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Abstract
We consider global optimization problems, where the feasible region X is a compact subset
ofRd with d ≥ 10. For these problems, we demonstrate that the actual convergence of global
random search algorithms is much slower than that given by the classical estimates, based
on the asymptotic properties of random points, and that the usually recommended space
exploration schemes are inefficient in the non-asymptotic regime. Moreover, we show that
uniform sampling on entireX ismuch less efficient than uniform sampling on a suitable subset
of X , and that the effect of replacement of random points by low-discrepancy sequences can
be felt in small dimensions only.

Keywords Global Optimization · Stochastic optimization · Global random search ·
Space-filling · Large dimension · Central limit theorem

1 Introduction

Consider the general problem of continuous global minimization f (x) → minx∈X with
objective function f (·) and feasible region X , which is assumed to be a compact subset of
R
d with vol(X ) > 0. In order to avoid unnecessary technical difficulties, we assume that X

is convex. In all numerical examples, we use X = [0, 1]d .
Any global optimization algorithm combines two key strategies: exploration and exploita-

tion. Performing exploration is equivalent to what we call “space-filling”; that is, choosing
points which are well-spread in X . Exploitation strategies use local information about f
(and perhaps derivatives of f ) and differ greatly for different types of global optimization
algorithms. In this paper, we are only concerned with the exploration stage. Although many
of our findings can be generalized to other space-filling schemes (where space-filling is not
random and the space-filling strategy changes in the course of receiving more information
about the objective function), in this paper we concentrate on simple exploration schemes
like pure random search, where space-filling is performed by covering X with balls of given
radius centered at the chosen points. Moreover, we assume that the points chosen at the
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exploration stage are independent. That is, we associate the exploration stage with a global
random search (GRS) algorithm producing a sequence of random points x1, x2, . . . , xn ,
where each point x j ∈ X has some probability distribution Pj (we write this x j ∼ Pj ) and
x1, x2, . . . , xn are independent. The value n is determined by a stopping rule. We assume that
1 ≤ nmin ≤ n ≤ nmax < ∞, where nmin and nmax are two given numbers. The number nmax

determines the maximum number of function evaluations at the exploration stage and the fact
that nmax < ∞ determines what we call “the non-asymptotic regime”. In the numerical study
of Sect. 4, we also use Sobol’s sequence, the most widely used low-discrepancy sequence.

We distinguish between ‘small’, ‘medium’ and ‘high’ dimensional problems depending
on the following relations between d and nmax:

(S) small dimensions: nmin ≥ 2d , nmax � 2d (hence, log2 nmax � d);
(M) medium dimensions: nmax is comparable to 2d : c1d ≤ log2 nmax ≤ c2d with suitable

constants c1 and c2: 0 	 c1 ≤ 1 ≤ c2 	 ∞;
(H) high dimensions: nmax 	 2d .

Of course, there are in-between situations and the classification above depends on the cost
of function evaluation. In case of non-expensive observations and 103 ≤ nmax ≤ 106, typical
values of d in the three cases are: (S) : d ≤ 10; (M) : 10 ≤ d ≤ 20; (H) : d > 20. Values
of d ≈ 10 are border-line cases between (S) and (M) whereas d ≈ 20 are border-line cases
between (M) and (H).

In this study, we leave out the situation (S) of small dimensions and concentrate on
situations (M) and (H). The reasons why we are not interested in the situation (S) of small
dimensions are: (a) there are too many exploration schemes available in literature in the case
of small dimensions, and (b) we are interested in the situations when the asymptotic regime
is out of reach, and these are the situations (M) and (H).

In all considerations below we assume that the aim of the exploration stage is to reach
a neighbourhood of an unknown point x∗ ∈ X with high probability ≥ 1 − γ (with some
γ > 0). We assume that x∗ is uniformly distributed in X and by a neighbourhood of x∗ we
mean the ball B = B(x∗, ε) with suitable ε > 0. In other words, we will be interested in the
problem of construction of partial coverings defined as follows.

Let x1, . . . , xn be some points in R
d . Denote Xn = {x1, . . . , xn} and

B(Xn, r) =
n⋃

i=1

B(xi , r) , (1.1)

where r > 0 is the radius of the balls B(xi , r) and B(xi , r) = X ∩ B(xi , r). We will call
B(Xn, r) partial (or weak) covering of X of level 1 − γ if vol(B(Xn, r))/vol(X ) ≥ 1 − γ .

If γ = 0 then B(Xn, r) would make a full (strong) covering ofX . As demonstrated in [7–
9], for any n and any given γ > 0, one can construct partial coverings ofX with significantly
smaller radii r than for the case γ = 0 (assuming that d is not too small). This is the main
reason why we are not interested in strong coverings. The second reason is that numerically
checking whether the set (1.1) makes a full covering (for a generic Xn) is extremely hard
in situations (M) and (H) whereas simple Monte-Carlo gives very accurate estimates of γ

for partial coverings, even for very high dimensions. For a short discussion concerning full
covering and its role in optimization, see Sect. 2.1.

The main technique of construction of partial coverings will be generation of independent
random points x1, . . . , xn in X with x j ∼ P , where P is a distribution concentrated either
on the whole X or a subset of X . It follows from Proposition 3.2.3 in [1] that using points
outside X for construction of coverings is not beneficial when X is convex and hence we
will always assume that x j ∈ X for all j .
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The following are the main messages of the paper.

1. Classical results on convergence rates of GRS algorithms are based on the asymptotic
properties of random points uniformly distributed inX ; see Sect. 2. In the non-asymptotic
regime, however, these results give estimates on the convergence rates which are far too
optimistic. We show in Sect. 3 that for medium and high dimensions, the actual conver-
gence rate of GRS algorithms is much slower.

2. The usually recommended sampling schemes (these schemes are based on the asymptotic
properties of random points) are inefficient in the non-asymptotic regime. In particular,
as shown in Sect. 4, uniform sampling on entire X is much less efficient than uniform
sampling on a suitable subset of X (we will refer to this phenomena as the ‘δ-effect’).

3. In situations (M) and (H), the effect of replacement of random points by low-discrepancy
sequences is negligible; see Sect. 4.2.

We also make certain practical recommendations concerning the best exploration schemes in
the situations (M) and (H) in the case X = [0, 1]d . Our main recommendations will concern
the situation (M) of medium dimensions, which we consider as the hardest for analysis. The
situation (H) is simpler than (M) in the sense that the optimization problems in case (H) are
so complicated that very simple space-filling schemes outlined in Sect. 6 provide relatively
effective sampling schemes.

The structure of the paper is as follows. In Sect. 2, which contains no new results, we
discuss the importance of covering and review classical results on convergence and rate
of convergence of general GRS algorithms. The purpose Sect. 3 is to demonstrate that for
medium and high dimensions the asymptotic regime is unachievable, and hence the actual
convergence rate of GRS algorithms is much slower than the classical estimates of the rate
of convergence indicate. In Sect. 4 we compare several exploration strategies and show that
standard recommendations (such as: “use a low-discrepancy sequence”) are inaccurate (for
medium and high dimensions). In Sect. 5, we develop accurate approximations for the volume
of intersection of a cube and a ball (with arbitrary centre and any radius). The approximations
of Sect. 5 are used throughout numerical studies of Sects. 3 and 4. In Sect. 6 we summarize
our findings and give recommendations on how to perform exploration of X in medium and
large dimensions.

2 Importance of covering and classical results on convergence and rate
of convergence of GRS algorithms

2.1 Covering radius

Consider Xn = {x1, . . . , xn}, a set of n points in X . The covering radius of X for Xn is
CR(Xn) = maxx∈X ρ(x, Xn), where

ρ(x, Xn) = min
x j∈Xn

ρ(x, x j ) (2.1)

is the distance between a point x ∈ X and the point set Xn . Covering radius is also the smallest
r ≥ 0 such that the union of the balls with centers at x j ∈ Xn and radius r fully covers X ;
that is, CR(Xn) = minr>0 such that X ⊆ B(Xn, r) ,where B(Xn, r) = ⋃n

j=1 B(x j , r) and

B(x, r) = {z ∈ R
d : ρ(x, z) ≤ r} is the ball of radius r and centre x ∈ R

d . Optimal n-
point covering is the point set X∗

n such that CR(X∗
n) = minXn CR(Xn). Most of the general

considerations in the paper are valid for a general distance ρ, but all numerical studies
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are conducted for the Euclidean distance only. We will thus assume that the distance ρ is
Euclidean.

Other common names for the covering radius are: fill distance (in approximation theory;
see [18, 23]), dispersion (in Quasi Monte Carlo; see [6, Ch. 6]), minimax-distance criterion
(in computer experiments; see [16, 17]) and coverage threshold (in probability theory; see
[11]).

Point sets with small covering radius are very desirable in theory and practice of global
optimization and many branches of numerical mathematics. In particular, the celebrated
results of A.G.Sukharev imply that any n-point optimal covering design X∗

n provides the
following: (a) min-max n-point global optimization method in the set of all adaptive n-point
optimization strategies, see [20] and [21, Ch.4,Th.2.1], (b) worst-case n-point multi-objective
global optimization method in the set of all adaptive n-point algorithms, see [29], and (c)
the n-point min-max optimal quadrature, see [21, Ch.3,Th.1.1]. In all three cases, the class
of (objective) functions is the class of Liptshitz functions, and the optimality of the design
is independent of the value of the Liptshitz constant. Sukharev’s results on n-point min-max
optimal quadrature formulas have been generalized in [10] for functional classes different
from the class of Liptshitz functions; see also formula (2.3) in [2].

2.2 Convergence of a general GRS algorithm

Consider the general problem of continuous global minimization f (x)→minx∈X . Assume
that f∗ = infx∈X f (x) > −∞ and f (·) is continuous at all points x ∈ W (δ) for some
δ > 0, where W (δ) = {x ∈ X : f (x)− f∗ ≤δ}. That is, we assume that f (·) is continuous
in the neighbourhood of the set X∗ = {x∗ ∈ X : f (x∗) = f∗} of global minimizers of f (·),
which is non-empty but may contain more than one point x∗. To avoid technical difficulties,
we assume that there are only a finite number of global minimizers of f (·); that is, the set
X∗ is finite.

Consider a general GRS algorithm producing a sequence of random points x1, x2, . . .,
where each point x j ∈ X has some probability distribution Pj (we write this x j ∼ Pj ),
where for j > 1 the distributions Pj may depend on the previous points x1, . . . , x j−1 and
on the results of the objective function evaluations at these points (the function evaluations
may not be noise-free). We say that this algorithm converges if for any δ > 0, the sequence
of points x j arrives at the set W (δ) = {x ∈ X : f (x)− f∗ ≤δ} with probability one. If the
objective function is evaluated without error then this obviously implies convergence (as
n → ∞) of record values fo, j = mini=1... j f (xi ) to f∗ with probability 1.

In view of continuity of f (·) in the neighbourhood of X∗, the event of arrival of sequence
of points x j at the set W (δ) with given δ > 0, is equivalent to the arrival of this sequence at
the set B∗(ε) = ∪x∗∈X∗ B(x∗, ε) for some ε > 0 depending on δ.

Conditions on the distributions Pj ( j = 1, 2, . . .) ensuring convergence of the GRS
algorithms are well understood; see, for example, [15, 19, 28] and [25, Sect. 3.2]. Such
results are consequences of the classical in probability theory ‘zero–one law’ or Borel-
Cantelli lemmas (see e.g. [4, Section 7.3]) and provide sufficient conditions on convergence.
We follow [27, Theorem2.1] to provide themost general sufficient conditions for convergence
of GRS algorithms.
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Theorem 1 Consider a GRS algorithm with x j ∼ Pj and let B ⊂ X be a Borel subset of X .
Assume that

∞∑

j=1

q j (B) = ∞ , (2.2)

where q j (B) = inf Pj (B) and the infimum is taken over all locations of previous points xi
(i = 1, . . . , j − 1) and corresponding results of evaluations of f (·). Then the sequence of
points {x1, x2, . . .} falls infinitely often into the set B, with probability 1.

Note that Theorem 1 does not make any assumptions about observations of f (·) and hence
is valid for the very general case where evaluations of the objective function f (·) are noisy
and the noise is not necessarily random.

Consider the following three particular cases.

(a) If in (2.2) we use B = B∗(ε) or B = W (ε) with some ε > 0, then Theorem 1 gives a
sufficient condition that the corresponding GRS algorithm converges; that is, there exists
a subsequence {xi j } of the sequence {x j } which converges (with probability 1) to the
set X∗ in the sense that the distance between xi j and X∗ tends to 0 as j → ∞. For this
subsequence {xi j }, we have f (xi j ) → f∗ as j → ∞.
If the evaluations of f (·) are noise-free, then we can use the sequence of record points
(that is, the points where the records fo, j = min�< j f (x�) are attained) as {xi j }; in this
case, f (xi j ) = fo, j is the sequence of records converging to f∗ with probability 1. By the
dominated convergence theorem (see e.g. [4, Section 7.2]), convergence of the sequence
of records fo, j to f∗ with probability 1 implies other important types of convergence of
fo, j to f∗ — in mean and mean square: E fo, j → f∗ and E( fo, j − f∗)2 → 0 as j → ∞.

(b) If (2.2) holds for B = B(x, ε) with any x ∈ X and any ε > 0, then Theorem 1 gives a
sufficient condition that the sequence of points {x1, x2, . . .} is dense with probability 1.
As this is a stronger sufficient condition than in (a), all conclusions of (a) are valid.

(c) If we use pure random search (PRS) with P = PU , the uniform distribution on X (that
is, Pj = PU for all j and the points x1, x2, . . . are independent), then the assumption that
X is convex implies Pr(B(x, ε)) ≥ constε > 0 for all x ∈ X any ε > 0 and therefore
the condition (2.2) trivially holds for any B = B(x, ε), as in (b) above. In practice, the
usual choice of the distribution Pj is

Pj = α j PU + (1 − α j )Q j , (2.3)

where 0 ≤ α j ≤ 1 and Q j is a specific probability measure on X which may depend
on previous evaluations of the objective function. Sampling from the distribution (2.3)
corresponds to taking a uniformly distributed random point in X with probability α j and
sampling from Q j with probability 1 − α j . In case of distributions (2.3), the condition∑∞

j=1 α j = ∞ yields the fulfilment of (2.2) for all B = B(x, ε) and therefore the GRS
algorithm with such Pj is theoretically converging.

2.3 Rate of convergence

Consider first a PRS algorithm, where x j are i.i.d. with distribution P . Let ε, δ > 0 be
fixed and B be the target set we want to hit by points x1, x2, . . .. For example, we set
B = W (δ) = {x ∈ X : f (x) − f∗ ≤ δ} in the case when the accuracy is expressed in
terms of closeness with respect to the function value, B = B(x∗, ε) if we are studying
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convergence towards a particular global minimizer x∗, and B = B∗(ε) if the aim is to
approach a neighbourhood of X∗.

Assume that P is such that P(B)>0. In particular, if P = PU is the uniform probability
measure on X , then, as X has Lipschitz boundary, we have P(B) = vol(B)/vol(X ) > 0.
Note that in all interesting instances the value P(B) is positive but small, and this will be
assumed below.

Define the Bernoulli trials where the success in the trial j means x j ∈ B. PRS generates
a sequence of independent Bernoulli trials with the same success probability Pr{x j ∈ B} =
P(B). In view of independence of x1, x2, . . ., we have

Pr{x1 /∈ B, . . . , xn /∈ B} = (1 − P(B))n

and therefore the probability

Pr{x j ∈ B for at least one j, 1 ≤ j ≤ n} = 1 − (1 − P(B))n

tends to one as n → ∞.
Let nγ be the number of points which are required for PRS to reach the set B with

probability at least 1 − γ , where γ ∈ (0, 1); that is,

nγ = min{n : 1 − (1 − P(B))n ≥ 1 − γ } .

Solving the equation 1 − (1 − P(B))n ≥ 1 − γ with respect to n, we obtain

nγ =
⌈
ln γ /ln (1 − P(B))

⌉
∼= (− ln γ )/P(B) (2.4)

as P(B) is small and ln (1 − P(B)) ∼= −P(B) for small P(B).
The numerator − ln γ in the expression (2.4) for nγ depends on γ but it is not large; for

example, − ln γ � 4.605 for γ = 0.01. However, the denominator P(B) (depending on ε,
d and the shape of X ) can be very small.

Assuming that B = B(x∗, ε), where the norm is standard Euclidean, and B is fully inside
X , we have

vol(B(x∗, ε)) = vol(B(x∗, ε)) = Vd εd , (2.5)

where Vd = πd/2/ [	(d/2+1)] is the volume of the unit Euclidean ball B(0, 1) and 	(·)
is the gamma-function. The resulting version of the expression (2.4) for nγ in the case
B = B(x∗, ε) and vol(X ) = 1 becomes

nasγ = − ln γ /
(
εdVd

)
. (2.6)

As ε → 0, the ball B = B(x∗, ε) lies fully inside X for PU -almost all x∗. Indeed,
asymptotically, as n → ∞, the covering radius computed for uniformly distributed random
points x j , tends to 0 and hence the equality (2.5) is valid asymptotically for almost all x∗. This
is the reason for superscript ‘as’ in (2.6). As shown below in Sect. 3, in the non-asymptotic
regime in situations (M) and (H), the volume vol(B(x∗, ε)) is necessarily smaller than given
by (2.5) and therefore the true nγ is (much) larger than nasγ in (2.6).

Consider now general GRS algorithms where the probabilities Pj are chosen in the form
(2.3), where the coefficients α j satisfy the condition (2.2). Instead of the equality Pr{x j ∈
B} = P(B) for all j ≥ 1, we now have the inequality Pr{x j ∈ B} ≥ α j PU (B), where
the equality holds in the worst-case scenario. We define n(γ ) as the smallest integer such
that the inequality

∑n(γ )

j=1 α j ≥ −ln γ /PU (B) is satisfied. For the choice α j = 1/ j , which
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is a common recommendation, we can use the approximation
∑n

j=1 α j � ln n. Therefore

we obtain n(γ ) � exp{−ln γ /PU (B)}. For the case of X = [0, 1]d and B = B(x∗, ε), we
obtain n(γ ) � exp{c · ε−d}, where c = (−ln γ )/Vd .

Note also that if the distance between x∗ and the boundary of X is smaller than ε, then the
constant c and hence n(γ ) are even larger. For example, for γ = 0.1, d = 10 and ε = 0.1,
n(γ ) is larger than 101000000000. Even for optimization problems in a small dimension d = 3,
and for γ = 0.1 and ε = 0.1, the number n(γ ) of points required for the GRS algorithm to
hit the set B in the worst-case scenario is huge: n(γ ) � 10238.

3 Points uniformly distributed onX
3.1 Asymptotic case

In this section, the point set Xn = {x1, . . . , xn} consists of the first n points of a sequence
X∞ = {x1, x2, . . .} of independent uniformly distributed random vectors in X . Assume,
without loss of generality, that vol(X ) = 1.

Consider the random variable ρ(U , Xn), the distance between U (the uniform random
point inX ) and Xn ; see (2.1) for the definition of ρ. The cdf (cumulative distribution function)
of ρ(U , Xn) gives the average proportions of X which are covered by the balls centered at
Xn with radius r . That is,

Fd(r , Xn) := Pr(ρ(U , Xn) ≤ r) = EXnvol(B(Xn, r)), (3.1)

where the set B(Xn, r) is defined in (1.1). In asymptotic considerations, we need to suitably
normalize the radius (which tends to zero as n → ∞) in (3.1).We thus consider the following
sequence of cdf’s:

Fn(t) := Pr(n1/dV 1/d
d ρ(U , Xn) ≤ t) = Fd

(
[nVd ]−1/d t, Xn

)
. (3.2)

Lemma 1

Fn(t) → F(t) := 1 − exp(−td) as n → ∞, (3.3)

where the convergence is uniform in t and cdf’s Fn are defined in (3.2).

The statement of Lemma 1 follows from Zador’s arguments in his fundamental paper
[24]; see the beginning of page 142. The key observation of Zador is that asymptotically, as
n → ∞, the covering radius computed for uniformly distributed random points x j , tends to
0 and hence the equality (2.5) is valid asymptotically for almost all U ; this is formula (19)
in [24]. The statement of Lemma 1 is in fact a particular case of Theorem 9.1 in [3], if Q is
chosen as the uniform distribution on X .

In what follows, we will need the (1 − γ )-quantile (0 < γ < 1) of the cdf F in the rhs
of (3.3). This (1 − γ )-quantile is determined as t1−γ = [− log(γ )]1/d , for which we have
F(t1−γ ) = 1− γ . The quantity t1−γ can be interpreted as the normalised asymptotic radius
required for covering a subset of X of volume (1 − γ ) (the partial covering introduced in
Sect. 1). For very small ε, to cover a subset of X with random centers x j ∈ Xn of volume
which is approximately 1 − γ , n = nγ should satisfy

nγ = td1−γ

εdVd
= − ln(γ )

εdVd
, (3.4)
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which coincides with (2.6). The above result can be reformulated in terms of the asymptotic
radius r as follows: for very large n the union of n balls with random centers x j ∈ Xn and
radius

rn,1−γ = n−1/dV−1/d
d t1−γ = n−1/dV−1/d

d [− log(γ )]1/d (3.5)

covers a subset of X of volume which is approximately 1 − γ .
In the non-asymptotic (finite n) regime, the distribution function Fd(r , Xn) of (3.1) can be

obtained in the following way (below, for Xn = {x1, . . . , xn}, the components x1, x2, . . . xn
are not necessarily uniform but are i.i.d.).

Conditionally on U , we have for fixed U ∈ X :

P {U ∈ Bd(Xn, r)} = 1 −
n∏

j=1

P
{
U /∈ Bd(x j , r)

}

= 1 −
n∏

j=1

(
1 − P

{
U ∈ Bd(x j , r)

})

= 1 −
(
1 − PX {‖U − X‖ ≤ r}

)n

, (3.6)

where X has the same distribution as x1. From (3.6), the distribution function Fd(r , Xn) can
be obtained by averaging over the distribution of U :

Fd(r , Xn) = EUP {U ∈ Bd(Xn, r)} . (3.7)

For large n and small r we use an approximate equality PX {‖U − X‖ ≤ r} � rdVd in (3.6).
By doing so, averaging with respect toU is redundant and we arrive at the results of Sect. 2.3.
If n is not so large, the quantity PX {‖U − X‖ ≤ r} has to be approximated by other means.
This will be discussed in Sect. 5.

3.2 Bounds for Fd(r, Xn)

Evaluating the expectation in (3.7) is difficult but simple bounds can be obtained by applying
Jensen’s inequality. Here we will focus attention to the case of X = [0, 1]d and Xn =
{x1, . . . , xn}, where x1, x2, . . . is a sequence of uniformly distributed random vectors on X .
From (3.7), we have

EUP {U ∈ Bd(Xn, r)} = 1 − EU

[
(1 − PX {‖U − X‖ ≤ r})n] .

An immediate use of Jensen’s inequality yields the bound:

EUP {U ∈ Bd(Xn, r)} ≤ 1 − (1 − PX {‖1/2 − X‖ ≤ r})n . (3.8)

Here and below a = (a, a, . . . , a) ∈ R
d for any a. However, noticing the fact

PX {‖U − X‖ ≤ r} = PZ {‖Z − X‖ ≤ r}where Z in a uniform random vector on [1/2, 1]d ,
we can apply Jensen’s inequality to obtain:

EUP {U ∈ Bd(Xn, r)} ≤ 1 − (1 − PX {‖3/4 − X‖ ≤ r})n . (3.9)

The forms of the bounds in (3.8) and (3.9) suggest an approximation of the following form
may be useful:

EUP {U ∈ Bd(Xn, r)} � 1 − (
1 − PU ,X {‖U − X‖ ≤ r})n . (3.10)
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Here, instead of fixing U to 1/2 or 3/4, it is a uniform random vector on [0, 1]d . The
probability PU ,X {‖U − X‖ ≤ r} has the interpretation of being the average intersection a
ball of radius r with a random center at U has with the cube [0, 1]d . For different d and r ,
the distribution of PX {‖U − X‖ ≤ r} normalised by the volume of the ball rdVd is shown
in Figs. 9–10.

3.3 Numerical studies

In this section, we will demonstrate one of the key messages of the paper saying that in
high dimensions, the asymptotic results are not attainable for reasonable values of n and
consequently produce poor approximations for n not astronomically large.

In Fig. 1, we plot Fd(r , Xn) as a function of d for n = 1000 (using blue plusses) and
n = 10000 (using black circles). For each value of d , the radius r is chosen based on the
asymptotic result given in (3.5) with 1 − γ = 0.9; this is shown by the solid red line at 0.9.
We see that very quickly and for n that would be deemed large, Fd(r , Xn) is significantly
smaller than 0.9 and quickly tends to zero in d .

The big difference between the asymptotic andfinite regime is further illustrated in Figs. 2–
8. In these figures, using a solid black line we depict Fd(r , Xn) as a function of r for different
values of d and n that are provided in the caption of each figure. In these figures, the dashed red
line is the approximation obtained from the asymptotic result (3.3), that is, the approximation
Fd(r , Xn) ≈ F(n1/dV 1/d

d r). In Figs. 3–8, we also include two Jensen’s bounds given in (3.8)
(dot dashed orange) and (3.9) (dotted blue), as well as the approximation given in (3.10)
(longer dashed green). From these figures, we can make the following observations.

1. Unless d is small, the asymptotic results produce poor approximations even if n is rea-
sonably large.

2. The approximation in (3.10) is rather accurate but worsens for smaller γ .
3. For r ≤ 1/2, the asymptotic bounds and (3.8) coincide; this follows from the equality

PX {‖1/2 − X‖ ≤ r} = rdVd for r ≤ 1/2.
4. The refined Jensen’s bound given in (3.9) is superior to (3.8) and especially to the asymp-

totic bound. This becomes particularly evident in higher dimensions; see Figs. 7 and 8.

In Figs. 3-6, the crosses on the dashed red line and solid black line mark points of interest.
In Fig. 3, for r = 0.5 we obtain F(n1/dV 1/d

d r) = 0.91 but the true value of Fd(0.5, Xn) is
closer to 0.41. As n increases from 1000 to 10000 as is shown in Fig. 4, for r = 0.4 we have
F(n1/dV 1/d

d r) = 0.925 and Fd(0.4, Xn) is closer to 0.6. (Recall that in view of (3.3), we

should have F(n1/dV 1/d
d r) � Fd(r , Xn)) for all r and n large enough). The respective triples

(r; F(n1/dV 1/d
d r), Fd(r , Xn)) for Figs. 4–6 are (0.9; 0.935, 0.08) and (0.8; 0.95, 0.13). For

the case of d = 50 and shown in Figs. 7–8, the asymptotic properties are so far from being
achieved with n = 1000 and n = 10000 that such a comparison does not even make sense.

In Figs. 9 and 10 we use d = 10, d = 20 and the values of r corresponding to the crosses
in Figs. 3 and 5. In these figures, we depict the distribution of intersection a random point has
with the cube normalised by the volume of the ball rdVd ; that is, we plot the density of the
r.v. κU = PX {‖U − X‖ ≤ r} /(rdVd), where both U and X have uniform distribution on
[0, 1]d . The importance of these two figures is another illustration of inadequacy of the key
assumption behind (2.6), which can be formulated as the assumption that the distribution of
density of the r.v. κU is very close to the delta-measure concentrated at one. This assumption
is indeed reasonably adequate if r can be chosen small enough. However, as Fig. 9 and
especially Fig. 10 illustrate, even for relatively large values of n the required values of r
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Fig. 1 Covering proportions using the asymptotic radius; n = 1000, 10000

Fig. 2 Fd (r , Xn) and F(n1/dV 1/d
d r) as functions of r ; d = 5 and n = 1000

Fig. 3 d = 10, n = 1000
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Fig. 4 d = 10, n = 10000

Fig. 5 d = 20, n = 1000

Fig. 6 d = 20, n = 10000
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Fig. 7 n = 1000, d = 50

Fig. 8 n = 10, 000,d = 50

are not small enough for this to hold even approximately. Note that in the derivation of the
asymptotic values of nγ = nasγ in (2.6) we use the value 1 rather than the random variables
κU with the densities shown in Figs. 9,10.

4 Modification of sampling schemes and non-uniform distribution of
the target

In Sect. 3, we have used the principal sampling schemewhere points x j in Xn = {x1, . . . , xn}
are i.i.d. uniform on X = [0, 1]d . In Sect. 4.1 we study a modification of this scheme where
x j ∈ Xn are i.i.d. uniform random points in a smaller δ-cube Cδ = [1/2− δ/2, 1/2+ δ/2]d
with 0 < δ < 1. In Sect. 4.2 we investigate the effect of replacing random points by points
froma low-discrepancy sequence. The choice of a specific low-discrepancy sequence has very
little impact on the results and we present the results for Sobol sequence only. In Sect. 4.3 we
will investigate the effect of replacement of the uniform distribution of the target x∗ ∈ [0, 1]d
by a bowl-shaped distribution such as the product of arcsine distributions on [0, 1].
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Fig. 9 Density of r.v. κU ; d = 10, r = 0.5

Fig. 10 Density of r.v. κU ; d = 20, r = 0.9

4.1 Points xj are i.i.d. uniformly distributed on Cı

In this sectionwe demonstrate the δ-effect, whichmanifests that in high dimensions sampling
in a cube Cδ with suitable 0 < δ < 1 leads to a much more efficient covering scheme than
samplingwithin thewhole cube [0, 1]d . Note that the δ-effect is not obvious being completely
unknown in the literature on stochastic global optimization and perhaps in literature on global
optimization in general. All existing literature recommends space-filling in the whole set X
and not in its subset. Moreover, there are recommendations in literature (see, for example, [5,
22]) of choosing more points closer to the boundary of the cube rather than purely uniformly
in order to improve space-filling properties of random points.

In Figs. 11–13, for different values of d and n we plot Fd(r , Xn) as a function of δ. For
each d and n, the value of r has been chosen such that max0≤δ≤1 Fd(r , Xn) = 0.9; these
values of r (along with optimal values of δ, in brackets) can be obtained from Table 1. In
these figures, the values of Fd(r , Xn) for n = 1000, 10000, 100000 are shown with a solid
black line, dashed blue line and dotted green line respectively. These figures demonstrate the
‘δ-effect’ formulated as the second main message in Introduction. These figures also clearly
demonstrate that despite sampling uniformly in the cube [0, 1]d is asymptotically optimal,
for large d it is always a poor strategy, which can be substantially improved.
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Fig. 11 d = 10; n = 1000, 10, 000, 100, 000

Fig. 12 d = 20; n = 1000, 10, 000, 100, 000

Fig. 13 d = 50; n = 1000, 10, 000, 100, 000
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Fig. 14 d = 10, n = 1000: Jensen’s bound with δ = 1 and δ = 0.5

Table 1 Values for rn,1−γ with γ = 0.1

n = 100 n = 1, 000 n = 10, 000 n = 100, 000

[0, 1]d δ-cube [0, 1]d δ-cube [0, 1]d δ-cube [0, 1]d δ-cube

d = 5 0.41 0.40 (0.9) 0.24 0.24 (1.0) 0.24 0.29 (1.0) 0.09 0.089 (1.0)

d = 10 0.81 0.78 (0.7) 0.61 0.60 (0.9) 0.46 0.46 (1.0) 0.36 0.360 (1.0)

d = 15 1.13 1.04 (0.6) 0.91 0.88 (0.8) 0.76 0.74 (0.9) 0.62 0.619 (0.9)

d = 20 1.38 1.25 (0.5) 1.17 1.11 (0.7) 1.01 0.97 (0.8) 0.87 0.855 (0.9)

d = 25 1.60 1.42 (0.5) 1.39 1.30 (0.6) 1.23 1.18 (0.8) 1.09 1.060 (0.8)

d = 50 2.46 2.07 (0.4) 2.26 1.98 (0.5) 2.10 1.90 (0.5) 1.96 1.790 (0.6)

The discussion of Jensen’s bounds given in Sect. 3.2 still apply to the case of Xn sampled
uniformly within δ-cube Cδ . The only adjustment that needs to be made to the results of
Sect. 3.2 is to let X be a uniform random vector in Cδ and not [0, 1]d . In Fig. 14, we depict
the Jensen’s lower bound given in (3.9) for X uniform in [0, 1]d and for X uniform in the δ

cube [1/4, 3/4]d (so that δ = 0.5). We see that the lower bound for Xn sampled within the
δ-cube is larger than Xn sampled from the whole cube. This further supports the conclusion
that for n not astronomically large, the ‘δ-effect’ should always be considered.

In Table 1, for Xn chosen uniformly in the cube [0, 1]d and Xn chosen uniformly in the
δ-cube, we tabulate the values of rn,1−γ with γ = 0.1 for different d and n. In the columns
labeled δ-cube, the values in the brackets correspond to the approximately optimal values of
δ. We can see that for small d , the δ-effect is very small (since n is relatively large in these
dimensions). For larger dimensions, the δ-effect is very prominent.

In Tables 2–3, we consider an equivalent reformulation of the results of Table 1. In these
tables, for a given r we specify the value of nγ , with γ = 0.1, for Xn chosen uniformly in
the cube [0, 1]d and Xn chosen uniformly in the δ-cube. We also include the approximation
based on the the asymptotic arguments leading to (2.6). We see that in high dimensions, the
requirement of r being small enough for (2.6) to provide sensible approximations requires n
to be extremely large. Such large values of n are impractical.
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Table 2 Values of nγ : d = 20, γ = 0.1

r 0.9 0.95 1 1.05 1.1 1.15

nγ with δ = 1 54,000 25,000 10,800 4,600 2,700 1,300

nγ with δ = δ∗ 40,000 (0.8) 15,000 (0.8) 6,300 (0.8) 2,700 (0.7) 1,100 (0.7) 500 (0.7)

nγ from (2.6) 734 249 89 34 13 5

Table 3 Values of nγ : d = 50, γ = 0.1

r 2 2.05 2.1 2.15 2.2 2.25 2.3

nγ with δ = 1 50,000 21,000 10,000 5,000 2,200 1,200 600

nγ with δ = δ∗ 700 (0.4) 200 (0.4) 50 (0.3) 12 (0.2) 2 (0.1) NA NA

nγ from (2.6) 0 0 0 0 0 0 0

4.2 Points xj are taken from a low-discrepancy sequence

Figures15–16 are extended versions of Fig. 1. Here we plot Fd(r , Xn) as a function of d ,
where the radius is fixed from (3.5)with γ = 0.1 (the line 1−γ is depicted by a red solid line).
For Xn chosen uniformly in the cube [0, 1]d , we depict Fd(r , Xn) with blue plusses. For Xn

chosen from a Sobol sequence in the whole cube [0, 1]d , we use orange triangles. When the
points in Xn are uniform i.i.d. within the δ-cube with optimal δ we use green crosses. Finally,
when points in Xn are chosen from a Sobol sequence within the same δ-cube we use purple
diamond. Figures15 and 16 illustrate twonewkeymessages alongwith themessage discussed
in Fig. 1. Firstly, the use of low-discrepancy sequences seem to produce slightly better results
in comparison to random choice of points for small dimensions but in higher dimensions the
use of low-discrepancy sequences (in our case, Sobol sequences) produces results that are
almost equivalent to random sampling uniformly either in [0, 1]d or in the optimally chosen
δ-cube. Secondly, in large dimensions sampling from a suitable δ-cube greatly outperforms
the other schemes considered here being still far from the asymptotic results. These messages
are further supported in Figs. 17 and 18. Here we plot the asymptotic approximation Fn(r)
from Lemma 1 (dashed red) and Fd(r , Xn) as a function of r for the following choices of
Xn : random in the cube [0, 1]d (blue line with plusses), chosen from a Sobol sequence in
[0, 1]d (orange line with triangles), random in the δ-cube with optimal delta (green line with
crosses), chosen from a Sobol sequence within the same δ-cube (purple line with diamonds).
We see that in Fig. 17 for d = 10, the Sobol sequence is slightly advantageous to the random
uniform on the whole cube and δ-cube for most interesting values of γ . Choosing Xn as
uniform within the δ-cube produces better coverings than with Sobol’s points in [0, 1]d for
most values of γ , but slightly worse for small γ . This slight advantage of the Sobol sequence
in [0, 1]d and in the δ-cube diminishes in the case d = 20 shown in Fig. 18.

To further study the similarities in performance between Xn chosen randomly in the δ-cube
with optimal δ and Xn chosen from a Sobol sequence within the same δ-cube, in Figs. 19–20
we plot the ratio of the c.d.f.’s Fd(r , Xn,U )/Fd(r , Xn,S) across different d . The subscript
U and S respectively differentiate between Xn chosen randomly in the δ-cube with optimal
δ and Xn chosen from a Sobol sequence within the same δ-cube. For each value of d , r is
chosen so that max0≤δ≤1 Fd(r , Xn,U ) = 0.9.
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Fig. 15 Covering using the asymptotic radius with Sobol and δ-cube points: n = 210

Fig. 16 Covering using the asymptotic radius with Sobol and δ-cube points: n = 213

Fig. 17 Sobol and δ-cube points versus the asymptotic covering: d = 10, n = 1024
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Fig. 18 Sobol and δ-cube points versus the asymptotic covering: d = 20, n = 1024

Fig. 19 Efficiency of Sobol’s points, n = 210

Fig. 20 Efficiency of Sobol’s points, n = 213
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Fig. 21 d = 20 and α = 0.5 with n = 1000, 10, 000, 100, 000

4.3 Non-uniform prior distribution for the target

In this section, we explore the effect a non-uniform prior distribution for x∗ ∈ X has on
the conclusions above formulated for the case of uniform distribution. We will assume that
each component of x∗ has independent components distributed according to the following
symmetric beta distribution with density:

pα(t) = tα−1[1 − t]α−1

Beta(α, α)
, for some α > 0.

If α = 1, the density pα(t) is uniform on [0, 1]while for 0 < α < 1 this density is U-shaped.
In most cases below we choose the arcsine density p0.5(t).

We then select the distribution of random points x j ∈ Xn to have similar shape but
constrained to the δ-cube. More precisely, we assume that x j have independent components
with the density

pα,δ(t) = 2 · (2δ)1−2α

Beta(α, α)

[
δ2 − (2t − 1)2

]α−1
,

1 − δ

2
< t <

δ + 1

2
,

for some α > 0 and 0 ≤ δ ≤ 1.

In the case α = 1, the points x j have uniform distribution on the cube Cδ .
Figs. 21–22 are similar to Figs. 11–13, but with the key difference of assuming a non-

uniform prior distribution for x∗. For different values of d and n and for α = 0.5,
we plot Fd(r , Xn) as a function of δ. For each d and n, the value of r has been cho-
sen so that max0≤δ≤1 Fd(r , Xn) = 0.9. In these figures, the values of Fd(r , Xn) for
n = 1000, 10000, 100000 are shown with a solid black line, dashed blue line and dotted
green line respectively. Figures23-24 are similar to Figs. 21–22, but with varying values of
α and fixed n = 10000. In these figures, we selected α = 0.25 (dashed dark green), α = 0.5
(dotted purple), α = 0.75 (dot-dashed grey) and α = 1 which gives the uniform distribution
(solid black). Figures21–22 clearly demonstrate that the ‘δ-effect’ is still significant in this
non-uniform setting.
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Fig. 22 d = 50 and α = 0.5 with n = 1000, 10, 000, 100, 000

Fig. 23 d = 20, n = 10000 and α = 0.25, 0.5, 0.75, 1

Fig. 24 d = 50, n = 10000 and α = 0.25, 0.5, 0.75, 1
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5 Intersection of one ball with the cube

As a result of (3.6), our main quantity of interest in this section will be the probability

PU ,δ,r := PX {‖U−X‖≤r}=PX

{‖U−X‖2 ≤ r2
}=P

⎧
⎨

⎩

d∑

j=1

(u j −x j )
2 ≤ r2

⎫
⎬

⎭ (5.1)

in the case when X has the uniform distribution on the δ-cube [1/2 − δ/2, 1/2 + δ/2]d and
U = (u1, . . . , ud) ∈ R

d is fixed. The case of δ = 1 will be directly applicable to Sect. 3.2.
Because of the results of Sect. 3.2, we will bear in mind two typical choices of U will be
U = 1/2 and U = 3/4 but will formulate results for general U .

For fixed u ∈ R
d , consider the r.v. ηu,δ = (z − u)2, where z has density

pδ(t) = 1/δ , (1 − δ)/2 < t < (1 + δ)/2 , for some 0 ≤ δ ≤ 1. (5.2)

The first three central moments of ηu,δ are:

μ(1)
u = Eηu,δ =

(
u − 1

2

)2

+ δ2

12
, (5.3)

μ(2)
u = var(ηu,δ) = δ2

3

[(
u − 1

2

)2

+ δ2

60

]
, (5.4)

μ(3)
u = E

[
ηu,δ − μ(1)

u

]3 = 4δ4

15

[(
u − 1

2

)2

+ δ2

252

]
. (5.5)

Then for given U = (u1, . . . , ud) ∈ R
d , consider the random variable

‖U − X‖2 =
d∑

i=1

ηui ,δ,α =
d∑

j=1

(u j − x j )
2 ,

where we assume that X = (x1, . . . , xd) is a random vector with i.i.d. components xi with
density (5.2). From (5.3), its mean is

μ = μd,δ,U := E‖U − X‖2 = ‖U − 1/2‖2 + dδ2

12
.

Using independence of x1, . . . , xd and (5.4), we obtain

σ 2
d,δ,U := var(‖U − X‖2) = δ2

3

[
‖U − 1/2‖2 + dδ2

60

]
,

and from independence of x1, . . . , xd and (5.5) we get

μ
(3)
d,δ,U := E

[‖U − X‖2 − μ
]3 =

d∑

j=1

μ(3)
u j

= δ4

15

[
‖U − 1/2‖2 + dδ2

252

]
. (5.6)

If d is large enough then the conditions of the CLT for ‖U − X‖2 are approximately met
and the distribution of ‖U − X‖2 is approximately normal with mean μd,δ,U and variance
σ 2
d,δ,U . That is, we can approximate the probability PU ,δ,r = PX {‖U−X‖≤r} by

PU ,δ,r ∼= 

(
r2 − μd,δ,U

σd,δ,U

)
, (5.7)
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where (·) is the c.d.f. of the standard normal distribution:

(t) =
∫ t

−∞
ϕ(v)dv with ϕ(v) = 1√

2π
e−v2/2 .

The approximation (5.7) has acceptable accuracy if the probability PU ,δ,r is not very small; for
example, it falls inside a 2σ -confidence interval generated by the standard normal distribution.

To improve on the usual CLT approximation, we use Edgeworth-type expansion in the
CLT for sums of independent non-identically distributed r.v. by V.Petrov, see [13]:

P

(‖U − X‖2 − μd,δ,U

σd,δ,U
≤ t

)
= (t) +

∞∑

ν=1

Qν,d(t)

dν/2 , (5.8)

where

Qν,d(t) = −ϕ(t)
∑

Hν+2s−1(t)
ν∏

m=1

1

km !
(

λm+2,d

(m + 2)!
)km

,

λν,d = d(ν−2)/2

σν
d,δ,U

d∑

j=1

γν, j ,

γν, j is the cumulant of order ν at (u j −x j )2−μ
(1)
u j , Hm is the Chebyshev-Hermite polynomial

of degree m and the summation is carried out over all non-negative integer solutions of the
equation

k1 + 2k2 + · · · + νkν = ν

s = k1 + k2 + · · · + kν .

The partition function p(ν) provides the number of possible partitions of a non-negative
integer ν and therefore at each value of ν provides the number of terms in the summation.
The sequence has the generating function

∞∑

ν=0

p(ν)xν =
∞∏

k=1

(
1

1 − xk

)
;

the first few values are: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101. The first few terms in
the summation (including Hermite polynomials) are provided in [14, p. 139].

In the case of U = 1/2 or U = 3/4, the random variables (u j − x j )2 will be i.i.d. For
this case λν,d does not depend on d and thus we have the slight simplification λν,d = λν =
γν/σ

ν
d,δ,U .

In Figs. 25–30, we plot PU ,1,r for U = 1/2 and U = 3/4 as a function of r with a
solid black line. In these figures, we demonstrate the accuracy of approximation (5.7) with
a dashed blue line. With a dot-dashed red line, we plot the accuracy of an approximation
obtained by taking one additional term in the expansion given in (5.8); this requires use of
the third central moment given in (5.6). We can see that overall, for d = 10 and d = 20,
the approximations are fairly accurate. However, when considering covering by n balls it is
more important to focus on the lower tail. Figures26, 28, 29 and 30 demonstrate that taking
one additional term in the Petrov’s expansion (5.8) produces a significant improvement in
accuracy.
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Fig. 25 d = 10,U = 1/2

Fig. 26 d = 10,U = 1/2

Fig. 27 d = 20,U = 1/2
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Fig. 28 d = 20,U = 1/2

Fig. 29 d = 10,U = 3/4

Fig. 30 d = 20,U = 3/4

123



Journal of Global Optimization

6 Conclusions

We have considered continuous global optimization problems, where the feasible regionX is
a compact subset of Rd . As a strategy for exploration, we have mostly considered sampling
of i.i.d. random points either in X or a suitable subset of X .

We have distinguished between between ‘small’, ‘medium’ and ‘high’ dimensional prob-
lems depending on the following relations between d and nmax (which is the maximum
possible number of points available for space exploration):

(S) small dimensions: nmax � 2d (roughly, d < 10);
(M) medium dimensions: nmax is comparable to 2d (roughly, 10 ≤ d ≤ 20);
(H) high dimensions: nmax 	 2d (roughly, d > 20).

We only considered the situations (M) and (H), where we have demonstrated the following
effects: (i) the actual convergence of randomized exploration schemes is much slower than
that given by the classical estimates, which are based on the asymptotic properties of random
points; (ii) the usually recommended space exploration schemes are practically inefficient as
the asymptotic regime is unreachable. In particular, we have shown: (ii-a) uniform sampling
on entire X is much less efficient than uniform sampling on a suitable subset of X , and
(ii-b) the effect of replacement of random points by a low-discrepancy sequence is very
small so that using low-discrepancy sequences and other deterministic constructions does
not lead to significant improvements (unless the number of evaluation points n = nmax is
fixed to some particular value like 2d or 2d−1, see [9]). We believe that the effects (i) and
(ii) have not been stated in literature, at least in this generality. The effect (ii-a) has been
numerically demonstrated in our previous papers [7, 8]. The effect (ii-b) enhances one of the
main messages of the paper [12].

Itwas not the purpose of the paper to give themost effective exploration schemes.However,
the results of this paper, along with studies reported in [7–9, 26], allow us to give several
general recommendations on efficient organization of exploration strategies in the situations
(M) and (H), at least when X is a cube.

In a high-dimensional cube X = [0, 1]d with d > 20 and 1 < nmax < 2d , we propose the
following strategy of construction of nested exploration designs Xn : x1 = 1/2 (the centre
of X ) and the other points x j are taken randomly among the vertices of a cube [1/4, 3/4]d .
Sampling fromvertices can be donewithout replacement (see [8]) and,moreover, we can keep
the points x j so that the Hamming distance between them is at least �d−log2(nmax−1)�+1.

It is more difficult to be so specific in the situation (M) as there may be different relations
between2d ,nmin andnmax.Agood strategywould be using the product of arcsine distributions
on a suitable δ-cube (see [8]); this distribution is slightly superior to the uniform on δ-cube
of Sect. 4 (with different values of δ optimized for the respective distribution). An even more
natural strategy would be sampling in 2d small cubes (of side-length ε) surrounding the
vertices of a δ-cube Cδ = [1/2 − δ/2, 1/2 + δ/2]d (after placing x1 = 1/2). The choice of
δ and ε depends on 2d , nmin and nmax and requires a separate study. As usual, reduction of
randomness in sampling makes any of these schemes marginally more efficient.
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