagnostic groups examined presented a reduction in this feature at the prodromal 

stage, as was found for PD. 

 

Accelerometry data predicts prodromal PD 

 

We next explored the predictive power of accelerometry data following the TRIPOD reporting 

guidelines 20 in terms of area under precision recall curve (AUPRC) at an individual level using 

Lasso logistic regression models with average acceleration, age, and sex as features 

(Supplementary Table 5) in three control group settings: matched unaffected controls, all 

unaffected controls (N = 24987), or the general population (N = 33009). The AUPRC was 
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chosen due to the unbalanced datasets 21. The class prevalence was denoted as 

N_cases/(N_cases+N_control). Average acceleration distinguished those diagnosed with PD 

(N = 153) from matched unaffected controls (N = 153) with a mean AUPRC of 0.78±0.06 and 

could distinguish prodromal PD (N = 113) from matched unaffected controls (N = 113) with the 

same performance. Identifying diagnosed PD and prodromal PD from non-matched unaffected 

controls (N = 24987) led to performances of 0.09±0.05 (prevalence = 0.0061) and 0.09±0.02 

(prevalence = 0.0045) respectively. Diagnosed PD and prodromal PD could also be identified 

from a general population cohort including all unaffected controls, and prodromal and 

diagnosed cases of ‘Osteoarthritis’, ‘Dystonia’, ‘OtherParkinsonism’, and ‘AllCauseDementia’ 

(N = 33009) using only average acceleration with AUPRCs of 0.05±0.04 (prevalence = 0.0034) 

and 0.06±0.05 (prevalence = 0.0046) respectively. Adding derived physical activity and sleep 

features (Supplementary Table 5) increased performance of the models to identify individuals 

diagnosed with PD from the general population to 0.14±0.04 AUPRC and to 0.07±0.03 to 

identify prodromal PD from the general population. The increase in performance compared to 

models using average acceleration was only significant for the diagnosed PD model (p-value 

= 0.01). The most robustly selected feature in all settings was mean acceleration during epochs 

classified as light physical activity which reduced the risk of having/getting PD (Extended 

Figure 3E-5E, Supplementary Figure 13E-15E, Extended Figure 6); meaning that slowness of 

movement during normal physical activity is predictive for both, prodromal and diagnosed PD. 

 

Accelerometry data outperforms known PD prodromal markers 

 
Several modalities have been explored previously for their value in identifying prodromal PD; 

however, these were often investigated in isolation and in clinically refined cohorts, rather than 

the general population. Here, we examined genetics, lifestyle, blood biochemistry, recognised 

prodromal symptoms for PD, as well as accelerometry (Table 1). We trained Lasso logistic 

regression models on these different modalities to identify diagnosed (N = 153) or prodromal 

(N = 113) PD from the three different control groups (Supplementary Table 9). Models trained 

on lifestyle, serum biochemical blood markers, recognised prodromal symptoms, or genetic 
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factors showed lower AUPRC scores than models trained on accelerometry features, 

potentially due to its higher disease specificity (Figure 5A-C, Supplementary Table 5, Extended 

Figure 7). When comparing each modality-specific model to the accelerometry modality, 

significant improvement was found compared to genetics, lifestyle, and blood biochemistry in 

all settings (Supplementary Table 6). For example, for identifying prodromal cases from the 

general population: genetics achieved an AUPRC of 0.01± 0.00 (p-value = 2.2x10-3), lifestyle 

an AUPRC of 0.03± 0.04 (p-value = 2.5x10-3), and blood biochemistry an AUPRC of 0.01± 

0.00 (p-value = 4.1x10-3). Significant improvement compared to prodromal signs only became 

apparent in the general population control setting, where prodromal signs achieved an AUPRC 

of 0.01± 0.00 (p-value = 3.6x10-3). 

  

We further compared each modality-specific model to a no-skill classifier (predictors: intercept) 

(Supplementary Figure 5 & 6) and noted genetics, lifestyle, and blood biochemistry in some 

settings not outperforming this baseline (Supplementary Table 6). We next compared each 

single modality model to its respective combined one where the accelerometry modality was 

added to the predictors. In the diagnosed PD models, the combined models always 

outperformed the single models for all control settings (Supplementary Figure 5). For 

prodromal PD, adding accelerometry to prodromal symptoms only led to an improvement in 

the general population setting (Supplementary Figure 6). The prodromal symptoms modality 

hence showed similar performance in identifying prodromal PD when the controls did not 

include participants diagnosed with related disorders. A model combining all available 

modalities did not outperform the single accelerometry model performance in any setting, 

which could be due to each modality capturing different degrees of the same information 

(Supplementary Figure 17, 18). Overall, the accelerometry modality performed best, especially 

in the general population setting.  

 

We next evaluated which factors within each modality were considered the most relevant 

(Extended Figure 3-5, Supplementary Figure 13-15) and provided a measure of how many 
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features from within a modality were significant in the combined model. We restricted this 

second analysis to the models using matched unaffected controls. The most important features 

in the combined model resembled those found in the modality-specific models (Extended 

Figure 3-5, Supplementary Figure 13-15). Features from the accelerometry modality made up 

the largest portion (67% for the model identifying prodromal PD and 50% for the model 

identifying diagnosed PD) of the most important features in the combined model (Extended 

Figure 3F, Supplementary Figure 13F). The second modality, in order of importance to the 

model was genetic markers with the PRS for PD as the important feature. As the accelerometry 

modality has the highest number of features compared to the other modalities (Table 1), one 

could argue that their importance was purely due to their dimensionality. We investigated this 

through a stacked model where the predicted probabilities of the modality-specific models 

served as input to a final logistic regression model. This also identified the accelerometry as 

the most important one (Supplementary Figure 16).  

 

Accelerometry data predicts time to PD diagnosis 

 
An estimate of time to diagnosis would not only have potential clinical utility but would also be 

important in clinical trials evaluating the efficacy of disease-modifying or curative therapies. As 

such, we next explored which modality would be most beneficial in predicting time to clinical 

diagnosis of PD. A survival random forest model was used to predict time to diagnosis using 

the same modality-specific modelling approach described previously for the logistic regression 

models, here, however, we only focus on prodromal PD and modelling their time to diagnosis 

compared to our three control groups (Extended Figure 8). We chose the time-dependent 

AUROC to evaluate our models, and provided a measure of how well a model can identify all 

pheno-converted cases versus controls up to specified time points. The model trained on 

accelerometry features achieved a mean AUROC of 0.74±0.04 when restricted to matched 

unaffected healthy controls, 0.86±0.06 when prodromal cases are identified from all unaffected 

controls, and 0.84±0.04 when trained on the general population (Figure 5D-F, Supplementary 

Table 7). The brier score can be found in Supplementary Figure 20. As survival class (right 



 

10 

censored class) outnumbered the number of people receiving a diagnosis of PD within the 

observed time frame, the AUROC scores should only be evaluated in a comparative manner 

as this metric can be overoptimistic in this imbalanced setting. The accelerometry model could 

predict the probability of not receiving a PD diagnosis over time significantly better than any 

other single modality model in all settings and performed similarly to the combined model 

(Figure 5D-F, Supplementary Table 8). This finding highlights that acceleration data not only 

allowed us to predict who would develop PD but also when this diagnosis might be expected. 

 

Discussion 

 

Here we show the potential of accelerometry as a biomarker to screen for PD. We found that 

reduced acceleration manifests years prior to clinical PD diagnosis. This pre-diagnosis 

reduction in acceleration was unique to PD and was not observed for any other disorder 

examined. By comparing the predictive value of accelerometry with other modalities including 

genetics, lifestyle, blood biochemistry, and prodromal symptoms, we found that no other data 

modality performed better in identifying future diagnosis of PD. This improvement in predictive 

power was most clearly visible when assessing our models in a real-world scenario where the 

control group contained individuals with related disorders. Finally, we showed that 

accelerometry can predict the time-point at which a PD diagnosis can be expected.  

 

This work builds on prior clinical data which has demonstrated abnormal motor functioning 

during the prodromal phase of PD. Darweesh, et al. 22 showed that impairment in activities of 

daily living and signs of slowness appeared up to seven years prior to a clinical diagnosis. 

Similarly, Fereshtehnejad, et al. 7 analysed the temporal evolution of multiple prodromal 

markers in a longitudinal cohort of patients diagnosed with RBD and highlighted the predictive 

potential of early motor symptoms to identify prodromal PD up to six years prior to diagnosis. 

However, these works were limited to either a high risk RBD population or assessments made 

in the clinical setting, which require the increased cost and time of an in-person visit.  
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Previous work has already explored the use of digital gait markers for diagnosing PD 13,14,23. 

For example, also using UKBB data Williamson, et al. 14 demonstrated high accuracy in 

detecting diagnosed PD cases. However, they focused on prevalent PD cases and did not 

explore the possibility of using these digital markers to identify PD before clinical diagnosis. To 

date, the only other study to have used gait-measuring sensors to investigate the prodromal 

PD was limited to 16 subjects 13. Further, the gait data acquired in that study was collected in 

clinic during specified tasks.  

 

Other digital markers have been investigated for their use as potential prodromal biomarkers. 

For example, nocturnal breathing patterns that can be collected at home via radio waves have 

been shown to identify 75% of the 12 prodromal cases as PD before their clinical diagnosis 23. 

Cognitive and functional impairment prior to diagnosis have been assessed in several 

neurodegenerative disorders, including PD, using UKBB data 24. Transferability to the general 

population and disease specificity however has not been reported in previous studies using 

accelerometry data.  

 

Overall, we identified five major gaps in research that our current work aimed to address: 

studying the (1) prodromal phase of PD using passively collected (2) real-world gait-sensor-

based data in a (3) large sample size (4) while comparing its performance to other established 

markers and (5) its generalizability to the general population. To our knowledge, by using a 

large sample of individuals who convert to PD after data collection, we provided the first 

demonstration of the clinical value of accelerometry-based biomarkers compared to other 

markers for prodromal PD in the general population. 

 
Using accelerometry data for screening in the general population is feasible as the data is 

easily accessible. Smart-devices capable of collecting accelerometry data are used daily by 

most people 25.Challenges to overcome include measurement validity and capability, data 

privacy, and liability concerns 26.Further, processing of the vast amounts of data generated by 
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digital sensors is resource and time intense. As we have demonstrated here, a single week 

period of data is predictive for several future years, and therefore longer intervals between 

assessment could be employed, reducing resource demands. If these limitations are 

addressed, wearables and other health-sensor devices hold the ability to transition medicine 

into a digital health era improving accessibility in remote areas, reducing cost, and improving 

healthcare 27. 

 

There are several limitations in this study, the primary one being the lack of external replication, 

although extensive cross-validation was performed to attempt to mitigate against any cohort 

specific biases. This largely related to the lack of another dataset equivalent to UKBB in terms 

of scale and volume of data that would allow the prodromal phase of multiple disorders to be 

retrospectively studied. For example, though the Parkinson’s Progression Marker Initiative 

(PPMI)28 cohort provides longitudinal smart watch data for a prodromal cohort of 158 cases, 

here prodromal is defined as people at risk, not people who subsequently received a PD 

diagnosis. Another dataset, ‘The All of Us’ cohort29 could provide a valuable future replication 

resource, however is currently limited by the small number of people who have received a 

diagnosis after data collection. This is due, in part, to recruitment being from a wider age range 

(>18 years in ‘The All of Us’ compared to 40-69 years in the UKBB) with data capture to date 

being over a shorter period (2018 onwards for ‘The All of Us’ study and 2006 onwards for the 

UKBB).  

 

Several restraints concerning data availability within the UKBB should be noted. For the 

majority, accelerometry data was only collected over one seven-day period. Longitudinal data 

on acceleration would allow investigation of individual trajectories. Additionally, several 

clinically recognised prodromal markers, such as dopamine transporter imaging or motor 

examinations, were not available within the UKBB and therefore, could not be compared to the 

accelerometry data, despite their recognised high predictive power 2,30. As we chose the time 

of accelerometry data collection as the defining time point for the group assignment, this limits 
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the comparison to other data, like lifestyle and blood biochemistry, collected prior to this. 

Further, not all included features were available for all participants and hence, models were 

trained only on a subset of individuals where complete information was available, artificially 

reducing our sample size but allowing greater comparability between models (Table 1). Of 

note, data availability in the UKBB does not reflect the real-world availability of the modalities. 

For example, genetic data is more sparsely available in real-life but was prioritised within the 

UKBB, while accelerometry data is gathered for many people in real-life but only for a subset 

in UKBB. 

 

Downloading and processing of the raw accelerometry data is time-consuming (30 seconds to 

download data from one participant (~250MB), ~3 minutes to process), thus we restricted our 

analysis to the identified diagnoses of interest and unaffected controls. This limits the 

transferability of our model to clinical practice as it was not trained on a perfect representation 

of the general population. A final limitation is our choice of model. Using Lasso logistic 

regression, we focussed on an interpretable model of low complexity. Using class weighting, 

we prioritised sensitivity over specificity in our model training, thus creating a screening tool 

rather than a replacement for clinical diagnosis (Extended Figure 9). Exploring more advanced 

models that allow for non-linearity could potentially further increase the performance of the 

models. 

 

In conclusion, our results suggest that accelerometry collected with wearable devices in the 

general population could be used to identify those at elevated risk for PD on an unprecedented 

scale, and, importantly, these individuals who will likely convert within the next few years can 

be included in studies for neuroprotective treatments. 
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No-skill Intercept 1 

Genetics & Family 

history 

Polygenic risk scores of 34 traits 

Family history of: Stroke, Diabetes, 

Severe Depression, Alzheimer’s 

disease Dementia & Parkinson’s 

disease 

42 

Blood biochemistry Albumin, Alkalinephosphatase, 

Alanineaminotransferase, 

ApolipoproteinA, ApolipoproteinB, 

Aspartateaminotransferase, Urea, 

Calcium, Cholesterol, Creatinine, C 

reactiveprotein, CystatinC, 

Gammaglutamyltransferase, Glucose, 

Glycatedhaemoglobin HbA1c, 

HDLcholesterol, IGF 1, LDLdirect, 

Phosphate, SHBG, Totalbilirubin, 

Testosterone, Totalprotein, 

Triglycerides, Urate, Vitamin D  

29 

Lifestyle AlcoholStatus Current, AlcoholStatus 

Previous, SmokeStatus Current, 

SmokeStatus Previous, Daytime 

Sleepiness Often, AlcoholFrequency 

LessThanWeekly, BMI, Waist 

Circumference, Hip Circumference, 

Diastolic BloodPressure, PulseRate, 

Body-Fat Percentage, 

TownsendDeprivationIndex  

16 

Prodromal 

Symptoms 

UrinaryIncontinence, Constipation, 

ErectileDysfunction, Anxiety, REM 
Behavioral Sleep Disorder (RBD), 

Hyposmia, OrthostaticHypotension,  
Depression 

11 

All Accelerometry 

features 

UKBB provided averages, weartime-

bias corrected value, and standard 

deviations for days and hours, 

self-derived features for physical 

activity epochs (sleep, sedentary, light, 

MVPA, imputed)  

82 

Combined union of above 168 

Stacked predicted probabilities from single-

modality models (genetics + family, 

blood, lifestyle, prodromal symptoms, all 

accelerometry, intercept) 

6 

Table 1: Feature set for each of the modalities. 

For each modality we show which and how many predictors were included. Every modality includes the 

covariates (age at accelerometry data collection, sex) and an intercept. 
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Figure Legends 

 
Figure 1: Overview of performed analyses – subject flowshart 
We show for each analysis how many subjects were included and why others were removed. Starting 

with the complete UK Biobank dataset, we first focus on those with accelerometry data available. 

Those are assigned to groups based on our diagnosis extraction method. Three different analyses 

follow. The first one being done on raw data where unaffected controls are matched to each 

prodromal and diagnosed case. The second one encompasses statistical analyses for group 

comparisons, where first only subjects with information on covariates were kept such that residuals 

could be computed, and then cases with comorbid depression and Parkinson’s disease were removed. 

The third analysis trains the prediction models where only subjects with complete information on all 

predictors were kept. 

 

Figure 2: Estimated and observed prevalence of Parkinson’s disease in UK Biobank. 

Estimated (dashed) and observed (solid) number of people living with Parkinson’s disease in the UK 

Biobank over time within age groups is shown. Estimated number of cases uses the population-based 

UK statistics from 2015 18. 

Figure 3: Reduction in acceleration prior to diagnosis is unique to Parkinson’s disease  

[A] Baseline data were collected between 2006 and 2010; accelerometry data was gathered for a subset 

between 2013 and 2015. Diagnosed cases (green) were diagnosed prior to or within the subsequent 

two years of accelerometry data collection. Prodromal cases (orange) were diagnosed two or more 

years after accelerometry data collection. [B] Average acceleration in milligal (0.01 mm/s2) is shown in 

one-hour intervals over the course of one day. Group means for prodromal participants (N = 196, orange, 

dashed), unaffected controls matched to the prodromal ones (N = 196, blue, dashed), diagnosed 

participants (N = 273, green, solid), and unaffected controls matched to the diagnosed ones (N = 273, 

blue, solid) is plotted with the respective 95% confidence interval. [C] Boxplots for residual (age-, BMI-, 

and sex-corrected through unaffected control cohort) no-wear time bias corrected average acceleration 

after removal of cases diagnosed with comorbid depression or PD are shown for seven disease groups 

and unaffected controls. Analyses without these adjustments can be found in Supplementary Figure 2. 

For each disease group we differentiate between diagnosed (green), prodromal (orange), and healthy 
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(blue). The number of individuals in each group is indicated in the central box. The boxplots show the 

mean as the centre, the 25% and 75% quartiles as the bounds of the box, and the Q3 + 1.5*IQR/ Q1 - 

1.5*IQR as the whiskers. P-values are shown for group differences (two sided Welch T-test) where 

significance is reached with a 0.05 Bonferroni-corrected threshold of 2.38x10-3. 

Figure 4: Quality and duration of sleep are reduced in diagnosed but not prodromal Parkinson’s 

or any other disorder  

Boxplots for five residual (age-, BMI-, and sex-corrected through unaffected control cohort) 

accelerometry derived sleep features after removal of cases diagnosed with comorbid depression or PD 

are shown for five disease groups and unaffected controls displaying the mean as the centre, the 25% 

and 75% quartiles as the bounds of the box, and the Q3 + 1.5*IQR/ Q1 - 1.5*IQR as the whiskers. 

Supplementary Figure 3 shows the same analyses without exclusion of cases diagnosed with comorbid 

depression. Due to the covariate correction including a subtraction of the effects of the covariates the 

residual is displayed and does not reflect the true value of the variable leading to potentially negative 

values. For each disease group we differentiate between diagnosed (green), prodromal (orange), and 

healthy (blue). The number of individuals in each group is indicated in the central box. P-values are 

shown for group differences (two sided T-test, two sided Welch T-test for comparisons including Healthy 

group) where significance is reached with a 0.05 Bonferroni-corrected threshold of 2.38x10-3. 

 

Figure 5: Accelerometry identifies Parkinson’s disease and predicts time to diagnosis better 

than any other risk factors. 

[A-C] Bar plots indicate the performance of each logistic regression model using different feature sets 

(Table 1). The mean area under precision recall curve (AUPRC) across the five outer cross-validation 

folds is plotted with the error bars indicating the Bonferroni-adjusted 95% confidence interval. The 

individual performances per fold are shown via dots overlayed on the bars. We show this for a no-skill, 

five single modality models, and one combined model for three different tasks with three different 

control groups, [A] matched unaffected controls, [B] all unaffected controls, [C] general population. 

Significance of group differences (two sided T-test (N=5)) for each model compared to the all 

accelerometry model are indicated with star symbols, where significance is reached with a 0.05 

Bonferroni-corrected threshold of 8.33x10-3 (ns: 8.33x10-3 < p <= 1, *: 8.33x10-4 < p <= 8.33x10-3, **: 

8.33x10-5 < p <= 8.33x10-4, ***: 8.33x10-6 < p <= 8.33x10-5, ****: p <= 8.33x10-6). [D-F] A performance 
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evaluation of the survival models is provided in a time-dependent manner, where the performance is 

assessed in identifying all pheno-converted cases versus not yet converted or censored controls up to 

specified time points. The mean time-dependent area under the receiver operator curve (AUROC) of 

the random survival forests is plotted for several evaluation time-points (years since data collection) 

together with Bonferroni-adjusted 95% confidence interval derived from the five outer cross validation 

folds for seven years since accelerometry data collection. We show this for [D] a control group made 

up of matched unaffected controls, [E] a control group including all unaffected controls, and [F] a 

control group representing the general population. 
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Material and Methods 

An overview of the performed analyses and included participants can be found in Figure 1.  

 

Study Population 

The UKBB holds in-depth information on ~500,000 participants and is approved by the 

Research Ethics Committee (reference 16/NW/0274). It was accessed under the application 

code 69610 with data released to Cardiff University. Written informed consent of all participants 

was obtained by UKBB. We explored PD and related disorders, namely ‘AllCauseDementia’, 

‘AllCauseParkinsonism’, ‘AlzheimerDisease’, ‘Dystonia’, ‘Osteoarthritis’, and ‘Depression’. We 

identified patient groups based on ICD10 and ICD9 codes in the hospital inpatient data (fields 

41270 and 41271) and the death registry (fields 40001 and 40002) which were curated from 

UKBB provided tables and phecodes 1, as well as self-reported diagnoses (field 20002). 

Primary care data was also included (field 42040) using read codes (version 2 and 3) 

respective to the ICD10 codes as mapped through TRUD NHS Read browser 2. The respective 

codes for each diagnosis can be found in Supplementary Table 2. We distinguished prodromal 

(incident) and diagnosed (prevalent) cases at the date of accelerometer data collection (field 

90003) based on the earliest reported date across all resources and allowed for a two-year 

margin of error, meaning that patients diagnosed before or within the two years after 

accelerometer data collection are classified as diagnosed/prevalent cases (Figure 3A) and 

individuals receiving a diagnosis >2 years later are labelled prodromal/incident cases. 

Unaffected controls were defined as having no neurological, behavioural disorder or any of the 

included disorders across all included sources and not having been prescribed 

Antiparkinsonism drugs by a GP (field 42039) (Supplementary Table 17) or self-reporting (field 

20003)  usage of Antiparkinsonism drugs (ATC = N04, mapped using Supplementary Table 1 

of Wu, et al. 3). From the set of unaffected controls, we randomly sampled unique age- and 

sex-matched individuals to our PD patients (1:1). Only participants who passed quality control 

for the accelerometer data (field 90016) were included. Health-related outcome data is 
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available up to March 2021. Using the same approach, we also identified participants with 

recognised prodromal signs and symptoms, namely depression, anxiety, orthostatic 

hypotension, RBD, hyposmia, urinary incontinence, and constipation. We defined these as 

prodromal symptoms if they were reported before a PD diagnosis was made. 

We differentiated between three control groups: (i) matched unaffected controls with 1:1 sex- 

and age-matching, (ii) all unaffected individuals, and (iii) a representative sample of the general 

population including all unaffected controls and individuals diagnosed with other disorders 

such as dementia, dystonia, osteoarthritis, and other forms of parkinsonism. Further details of 

each of these groups are provided in the ‘Prediction Models’ section of the methods.  

 

Accelerometer data 

103,712 participants who agreed to participate after random email recruiting wore an Axivity 

AX3 wrist-worn triaxial accelerometer on their dominant hand for a 7-day-period. UKBB 

provides summary statistics (category 1009) describing daily and hourly averages. We 

augmented the accelerometer data by pre-processing the raw data into time-series data and 

classifying 30 second intervals into physical activity categories, namely imputed, sleep, 

sedentary, light, or Moderate to Vigorous Physical Activity (MVPA), with a machine-learning 

model, using balanced random forests with Markov confusion matrices, using the 

accelerometer package provided by the Oxford Wearables Group 4. The pre-processing steps 

we employed are the same as those used to derive the summary statistics from UKBB. These 

steps include device calibration, resampling to 100 Hz, and removal of noise and gravity 5. 

From this machine learning labelled time-series data we derived measures of uninterrupted 

duration, mean movement, and number of interruptions for each physical activity category. For 

sleep this entailed measures of sleep quality, for example frequency of night-time waking and 

frequency of daytime napping. For this, we only used complete datasets, so for each 

participant incomplete hours or days, respective to the measure of interest, were removed. We 

retained for each measure the highest possible amount of data leading to different data being 
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used for different summary statistics. For example, maximum hours spent continuously in one 

physical activity class was calculated over all data available whereas the mean hours per 24 

hours spent in one activity class was calculated as the mean of only fully covered 24h periods 

starting at 10am. 10am was chosen as the offset as data collection was implemented to start 

at that time. This removal of data was performed to avoid biases through higher representation 

of specific hours of the day. A list of all calculated derived physical activity and sleep 

phenotypes can be found in Supplementary Table 16. 

 

Additional data 

We merged the accelerometry summary statistics (category 1009), blood biochemistry 

measures at initial visit (category 17518), physical health measures at initial visit (category 

100006), Polygenic Risk Scores (PRS) (category 301), and our derived physical activity 

phenotypes. We further included age at accelerometer data collection and sex. 

 

Statistical Analyses 

Data retrieval from UKBB was facilitated with an adapted version of the ukbb_parser 6 

(https://github.com/aschalkamp/ukbb_parser). Data processing and model training were 

carried out in python 3.8 using scipy 1.6.1, pingouin 0.5.1 7, scikit-learn 0.23.2 8 and sksurv 

0.14.0 9 packages. Statistical analyses were performed and figures were generated with 

python 3.9 pingouin (0.5.1) (Vallat, 2018), seaborn 0.12.1 (Waskom, 2021), and matplotlib 

3.6.2. All python environments are provided in the associated github repository. 

 

Prevalence 

We validated our established cohort of PD cases by comparing the observed to the expected 

prevalence. For each year between 1950 and 2021 we identified the number of diagnosed and 

undiagnosed cases in each age-group. Based on the date of death (field 40007) participants 
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were excluded from the statistics from their year of death onwards. We calculated the 

estimated number of PD cases for each year based on the number of people alive in each age 

group and the prevalence rates for individual age groups from a population-based study from 

2015 10. We extrapolated this expected prevalence until 2030, making the assumption of no 

deaths taking place.  

 

Identifying and Adjusting for Covariates 

Age and sex are known covariates of acceleration. To address this, we subsampled the 

unaffected controls in an age- and sex-matched manner. However, prodromal and clinically 

diagnosed groups differed significantly in age (t-statistic = 3.18, p-value = 1.6x10-3). BMI is also 

a covariate for acceleration (Supplementary Table 4). To address this, we calculated the 

residuals of average acceleration (field code = 90087) using coefficients for age, BMI and sex 

learned from the unaffected control group (N = 36082) with a linear regression model including 

an intercept. This resulted in the removal of some participants due to missing information of 

some covariates. When examining the other (non-PD) diagnostic groups, we removed any 

cases in which comorbid PD was observed to attempt to maintain cohort homogeneity 

(Supplementary Figure 1). We also removed participants with a comorbid diagnosis of 

depression from all other diagnosis groups as this diagnostic group was found to have a 

significantly reduced acceleration and is a prodromal marker for PD. We compared the residual 

average acceleration measure between the prodromal and diagnosed groups for each 

included diagnosis class with two-sided T-tests and Bonferroni-correction and for comparisons 

including healthy controls with the Welch t-test and Bonferroni-correction as here the sample 

sizes differ substantially between groups. We also computed the residual sleep features, which 

were age-, BMI- and sex-corrected, using the same method as described above for average 

acceleration. 

Medication effect on acceleration 
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W used the primary care prescription records (field code = 42039) to identify participants that 

i) were ever prescribed medication typically used in the treatment of PD and parkinsonism 

AND ii) had received a prescription for it within 10 weeks before data collection, and hence 

were likely to be medicated during data collection. Read-codes were taken from the UKBB 

documentation (https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=594: Parkinson’s 

disease – P2 (all codes referring to medication usage)). A total of 513 UKBB participants had 

ever been prescribed PD medication. 302 of these were not in the ‘AllCauseParkinsonism’ 

group, 206 were among the identified PD cases. 5.37% of the 3837 PD cases in UKBB have 

been prescribed PD medication at least once. GP information was missing for 2045/53% 

identified PD cases.  

We matched the GP records to the accelerometry data using the date of issue and date of 

accelerometry collection information. Of the PD cases who have accelerometry data available 

20 were ever prescribed medication. 19 of those are diagnosed PD and 1 prodromal PD at 

accelerometry data collection. 6 of these, including the prodromal case, were prescribed 

medication only after accelerometry data collection (mean days from accelerometry collection 

to prescription: 464.42±257.28) and were hence assumed to be not medicated during data 

collection. 14 of the PD cases taking medication were prescribed medication before 

accelerometry data collection (mean days since prescription to data collection: 104.56±333.1) 

and of these 13 subjects had not more than 10 weeks between prescription and data collection 

(mean days from medication prescription to accelerometry data collection: 15.57±9.85). We 

compared treated (N = 13) and untreated (N = 122) diagnosed PD cases in terms of average 

acceleration and found no significant differences, potentially due to small sample sizes. We 

repeated this for residual average acceleration corrected for age, sex, and BMI which lead to 

the same results (treated N = 10, untreated N = 103) (Supplementary Figure 4).  

 

 

 

 

https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=594
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Prediction Models 

An overview of the trained models with outcome definition and included features can be found 

in Extended Figure 1. To quantify the predictive power of the acceleration data on an individual 

level and to compare it to other modalities, we fitted logistic regression models. We identified 

five modalities: genetics, lifestyle, blood biochemistry, prodromal symptoms, and 

accelerometry (Table 1). For each modality we included the most recent information available, 

meaning that for the lifestyle and blood modality we included the features from the initial visit 

as those were not collected later on, and for the prodromal symptoms we checked up until 

March 2021 (last update of linked clinical records) for the existence of prodromal symptoms 

preceding a diagnosis of PD. We restricted the dataset to participants with information 

available for all five modalities. We estimated the predictive performance of each modality with 

logistic regression with fitted least absolute shrinkage and selection operator (LASSO) penalty 

in a nested cross-validation. We chose LASSO to increase sparsity in our model and thus 

decrease complexity such that the models would be more stable and less prone to overfitting. 

Logistic regression being one of the simplest algorithms for binary classification tasks was 

chosen due to its high interpretability and prominence. Three different model types were 

trained: 1) diagnostic biomarker: identifying diagnosed PD (N = 153) from control, 2) prodromal 

marker: identifying prodromal PD (N = 113) from control, 3) screening: identifying diagnosed 

and prodromal PD (N = 266) from control. The control group was either 1:1 sex- and age-

matched unaffected controls, all unaffected controls (N = 24987) or a representation of the 

general population (N = 33009), which included unaffected controls and participants diagnosed 

with other disorders such as dementia, dystonia, osteoarthritis, and other forms of 

parkinsonism (N = 8022, participants with comorbidities were only included once). We did not 

include participants with a single diagnosis of Depression into the control group as the 

presence of depression before diagnosis of PD was included as a predictor. 

 

We trained models on different modalities, always including the covariates age and sex and 

an intercept: no-skill (only intercept), genetics, lifestyle, blood, prodromal symptoms, all 
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acceleration features, all modalities combined (Table 1). We further trained models combining 

the features of each modality with all accelerometry features. We trained the models in a 

nested 5-fold cross-validation using a stratified 5-Fold split for both the inner and outer split 

such that in each fold 20% of the data were used for testing and 80% for the inner fold 20% for 

validation with grid search for the best Lasso penalty hyperparameter (10 equidistant values 

between 10-5 and 104). The no-skill model using only an intercept, was trained using only outer 

cross-validation folds as no hyperparameters had to be fitted in the inner fold, as no penalty 

was applied here. Parameter selection was applied independently to each training fold. Real 

valued predictors were standardised based on the training data of the outer split to have a 

standard deviation of one and a mean of zero. Binary data was encoded as 0/1. The sample 

size (class imbalance), mean, and standard deviation for each included feature for every case 

and control group are given in Supplementary Table 9. Balanced class weighting was applied 

to adjust for class imbalances. We report the mean and 95% confidence interval (CI) of the 

area under the receiver operator curve (AUROC) and the area under the precision and recall 

curve (AUPRC) on the outer cross-validation splits to compare models (Supplementary Table 

5). 

 

Performance of the classifiers was compared using two-sided T-tests with multiple testing 

accounted for using Bonferroni correction at 0.05 (Supplementary Table 6). We compared 

each modality to the accelerometry modality (Figure 5A-C). We further compared each 

modality to the no-skill performance and each modality with its single performance and its 

performance when combined with the accelerometry modality (Supplementary Figure 5 & 6). 

For the accelerometry model we compare its single performance to that of a model using all 

modalities. We showed the mean AUROC and AUPRC curves with 1 standard deviation across 

folds for each model (Supplementary Figure 7 – 12). We determined which disorders were 

most likely to be misidentified by the models as PD by assessing the mean predicted probability 

of having PD as assigned by the model on the outer folds of the test data (Extended Figure 7). 

We further investigated feature importance by calculating the mean effect of each predictor 
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over the five outer cross-validation splits. We validated their stability through checking their 

effect size in each outer cross-validation split. A feature was labelled as important and 

significant if the mean effect size across folds was significantly different from zero (95% 

Bonferroni-corrected CI does not cross zero). In addition to the combined model which used 

the union of the features across all modalities, we further trained a stacked model which took 

the predicted probabilities from each modality-specific model and integrated it in a final lasso 

logistic regression model that predicts the overall probability of having or getting a PD 

diagnosis. Each modality was thus assigned a coefficient with which its prediction contributed 

to the final prediction. This model was trained on the same outer cross-validation splits as the 

other models using their predictions on the training data to train the final model and the 

respective test data for testing. No penalty hyperparameter was fitted here, so no inner cross-

validation was performed. The performance was evaluated in a similar fashion with AUROC 

and AUPRC across folds and the assigned coefficients across folds were evaluated for their 

stability across folds by examining the mean and standard deviation (Supplementary Table 5). 

 

Finally, we performed calibration analysis, investigating the calibration at large, the calibration 

slope, and the calibration curves 11. The models trained with matched controls achieved good 

calibration with slopes close to 1 (Supplementary Table 18). The models demonstrating high 

class imbalance, i.e. those trained with all unaffected controls and the general population, 

showed poor calibration as they overestimated the prevalence (Extended Figure 9, 

Supplementary Figure 19). This can be explained through the applied class weighting during 

training whereby the model was penalized to a greater degree when a case was not detected, 

compared to when a control was predicted to be a case, thus introducing a bias. Of note, we 

chose class weighting over calibration, and thus sensitivity over specificity, due to our aim of 

developing a screening tool rather than one that provides a clinical diagnosis.  
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Survival Models 

We explored the value of each modality to predict the time to diagnosis for the prodromal PD 

cohort. We did so by first calculating the Pearson correlation (scipy.stats.pearsonr with two-

sided) of the residual average acceleration (age- and sex-corrected) and time to diagnosis in 

the prodromal PD cohort. A simple linear association was not found between residual average 

acceleration (age- and sex- corrected) and time to diagnosis for the prodromal cases (r = 0.11, 

p-value = 0.13), i.e. average acceleration did not appear to decline further closer to the date 

of diagnosis. We then used survival modelling on the prodromal (N = 113) and controls 

(matched: N = 113, unaffected controls: N = 24987, or population: N = 33009) to predict when 

each individual would be diagnosed (Extended Figure 8). To this end, we used survival random 

forests with a five-fold stratified cross-validation. The survival random forest is made up of 

1000 trees which requires at least 10 samples for a split and 15 samples per leaf. The controls 

were modelled as right censored, as we did not know whether or when they would receive a 

diagnosis. We modelled the time from accelerometer data collection to PD diagnosis, thus 

defining the time of accelerometer collection as time 0. For the prodromal symptoms modality, 

we hence restricted the time of diagnosis of prodromal symptoms to the date of accelerometer 

data collection and removed all subsequent diagnoses of prodromal symptoms. The sample 

size (class imbalance), mean, and standard deviation for each included feature for every case 

and control group are given in Supplementary Table 9. We reported the time-dependent 

AUROC (Figure 5D-F) and brier score (Supplementary Figure 20) on the five cross-validation 

test sets. These metrics are calculated by defining the cases and controls dynamically for 

several time points with controls transitioning to cases at the time of their PD diagnosis. At 

each time point based on the current case and control assignment, the predicted case/control 

assignment is assessed with a standard AUROC using the true positive (sensitivity) and false 

positive rate (1 – specificity). 
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Data Availability 

Data from the UK Biobank (ukbiobank.ac.uk/) are available to researchers on application to 

the UK Biobank following the steps outined here: https://www.ukbiobank.ac.uk/enable-your-

research. 

Code Availability 

Code that supports the findings of this study is available on GitHub 

https://github.com/aschalkamp/UKBBprodromalPD. 
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