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ABSTRACT: Cracking in cementitious materials still poses significant and interesting modelling challenges
and structural designers need reliable tools for an accurate prediction of crack widths. The paper presents a
numerical study into cracking mechanisms in cement based materials using lattice simulations employing the
model of Grassl & Antonelli (2019). Furthermore, a micromechanics based constitutive model is proposed
that focuses on representing the transition from diffuse microcracking to localized macrocracking. The model
includes an Eshelby based two-phase composite solution to represent the aggregate particles embedded in a
cementitious matrix, directional microcracking and a criteria for the transition from diffuse microcracking to
localised macrocracking. By removing the macrocrack fracture strain component from the strain which drives
microcrack growth, the effect of macrocrack development on microcrack growth in various other directions is
included. Numerical simulations show that the model captures well the mechanical behaviour as well as key
characteristics of the cracking mechanism in cementitious materials.

1 INTRODUCTION

Microcracks are present in concrete before loading is
applied and are concentrated at the interfacial transi-
tion zone (ITZ) between the cementitious matrix and
aggregate particles (Slate& Hover 1984). If an applied
tensile load is increased past the initiation threshold,
the microcracks propagate and further microcracks are
progressively initiated in the ITZ of smaller aggre-
gate particles (Karihaloo 1995). As the load increases
further, some microcracks will grow and coalesce to
form a macrocrack (Jenq & Shah 1991). For both uni-
axial tension and uniaxial compressive loading, these
macrocracks tend to form around the peak load and
propagate unstably with the material around the zone
of macrocracking unloading (Shah et al. 1995; Vonk
1992; i.e., cracking becomes concentrated within a
certain zone. The process of cracking becoming con-
centrated to macrocracks formed by the coalescence
of diffuse microcracks is often referred to as crack
localisation.

This paper presents the main details of a microme-
chanics based constitutive model for cementitious
materials that simulates crack localization. A series of
numerical experiments employing a lattice model were
carried out to study the transition from discrete micro-
cracking to localized macrocracking and the results
from these studies were used guide the development
of the constitutive model.

2 CRACK LOCALIZATION STUDY

2.1 Lattice model

A study into the transition from diffuse microcracking
to localized macrocracking was carried out with the
lattice model of Grassl &Antonelli (2019) which relies
on periodic meso-structure generation by employing
a representative cell with a periodic lattice network
and periodic boundary conditions. Within the com-
putational cell, the meso-structure of concrete was
modelled considering three material phases; namely
the mortar matrix, the coarse aggregate particles and
the ITZ respectively (Figure 1). The aggregate parti-
cles are idealized as ellipsoids, the size distribution
of which is determined based on Fuller’s grading
curve.

2.2 Constitutive relationships for the lattice model

For this study, the aggregate particles are assumed to
have a linear elastic behaviour and the scalar dam-
age relationship in Equation 1 is employed to simulate
the mechanical behaviour of both the matrix and
the ITZ.

σ = (1− ωa)Deε (1)

where σ is the stress vector, ε is the strain vector,
De is the elastic stiffness matrix and ωa is a scalar

212 DOI 10.1201/9781003316404-26



damage variable which is 0 at no damage and gradu-
ally increases to 1 for complete damage. The damage
evolution is given in Equation 2:

(1− ωa)Eκd = fte

(
− ωahκd

wf

)

(2)

where E is the Young’s modulus, ft is the tensile
strength, wf is a parameter that controls the slope
of the softening curve and is related to the fracture
energy Gf as follows; wf =Gf /ft . κd is an equivalent
strain parameter gouverned by a damage surface based
on an ellipsoidal strength envelope in the stress space
and standard loading/unloading conditions (Grassl &
Bolander 2016).

Figure 1. Representative computational cell showing the
material phases; mortar matrix (yellow), corase aggregate
particles (blue) and the ITZ (red).

2.3 Crack localization

A series of lattice simulations using the formula-
tion described above were carried out, employing a
50× 50× 100 (mm) periodic cell and the material
parameters given in Table 1. Moreover, following a
series of convergence studies, a lattice element size of
1.6 mm and aggregate particle diameters ranging from
10 mm to 20 mm were selected respectively.

Table 1. Material parameters - lattice simulations.

Em(MPa) 30 000
EITZ (MPa) 45 000
E�(MPa) 90 000
ft,m (MPa) 3
ft,ITZ (MPa) 1.5
Gf ,m (J/m2) 120
Gf ,ITZ (J/m2) 60
Volume fraction of aggregate, V�40%

A typical stress-relative displacement curve from a
uniaxial tension simulation is presented in Figure 2 and
associated crack patterns at different stages are pre-
sented in Figure 3, noting that only the active, growing
cracks are shown at each stage.

Figure 2. Stress-relative displacement curve from lattice
model simulation of uniaxial tension (tension +ve).

Figure 3. Crack patterns at different stages of damage. The
different stages b - f correspond to those marked in Figure 2.

The crack patterns in Figure 3 show a number
of cracking mechanisms, captured well by the lat-
tice model. Microcracks are initiated at the matrix-
aggregate interface and subsequently propagate in the
cementitious matrix to a state of diffuse microcracking
associated with pre-peak non-linearity (stages b-d). By
contrast, the post-peak response is characterized by a
single localized macrocrack (stages e-f).

The representation of these two distinct cracking
stages and the transition from diffuse microcracking to
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localized macrocracking is the focus of the constitutive
model presented in Section 3.

3 MICROMECHANICS BASED
CONSTITUTIVE MODEL

3.1 Model concepts

The constitutive model presented here aims to repre-
sent the behaviour at two stages of cracking; (i) the
diffuse microcracking stage characteristic of the pre-
peak behavior in tension and (ii) the localized macro-
crack stage, characteristic of the post-peak behaviour
respectively.

In the elastic state, before any damage occurs, the
concrete material is modelled as a two-phase compos-
ite comprising a matrix representing the mortar and
spherical inclusion representing the coarse aggregate
particles. The diffuse microcracking stage is repre-
sented using a directional microcracking formulation
based on the Budiansky & O’Connell (1976) solution.
The localised macrocrack stage is then represented
by removing a macrocrack fracture strain component
from the strain which drives microcrack growth.

3.2 Two-phase composite

The elastic constitutive relationship for the two-phase
composite is obtained by making use of the microme-
chanics Eshelby matrix-inclusion solution and the
Mori-Tanaka homogenisation scheme (Mura, 1987)
for a non-dilute distribution of inclusions:

σ̄ =Dm� : ε̄ (3)

where σ̄ and ε̄ are the average far-field stress and
strain respectively. Dm� is the elasticity tensor of the
composite:

Dm�= (fmDm + f�D� ·T�) ·
(
fmI4s + f�T�

)−1
(4)

in which Dβ represents the elasticity tensor and fβ the
volume fraction of β-phase (β =m or �), fm+ f�= 1.
I4s is the fourth order identity tensor and

T� = I4s + S� · [(D� − Dm) · S� + Dm]−1

· (Dm − D�) (5)

S� is the Eshelby tensor for spherical inclusions
(Nemat-Nasser & Hori, 1993).

3.3 Directional microcracking

A solution based on the work of Budiansky &
O’Connell (1976) is employed to address microcrack-
ing by evaluating the added strain εa from series of
penny-shaped microcracks of various orientations dis-
tributed according to a crack density function f (θ ,ψ).
The added strains resulting from the microcracks

are superimposed on the composite such that the
constitutive relationship in Equation 3 becomes:

σ̄ =Dm� : (ε̄ − εa) (6)

The added strain are as follows (Budiansky &
O’Connell, 1976):

εa=
⎛

⎜
⎝

1

2π

∫

2π

∫

π/2

Nε : Ca : Nf (θ ,ψ)sin(ψ)dψdθ

⎞

⎟
⎠ :σ̄ (7)

in which Ca is the local compliance tensor in the local
coordinate system of a microcrack (r,s,t) and N the
stress transformation tensor. In each direction, defined
by (θ , ψ), the crack density parameter is related to
a directional scalar damage parameter ω (0≤ω≤ 1)
such that:

f (θ ,ψ)Ca= ω(θ ,ψ)

1− ω(θ ,ψ)
CL=Cα(θ ,ψ) (8)

where CL= 1
Em

⎡

⎣
1 0 0
0 4

2 -νm
0

0 0 4
2 -νm

⎤

⎦ is the local elastic

compliance tensor, with νm and Em being Poisson’s
ratio and Young’s modulus of the matrix phase respec-
tively.

The local damage function from Mihai & Jeffer-
son (2011) is employed to govern the evolution of the
damage parameter ω and is given by:

Fζ (εL, ζ ) =
(
εLrr

1+ αL

2
+

√

ε2
Lrr

(
1− αL

2

)2

+ r2
L

(
ε2

Lrs + ε2
Lrt

)
⎞

⎠− ζ (9)

in which αL= νm
1−νm

, rL= νm−1/2
νm−1 and noting that the

following loading/unloading conditions apply:

Fζ ≤ 0; ζ̇ ≥ 0; Fζ ζ̇ = 0 (10)

Introducing Equation 7 and Equation 8 into Equa-
tion 6 and rearranging gives:

σ̄ =Dmc : ε̄ (11)

where;

Dmc =
⎛

⎜
⎝I4s + Dm�

2π

∫

2π

∫

π
2

Nε : Cα(θ ,ψ) :

× N · sin (ψ)dψdθ

⎞

⎟
⎠

−1

· Dm� (12)
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3.4 Macrocracking

The model assumes that macrocracks form when the
overall stress reaches its peak value i.e.:

dσI

dεI
= 0 (13)

whereσI and εI are the major principal stress and strain
respectively. Under tensile loading, the normal direc-
tions of macrocrack plane are based on the orientations
of the major principal strains and a maximum of two
macrocracks are allowed to form. Under compressive
loading, a macrocrack forms with the normal to the
crack plane given by the direction which maximises
the effective strain parameter at the peak stress.

Macrocrack formation is taken into account in
the overall constitutive relationship by removing the
macrocrack inelastic strain from the average strain:

s̄=Dmc :

(

+̄−
nsd∑

i=1

Nε(αi,βi) : ε̂i

)

(14)

where nsd is the total number of macrocrack planes
and ε̂ is the macrocrack inelastic strain. αand β are
the orientation angles of the macrocrack plane. The
local stress of macrocrack planes σ̃ is given by the
following local constitutive relationship:

s̃(α,β)= (1− ω̃(α,β)I4s)C−1
L : +̃(α,β) (15)

where +̃ is the macrocrack local strain, ω̃ is the
macrocrack damage parameter. From the above, the
inelastic strain of macrocracks can be written in terms
of the local strain of macrocracks: +̂i = (I4s − M̃si ) :
+̃i where M̃si = (1− ω̃i)I4s. The dependencies of ω̃,
including orientation, have been dropped for clarity.

The same damage surface (Eq. 9) employed for
microcracks applies for calculating the effective strain
parameter of macrocracks ζ̃ and the evolution of the
macrocrack damage parameter ω̃ respectively.

Once the transition to localised damage has been
initiated, inelastic strain +̂ due to macrocracking
starts to progress. But it is assumed that microcracks
are still present in the band of material outside of
the zone of localised cracking. Therefore, to capture
the effect of macrocracking on microcrack growth, the
inelastic macrocrack strain is removed from the local
macrocrack strains:

+L(ψk , θk )=
N+(ψk , θk ) :

(
+̄−

nsd∑

isd=1
Nε(αisd ,βisd ) : +̂(αisd ,βisd )

)
(16)

A staggered solution is used to calculate the inelas-
tic strain +̂, the full details of which are presented in
a forthcoming publication.

4 NUMERICAL SIMULATIONS

Uniaxial tension predictions from the two versions of
the model (only microcracking and both microcrack

and macrocrack growth) were compared to uniaxial
tension lattice simulations of 10 random arrangements
of aggregate particles. The intention of the com-
parisons is to show how a micromechanics based
constitutive model for concrete which includes a crack
localisation mechanism agrees well with more compu-
tationally expensive lattice simulations that discretely
model the influence of the heterogeneous material
structure of concrete at the meso-scale.

The material parameters employed in the constitu-
tive model for these numerical simulations are given in
Table 2. The lattice simulations were carried out using
a 40% total volume fraction of aggregate particles and
by maintaining the periodic cell and element, dimen-
sions and material parameters described in Section 2

Table 2. Material parameters for the micromechanics based
constitutive model.

Em(MPa) 30 000
E�(MPa) 45 000
νm 0.19
ν� 0.21
fm 0.6
f� 0.4
ft (MPa) 3
ε0 0.003

The numerical results are presented in Figure 4.
When macrocrack localization is not included the
response is overly ductile, whereas the inclusion of the
transition to localized cracking leads to more realistic
results and a better agreement with the lattice simula-
tions. It can be observed in Figures 4b&c that in the
micro-macro transition model, after the peak stress,
damage becomes localised to a macrocrack plane and
microcrack growth is stalled, much like what has been
observed from the lattice experiments. In contrast, in
the microcracking only model the microcrack planes
continue to become damaged.

Figure 4. Uniaxial tension predictions. a) Stress-strain
response. b) Damage evolution for the microcracking-only
model. c) Damage evolution for the micro-macro transition
model.
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The proposed constitutive model captures well
the characteristic behaviour of cementitious materi-
als and associated cracking mechanisms, including
the transition from diffuse microcracking to localized
macrocracking.

5 CONCLUSIONS

A micromechanics based constitutive model for
cementitious materials that addresses the transition
from diffuse microcracking to localized macrocrack-
ing was presented. The good agreement between the
proposed constitutive model and the lattice simula-
tions demonstrated the potential of the constitutive
model which captures well the characteristic mechan-
ical behaviour of these materials and associated crack-
ing mechanisms.
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