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In order to enable intelligent orchard management and the application of harvesting robots, it is neces-
sary to improve the accuracy of computer vision technology for green fruit segmentation in complex
orchard environments. However, existing segmentation algorithms are unable to generate precise fruit
masks in such environments. This paper proposes a novel and efficient segmentation algorithm called
Mask Positioner for accurate fruit segmentation. The Mask Positioner applies a layer-by-layer filtering
approach to refine feature maps generated by the detail refinement network, resulting in a refined mask.
The selected pixels are then input to the order decoder to determine their relevance to the fruit region.
Finally, the determined pixels are used to generate the final mask, resulting in accurate and efficient fruit
segmentation. Mask Positioner is verified by a green persimmon dataset made for the complex back-
ground. The experimental results show that the segmentation accuracy of Mask Positioner reaches
67.4%, and the detection accuracy reaches 69.1%. For small fruits, its detection and segmentation accuracy
are at least 1.0 and 3.2 percentage points higher than other algorithms. Additionally, the generalization
ability of the algorithm is verified using a green apple dataset. Experiments show that it does well in the
green fruit segmentation.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the field of orchard management, scientific yield prediction
remains a challenging task. In which, accurate irrigation and fertil-
ization are crucial for optimal fruit growth, while intelligent robots
can replace human labor in fruit picking, saving resources and
improving efficiency. Additionally, yield prediction can guide orch-
ard thinning and allow farmers to plan fruit storage and sales in
advance. However, these tasks often rely on expensive and
expert-dependent methods, making them difficult for small-scale
orchards to implement. This study aims to address these chal-
lenges using advanced computer vision techniques. Recent devel-
opments in deep learning have greatly improved the accuracy of
object detection and segmentation, leading to successful applica-
tions in agriculture (Sun et al., 2022; Tang et al., 2023), including
fruit detection (Inkyu et al., 2016; Bargoti et al., 2017a), pest iden-
tification (Patel et al., 2011; Ebrahimi et al., 2017; Ngugi et al.,
2021), and autonomous field operations (Yang et al., 2021).

Although segmentation has been widely applied in field of agri-
culture, there is still a challenge in accurately segmenting green
fruits, particularly green fruits with small size characteristics. Seg-
mentation of small green fruits in the orchard is a challenging task
due to the complex and dynamic environment, as fruits are often
obscured by leaves and overlap each other. Moreover, the changing
daytime light conditions and artificial illumination at night further
complicate the task of accurate segmentation. These factors have a
significant impact on the object segmentation technology that is
crucial for orchard intelligence, making it difficult to achieve high
segmentation accuracy. From Fig. 1, it is evident that some algo-
rithms such as GCNet or HRNet often have areas with inaccurate
segmentation. These areas typically correspond to irregular edges
of the fruit, which are obscured by branches and leaves. These
edges are represented by white lines in Fig. 1. Furthermore, when
two fruits overlap each other, it can be difficult for the mask to
accurately cover and distinguish the fruit boundary, as depicted
by blue boxes.
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Fig. 1. The edges of fruits are not clearly distinguishable when they are overlapped or covered by leaves. Besides, the generated masks for the covered parts may not be
smooth enough, as indicated by the blue boxes in the image. However, the Mask Positioner can accurately distinguish between two target fruits and generate smooth and
accurate masks for both of them.
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To address the issue of imprecise segmentation for small green
fruits, this study proposes an efficient segmentation algorithm
called Mask Positioner. It consists of four main components: back-
bone, detail refinement network (DRN), pixel filtering, and order
decoder. The Resnet50 (He et al., 2016) is utilized as the backbone
network for feature extraction of input images in this study. Simi-
lar to the classic Mask RCNN (He et al., 2017), the region proposal
network (RPN) generates anchor boxes, which are refined by the
ROI Align operation in the next step. Differently, the study incorpo-
rates a detail refinement network to fully integrate features,
thereby avoiding the loss of feature information of small green
fruits. Moreover, Mask Positioner extracts the pixels of the area
with inaccurate segmentation and inputs them into the order
decoder for judgment. Mask Positioner aims to refine the mask of
hard-to-segment areas such as fruit edges. The experimental
results show that the segmentation accuracy of small-sized fruits
is significantly improved, and the generalization of the proposed
method on green fruit is excellent.

Overall, this paper includes main contributions as follows:

1) An effective object segmentation algorithm, Mask Positioner,
is proposed in this study. It improves segmentation accuracy
by three parts of detail refinement network, filtering pixels
and order decoder. The algorithm filters pixels in a layered
manner from the feature maps fused by DRN and sends
them to the order decoder for determining whether they
belong to the fruit region.

2) This study made an immature green persimmon dataset to
simulate the real orchard environment and test the effec-
tiveness of Mask Positioner. Our dataset includes small
green fruits with variable illumination, green color, and fruit
blockage and overlap. These characteristics effectively test
the algorithm’s performance. A generalization experiment
was conducted on a green apple dataset created by our-
selves, which proved that Mask Positioner can be applied
to other green fruits.

3) Mask Positioner outperforms other algorithms in terms of
small-sized fruit segmentation and is also not significantly
affected by lighting conditions. The segmentation accuracy
of small fruit in persimmon data achieved by Mask Posi-
tioner is 67.4%, which is at least 1.0 percentage points higher
than other algorithms. Similar results are observed for green
apple data, demonstrating its effectiveness in handling com-
plex orchard environments and meeting the demands of
computer vision.

2. Literature review

In order to estimate the feasibility of Mask Positioner in
advance, much literature has been consulted. Up to now, various
studies have been devoted to solving the problem of orchard yield
measurement and counting and so on. It mainly includes methods
based on machine learning and deep learning. This section reviews
2

the application of various algorithms and summarize their charac-
teristics and performances.

2.1. Technologies based on machine learning

Methods based on machine learning developed relatively early.
Dorj et al. (Dorj et al., 2017) developed an algorithm that utilized
color features and the watershed algorithm to detect and count
citrus fruit. The algorithm was able to achieve a high correlation
coefficient of 0.93 between the citrus counting algorithm and
human observation. This demonstrated its ability to produce accu-
rate results. In the same year, In 2017, Qureshi (Qureshi et al.,
2017) proposed a mango detection algorithm based on texture
dense segmentation and shape for mango tree crown. While this
method achieved good results, it had limitations in terms of light-
ing conditions and was found to work best with images taken at
night under artificial lighting. Yasar and Akdemir (Yasar &
Akdemir, 2017) employed Artificial Neural Networks (ANNs) to
extract color features from HSV color space for detecting orange
fruits. Their detection algorithm achieved an accuracy of 89.8%.
Additionally, Mehta (Mehta et al., 2017) proposed a kernel density
clustering method for the segmentation of green fruit. This method
used a double sorting algorithm to automatically select the center
of the cluster, effectively reducing the calculation cost and achiev-
ing almost complete fruit recognition.

It can be seen from the above studies that algorithms based on
machine learning mainly rely on the surface features of fruit such
as color, texture and size. Support vector machines (SVM) classifier
is often used to analyze these features. While machine learning has
shown good performance in fruit detection and segmentation, it
still faces challenges in accurately segmenting fruits with overlap-
ping and occlusion. Additionally, it has limited adaptability to the
orchard environment and is not suitable for large-scale orchard
production. Therefore, there is a need for more accurate and robust
algorithms with stronger learning ability to detect and segment
fruit in orchards.

2.2. Technologies based on deep learning

In the past few years, deep learning technology has made signif-
icant advancements, particularly in the field of computer vision.
One of the most notable achievements is the development of
end-to-end detection mode, which has given rise to various neural
network algorithms that can be applied to diverse contexts. Bargoti
and Underwood (Bargoti & Underwood, 2017b) proposed an image
processing framework for fruit detection and counting using orch-
ard image data. The framework combined two methods, Multi-
Layer Perceptron (MLP) and Convolutional Neural Network
(CNN), for apple image segmentation. The performance of the seg-
mentation model was evaluated using the F1 score, which is the
harmonic mean of accuracy and recall, and was improved to
0.839. Wang et al. (Wang et al., 2017) proposed an algorithm to
overcome the effect of illumination changes on computer vision
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in natural environments by applying improved wavelet transform
to fruit images for surface illumination normalization. They also
proposed a robust fruit segmentation algorithm by combining
image enhancement algorithms for illumination changes in the
vision system. The algorithm showed strong robustness against
illumination changes and was able to accurately segment fruits
of different colors. Jia (Jia et al., 2022) developed an advanced apple
detection algorithm that is both fast and accurate. The algorithm
was based on Foveabox (Kong et al., 2020) and used EfficientnetV2
(Tan & Le, 2021) as the backbone network, which effectively fused
features of different scales. Furthermore, the algorithm utilized an
adaptive training sample selection method to distinguish positive
and negative samples. This approach resulted in improved detec-
tion accuracy, even with a low parameter quantity.

Based on the above studies, it is evident that deep learning-
based algorithms have been extensively used in fruit detection
and segmentation tasks (Gongal et al., 2015; Koirala et al., 2019).
The inherent features of deep learning make these algorithmsmore
robust and powerful. Nevertheless, there is still a lack of accurate
segmentation of green fruits, especially green fruits with small size
characteristics, which is also the core issue that this paper aims to
address.
3. Materials and methods

Section 3 introduces the dataset, including persimmons and
apples, as well as the overall structure of the Mask Positioner.
3.1. Dataset

In order to prove the advantage of Mask Positioner for complex
orchard environment, immature green persimmon fruit is selected
as the research object of this study. Because of its characteristics of
small size, green color and occlusion, it is suitable for testing the
algorithm performance. A persimmon dataset was made on this
basis. And the images were taken in the back mountain of Shan-
dong Normal University (Changqing Lake Campus). The shooting
tool was Canon EOS 80D SLR camera with built-in CMOS image
sensor. Images were saved as JPG format, 24 bit color. Types of
images in the dataset included overlapped and blocked fruits under
different lighting conditions (7):00–17:00 in the daytime and LED
lights at night). These diversities of images fully simulate the real
situation of the orchard in the experiment and restore the working
environment of computer vision. Representative images are shown
in Fig. 2.

LabelMe was used to process captured images. The image size
was unified to 400 � 600 pixels before labeling. Points were used
to mark the target contour. The closed part marked was the fore-
ground, the rest was the background. There was only persimmon
in the foreground. The object coordinates and information of each
image were saved in the corresponding JSON file. After eliminating
images without fruits, labeled images were divided into training
set and verification set by a ratio of 7:3. Finally the persimmon
dataset had 563 images, including 396 images in the training set
and 167 images in the validation set.

In order to ensure the effectiveness of Mask Positioner on other
green fruits, another dataset was made. The green apple dataset
was made to be the object of the generalization experiment. We
used Canon EOS 80D SLR camera to collect apple images in Long-
wang Mountain Apple Production Base (Agricultural Information
Technology Experimental Base of Shandong Normal University),
Fushan District, Yantai, Shandong Province. Similar to the persim-
mon images, we shot as many apple images in different situations
as possible, including overlapped, blocked fruits during daytime
and night. They were made into apple dataset of COCO format in
3

the same way. Finally, there are 953 images in the training set,
and 408 images in the validation set. The production of apple
dataset also uses the tool of LabelMe like persimmon.

3.2. Mask Positioner

Mask Positioner is an effective algorithm designed for accurate
segmentation of green fruits in orchards. Its architecture is illus-
trated in Fig. 3, which includes backbone, detail refinement net-
work, process for filtering pixels, and order decoder. Mask
Positioner employs ResNet50 as the backbone, with RPN used to
generate anchor boxes. Additionally, the detail refinement network
is used to fuse features extracted from the backbone, with a unique
upward fusion of adjacent feature maps through convolution after
conventional vertical and horizontal sampling. This approach
ensures that semantic and location information is fully integrated,
making it beneficial for small fruits. The final feature maps used to
generate the anchor boxes are expressed in N2-N4. Moreover, the
Mask Positioner filters pixels on these three feature maps, with
blurred identity layers being filtered layer by layer, as represented
by the pink boxes in Fig. 3. This process is explained in detail in
Section 2.2. Finally, the order decoder is used to determine
whether the filtered pixels belong to the fruit area. It has a trans-
former structure with branch attentions, and the pixels identified
by the decoder form the final mask, represented by the red box
in Fig. 3.

3.2.1. Detail refinement network
Given a persimmon image, it is firstly extracted by backbone.

The function of detail refinement network is to fully fuse the
extracted features. This step of refinement integrates the semantic
and location information in different layers, which is the basis of
accurate segmentation. The feature maps C2-C5 of the backbone
are input to the DRN, and firstly set as 256 channels by a 1 � 1 con-
volution layer. The next step is to use the method of nearest inter-
polation for up-sampling, whose principle is shown in Fig. 4. It is to
make the transformed pixel equal to the original nearest pixel. This
operation can enlarge the feature map twice, while retaining the
semantic information of the high-level feature map to the maxi-
mum extent. And the enlarged map is fused with the low-level
map of the same size. But due to the loss of up-sampling process,
some region feature may not coincide well during the feature
map fusion. At this time, a convolution layer with the size of
3 � 3 is used to restore the features. It not only ensures the stabil-
ity of features, but also eliminates the aliasing effect caused by up-
sampling. So that it obtains the mid-maps with both semantic and
spatial information, denoted by P2-P5 respectively.

This is usually the end of feature fusion. However, considering
the difficulty of green fruit segmentation caused by complex envi-
ronment, this study continues to conduct further fusion from bot-
tom to top. A convolution layer with the size of 3 � 3 is used to
further extract features and fuse them with the adjacent upper
map, so that the semantic and spatial details are refined well. In
order to ensure the smooth fusion, the stride of this convolution
layer is set as 2 to adjust the two feature maps to the same size.
Similarly, a 3 � 3 convolution layer is used to eliminate the aliasing
effect caused by the maps fusion. The feature maps processed by
DRN simultaneously contains the rich semantic information of
the top-level feature map and the position information of the
low-level feature map. The feature information is helpful for the
position embedding of the subsequent sequences. And this full of
feature fusion ensures the information integrity of small target
fruits.

Correspondingly, the optimization effect of DRN from the per-
spective of detection is verified on the persimmon dataset. It is
generally known that feature pyramid networks (Lin et al., 2017)



Fig. 2. Fruit images in different states.

Fig. 3. The structure of Mask Positioner. It shows the internal structure of DRN and Order Decoder in detail, and draw the detection process of pixels that need to be
positioned.
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(FPN) has been widely used in various algorithms. Owing to the
similarity of their function, this study compares them by experi-
ments to prove the advantage of DRN. The results are shown in
the Table 1. The effect on Mask Positioner is firstly verified. It can
be seen that detection accuracy of Mask Positioner with DRN
reaches 69.1%, 1.7 percentage points higher than that with FPN.
In order to further prove its effectiveness, the classical algorithm
Faster RCNN is also selected for ablation experiments. It can be
4

seen that the accuracy of Faster RCNN with DRN improves 2.2 per-
centage points than the original.

3.2.2. Pixels that need to be positioned
In the filed of computer version, researchers are committed to

generating more accurate masks. However, the sampling operation
in the process of feature extraction leads to the necessary informa-
tion loss. And the loss is usually equal to the positions that are



Fig. 4. Schematic diagram of the nearest interpolation method.
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difficult to be segmented, which means unclear or discontinuous
boundary areas in Fig. 1. For example, the edge areas covered by
branches and leaves are irregular shadows in orchard, which
makes it difficult to segment these areas accurately. In order to
accurately segment these areas, Mask Positioner specially filters
out pixels corresponding to the regions in feature maps, and pro-
cesses them more finely. This process is specifically to determine
whether these pixels belong to the target fruits. In this way, the
edge parts of the target fruit can be accurately segmented, solving
the problem of occlusion fruits in the orchard.

Two factors are required for filtering pixels that need to be posi-
tioned: the original mask generated from the top-level feature
map, and the three-level feature maps generated by DRN. The core
idea is to refine the original mask according to feature maps of
each layer through up-sampling. It is well known that the top-
level feature map contains the richest semantic information.
Therefore, although the mask it produces is not accurate enough,
it can cover the entire fruit range. Mask Positioner refines pixels
layer by layer from the original mask, referring to the feature maps.
The feature maps with more complete information are referred to
find out the pixels that need to be positioned from top to bottom.
Firstly, the original mask and the top-level feature map are con-
catenated. For the small size 28 � 28 feature map and the rough
mask at this time, four convolutions of size 3 � 3 are used to fuse
and adjust the two layers to overcome the low overlap of feature
information. Then, the pixels belonging to the fruit are obtained
through the binary classifier, namely the first mask layer. In order
to combine more features to refine the mask, the first mask layer is
up sampled for hierarchical connection. This means that only the
lower pixel corresponding to the selected pixel in the upper feature
map can be further filtered. It limits the scope of filtering, only fil-
tering pixels with discriminative significance. This process is
shown on the left side of Fig. 5. The mask size after up sampling
is 56 � 56. After fusing with the second-layer feature map (repre-
sented by green part in the Fig. 5) in a similar way, the second
mask layer is obtained after two convolutions.
Table 1
Detection comparison of DRN and FPN on the persimmon dataset.

AP %
(Average Precision)

Mask Positioner + FPN 67.4
Mask Positioner + DRN 69.1
Faster RCNN

(Ren et al., 2015) + FPN
63.6

Faster RCNN
(Ren et al., 2015) + DRN

65.8

5

The refinement process for the feature map described above is
illustrated in Fig. 5. The same principle is applied to the other
two layers. As the mask size continuously doubles, the degree of
overlap between regional features increases, making it possible
to use only one convolution after the fusion operation of the last
layer. As a result, three mask layers with different sizes are gener-
ated. This approach enables the next mask to be confined within
the sampling range of the adjacent mask, without overly limiting
the screening area. The top feature map undergoes pixel filtering
first, resulting in a refined but rough mask that carries complete
feature information. The subsequent thinning process confirms
the detailed information, such as edges. This involves up-
sampling the range corresponding to the pixels, which expands
the area being refined. To ensure that the features have multi-
scale characteristics, the pixels from all of the mask layers are
extracted and encoded into a sequence. This sequence is then input
into the order decoder for processing and classification.

3.2.3. Order decoder
To enrich the pixel features before entering the order decoder,

both the coarse and fine feature maps are utilized. The coarse fea-
ture map provides context and semantic information, while the
fine feature map restores edge details of the target. In addition to
the feature information extracted by DRN, the semantic informa-
tion from the original mask is also fused using a fully connected
layer to fix the feature dimension, followed by position informa-
tion embedding through addition operations. Despite the nodes
being sequenced, the order decoder can still restore relative feature
positions through location information. Its structure, depicted in
Fig. 6, is based on the transformer architecture and comprises
multi-head attention and a Fully Convolutional Network (Long
et al., 2015) (FCN).

When the input feature X enters the decoder, it is firstly pro-

jected by the weight matrix W as ðQ ; K; VÞ ¼ ðXWq; XWk; XWvÞ.
Q and K represent the information and vector to be queried respec-
tively, and V represents the value obtained from the query. The
expression of self attention is shown in the Eq. (1):

AttentionðQ ;K;VÞ ¼ SoftmaxðQ � KT

p
dK

Þ � V ð1Þ

Accordingly, the expression of each self attention head is shown
in the Eq. (2):

Headi ¼ AttentionðQWq
i ;KW

k
i ;VW

v
i Þ ð2Þ

where i represents the number of self attention heads, which is set
to 4 in the experiment. For multi-head attention, the output of each
head is concatenated together, and then multiplied by the matrix
W0 for linear transformation to obtain the final output result. It is
shown in the Eq. (3):

V0 ¼ ConcatðHead1; :::;HeadiÞ �W0 ð3Þ
AP50 %
(IOU threshold is 0.5)

AP75 %
(IOU threshold is 0.75)

83.9 76.9
84.2 78.4
91.0 80.4

91.7 79.3



Fig. 5. The mask thinning process diagram of the second layer.

Fig. 6. Structure of the Order Decoder.
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After the traditional multi-head attention, Order Decoder also
constructs two branch structures, and the results of the branch
are represented by i and g. For multi-head attention, these two
branches help to establish the relationship between different
attention heads, and filter useful attention results. It can also avoid
the false similarity of multi-head attention output when Q and K/V
are completely unrelated. In this process, the full connection layer
is used, which is based on attention results and context informa-
tion. The principle is shown in the Eq. (4) and Eq. (5):

i ¼ Wi
qQ þWi

vV
0 þ bi ð4Þ

g ¼ SigmoidðWg
qQ þWg

vV
0 þ bgÞ ð5Þ

In which, Wi
q; W

i
v; W

g
q; W

g
v 2 RD�D, represent the weight param-

eters of the full connection layer. Though they are different, they
are all the weight matrix corresponding to their respective vectors.

And bi
; bg 2 RD, represent the bias parameters of full connection

layer. D is the dimension of variables, and V0 is the results of the
multi-head attention. Q represents the query vector projected after
the feature is input into the decoder. Finally, the element multipli-
cation is used to get the final result of the two branches, which is
shown in the Eq. (6):

I ¼ i� g ð6Þ
Next, the LayerNorm is used for horizontal normalization. Con-

sidering that the attention mechanism does not fit the complex
process well enough, two full connection layers are added to
enhance the decoder’s ability. The obtained pixels are put into a
simple MLP classifier to determine whether they belong to the tar-
get fruit.

3.2.4. Loss
The loss function of Mask Positioner is composed of four parts:

the loss of detection, the loss of original mask, the loss of filtering
6

pixels, and the loss of the final refined area. The loss function is as
shown in the Eq. (7):

loss ¼ fdet ection þ foriginal þ fpixels þ fmask ð7Þ
The generation of bounding boxes is similar to other common

detection methods: the anchor boxes given by RPN are aggregated
by ROI Align operation to adjust the region of interest to the corre-
sponding feature position. The loss of detection represented by
fdet ection includes two vectors, namely classification and regression.
The process of classification uses the cross entropy loss of two clas-
sification, calculating the logarithm loss for each anchor, and it
divides the total number of anchors. The SmoothL1Loss is used in
the process of regression to smooth the error when the difference
between the predicted value and the real value approaches zero,
which can prevent the problem of gradient explosion to a certain
extent. The foriginal represents the loss of the original mask. When
filtering pixels, the binary cross entropy loss of the weighted aver-
age method namely fpixels is used to help detecting the pixels that
need to be located. The average absolute error fmask is used to rep-
resent the loss of whether the refined region label judgment is con-
sistent with the real label. The trend of total_loss during the
training process have been visualized as shown in the Fig. 7.

Firstly, it can be seen that during the 40,000 iterations, there
were two significant fluctuations in the training process on the
persimmon dataset between the 30,000th and 40,000th iterations.
Therefore, the number of iterations is increased to 50,000. From the
Fig. 7, the curve of total_loss tends to be flat and almost linear from
the 40 K to 50 K training process, and no significant fluctuations
are observed. To further determine the algorithm’s convergence,
the total_loss of the last 300 iterations is zoomed. It can be seen
that the total_loss changes are all within 0.1, and there is no con-
tinued downward trend. Besides, during the last 10,000 iterations,
total_loss did not show any significant fluctuations and was almost
linear, indicating that the algorithm had fully converged by this
point.



Fig. 7. Total_loss with the last 300 iterations in training process.
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4. Results

This section explains the training details and experimental data,
including comparative experiments on persimmon and generaliza-
tion experiments on apple.
4.1. Implementation details

The experiment is conducted on a server equipped with Ubuntu
16.04 operating system. It is also equipped with four GTX A30
graphics cards and V11.4 CUDA. In order to accelerate the conver-
gence speed and reduce the training time, the backbone is trained
in advance with the ImageNet dataset. The learning rate is set to
0.02 at the pre-training stage. In the process of formal training,
the initial learning rate is set to 0.075, and the iterations is set to
50 k due to the trend of the total_loss, which is enough and reason-
able for the training process. The learning rate decreases three
times during the 50 K iterations, which are 0.02, 0.002 and
0.0002 respectively. Experiments set four images per batch in the
experiment.

Besides, the optimizer plays a crucial role in training deep
learning models by adaptively adjusting the learning rate and
updating parameters to improve model performance and conver-
gence speed. So an optimizer is used during the model training
process to save training time and make algorithm’s convergence
more reasonable. However, it is worth noticing that our aim is
not to improve the accuracy of Mask Positioner through the opti-
mizer, as this would affect the performance validation of the algo-
rithm itself. Therefore, during our training process, the optimizer is
only used to save time and prevent the algorithm from overfitting.
Currently, commonly used optimizers include Stochastic Gradient
Descent (SGD), Adaptive Moment Estimation (Adam), and Adaptive
Gradient (Adagrad), among others. Among them, SGD is one of the
most basic optimizers, with only one hyperparameter for learning
rate, which makes it very convenient for parameter setting. At the
same time, SGD is more likely to enable the model to achieve good
generalization performance compared to other optimizers. There-
fore, it is very friendly to the training of the Mask Positioner algo-
rithm for green fruit segmentation.

The SGD optimizer used the momentum and weight decay func-
tionalities mentioned in the original manuscript, which can effec-
tively prevent overfitting. They were set to 0.9 and 0.0001,
respectively. Momentum refers to weighting the previous gradient
direction and the current gradient direction during gradient des-
7

cent to reduce the variance of gradient updates and achieve faster
convergence. Weight decay refers to adding an L2 regularization
term to the loss function to penalize large weight values in the
model and prevent overfitting.
4.2. Data augment

The dataset is enhanced through the application of two data
augmentation methods prior to training: translation transforma-
tion and rotation, as illustrated in Fig. 8.

In the translation transformation, the original image is trans-
lated to the lower right and upper left directions, with both hori-
zontal and vertical translation pixel values set to 50. The
translated result is shown in Fig. 8b), where the part that is trans-
lated out is filled with black color. In the rotation, the image is set
to rotate twice at random angles, as shown in Fig. 8c). When the
image is rotated, it is first scaled by a factor of 0.8 and then cropped
to remove the parts outside the image range. The scaling ensures
that the target fruit is retained as much as possible and is not
cropped. The remaining blank areas are also filled with black color.

Data augmentation generates new training samples by applying
a series of random transformations to the original data, thereby
increasing the diversity and quantity of the dataset. This can pre-
vent the algorithm from relying too much on specific samples, thus
reducing the risk of overfitting. In addition, data augmentation can
enrich image data, allowing the Mask Positioner to learn fruit fea-
tures from more samples. After the images are augmented, the fea-
tures that the Mask Positioner can learn become more diverse and
extensive, making it more robust and better suited to different
fruits. Therefore, data augmentation can improve the performance
of the Mask Positioner, specifically its segmentation ability. In gen-
eral, data augmentation is necessary for improving both the perfor-
mance and the prevention of overfitting of the Mask Positioner.
4.3. Evaluation metrics

The Average Precision (AP) is selected as the evaluation index in
the experiment. AP is the area under PR curve with Recall as the
horizontal axis and Precision as the vertical axis. The calculation
formula of AP is shown as Eq. (8), in which P is the Precision, R is
the Recall. Both P and R are explained in detail in the next section.
Other evaluation indicators used in the experiment also belong to
the same type: AP50 is the measured value of AP when the IOU
threshold is 0.5; AP75 is the AP measurement value when IOU is



Fig. 8. Images of data augmentation.
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0.75; APs, APm and APl represent AP measurement values of small,
medium and large size objects respectively. The size specification
method of the COCO dataset is used here due to the similarity of
image size between two datasets. It is defined that fruits with area
less than 32 � 32 are small-sized objects, fruits with area greater
than 96 � 96 are large-sized objects, and fruits with area between
them are medium-sized objects.

AP ¼
Z 1

0
PðRÞdR ð8Þ

In the definition of AP, P is represents the proportion of the
number of predicted positive samples to the number of real posi-
tive samples; R represents the proportion of positive samples cor-
rectly predicted by the algorithm in the real positive samples. The
calculation equations are shown in Eqs. (9) and (10), where TP rep-
resents the number of detection frames whose intersection to par-
allel ratio is greater than the set threshold; FP represents the
number of detection frames whose intersection ratio is less than
the set threshold, or the number of redundant detection frames
generated under the same target; FN indicates the number of tar-
gets not detected.

Precision ¼ TP
TPþ FP

� 100% ð9Þ

Recall ¼ TP
TPþ FN

� 100% ð10Þ
4.4. Comparative experiments

In order to verify the advantage of Mask Positioner, it is com-
pared with the currently popular and widely used algorithms. In
order to conduct a clearer comparison, experiment results are
placed in two tables to show the accuracy comparison of detection
and segmentation respectively. The detection results are shown in
Table 2. It can be seen that Mask Positioner has the highest detec-
tion accuracy, which reaches 69.1% on the persimmon dataset. This
data is 4.9 and 3.6 percentage points higher than that of HRNet
(Sun et al., 2019) and GCNet (Cao et al., 2019). And also 1.2 and
0.3 percentage points higher than that of Mask RCNN (He et al.,
2017) and Mask RCNN with Cascade (Li et al., 2015) respectively.
Although the detection accuracy of Mask Positioner is only a little
higher than that of Mask RCNN improved by Cascade, it is better at
detecting small fruits. Its detection accuracy of fruits has improved
by at least 1.0 percentage point compared with other algorithms.
Table 2
Detection performance comparison between algorithms on different sizes for persimmon.

Algorithms AP % APs%

HRNet 64.2 28.5
GCNet 65.5 17.4
Mask RCNN 67.9 24.4
Mask RCNN + Cascade 68.8 28.1
Mask Positioner 69.1 29.5

8

This advantage enables Mask Positioner to deal with small imma-
ture fruits well.

The segmentation accuracy of Mask Positioner is shown in
Table 3. It can be seen that it has the highest segmentation accu-
racy, with AP reaching 67.4% on persimmon dataset. Other algo-
rithms also have their own performances. The backbone of GCNet
is optimized through the attention mechanism, which mainly
focuses on object detection. Therefore, it can be seen from Table 3
that its segmentation performance of green fruits is far inferior to
other algorithms, only 60.2%. HRNet is an algorithm dedicated to
segmentation. It can maintain high-resolution representation and
achieve multi-scale fusion throughout the process, which is more
beneficial to the segmentation function. Consequently, its segmen-
tation effect is much better than that of detection, reaching 66.0%.
Mask RCNN equipped with Cascade performs well on the fruit seg-
mentation, second only to the Mask Positioner. The accuracy of
Mask RCNN without Cascade support is only 64.6%, reducing 1.8
percentage points. While, Mask Positioner has the highest accuracy
of 67.4%, at least 1.0 percentage point higher than other algo-
rithms. This is due to the enhancement of DRN for feature fusion
and effective filtering of pixels.

In order to prove the segmentation effect of Mask Positioner on
small fruits, experiments deliberately compare the segmentation
accuracy with different sizes, as shown in Table 4. It can be seen
that algorithms have poor differences of segmentation accuracy
for medium-sized persimmon fruits. However, the accuracy of
Mask Positioner has been greatly improved for small-sized fruits,
reaching 25.5%. This data is 3.2 percentage points higher than the
best algorithm of Mask RCNN with Cascade. In contrast, the lowest
precision of HRNet is only 12.6%, which is not suitable for small
fruits at all. Experiments show that Mask Positioner can effectively
deal with small fruit segmentation in complex environment of
orchards.

4.5. Generalization experiments

In order to verify the segmentation effect of Mask Positioner on
other fruits, this study conducted a generalization experiment. The
same parameters as the above experiments are set and experi-
ments are conducted on the same server. The experimental results
are shown in the following tables. The detection accuracy of the
algorithms on the apple dataset is shown in the Table 5. It can be
seen that Mask Positioner has the highest detection accuracy,
reaching 57.9%. It increased at least 2.2 percentage points, which
is far higher than other algorithms.
APm % APl % References

66.1 74.8 (Sun et al., 2019)
56.6 55.5 (Cao et al., 2019)
69.4 85.8 (He et al., 2017)
67.3 80.0 (Li et al., 2015)
70.4 86.5



Table 3
Segmentation performance between algorithms for persimmon.

Algorithms AP %
（Average Precision）

AP50 %
（IOU threshold is 0.5）

AP75 %
（IOU threshold is 0.75）

References

HRNet 66.0 84.8 76.0 (Sun et al., 2019)
GCNet 60.2 84.6 66.6 (Cao et al., 2019)
Mask RCNN 64.6 85.8 73.4 (He et al., 2017)
Mask RCNN + Cascade 66.4 88.2 76.3 (Li et al., 2015)
Mask Positioner 67.4 84.2 78.2

Table 4
Segmentation performance between algorithms on different sizes for persimmon.

Algorithms APs% APm % APl % References

HRNet 12.6 67.7 85.0 (Sun et al., 2019)
GCNet 15.4 64.3 67.3 (Cao et al., 2019)
Mask RCNN 19.9 69.8 87.1 (He et al., 2017)
Mask RCNN + Cascade 22.3 68.3 81.5 (Li et al., 2015)
Mask Positioner 25.5 68.2 88.6

Table 5
Detection performance between algorithms for apple.

Algorithms AP %
（Average Precision）

AP50 %
（IOU threshold is 0.5）

AP75 %
（IOU threshold is 0.75）

References

HRNet 52.3 81.7 57.3 (Sun et al., 2019)
GCNet 53.7 82.2 59.0 (Cao et al., 2019)
Mask RCNN 53.1 81.7 57.3 (He et al., 2017)
Mask RCNN + Cascade 55.7 82.0 59.8 (Li et al., 2015)
Mask Positioner 57.9 80.8 65.1

Table 6
Segmentation performance between algorithms for apple.

Algorithms AP %
（Average Precision）

AP50 %
（IOU threshold is 0.5）

AP75 %
（IOU threshold is 0.75）

References

HRNet 50.4 80.0 53.9 (Sun et al., 2019)
GCNet 51.9 80.4 56.1 (Cao et al., 2019)
Mask RCNN 51.8 80.1 54.7 (He et al., 2017)
Mask RCNN + Cascade 50.3 79.3 52.6 (Li et al., 2015)
Mask Positioner 53.5 79.8 59.5

Table 7
Detection performance between algorithms on different sizes for apple.

Algorithms APs% APm % APl % References

HRNet 39.6 60.1 75.0 (Sun et al., 2019)
GCNet 39.3 60.5 76.7 (Cao et al., 2019)
Mask RCNN 38.2 60.2 78.0 (He et al., 2017)
Mask RCNN + Cascade 38.1 63.8 85.2 (Li et al., 2015)
Mask Positioner 40.2 65.6 84.8

Table 8
Segmentation performance between algorithms on different sizes for apple.

Algorithms APs% APm % APl % References

HRNet 33.9 56.6 78.2 (Sun et al., 2019)
GCNet 34.3 59.5 80.2 (Cao et al., 2019)
Mask RCNN 33.8 58.2 81.1 (He et al., 2017)
Mask RCNN + Cascade 30.7 56.9 82.8 (Li et al., 2015)
Mask Positioner 34.5 60.0 83.3
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The segmentation accuracy of algorithms is shown in the
Table 6. It can be seen that our algorithm still maintains the high-
est accuracy, reaching 53.5%. This is 1.6–3.2 percentage points
higher than other algorithms, which means its advantages.
9

Moreover, this study still compare the detection and segmenta-
tion effect for different sizes, and the results are shown in the fol-
lowing tables. It can be seen from Table 7 that Mask Positioner still
maintains the highest detection accuracy of small-sized green



Fig. 9. Comparison images of segmentation effect. For example, the edge of the rightmost fruit (detected as a purple mask in figure f) is blocked by the leaves, resulting in an
irregular shape. Unlike other algorithms which treat its left edge as smooth curves, only Mask Positioner can accurately distinguish the irregular fruit area form leaves.

Fig. 10. Segmentation effect of Mask Positioner under different lighting conditions. Under various lighting conditions, it can still accurately segment overlapped fruits,
especially for fruit edges.
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apple fruit. Table 8 shows that it is advanced to segmentation of
small fruit, with an accuracy of 34.5%. The results show that Mask
Positioner has good detection and segmentation effect for green
apple fruits, so that it can meet segmentation tasks of green fruit
in the real orchard environment.
10
5. Discussion

Section 5 discusses the segmentation effect, generalization, and
other performance of the Mask Positioner.



Fig. 11. Segmentation effect of the different algorithms on single, occluded and overlapping apple images. The masks produced by Mask Positioner have smooth and precise
edges.
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5.1. Segmentation effect

A typical image is used to visually show the segmentation effect
of algorithms, as shown in Fig. 9. This is because there are many
incomplete fruits of different situations in this picture at the same
time. There are five green persimmon fruits in the image, of which
the leftmost and middle fruits are overlapped, and the two fruits
on the right are partially covered by branches and leaves. It can
11
be seen from the figure b that masks of the occluded fruit produced
by HRNet is not smooth enough, and there are redundant edges. In
image c, masks generated by GCNet did not accurately cover the
edge of the leftmost fruit, and Mask RCNN mistakenly judges the
leaves as the sixth fruit in image d. Maybe due to the same base-
line, Mask RCNN with Cascade also has this problem. In contrast,
Mask Positioner covers all areas of fruits accurately and distin-
guishes the fruit from the complex background. In figure f, the



Fig. 12. Segmentation effect of apple fruit images under different lighting conditions at night.

Table 9
Comparison of Parameter, FLOPs and FPS between algorithms.

Algorithms Parameter (M) FLOPs (G) FPS (img/s) References

HRNet 49.9 338.5 3.8 (Sun et al., 2019)
GCNet 54.2 260.2 3.9 (Cao et al., 2019)
Mask RCNN 44.17 260.1 4.9 (He et al., 2017)
Mask RCNN + Cascade 69.2 393.9 4.6 (Li et al., 2015)
Mask Positioner 53.9 413.6 3.3
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irregular fruit edges covered by the leaves on the right side are
accurately distinguished, and masks of this area are not covered
on the branches and leaves.

The experiment also verifies the segmentation effect of Mask
Positioner in different light conditions. Similarly, images with
occluded and overlapped fruits under different light are selected
to show the segmentation effect, as shown in Fig. 10. Inside, figures
a, b and c represent the conditions of front-lighting, back-lighting
and night-time respectively. Under different lighting conditions,
Mask Positioner can accurately segment the target fruits. Fig. 10
shows that the segmentation effect of Mask Positioner is not
affected by lighting conditions, so that it can meet the needs of
computer vision technology for 24-hour work in applications.
5.2. Generalization

Similarly to persimmon, three apple images of different occlu-
sion conditions are used to verify the segmentation effect of Mask
Positioner, as shown in the Fig. 11. In the absence of occlusion, all
the algorithms can produce corresponding masks. Although the
masks produced by GCNet and Mask RCNN have serrated section.
For a single fruit covered by leaves, algorithms can also segment
it roughly. It is obvious that the generated mask is not smooth
enough for HRNet. As for the fruits that are occluded and over-
lapped at the same time, some algorithms will do redundant seg-
mentation, such as GCNet. While Mask Positioner allocates
accurately masks for the two fruits in the third figure. It can be
seen that the edge of masks is smooth and the boundary between
the two fruits is enough clear.
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In addition to the above daytime conditions, this study also sim-
ulates the night working environment of computer vision technol-
ogy. Segmentation effect of Mask Positioner at night is tested based
on it, which is shown in the Fig. 12. Three typical night images are
used to show the advantage of Mask Positioner. They from left to
right are respectively severe exposure image, LED illuminating
image and image with small fruits in the distant view. It can be
seen from the previous two pictures that Mask Positioner can also
accurately segment fruits in the different night light. The third pic-
ture proves the effectiveness of Mask Positioner for small fruits
segmentation at night.
5.3. Other performance

This study adds other three metrics in addition to AP to compre-
hensively evaluate the algorithm performance. Parameter refers to
the total number of parameters that need to be trained during the
algorithm training process, which measures the size of the algo-
rithm (space complexity). Floating-point operations (FLOPs) are
understood as the computational complexity and can be used to
measure the algorithm’s complexity. Frames Per Second (FPS) rep-
resents the number of images the algorithm can process per second
or the time it takes to process one image to evaluate detection
speed. The shorter the time, the faster the speed. The performance
of Mask Positioner (on persimmon dataset) on the GPU for these
three metrics is shown in the Table 9.

From the Table 9, it can be seen that the number of parameters
of Mask Positioner is kept in the middle, which is less than 10 M
larger than that of the classical segmentation model Mask RCNN,
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but basically comparable to that of GCNet. So that its parameter is
within a reasonable range, and Mask Positioner did not blindly
increase the number of parameters to enhance the algorithm’s fit-
ting ability when constructing the network. Secondly, Mask Posi-
tioner has the largest FLOPs, which means that its time
complexity is the highest among these algorithms, and this also
leads to a slower inference speed.

This extra memory overhead is due to the use of the order deco-
der based on the transformer structure. This is because it uses self-
attention mechanism to calculate the interaction between different
positions in the input, which requires comparison of all positions
in the input, resulting in an increase in computational complexity.
However, the Mask Positioner achieves the highest accuracy,
which is also attributed to the concept of separately refining
edge-blurred regions. The algorithm sacrifice this computational
cost, utilizing more computing resources, in order to exchange
for higher accuracy through encoding and decoding of edge infor-
mation. Currently, there have been studies in this area based on
convolutional neural networks (Tan et al., 2019; Yu et al., 2020),
which provides a direction for further optimization of Mask Posi-
tioner. For example, a new convolutional structure (Chen et al.,
2023) was proposed to improve FPS of algorithms based on CNN.
6. Conclusion

In order to realize the orchard intelligent management and the
application of picking robots, this study is committed to improving
the accuracy of computer vision technology. However, in the com-
plex orchard environment, the irregular area caused by occlusion
makes it difficult to segment the target fruit accurately. In this
study, we propose an efficient green fruit segmentation algorithm,
called Mask Positioner, which accurately generates masks by selec-
tively screening and processing the pixels requiring positioning.
The DRN module is constructed in it, which combines the semantic
information and location information of the top-level and low-
level feature maps, avoiding the information loss of small size tar-
get fruit while refining the feature maps. In order to make the mask
and the target area match completely, it screens the pixels that are
not easy to judge (usually the edge part) and fuses them with
multi-scale information. This is done in the hope that these pixels
will carry more and more detailed information, which is conducive
to subsequent pixel classification. The double attention structure of
the order decoder effectively decodes the information and accu-
rately judges whether the pixel belongs to the target itself.

Experiments show that Mask Positioner is more accurate than
current mainstream algorithms based on CNN. Its detection accu-
racy on the green persimmon dataset reaches 69.1%, which is
0.3–4.9 percentage points higher than that of the classical algo-
rithms, such as Mask RCNN. Especially for the detection of small
fruit, the accuracy reaches 29.5%, which is 1.0 percentage point
higher than the HRNet with the best detection effect of small fruit.
Furthermore, the segmentation accuracy of Mask Positioner has
also been improved. Its segmentation accuracy reaches 67.4%,
which is 1.0–2.8 percentage points higher than the classical algo-
rithms. For small size fruit, the segmentation accuracy of Mask
Positioner is 3.2 percentage points higher than that of Mask RCNN
improved with Cascade. In order to prove the generalization of the
Mask Positioner on green fruits, this study also produced a green
apple dataset. The experiment shows that the detection and seg-
mentation accuracy of Mask Positioner on green apples are 57.9%
and 53.5% respectively. What is the most important is that, it is
advanced to other algorithms for the detection and segmentation
of small fruit. The above fully proves that Mask Positioner is good
at green fruit detection and segmentation under complex back-
ground. The mask generated by it accurately covers the overlapped
13
and blocked fruit under different lighting conditions, so that it can
cope with the working environment of computer vision technol-
ogy, and achieve wide application.
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