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A B S T R A C T   

This study focuses on the home health care routing problem (HHCRP) in the scenario of high population density 
areas where many elders live closely together. This study considers two main objectives. The first is to reduce 
travel and wait times for nurses or elders. The second concerns socially related objectives in scheduling problems, 
such as ‘quality of life’ and empowerment, by considering assumptions related to the acquaintanceship and 
mutual preferences of nurses and elders. This study models the effects of mutual preferences and acquain-
tanceship on service time in HHCRP. We use the Markov decision process and chance-constrained programming 
(CCP) to model the system to conserve the sequential service provision parameters and better represent the 
influence of stochastic service times. Because traditional deterministic algorithms cannot solve such a model, we 
apply a model-free reinforcement learning algorithm, Q-learning (QL), as well as the ant colony optimisation 
(ACO) algorithm. Thus, we tackle this problem by developing a model and algorithm to solve complex, large- 
scale systems. This study’s theoretical and practical contributions are verified by feedback from researchers 
and practitioners.   

Abbreviations 
Abbreviations  

ACO ant colony optimisation 
BWACO best-worst ant colony optimisation 
CCO chance constraint of overworking 
CCP chance-constrained programming 
CCWT chance constraint of wait time 
HHC home health care 
HHCRP home health care routing problem 
HTW hard time window 
MDP Markov decision process 
MTW mixed time window 
QL Q-learning 
QL-BWACO Q-learning–best-worst ant colony optimisation 
SC set covering 
SHHCRP stochastic home health care routing problem 
STW soft time window 
SVRP stochastic vehicle routing problem 
TSP travelling salesman problem 
VRP vehicle routing problem   

1. Introduction 

The problem of societal ageing is becoming increasingly serious, 
making the home health care routing problem (HHCRP) a critical issue 
(Lin et al., 2021; Shi et al., 2019). In this study, we focus on high pop-
ulation density countries, specifically on large-scale living quarters in 
major cities like Beijing, Shanghai, and Guangzhou in China. In these 
areas, many people live in communities with high population densities, 
with a density greater than 1,000 persons/km2 (Statista, 2023). How-
ever, different ages gather in different residential areas. Young people 
move to the suburbs due to the high living cost of the central urban area, 
while older people remain in the old communities in the central urban 
area. The city’s suburbs attract young talents by developing public 
transportation, while the central urban area serves the elders by 
completing medical facilities. 
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In this context, elders are often clustered in communities, allowing 
nurses to visit multiple patients in a shorter time (Lenzi et al., 2019). 
However, each elder may have personalized demands for the duration 
and schedule of home health care (HHC) services (Low et al., 2011). To 
address these challenges, we aim to improve the quality and efficiency of 
HHC service delivery in high-population areas by carefully designing the 
routing and scheduling of these services. Our goal is to reduce waiting 
times, workloads, and travel time for nurses while meeting the needs of 
each elder. 

Our research has important implications for addressing the HHCRP 
in other densely populated areas and the challenges of societal ageing in 
a rapidly changing world. By proposing a solution for efficient and 
personalized routing and scheduling of HHC services, we hope to 
improve the quality of care for elders and reduce the burden on 
healthcare providers in high population density areas. 

One key aspect of our proposed solution is the consideration of 
human relationships. We recognize that service time can be reduced as 
nurses become more familiar with elderly patients and their needs, and 
that factors such as acquaintanceship and individual preferences can 
significantly impact the quality of life of HHC participants (Lin et al., 
2021; Shi et al., 2019; Zhong et al., 2020). Therefore, our study 
explicitly models the effects of mutual preferences and acquaintanceship 
on service time in HHCRP, in order to optimize care delivery and 
enhance the overall quality of services. 

In addition to addressing multi-appointment scenarios and skill- 
demand matching, our proposed solution also takes into account the 
diverse skill levels of healthcare providers and the specific needs of 
elderly patients. The selection of caregiver schedules can have a sig-
nificant impact on both the quality of services and the happiness of 
elderly patients (Choi, 2020; Lin et al., 2021; Shi et al., 2019; Yang et al., 
2018). 

To model the system, we use the Markov decision process and 
chance-constrained programming (CCP) to conserve sequential service 
provision parameters and better represent the influence of stochastic 
service times. However, these techniques cannot be solved by traditional 
deterministic algorithms, especially with a large number of instances, 
and are computationally expensive to apply using previously published 
meta-heuristic algorithms (Allahviranloo et al., 2014). Therefore, we 
utilize a model-free reinforcement learning algorithm, Q-learning (QL), 
as well as the ant colony optimization (ACO) algorithm, to optimize the 
proposed solution and address these challenges. 

The main contributions of this study are as follows:  

• We consider acquaintanceships and individual preferences to 
improve the sense of satisfaction for participants in HHCRP. 

• We consider multi-appointment scenarios and skill–demand match-
ing to increase the empowerment of participants.  

• To obtain more realistic results, we consider stochastic service time 
to simulate the real-world situation in which uncertainty is 
inevitable.  

• We develop a model and an algorithm that can solve complex, large- 
scale systems with a shorter computational time than in previously 
used problem-solving algorithms. 

The rest of this paper is organised as follows. Section 2 reviews the 
literature. Section 3 describes and discusses the complexity of the 
problem. Section 4 proposes a mathematical model for HHCRP, while 
Section 5 introduces the QL-BWACO-based heuristic algorithm. Section 
6 presents the results and analyses of the computational experiments 
and discusses feedback collected from practitioners and researchers. 
Section 7 concludes and discusses the practical implications, limitations, 
and future research. 

2. Literature review 

Research on HHC has developed over the past two decades. In a 

detailed review by Fikar & Hirsch (2017), the authors include multiple 
constraints in their mathematical formulations to simulate the real- 
world environment. 

2.1. Number of appointments per patient per day 

This challenge is classified as a single-appointment problem or a 
multi-appointment problem. If elders require a single appointment per 
day, it can be considered as a classic travelling salesman problem (TSP) 
or vehicle routing problem (VRP) (Fikar & Hirsch, 2017). Nickel et al. 
(2012) describe the acquaintanceship between workers and elders as 
elder–nurse loyalty. Shi et al. (2019) and Redjem & Marcon (2016) also 
consider multi-appointments, but they do not consider the effect of 
acquaintanceship between workers and elders. In our study, therefore, 
we consider both multi-appointments and acquaintanceships between 
workers and elders. 

2.2. Stochastic service time 

Yuan et al. (2015) and Choi (2020) consider stochastic service time 
in HHCRP and assume that it is normally distributed, optimising it using 
a branch-and-price algorithm for small-scale experimental cases. Liu 
et al. (2019) and Shi et al. (2018) assume that service duration is a 
random variable with known probability distributions while Shi et al. 
(2019) describe an uncertainty set for service duration. Shi et al. (2018) 
investigate stochastic HHCRP (SHHCRP) with stochastic travel and 
service times by applying stochastic programming with resources and 
reducing it to a deterministic version. Oyola et al. (2016), meanwhile, 
designate a VRP that considers stochastic service time, demand, or travel 
time as a stochastic VRP (SVRP) and solve it using CCP and stochastic 
programming, both of which are modelling methods within stochastic 
programming theory (Lin et al., 2021). Restrepo et al. (2020) present a 
two-stage stochastic programming model for employee staffing and 
scheduling in home healthcare. Du & Zhang (2022) investigate a 
cross-regional scheduling and routing problem with stochastic service 
times in the one-day planning horizon. Essentially, SHHCRP is a variant 
of SVRP. Likewise, the present study uses stochastic programming. 

2.3. Time window 

In real situations, elders require services and appointments during 
different periods; these are described mathematically as time windows 
(Fikar & Hirsch, 2017). They consist of three classes: soft time window 
(STW), hard time window (HTW), and mixed time window (MTW). 
Fikar & Hirsch (2015) and Fathollahi-Fard et al. (2020) assume that 
every service must begin within a period (i.e. HTW), and arrivals outside 
that time window are not allowed. STW allows nurses to arrive outside 
the appointment period (Eveborn et al., 2006), which is less realistic 
since punctuality is considered important in real life. Bertels & Fahle 
(2006) therefore used both HTW and STW. 

HTW prevents waiting or being late, STW allows waiting and being 
late, MTW penalises waiting but prevents being late, and HTW & STW 
penalise waiting and being late. The arrows in each sub-plot indicate the 
arrival timeslots, each of which is associated with an effect. For example, 
in the HTW case, arrivals before and after the time window are unac-
ceptable, while in the STW case, they are all acceptable but come with 
either waiting time costs or penalties for being late. 

MTW keeps health care providers’ visits from occurring after the 
lower time boundary and results in waiting times when workers arrive 
before the upper boundary (Yang et al., 2018; Zhang et al., 2018; Zhang 
et al., 2019). Fig. 1 is a graphical representation of the different time 
windows. This study uses MTW because it has been shown to be the most 
reliable approach (Liu et al., 2014). 
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2.4. Skill–demand and preference matching 

Skill–demand matching generally represents the availability of el-
ders (or services) for workers with different skills (Fikar & Hirsch, 
2017). There are different ways to describe it mathematically, one of 
which is called ‘set covering’ (SC), which assumes that only when the 
skill set of a worker can cover the demand set of elders can the worker 
serve the elder. Yuan et al. (2015) address the hierarchical assumption 
that proposes two parameters: ‘dummy capacity’ for every worker and 
‘dummy demand’ for the elders. Rodriguez et al. (2015) propose an 
original two-stage approach based on integer linear stochastic pro-
gramming. Fikar & Hirsch (2015) represent this assumption more 
directly by assigning each nurse or job a qualification level. Yang et al. 
(2018) and Zhang et al. (2019), as well as the present study, use the 
latter representation. A number of studies have investigated matching 
care demand with supply in the context of traditional institutions (Lin 
et al., 2021; Shi et al., 2019). Preference matching includes a wide range 
of personal tendencies (e.g. an elder may need a worker who speaks a 
certain language). Two recent studies consider a related assumption, 
‘patient satisfaction’, aiming to maximise the privilege of patients to 
choose specific nurses (Fathollahi-Fard et al., 2020; Lin et al., 2021). 
Khodabandeh et al. (2021) develop a model to consider the objective of 
minimizing the difference between the actual and potential skills of the 
nurses. 

2.5. Other constraints 

Yang et al. (2018), Zhang et al. (2018), and Zhang et al. (2019) 
evaluate several simpler SHHCRP scenarios, considering stochastic ser-
vice time, mixed time window, and skill–demand match. Yang et al. 
(2021) consider a multi-objective home healthcare routing and sched-
uling problem (HHRSP) with several conflicting objectives: minimizing 
routing cost and improving service consistency and workload balance. 
Mehmet and Çağrı (2022) study a joint multi-depot home health care 
and dialysis problem of routing and scheduling decisions of health 
specialists. 

Although HHCRP has been increasingly investigated, only a few re-
searchers have studied the stochastic characteristics, and none of them 
have considered the stochastic scenario in densely populated commu-
nities. The present study, therefore, simultaneously considers multi- 
appointment, mixed time window, skill–demand match, and human 
relationships (preferences and acquaintanceships) to better reflect real- 
world scenarios. 

3. Problem description 

SHHCRP is commonly treated as a variant of VRP, which can be 

defined on a graph G = (V, E) (Li et al., 2010). The set of nodes, V, 
contains locations of elders (coordinates). The set of edges, E, contains 
edges linking each pair of nodes in V. Since workers can only travel to 
elders via paths, stairs, or elevators (either horizontal or vertical), the 
shortest distance between any two nodes is assumed to be a constant 
sum of horizontal and vertical distances traversed by workers. The 
overall objective of SHHCRP is to allocate demand to nurses to minimise 
their total waiting time and unfulfilled demands. Fig. 2 shows a 
graphical illustration of the problem and its assumptions. 

Each worker starts from the depot and finally comes back to the 
depot. Each worker needs to arrive before the end of the time window 
and wait if he or she arrives before the time window. A worker can only 
execute a demand when the skill level is higher than the demand level. 
The more skilled the worker is, the more acquainted the worker is with 
the elder, and the less the required service time. Each elder may propose 
multiple demands. Therefore, a worker may visit an elder multiple 
times. 

3.1. Assumptions 

More specifically, the problem investigated in this study contains the 
following assumptions:  

• Single depot. Each worker must start from and end at the HHC 
centre (i.e. all routes must start and end at the same node).  

• Multi-appointment. Each elder may require more than one service 
per day with different time windows. 

• Acquaintanceship. Once a worker is assigned to an elder who re-
quires more than one service, the worker is expected to provide the 
remaining services to the elder unless the worker is not qualified or 
unable to meet other constraints.  

• Mixed time window. Each service has an appointed period that 
forces workers to wait before the lower bound and forbids workers to 
begin service when arriving after the upper bound.  

• Workload. Each worker is expected to finish the route within a time 
horizon.  

• Moving speed. Each worker moves among elders at a constant 
speed; thus, the travel cost becomes a value only related to the 
distance. 

• Skill–demand matching. Each worker is ranked at a skill qualifi-
cation level, and each service has a level of required qualifications. It 
is assumed that the worker can serve an elder only when a service’s 
qualification level is lower than a worker’s qualification level. 
Additionally, the higher the worker’s skill, the less the required 
service time. 

Fig. 1. Graphical representation of different time windows (arrows indicate nurses’ arrival slots).  
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Fig. 2. Problem description.  
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• Preference matching. Each nurse–elder pair has an initial mutual 
preference value representing how much they mutually prefer each 
other.  

• Stochastic service time. Service time is usually distributed and 
linked to three matching rules: (i) skill–demand match, which is 
negatively correlated with the mean value (i.e. the better the skills 
match the service, the less the expected time to fulfil service needs; 
(ii) preference-match, which is defined as a weight of the mean value 
(i.e. the better the match, the shorter the expected service time); (iii) 
acquaintanceship, which is defined as an increment of the preference 
weight (i.e. as a nurse–elder pair becomes more familiar with each 
other, the preference weight becomes smaller). 

3.2. Symbol definition in the model 

3.2.1. Indexes and sets of workers, elders and routes 
As shown in the table below, briefly define the parameters that 

appear in the problem description.  
Symbol Definition 

K the set of workers, which is given by the experimental instances. 
I the set of elders, which is given by the experimental instances 
V the set of coordinates of elders defined as V = {(xi, yi, zi)|i ∈ I} 
N the set of jobs, which is given by the experimental instances. 
R the set of routes defined as R = {RK|RK = {r0, r1, r2, …,rnk , r0,} ∀ k ∈ K, 

and rn ∈ ni}, where rn is the n-th job of elder i executed in route RK. 
Besides, r0 is the depot where workers start and finish routing 

ni the set of job that elder i needs, ni ∈ N. In this paper, it is assumed that an 
elder may need more than one service or job, therefore ni∩ N ∕= {0} ∀ i ∕=
0 and ni ∕= ∅. Note that when and only when i = 0,ni= {0} 

k the index of workers defined as k ∈ K = {1,2,3, … k}. 
i the index of elders defined as i ∈ I = {0,1,2,3, … i}. Note that i =

0 represents the depot, which is the start spot and end spot of every 
worker. 

n the index of jobs defined as n ∈ N = {0,1,2, …, n}. Note that n =
0 represents the job of i = 0.  

3.2.2. Skills and preferences match qualities 
This article proposes nursing issues based on interpersonal re-

lationships, specifically manifested in the familiarity between nurses 
and elders. Based on this, both parties make a two-way choice. The 
following table provides a brief definition of the parameters appearing 
in the article for this issue.  

Symbol Definition 

SQ the set of skills qualifications. In this paper, we consider three sorts of 
skills: 1) daily nursing skills, 2) basic medical skills and 3) professional 
medical skills. They are represented by dn, bm, and pm, respectively. 
Therefore, SQ = {dn, bm , pm}. 

sqk the set of skills qualifications that worker k masters, sqk ∈ SQ 
dn the set of skills and qualifications required by the job n, dn ∈ S, n ∈ N. 
aik a binary variable that represents whether elder i is acquainted with worker 

k. And it takes the value 0 when they don’t know each other, and 1 when 
they have met each other before. The value is set to 0 for any pair of 
workers and elders at the beginning of the algorithm and changed to 1 if 
worker k serves elder i. 

Δa the acquaintanceship decrement  

3.2.3. Time-related notations 
This article uses a hard time window constraint to define the pa-

rameters in the text. At the same time, we link time and cost together 
and define them.  

Symbol Definition 

(bn
i , en

i ] the time window of job n of elder i. In particular, the time window of 
depot, (b0

0, e0
0] is defined as the scheduling horizon. We define that (b0

0, e0
0] 

→ (0, e0
0], in which e0

0 is a constant given by experimental instance. 
tcij the travel cost from elders i to j 
dcn

ik the service time of executing job n of elder i by worker k, which is defined 
as normally distributed, namely, dcn

ik ~ N(μn
ik (dn, sk), σ2). As assumed, the 

mean value, μn
ik (dn, sk) is a function of skill-match-quality. 

(continued on next column)  

(continued ) 

Symbol Definition 

wn
ik the waiting time produced when worker k arrives at elder i for job n before 

bn
i . 

whk the total working hours of worker k 
W the maximum of working hours available for any worker 
θ the cost per time units. In this paper, we consider three sorts of costs: 1) 

travel cost, 2) service cost and 3) waiting cost. To different extents for 
different operational purposes, they are differently important, which can 
be formulated by setting different values of θ.  

3.2.4. Decision variables 
After the state of a stage is given, a choice that evolves from that state 

to a certain state in the next stage is called a decision, and the variables 
that describe the decision are called decision variables.  

Symbol Definition 

xnm
ijk a binary variable that takes the value 1 when worker k moves from elder i 

finishing job n, to elder j for available job m, and 0 otherwise.  

4. Mathematical model 

Stochasticity requires stochastic programming as a proper repre-
sentation (Kall et al., 1994). Therefore, we use finite Markov decision 
process (MDP) and chance-constrained programming (CCP) to hierar-
chically model the problem, as MDP models sequentiality (Bellman, 
1966), and CCP reasonably simulates stochasticity (Charnes & Cooper, 
1959). We model the scheduling problem using MDPs and CCP in a 
nested manner, as depicted in Fig. 3. The MDPs model the outer loop of 
selecting nurses to be scheduled to capture sequentiality. In contrast, the 
CCP models the inner loop of allocating elders and their demands to 
capture stochasticity. At each stage of MDP, an agent (the algorithm) 
observes the current number of unscheduled nurses and demands and 
acts (choosing a nurse). Then, a sub-solution (route) restricted to the 
constraints of CCP is used to calculate a reward regarding routing 
quality. Then, the system moves to a subsequent state. A complete 
worksheet is formed when the system transits to an absorbing state (no 
more nurses or demands). 

4.1. Markov decision process 

MDP is represented by a tuple (S, A, {Pss′}, γ, R) (Sutton & Barto, 
2018). Note that SHHCRP is assumed to hold the Markov property, 
which means that as long as the current unfulfilled demands are 
observed and a nurse is chosen, the solution generated based on CCP is 
only relevant to the current unfulfilled demands and the chosen nurse 
and is not influenced by historical system states (Bellman, 1966). 

The elements of MDP are formally defined for SHHCRP as follows: 
s ∈ S =

{
srdd′

s |d, d′ ∈ D
}
∪ {sabsorb} represents the state space, where 

d, d′ ∈ D represent the levels of demands; srdd′
s represents the size re-

lationships of demands at levels d and d′; and sabsorb represents the 
absorbing states, which are situations where there are no more nurses or 
demands. 

as = sqk ∈ SQ represents an action chosen at a state s, which is a skill 
level of available nurses. 

Pss′(s, as) is the transition probability of the system transferring to 
state s′ when an action as is taken at state s. This is also called the 
environmental model since, by definition, it describes the dynamics of 
the environment (Sutton & Barto, 2018). In this study, the environment 
is modelled by CCP. We assume, however, that the transition probability 
distribution is unknown since SHHCRP is a combinatorial optimisation 
problem that suffers from NP-hardness. In principle, transition proba-
bility can be computed by solving CCP, but the computational processes 
are very expensive, especially for problems with a large search space. 
Therefore, assuming transition probability is unknown and applying a 
model-free algorithm can be computationally cheaper and more 
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feasible. A model-free algorithm (agent) obtains information about the 
environment by observing changes in environment dynamics without 
predicting changes based on a dynamics model (Watkins & Dayan, 
1992). For example, in this study, the agent observes the size relation of 
the current numbers of unscheduled nurses and demands instead of 
predicting the exact changes in these numbers before choosing an ac-
tion. The latter is much more computationally costly. 

γ ∈ [0, 1] is the discount factor, which represents the importance of 
future reward. 

Rhd(s, as) = λwh • wh+
∑

i∈DΔdi
ss′ is the reward function in which Δdi

ss′ 
is the amount of demand at level i that is fulfilled by the chosen nurse. 
Different values of λwh lead to different degrees of importance of the 
fulfilled demands and waiting times. When λwh = 0, Rhd( • ) provides a 
reward that is only related to the number of demands a nurse fulfils, 
while it trades off between shortening the waiting time and increasing 
the number of fulfilled demands when λwh ∕= 0. 

The system starts at an arbitrary state s1. Once a nurse a1 is chosen, 
the environment generates a reward R(s1, a1) and moves into a new state 
s2. This procedure continues until it reaches a terminal state where there 
are either no more nurses or demands. Then, a worksheet (solution) is 
completed. 

4.2. Chance-constrained programming 

The CCP model has an advantage in formulating stochastic decision 
systems by assuming that an uncertain situation may hold with at least a 
probability α—namely, a confidence level (Charnes & Cooper, 1959). In 
a similar study, Li et al. (2010) use an SVRP that assumes that the travel 
time of vehicles must be adequate so that the arrival time can be within 
the time windows, and the total workload must be smaller than a given 
constant within the respective confidence levels. However, since waiting 
cost is more significant than travel cost in SHHCRP in densely populated 
areas, we emphasise the waiting time limitation more than the travel 
time. This assumes a constraint, which should be satisfied at a given 
confidence level, that the wait time of any nurse for any time window is 
less than a limited constant. In contrast, the constraint that the total 
workload is smaller than a given constant should be satisfied at another 
confidence level. 

The mathematical model is proposed as follows. The objective, for-
malised by Eq. (1), is to minimise the average waiting time. Eq. (2) and 
Eq. (3) are the equivalents of the chance constraints of waiting time and 
overworking respectively corresponding to Eq. (A3.3) and Eq. (A3.4) 
derived in Appendix A3. Eq. (4) requires each demand to only be 
executed once. Eq. (5) and Eq. (6) require workers to start from and end 
at the home care centre. Eq. (7) specifies that workers must move on to 
another demand. Eq. (8) is the constraint of matching skill and demand 
levels (i.e. a worker can only execute a job if the worker meets the 

required qualifications). Eq. (9) ensures that workers never arrive after 
any time window. Eq. (10) is the definitional domain of confidence 
levels. Eq. (11) is the decision variable that equals 1 if worker k moves 
from elder i after finishing job n to j for job m to be executed; otherwise, 
it equals 0. The corresponding mathematical notations, the chance 
constraints and their deterministic equivalents, and the representations 
of human relationships are detailed in Appendix A. 

Min F
(

xnm
ijk

)
=

∑
n∈ni ,m∈mji,j∈I

[
xnm

ijk • wm
jk

]

∑
n∈ni ,m∈mji,j∈I

(
xnm

ijk

) ,∀k ∈ K, (1) 

s. t. 

brn+1 − Φ− 1(α)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(dcrn )

√
− trn − tcrnrn+1 − E(dcrn ) ≤ C, ∀rn ∈ Rk, k ∈ K, (2)  

Φ− 1(β)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(dcrn )

√
+ trn + tcrnr0 +E(dcrn )+wr0 ≤ W, ∀rn ∈ Rk, k ∈ K, (3)  

∑

k∈K

∑

i∈I

∑

j∈I
xnm

ijk = 1, ∀n ∈ ni,m ∈ mj, (4)  

∑

j∈I

∑

m∈mj

x0m
0jk = 1,∀k ∈ K, (5)  

∑

i∈I

∑

n∈ni

xn0
i0k = 1,∀k ∈ K, (6)  

∑

i∈I\0

∑

n∈ni\0

xnm
ijk −

∑

i′∈I

∑

n′∈n
i′

xmn′

ji′k = 0, ∀k ∈ K, j ∈ I,m ∈ mj, (7)  

dn, dm ∈ sqk, ∀xnm
ijk = 1, i, j ∈ I, n ∈ ni,m ∈ mj, k ∈ K, sqk ∈ SQ, (8)  

ern ≥ trn , (9)  

α, β ∈ [0, 1], (10)  

xnm
ijk = {0, 1}∀i, j ∈ I, n ∈ ni,m ∈ mj, k ∈ K. (11)   

Symbol Definition 

C the maximum time within which workers can wait between time windows 
rn the elder served at the current stage 
rn+1 the elder chosen to be served at the next stage 
trn the arrival time of the worker k at the current elder rn 

tcrnrn+1 the travel time from rn to rn+1 

dcrn the stochastic service time of rn by k 
wrn+1 the waiting time of worker k at rn+1  

Fig. 3. Finite Markov decision process. At every decision timestep, an agent (the algorithm) observes the number of nurses and demands and selects an action (a 
nurse in this study). The selected nurse is then assigned a service plan by solving a chance-constrained programming problem. The cost of the solution and the 
remaining number of nurses and demands are then returned to the agent as a reward and a new observation. This process is repeated until there are no more nurses 
or demands. 
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5. Q-learning and best-worst ant colony optimisation (QL- 
BWACO) heuristic 

5.1. Combination of ACO and QL 

The heuristic solution is based on the Q-learning (QL) algorithm and 
the best-worst ant colony optimisation (BWACO) algorithm. Fig. 4 gives 
an overview of the heuristic solution. At the initial state of the envi-
ronment, the QL algorithm starts choosing nurses to be scheduled 
sequentially. Each selected nurse becomes an input for the BWACO al-
gorithm to generate a sub-solution (route). Then, the QL algorithm re-
ceives a reward associated with the quality of the route, updates the Q- 
matrix, and chooses the next nurse based on observing the nest state of 
the environment. The Q-matrix tabulates the Q values of any pair of 
action (nurse) and state (numbers of nurses and demands). When the 
system reaches a terminal state (no more nurses or demands), it finishes 
one episode and starts a new one, with the system being initialised 
again. Note that the Q-matrix is only initialised at the beginning. Details 
about updating the Q-matrix are given in Appendix A4.1. 

5.2. Q-learning 

Action and value. As shown in Fig. 4, the algorithm will observe the 
environment at each state and obtain information regarding the current 
unscheduled nurses and demands. Then it takes an action, i.e., chooses a 
nurse with a certain skill level and receives a reward. The action is taken 
either based on the Q-matrix or randomly following the ε-greedy heu-
ristic rule. This means that the action is taken either according to the 
best-known Q-value with the probability ε or randomly with the prob-
ability 1− ε (Rodrigues et al., 2009). As long as a reward is received, the 
value of that action will be computed. In each state s, according to 
(Watkins & Dayan, 1992), a Q-value Q(s, as) of an action as taken at state 
s is computed by Eq. (12): 

Q(s, as) = Rhd(s, as)+ γ • max
as′∈A

Q(s′, as′) (12) 

where Rhd(s, as) is the reward of taking action as at state s, and 
max
as′∈A

Q(s′, as′) is the best Q-value of the new state that could be obtained 

by taking the action as′ according to the current Q-matrix. Note that the 
Q-values are, by definition, the expected returns of taking an action at a 
state and following a policy thereafter. This formulation means the value 
of an action chosen at the current state is proportionately (at a given rate 
γ) associated with the highest value that could be obtained at the new 
state, in which way the algorithm attaches some degree of importance to 
future performance. 

Q-matrix. Any pair of action and state values are tabulated into a Q- 
matrix in which columns are actions and rows are states. Once a sub- 
solution (route) is obtained, the QL agent will receive a reward associ-
ated with its quality. One generally needs the state transition probability 
to compute the expected reward, which is difficult to be achieved 
directly as explained in Section 3.2. 

However, as a model-free reinforcement learning algorithm, Q- 
learning can find good solutions without full knowledge of the envi-
ronment, as it only evaluates the action values (Watkins & Dayan, 
1992). In general, the goal of QL is to construct a Q-matrix that indicates 
the values of the actions taken at any state of the MDP, i.e., a Q-matrix 
that indicates the performance of every nurse given the current un-
scheduled nurses and demands. The best schedule could be deduced 
according to the Q-matrix as it converges. 

Updating the Q-matrix. In the beginning, the initial value of 
Q0(s, as) is randomized for each pair of states and actions, forming an 
initial matrix Q0. Every time the algorithm receives a reward after taking 
action at a state, the corresponding element of the Q-matrix will be 
updated with a learning rate l, by which the agent will proportionally 
keep the old knowledge and learn the new knowledge. The updating 
equation is computed by Eq. (13): 

Qn(s, as)←Qn− 1(s, as)+ l •
[

Rhd(s, as) + γ • max
as′∈A

Qn-1(s′, as′) − Qn− 1(s, as)

]

(13) 

In summary, the algorithm will head towards convergence by iter-
atively interacting with the environment (taking actions and receiving 
rewards) and updating its action-value matrix (the Q-matrix), as proved 
by Watkins & Dayan (1992). As long as it converges, the Q-matrix will 
reflect the exact value of any action taken at any state, and thus the 
problem could be solved by applying the converged Q-matrix to the 
environment. However, since the reward defined in Section 3.2 requires 
sub-solutions of the CCP model, we propose another algorithm to solve 
the model in Section 4.2 effectively. 

5.3. Best-Worst ant-colony optimization 

Choosing elders. When the Q-learning procedure provides a nurse 
with a certain skill level, the BWACO algorithm begins building a route. 
This sub-procedure was modified according to the meta-heuristic given 
by (Dorigo & Stützle, 2010). 

First, all of the ants start with an empty solution sp = ∅. In every 
construction iteration, each ant completes a current partial solution sp 

by sequentially choosing feasible solution elements Cj
i ∈ N

(
sp
)
⊆ C, 

where N(sp) is a set of solution elements that satisfies the feasibility. 
Note that the situation of no feasible solutions during this step is handled 
differently in different implementations, e.g., as an abandoned or 
penalized solution. Each ant chooses solution elements probabilistically 
according to different probability distributions, of which the most 
widely used one is that defined by the first ACO (Colorni et al., 1991). 

That probability transition function is deducted by Eq. (14): 

Pz
rnrn+1

(t) = ωz
rnrn+1

(t) •
ταaco

rnrn+1
•
[

1
wrn+1 (t)

]βaco

∑
rk ∈ szτrnrk αaco •

[
1

wrk (t)

]βaco
,∀rn+1 ∈ sz

available′ (14) 

where Pz
rnrn+1

(t) is the probability of ant z choosing edge [rn, rn+1], 

Choose a 
Nurse 

BWACO
Generates Routes

Receive a 
Reward

Update Q 
Network

Absorbing 
State

EndStart

Next Iteration

Non-absorbing 
State

Observe the 
Environment

 

Fig. 4. Overall structure of the hybrid algorithm. At a decision timestep, the agent observes the number of nurses and demands and selects a nurse. This nurse is 
assigned a service plan by solving the CCP model via the BWACO algorithm. The cost of the planning solution is used to compute a reward for the agent to update the 
Q-matrix. The agent then receives a new observation, and the process repeats until there are no more nurses or demands. After a certain number of iterations, the Q- 
matrix will converge to a (sub-)optimum. 
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τrnrn+1 is the pheromone density on edge [rn, rn+1], and wrn+!
(t). is the 

waiting time at rn+1. Exponents αaco and βaco represent the relative 
importance of pheromone and heuristic information. αaco = 0 means the 
probabilities only depend on the heuristic information, andβaco =

0 means the probabilities only depend on the pheromone density. 
ωz

rnrn+1
(t) is the function related to the chance constraints defined as Eq. 

(15). 

ccwt = brn+1 − φ− 1(α)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(dcrn )

√
− trn − tcrn cn+1 − E(dcrn ), and

cco = φ− 1(β)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(dcrn )

√
+ trn + tcrnr0 + E(dcrn ), then,

ωz
rnrn+1

(t) =
{ 1, if , ccwt ≤ C

0, if , ccwt > C, or, cco ≤ ern+1

} (15) 

Updating pheromones. In this step, the pheromones are updated to 
increase the probability of achieving good solutions iteratively. Two 
mechanisms are used in this process: pheromone deposition and pher-
omone evaporation. Note that pheromone evaporation protects the al-
gorithm from overly rapid convergence by proportionally decreasing the 
influence of previous solutions and enhancing the exploration of new 
possible solutions (Colorni et al., 1991). The best-worst principle was 
used to update the pheromones according to the best and worst solutions 
found by ants (Cordon et al., 2000; Wei, 2013). 

The pheromone update function is performed according to Eq. (16) 
and Eq. (17): 

τrnrn+1 = (1 − ρ)τrnrn+1 +Δτrnrn+1 (16)  

Δτrnrn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

tCrnrn+1 , rn, rn+1 ∈ sz− best
suboptimal

− tCrnrn+1 , rn, rn+1 ∈ sz− worst
suboptimal′

0, otherwise

⎫
⎪⎪⎬

⎪⎪⎭

(17) 

where ρ ∈[0, 1] is the evaporation rate that partially keeps the pre-
vious knowledge, and Δτrnrn+1 is the pheromone increment on edge 
[rn,rn+1 ] involved in the best and the worst solutions. 

The algorithm will move towards convergence by iteratively inter-
acting with the environment and updating the Q-matrix, as demon-
strated by Watkins & Dayan (1992). If it converges, the Q-matrix will 
reflect the (approximately) true, expected value of any action taken at 
any state. Thus, the problem can be solved by applying the converged Q- 
matrix to the environment. 

Since the reward function defined in Section 4.1 requires sub- 
solutions of the CCP model, we use a BWACO-based heuristic algo-
rithm to solve the CCP model described in Section 4.2. ACO was first 
introduced in 1992 to address TSP by mimicking ants’ behaviour (Col-
orni et al., 1991). It was recently reviewed in detail and found to be 
effective for solving many variants of routing problems (Dorigo & 
Stützle, 2010). In addition to routing problems, ACO is also applied in 
other scenarios (e.g. network design (Zohal & Soleimani, 2016), flow 
shop scheduling (Rajendran & Ziegler, 2004), multi-item inventory 
routing problems (Huang & Lin, 2010), and pipeline routing (Baeza 
et al., 2017). The BWACO heuristic repeats two procedures: (i) 
elder-choosing (i.e. choosing elders to build a route for the nurse) and 
(ii) pheromone-updating (i.e. updating the pheromone density accord-
ing to the previous results). These two procedures are explained in detail 
in Appendix A4.2. The heuristic will converge to a (sub-)optimum as 
ants will greedily choose the route with the highest pheromone density 
and increase the pheromone density in return. 

5.4. Algorithm complexity 

Their input quantity usually determines the complexity of algo-
rithms, and the growth rate of complexity varies among different algo-
rithms. This article uses time complexity evaluation to measure 
algorithm complexity. The time complexity quantitatively describes the 
algorithm’s running time, as shown in the simulation experiment in 
Table 7. As shown in the figure, the method proposed in this article has 

made progress based on the combination of the ant colony and q- 
learning algorithms. Similar instance convergence can be obtained with 
less computational time, thereby demonstrating its superiority.  

Algorithm QL_BWACO 

1 Input:Instance representations,CCP model parameters,ACO parameters,Q learning 
parameters 

2 Output:Variables(*Q_nurses_list).Constants(total workload,total waiting time) 
3Initialize variables for output 
4 Evaluate solutions 
5 Solution recording variables 
6 Start iteration 
7 for ant in range(ant_num) do 

current_job = depot current_time,waiting,workload = 0 
Bulid routes 
While current_workload <=workload do 
St_mean = service_time_mean[nurse,s][current_job.lv] 
Preference_factor=copy.deepcopy(current_preference[current_job.e][nurse.l]) 

If current_time < current_job.twb,then 
Current_waiting +=(current_job.twb - current_time) 
Current_time = copy.deepcopy(current_job.twb) 
Sub_arrival_time.append(copy.deepcopy(current_time)) 

Else 
Current_time += (preference_factor*st_mean) + alpha_model_p 

8 Search for targets satisfying the time window constraint 
9 collect feasible_targets and calculate transition probability 

If (len(feasible_targets))==0 no feasible targets, end routing,then 
Elif (len(feasible_targets)==1 only one feasible target,choose it and update route 
Remove chosen target from visiting list 
For v in range(len(visiting_list))do 

If visiting_list[v].1==feasible_targets[0].1,then 
Visiting_list.remove(visiting_list[v]) 

Return feasible_targets[0] 
Else more than 1 feasible targets,calculate transition probabilities 

10 update route 
Nurse.tt=copy.deepcopy(shortest_time) 
Nurse.aT=copy.deepcopy(arrival_time_trace) 
Nurse.twt=copy.deepcopy(waiting_time) 
For o in range(len(best_path))do 

Nurse.r.append(best_path[0]) 
If best_path[0].lv ==1,then 

Nurse.sd[0]+=1 
eIif best_path[0].lv ==2,then 

Nurse.sd[1]+=1 
elif best_path[0].lv ==3 

Nurse.sd[2]+=1 
12 Start Q Learning process 
13 Calculate fulfilled and remaining demands 
14 Update global solution according to evaluation value 
15 If solution_final.ev < sub_solution.ev,then 
16 Solution_final = copy.deepcopy(sub_solution)  

6. Experimental results and discussion 

We assume that the stochastic service time is based on normal dis-
tributions with different mean values (Table 1). In the following ex-
periments, we assume that skills and demands are limited to three 
classes: (i) basic care: meal provision, house cleaning, and chatting 
services, among others, which are considered the most basic and the 
easiest services; (ii) body checking: physical examination and symptom 
identification using basic medical devices, among others, which require 

Table 1 
Initial mean values, μn

ik(dn, sk), of service time regarding different pairs of skill 
and demand levels. It is assumed that a nurse with a higher skill level can serve 
lower-level demands with less service time, and a nurse with a lower skill level 
cannot serve higher-level demands (denoted ‘–’).  

Demand level (dn) Skill level (sk) 

Primary (Lv. 1) Senior (Lv. 2) Professional (Lv. 3) 

Basic care (Lv. 1) 25 (min) 20 (min) 18 (min) 
Body checking (Lv. 2) – 30 (min) 20 (min) 
Medical guidance (Lv. 3) – – 20 (min)  
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a fundamental knowledge of medicine; (iii) medical guidance: diagnosis, 
nutrition consulting, and hospital transfer advice, among others, which 
require professional medical knowledge. 

Experimental results with different parameter settings are based on 
the service time initialisation. We provide results with different 
parameter settings in the MDP-CCP model and draw managerial impli-
cations from the results (Section 6.1). We discuss the advantages of the 
algorithm compared with other works (Section 6.2) and present feed-
back collected from practitioners and researchers (Section 6.3). 
Appendices A5 and A6 present the results of testing the BWACO and QL 
processes (convergence and hyperparameter experiments). All experi-
ments were performed on a laptop with an Intel Core i5-3230 M 2.60 
GHz CPU and an 8 GB DDR3 RAM. The algorithm was coded in Python 
3.5.3. 

6.1. Parameter settings of the Markov decision process-chance 
constrained programming (MDP-CCP) model 

Table 2 shows the results of testing the parameters associated with 
the MDP-CCP model, including the waiting time constant, initial pref-
erence, preference decrement, and both confidence levels. The experi-
mental results were obtained using the fixed algorithmic parameters 
listed in Table 3. 

6.1.1. Waiting and workload limitations (instances A, B, and C) 
We provide the solutions generated by QL-BWACO under different 

waiting and workload limitations. Based on the results here, managers 
may increase their confidence in a routing plan with a better balance 
between flexibility and costs. 

As assumed in Section 3, the chance constraint of waiting time 
(CCWT) limits the maximum time (C) within which workers can wait 
between time windows. Different values of C can be regarded as the 
different extent to which institutions allow workers to wait. The flexi-
bility of scheduling is also influenced by waiting limitations. The chance 
constraint of overworking (CCO) limits the maximum total workload 
(W) beyond which workers should stop working. The workload is crit-
ical for worker health, safety, and fairness. 

First, we find that adjusting nurse sequences can keep the average 
waiting time stable or even reduce it when the waiting limitation in-
creases. Fig. 5 and Fig. 6 show that the average waiting time increases, 
and the unfulfilled demands decrease as the waiting limitation increases. 
Although the overall tendency is growing, some values decrease as the 
limit increases. Such a small difference is attributable to the influence of 
nurse sequences (corresponding data are boldfaced in Table B1 in Ap-
pendix B). We find that the average waiting time with different se-
quences is stable or even decreases, revealing the algorithm’s 
adaptability. Because nurses with higher skill levels require less service 

time and meet more demands but are more expensive, these results can 
help decision-makers make trade-offs between more expensive 
personnel and customer demands that must be satisfied. 

Second, we find that nurses can fulfil more demands with a higher 
waiting limitation. Almost all demands are fulfilled when the waiting 
limitations are set to 480 min in instances A, B, and C with higher 
waiting times. When the instances are difficult to schedule, decision- 
makers might have to accept a higher waiting cost. Therefore, stipu-
lating a proper limitation of waiting time can help fulfil more demands 
at a smaller cost. When satisfying all demands is a high priority, 
decision-makers might not be able to fully utilise human resources un-
less the waiting time limitations are adequately satisfied. 

These results approximately reflect the real environment with 
different demands and provide nearly the best solutions, demonstrating 
that solutions generated by the method can help decision-makers. Ap-
pendix E includes the figures for arrival times and time windows asso-
ciated with comparative solutions. 

6.1.2. Confidence levels of the chance constraints of waiting time and 
overwork (instance A) 

The two confidence levels represent the degree to which decision- 
makers believe that solutions will satisfy the waiting time and over-
work limitations. Setting higher values for the confidence level is equal 
to assuming a lower probability of breaking the limitations. Since ser-
vice time is the only random variable, a higher confidence level corre-
sponds to a larger interval of service time estimation. However, the 
chance constraints are transferred to their deterministic equivalents, 
which changes the confidence levels to different degrees of time in-
crements. According to Eqs. (2) and (3) and the standard normal dis-
tribution, when the confidence levels are higher, the value of the inverse 
standard normal distribution function becomes smaller, and the esti-
mations of service time increase. We test different values for the confi-
dence levels of the CCWT and CCO. The results are given in Table B2 in 
Appendix B. 

First, we find that when the CCWT confidence level (α) increases, QL- 
BWACO produces solutions with lower waiting time costs (Fig. 7a). As 
stated in Section 4, the service time will have different estimated values 
with different values of α. However, these results show that with higher 
waiting time limitations, increasing the confidence level of CCWT will 
decrease the waiting time. This indicates that decision-makers should 
adjust the confidence level of the CCWT to achieve better scheduling in 
different environments and that the QL-BWACO algorithm can assist in 
their decision-making. 

Second, the confidence level of CCO is found to only influence the 
system’s performance (Fig. 7b). We test different values of β with a 
workload limitation of 400 min. We find that as β decreases, the average 
workload is predicted to be shorter, although the increase rate is low. If 
decision-makers strictly require nurses to not overwork, the system will 
predict higher values of working time without breaking the workload 
limitation (W). Since the solutions are satisfactory, it is unnecessary to 
reschedule nurse’s sequences or routes; thus, the workload is the only 
value that is changed. 

Table 2 
Parameters and instances for testing the Markov decision process-chance con-
strained programming (MDP-CCP) model.  

Parameter values to test MDP-CCP 
C W a0

ik 
Δa α β 

0, 20, 40, 60, 
100, 480 

400, 
480 

1, 
random 

0.05, 0.01, 
0.2 

0.8, 
0.9,0.95 

0.8, 0.9, 
0.95  

Instances 

Index Elders Nurses Jobs Jobs Lv. 
1 

Jobs Lv. 
2 

Jobs Lv. 
3 

A 30 Lv.1–3 (1, 3, 3) 60 15 37 8 
B 30 Lv.1–3 (1, 3, 3) 60 27 19 14 
C 30 Lv.1–3 (1, 3, 3) 55 24 28 3 
D 80 Given in Section 

6.1.4 
159 23 107 29 

E 150 Given in Section 
6.1.4 

303 119 140 44  

Table 3 
Q-learning (QL) and best-worst ant-colony optimisation (BWACO) parameter 
values for testing the MDP-CCP model.  

Parameters Values 

QL Learning rate (l) 0.9 
Discount factor (γ) 0.9 
Greedy rate (ε) 0.5 
Working time importance degree (λwh) − 0.01  

BWACO Initial pheromone (τ0) 20 
Evaporation rate (ρ) 0.5 
Pheromone weight (αaco) 1 
Heuristic weight (βaco) 1  
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Fig. 5. Average waiting time of nurses. Each line corresponds to an experimental case, and each point corresponds to an estimated average waiting time of nurses 
given a waiting time limitation value. 

Fig. 6. Average waiting time of jobs. Each line corresponds to an experimental case, and each point corresponds to an estimated average waiting time of jobs given a 
waiting time limitation value. 
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Adapting the confidence level of the CCWT in different situations is 
found to be a valuable contributor to making better schedules. More-
over, it can guide QL-BWACO to generate better solutions and provide 
valuable decision-making advice. Since QL-BWACO produces different 
solutions when the CCWT confidence level (α) changes, nurses will have 
different choices for completing their tasks with different confidence 
levels. In other words, managers can define different flexibilities for 
their HHC schedules. 

Together with the results in Section 6.1.1, we find that HHCRP in 
densely populated areas increases service rates with shorter travel dis-
tances. This means that nurses who provide services in densely popu-
lated communities can execute services with higher efficiency and 
workloads. Hence, in consideration of socioeconomic sustainability, 
decision-makers should aim to balance the workloads of employees and 
the quality of care provided to elders with institutional profits under 
different scenarios. 

6.1.3. Initial preference and decrement (instance A) 
We review the parameters associated with human behaviours, 

including mutual preferences among workers and elders. We define a 
preference variable a0

ik that affects the mean values of service time and a 
rule to decrease a0

ik after every service by each worker–elder pair (Δa). 
Fixed and random initial preference values are simulated for different, 
predefined relationships between workers and elders, which decision- 

makers can flexibly change according to different situations. 
We find that setting higher decrements (a0

ik) of service time can in-
crease the efficiency and profits of HHC activities. In Table 4 (boldfaced 
numbers), as a0

ik increases, service time decreases, and fulfilled demands 
increase. In other words, nurses can simultaneously save more service 
time and satisfy more demands with preference matching. 

These results generally reveal that considering human relationships 
in scheduling improves social satisfaction. Assigning nurses to mutually 
preferred elders makes the organisation of human resources more hu-
mane, effective, and efficient, as shown in Table 4. Hence, HHC pro-
viders should consider the influence of human relationships. Moreover, 
the results with constant and random initial preference parameters 
(Table 4) show a significant difference between considering individual 
preferences and not doing so. These results might not be the same as 
those obtained using real-world data. However, they are sufficiently 
interesting to suggest that managers should humanise schedules and the 
interactions between nurses and elders to positively contribute to their 
quality of life. 

Further, the QL-BWACO algorithm performs well with both fixed and 
random initial preference values. The solutions are valuable for 
decision-makers. The randomly initialised preference matrices are 
included in Appendix D1, and the increments of elders’ preferences after 
being served are included in Appendix D2. 

Fig. 7. Sensitivity analysis. a. Changes in the average waiting time for jobs with respect to the CCWT confidence level α. The figure shows that if the decision-maker 
increases the degree of satisfying the waiting time constraints (the value of α), the algorithm will produce plans with slightly lower waiting costs. b. Changes in the 
average workload with respect to the CCO confidence level β. The figure shows that if the decision-maker increases the degree of satisfying the workload constraint 
(the value of β), the algorithm will produce plans with slightly higher predicted workloads. 

Table 4 
Results with different initial preferences and decrements of instance A. For both constant and random initial preferences, increasing the preference increment factor 
(Δa) results in increasing demand fulfilment. The different results between constant and random initial preferences also demonstrate the importance of considering 
individual differences among nurses and elders.  

Instance 
(C, W)

(a0
ik, Δa) Unfulfilled demands 

Lv.1–3 
Nurses sequences 
(skills) 

Average working time 
(min) 

Average service time of nurse/job 
(min) 

Demands fulfilled rate 
(%) 

A 
(60, 
480) 

(1, 0) (1, 3, 3) 3, 2, 3, 2  405.59 318.88/24.07 88.3 
(1, 0.01) (1, 3, 0) 3, 2, 3, 3  413.24 313.48/22.39 93.3 
(1, 0.05) (2, 2, 1) 3, 3, 3, 2  399.40 289.76/21.07 91.7 
(1, 0.1) (1, 2, 1) 3, 3, 3, 2  386.15 276.35/19.74 93.3 
(1, 0.2) (0, 0, 0) 3, 3, 3, 2  363.05 251.34/16.76 100 
(random, 0) (0, 4, 4) 3, 3, 2, 2  400.37 303.82/23.37 86.7 
(random, 
0.01) 

(2, 4, 2) 2, 3, 3, 2  400.31 308.18/23.71 86.7 

(random, 
0.05) 

(2, 1, 4) 3, 3, 2, 2  391.84 290.24/21.9 88.3 

(random, 0.1) (0, 2, 3) 3, 3, 2, 2  389.77 279.61/20.34 91.7 
(random, 0.2) (1, 1, 1) 3, 3, 2, 3  361.62 241.96/16.98 95.0  
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6.1.4. Different nurse sources and a larger instance (instance D) 
In the results presented in Sections 6.1.1–6.1.3, the solutions for 

instances A, B, and C do not necessarily occupy all the nurses, which 
means unavoidable idle time due to the demand distribution. Therefore, 
we apply a larger instance, designated as instance D (Table 2), with 
different nurse resources to further evaluate the performance of the 
model and the algorithm. The parameter settings are fixed as shown in 
Table 3 and Table 5. 

The results in Table 6 show that the algorithm generates a reasonable 
solution in a large-scale instance with a good nurse source. In practice, 
decision-making should not depend solely on the predictive results of 
scheduling and routing. However, those results are an important part of 
the information that decision-makers need. Furthermore, the results 
presented in Table 6 illustrate the following characteristics of the 
SHHCRP:  

1) Travelling in general constitutes about 10% of the total work time, 
which is less than in previous studies that did not consider densely 
populated communities.  

2) Different nurse sequences significantly affect the system’s 
performance.  

3) Our results can help decision-makers balance the supply of nurses to 
fulfil eldercare demands. 

6.2. Comparison with related work 

To the best of our knowledge, there is currently no benchmark for 
solving the complex problems considered in this study. We do, however, 
try to test the practicality of our experimental results by comparing in-
stances and algorithms with those used in the most relevant studies. 
Nevertheless, our study has the highest problem complexity, as dis-
cussed in Section 3. 

First, although the assumptions are different in existing studies, our 
examples are more explicitly provided. As shown in Table 7, ours is the 
only study that provides complete information about the examples 
(terms that lack data are marked ‘-’ in Table 7). Therefore, our results 
have relatively higher reliability and practicality. 

Second, the QL-BWACO algorithm described in Section 4 shows 
comparable or less convergence time than others. Though our method 
and others are not strictly comparable because of different problem 
assumptions and hardware support, our method is preferable to others 
for the following reasons:  

1) The problems investigated in this study have the highest complexity 
(see Section 3 for a detailed comparison of considered constraints).  

2) The algorithm used in this study requires fewer iterations for the 
most similar instances to converge.  

3) The algorithm used in this study requires less computation time for 
the most similar instances to converge.  

4) The results in Kergosien et al. (2009) are based on an exact algorithm 
and a relatively small number of experimental cases, among which 
the largest required more computational time to converge than was 
needed for the smallest experimental case tested in our study. Note 
that the algorithms used in Trautsamwieser & Hirsch (2011) and 

Nickel et al. (2012) and in our study are searching algorithms. 
Therefore, the maximum iteration number and CPU time (the third 
and fourth columns of Table 7, respectively) are not necessarily 
comparable. Instead, the convergence speeds (the fifth column of 
Table 7) provide more important information for comparison. 

6.3. Managerial insights 

The results of this study have practical implications for the man-
agement of home healthcare services in densely populated areas. Our 
findings suggest that decision-makers in the home care industry should 
prioritize the importance of human relationships in scheduling, as this 
can improve nurses’ work efficiency and enhance service satisfaction for 
both caregivers and customers. This may involve strategies such as 
assigning nurses to work with the same group of elderly patients over 
time, or allowing nurses to choose their own assignments based on 
personal preferences and expertise. 

Additionally, it is crucial for home care managers to carefully 
consider the trade-off between workload and profit, particularly in 
densely populated areas where nurses may be expected to take on 
heavier workloads. To avoid overworking existing nurses and risking 
burnout or turnover, it may be more beneficial to hire additional nurses, 
if the budget allows for it. This could also improve the overall quality of 
care by enabling nurses to spend more time with each patient and 
address their needs more effectively. 

For policymakers, our findings suggest the need for increased re-
sources to be allocated towards the development of data collection and 
processing systems for home care services. This would enable the next 
generation of home caregivers to have access to more effective back-
ground knowledge and work efficiently with AI-based technologies. By 
investing in robust data infrastructure and analytics capabilities, poli-
cymakers can better understand the needs and preferences of elderly 
patients and caregivers and design policies and programs that address 
these needs more effectively. 

7. Conclusions 

This study investigates home healthcare resource planning (HHCRP) 
in a real-world context, specifically in densely populated communities 
where elderly individuals reside. We analyse crucial constraints such as 
human relationships, multi-appointments, skill-demand matching, and 
stochastic service times in order to gain insights that can support HHC 
decision-making processes. To address the stochastic nature of this 
sequential decision-making problem, we propose a hybrid mathematical 
model combining the Markov decision process and chance-constrained 
programming. The resulting algorithm, called QL-BWACO, is shown to 
perform reliably and efficiently with medium- and large-scale experi-
mental cases and is empirically documented to be the best among the 
options used in other studies. 

One limitation of this study is the imperfect mathematical model 
used to represent human relationships and health care provider service 
times. While the model was built upon expert knowledge-based heu-
ristics and received positive feedback from practitioners, it could be 
improved with further research and development. Integrating big data 
and machine learning techniques may offer a promising way to better 
approximate real-world situations and enhance the accuracy of the 
human relations model. This will require a well-defined data collection 
process, as suggested by a healthcare practitioner. 

In the future, research on HHCRP in densely populated communities 
could focus on two main areas: understanding the needs of caregivers 
and elderly individuals in these communities, including both physical 
and mental aspects, and building a data collection system for collecting 
real-world data to monitor, analyze, and predict changes in demand. 
These data can be used to balance supply and demand and develop and 
implement more effective models and scheduling algorithms. 

Table 5 
Algorithm parameter values of MDP-CCP for larger-instance experiments. MDP- 
CCP: Markov decision process-chance constrained programming.  

Parameter Value 

MDP-CCP CCWT constant (C) 40 (min) 
CCO constant (W) 480 (min) 
Initial preference value (a0

ik) 1 
Preference decrement (Δa) 0.05 
Confidence level of CCWT (α) 0.9 
Confidence level of CCO (β) 0.9  
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