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Abstract

Technological development is one of the main determinants of economic growth in

the long run. In general, it is achieved by the research and development (R&D)

activity and then diffusion of the new technology. This thesis examines both

R&D stage and technology diffusion stage from different angles to identify how

innovation affects firm competition. Most of the studies on patent licensing and

R&D are based on symmetric firms, but we more often see asymmetric firms in

the realistic situation. Therefore, firm heterogeneity is an important feature of

this thesis. The first main chapter focuses on the diffusion stage of new technol-

ogy in the presence of asymmetric licensees. That is, given the innovation has

already taken place, this chapter aims to find how the asymmetric cost structure

affects the most profitable strategy for an outside innovator. Moreover, it also

finds that it depends on the type of innovation whether the large firm or small

firm has higher incentive to pay for the license. The second main chapter focuses

on R&D stage and the firm heterogeneity is characterized by both asymmetric

initial production cost and asymmetric R&D spillover rate. Therefore, it aims to

find how the firm heterogeneity affects the R&D choices and subsequent market

structure. The result shows that the one-way spillover rate drives the small firm

to invest more in R&D so that the cost gap is narrowed. The third chapter fo-

cuses on the R&D stage in the presence of uncertainty in a multi-period game.

It finds the uncertainty of R&D under long-term competition makes two initially

symmetric firms grow technological gap instead of evolving neck to neck. There-

fore, although the model starts from symmetric firms, it captures asymmetric

cases due to uncertain R&D outcomes.
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Chapter 1

Introduction

Economic theory finds that the technological development is one of the main de-

terminants of economic growth in the long run. The technological development

can be regarded as an overall process of invention, innovation and diffusion of the

technology. To be specific, the innovation’s outcomes are commonly divided into

two types, either a creation of a good that is new to market, referred as prod-

uct innovation, or an improvement to the existing product, referred as process

innovation. Furthermore, research and development (R&D) activity is the main

tool to achieve the innovation. The R&D choice of firms, or more in general,

the agents are endogenous and depend on the characteristics of the economy,

especially the market structure and the institutions. Once the innovation is cre-

ated, the innovator owns the property right and then aims to maximize returns

on the innovation, that is, to find the most profitable way to diffuse the technol-

ogy. This thesis considers both stages of technological development and obtains

certain results.

The remainder of this thesis is divided in three main chapters, followed by

conclusions.

Chapter 2 which is entitled “Licensing versus selling with firm heterogeneity”

focuses on the diffusion stage of new technology. Most of the existing literature

considers patent licensing as the only commercial policy available to innovators

and determines the most profitable licensing contract consisting of fixed fee, per-
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unit royalty and their combinations. However, Tauman and Weng (2012) first

consider the possibility that an outside innovator could sell the patent right to

one of the potential licensees and it is more profitable than the directly licens-

ing strategy, which provides another option to diffuse the new innovation. The

main difference between traditional patent licensing and selling is whether the

ownership of the patent right is transferred. The buyer of the patent right has

the subsequent option to license the new technology to other firms with their

preferred licensing strategy.

In a recent study, Sinha (2016) finds that selling strategy is the most prof-

itable way for an outside innovator to transfer the new innovation under Cournot

competition with asymmetric firms. Although the existing literature shows that

the selling strategy is more profitable, it has not shown why it is the case. With

the selling strategy, the buyer first obtains the innovation by paying a fixed fee

and then sub-license it to its rival. That is to say, both firms finally get the

new technology but through different contracts and in different order. I intro-

duce a fully flexible discriminatory licensing scheme in an asymmetric Cournot

duopoly model, that is, the outside innovator takes full advantage of the firm

heterogeneity and offers different contracts to the firms either simultaneously or

sequentially and compare it with the selling strategy to determine what the most

profitable way is for the outside innovator and whether licensing replicates the

selling strategy. As mentioned before, there are two common types of innovation,

process or product innovation, which are analyzed in this chapter respectively.

The result shows that selling strategy is the most profitable way for the outside

innovator for both types of innovation. The superiority comes from the ability

to promise the buyer the best possible outcome while at the same time threaten

with the worst outcome. However, the discriminatory licensing strategy cannot

achieve it due to the lack of commitment power.

In addition, I also consider whether the more efficient or less efficient firm has

higher incentive to acquire the license. The results differ between the types of
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innovation. The more efficient firm has higher incentive to pay for the license if

it is a process innovation while it has lower incentive if it is a product innovation.

Since the process innovation reduces the marginal cost by the same magnitude

for both firms, the more efficient firm benefits more by using the new technology

and it is threatened by a situation where the less efficient firm may catch up with

it. Therefore, the fear of losing its leader’s position provides the more efficient

firm with higher incentive. However, this is not the case for the product inno-

vation. Since both firms will produce at the same marginal cost after adopting

the product innovation, the less efficient firm in fact reaps larger cost reduction,

which provides higher profit incentive to pay for the license.

Another contribution of this chapter is the welfare analysis. The existing

literature mainly aims to find the privately optimal strategy, that is, the most

profitable way for the innovator. But whether the privately optimal strategy is

also socially optimal remains unclear. Therefore, I provide a welfare analysis to

check it. The results show that the discriminatory licensing strategy is socially

optimal if the initial cost asymmetry is not too large in case of process innovation.

As for the product innovation, the discriminatory licensing is always socially

optimal.

Chapter 3 which is entitled “R&D behaviors with firm heterogeneity” focuses

on the innovation stage of the new technology, which is achieved by R&D activity.

The main research question comes from a controversial topic that whether large

firms or small firms spend more on R&D. The majority of theoretical research

states that large firm engages more in R&D than small firm (Pavitt et al., 1987;

Scherer, 1991; Cohen and Klepper, 1996a). Therefore, the cost gap between firms

is getting even larger. But some recent empirical studies show that small firms

spend more on R&D in some industries (Arora, Fosfuri, and Gambardella, 2001;

Revillan and Fernandez, 2012a; Figueroa and Serrano, 2013).

Starting from an asymmetric situation, which is characterized by difference

in initial cost of production, firms conduct R&D to improve their costs. Due to
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the asymmetric setting, firms’ ability to absorb the external knowledge, that is,

R&D spillover, differs as well. In this chapter, I assume the situation where only

the large firm’s R&D spills over to the small firm but not vice versa, to see how

the one-way spillover influences the R&D behaviors and further the cost gap. To

be specific, this chapter aims to determine whether the one-way spillover is a

possible factor to explain that the small firm spends more on R&D and whether

the one-way spillover is able to stop the divergence between the firms so that the

cost gap is narrowed. Furthermore, the chapter provides a welfare analysis to

determine whether the increasing or decreasing cost gap benefits the consumers

and the society.

The main results of this chapter are summarized as follows. Firstly, the one-

way spillover rate is a possible factor which explains why the small firm chooses

higher R&D intensity than the large firm and the cost gap is therefore narrowed.

With relatively small asymmetry, the small firm is able to even catch up with

the large firm and it benefits both the consumers and the total producer surplus.

However, from the welfare point of view, it is not always better that the gap

between firm narrows. If the initial cost gap is relatively significant, the society

prefers to even broaden the gap further.

Chapter 4 which is entitled “Dynamic R&D competition with stochastic out-

comes” also focuses on the R&D activity. R&D is known as a risky, costly and

continuous process and firm heterogeneity is one of the key points of the previous

chapters, therefore the research question of this chapter comes from whether the

R&D competition with uncertainty in a multi-period game makes two initially

symmetric firms diverge. Uncertainty is characterized by stochastic outcomes,

that is, the firm may succeed or fail to make a progress given its R&D choice.

Moreover, the multi-period game is another feature of this chapter. The in-

centives to invest in R&D might vary as the game proceeds, depending on the

position of the firm in the game relative to its rival and relative to the end of the

game (Zizzo, 2002). Therefore, the aims of this chapter are to see how the firms’
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incentives to engage in R&D are affected in a multi-period game with uncertain

outcomes and how the technological difference between the firms evolves.

In this chapter, firms are initially symmetric, which means the technological

difference is zero at the beginning and compete for finite number of periods.

In each period, each firm chooses its own R&D level simultaneously and the

probability of success increases with investment. The technological difference is

captured by the difference between the total number of successes of firm i and

those of its rival. Moreover, I assume that the payoff of each firm in each period

depends on its number of successes. Therefore, when a firm makes its own decision

on R&D in each period, it is not only maximizing the periodic profit, but also

takes into account how the R&D investment in this period affects the following

periods. More precisely, the history determines the choice and the corresponding

outcomes.

The main analytical results are obtained for the simplest 2-period game. Fo-

cusing on the same period, the firm invests the most if it is one period ahead of

its rival, followed by the situation where the firms are at the same technologi-

cal level, and then the firm invests the least if it is one period behind its rival.

Furthermore, due to its stochastic nature, the game has various end outcomes

with different probabilities. I classify the end outcomes according to probabili-

ties of being symmetric and asymmetric. The result shows that the probability

of firms being asymmetric rises continuously as the game proceeds, implying that

two firms are diverging instead of evolving neck to neck. Considering the R&D

investment over time, I find that the less periods there are remaining, the less

investment the firm wants to conduct. It is intuitive that the firm knows that

being a leader is more profitable than being a follower and the incremental profit

is increasing with the number of leads, therefore at the beginning of the game,

it has the highest incentive to invest in R&D in order to become the leader.

Additionally, all the analytical results obtained from the 2-period game can be

extended to the T-period game, which are proved in a numerical way.
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Chapter 5 is the conclusion, which summaries the main findings, limitations

and possible extensions of this study.
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Chapter 2

Licensing versus selling with firm
heterogeneity

2.1 Introduction

Research of patent licensing between innovator and licensees is relatively exten-

sive. The licensing contracts through fixed fee, per-unit royalty and their com-

binations for both outside and inside innovators are extensively studied in the

existing literature. If the innovator is a third party outside of the market, it has

been generally shown that fixed fee licensing is optimal (see Katz and Shapiro,

1986; Kamien and Tauman, 1986; Kamien et al., 1992; Stamatopolous and Tau-

man, 2009); whereas per-unit royalty contract is optimal when the innovator is

an insider, that is, one of the producers in the market (see Wang, 1998; Kamien

and Tauman, 2002; Wang and Yang, 2004).

However, Tauman and Weng (2012) first consider the possibility that an out-

side innovator could sell the patent right to one of the potential licensees, which

provides another option to profit from technology transfer. The buyer of the

patent right has the subsequent option to license the new technology to other

firms with their preferred licensing strategy. The main difference between tradi-

tional patent licensing and selling is whether the ownership of the patent right is

transferred. Following patent sale, the innovator loses all control of the property

right and transfers the ownership to the buyer, which is able to license it further
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to its rivals. The relevant study of selling the patents rights is a relatively new

area of research and is not well understood.1

In a general Cournot framework with an outside innovator and several sym-

metric potential licensees, Tauman and Weng (2012) find that selling the innova-

tion can actually be strictly more profitable to the outside innovator than direct

licensing strategy. This result is noteworthy, because it provides a more prof-

itable opportunity for the innovator by selling the new technology rather than

licensing. In a recent study, Sinha (2016) analyzes selling strategy of an outside

innovator under Cournot competition for asymmetric firms and finds that selling

strategy is still the most profitable way to transfer the new innovation to the

more efficient firm which then licenses it to its rival by per-unit royalty contract.

More recently, Banerjee and Poddar (2019) focus on a similar question but in a

different framework. They consider a differentiated product price competition in

a spatial framework (i.e. a linear city model) and get more general and robust

result, which show that selling the innovation to a potential licensee (regardless of

the cost efficiency) is always strictly better than any licensing strategy irrespec-

tive of the size of the innovations (drastic or non-drastic). From the standpoint

of an inside innovator, Niu (2019) compares licensing policy to selling policy and

shows that the choice of licensing or selling depends on the size of the initial cost

difference.

Although the exisitng theoretical results show the superiority with respect to

patent sale in innovator’s profit, there is little empirical evidence in real world. By

contrast, the majority of empirical papers related to technology transfer focuses

on patent licensing. Rostoker (1984) reports that a two-part tariff contract is used

46% of the cases, while a pure per-unit royalty and a fixed fee license account

for 39% and 13%, respectively. By employing Spanish data, Macho-Stadler et

al. (1996) finds that 59.3% of the contracts have only royalty payments, 27.8%
1For theoretical studies on patent sale, see Sinha (2016), Banerjee and Poddar (2019) and

Niu (2019).
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have fixed fee payments only, and 12.9% include both fixed and royalty payments.

More recently, Yanagawa and Wada (2000) find that about 48% of the contracts

s from US firms to Japanese firms involve two-part tariff. From these empirical

data, it is found that in reality, different types of contracts are offered among

all the licensing contracts and the combinations of fixed fees and royalties are

commonly observed as well. In the discriminatory licensing analysis part, I do find

that any of the licensing strategies mentioned before can be the profit maximising

contract depending on the circumstances. Thus the result on patent licensing is

consistent with the empirical findings. Besides, recent empirical papers show the

evidence of patent sale. Serrano (2010) makes use of data on the transfer of the

ownership of patents, which is from US Patent and Trademark Office (USPTO).

And mentions that “13.5% of all granted patents are traded at least once over

their life cycle”.

More often than not, we observe asymmetries among firms. Therefore, I em-

ploy asymmetric Cournot duopoly model in this paper, that is, two potential

licensees differ in their initial production costs. Specifically, the lower cost firm

is more technologically advanced and produces more than the higher cost firm,

therefore it occupies a larger market share in the pre-innovation stage. In other

words, two potential licensees are not on equal terms in the market. Therefore, if

the innovator announces that it does not exclusively offer the license, it is reason-

able that the outside innovator designs a unique contract to each firm according

to its production scales and technical levels, simultaneously or sequentially. For

example, a technological company owns an outstanding application. Both An-

droid and Apple want to get the license to release this application. Therefore the

company has the right to choose when and how to offer the license to any of the

platforms. As for patent sale, it can be regarded as acquitision, which provides

an effective way for the firm to access innovation. Since engaging in its own R&D

requires considerable time, energy and capital, and carries a high risk of failure,

firms can be motivated to instead seek innovation externally, through M&A.
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Given the existing results with respect to selling strategy, a natural question

arises, why selling strategy is more profitable than the traditional licensing strat-

egy and it has not been shown in the previous papers. With patent sale, both

firms finally get the new technology but through different contracts and in differ-

ent order. In order to imitate the process without losing property right, I intro-

duce a fully flexible discriminatory licensing scheme in an asymmetric Cournot

duopoly model, that is, the outside innovator takes full advantage of the firm

heterogeneity and offers different contracts to the firms either simultaneously or

sequentially and compare it with the selling strategy to determine what the most

profitable way is for the outside innovator and whether the discriminatory licens-

ing replicates the selling strategy. In addition, the existing literature mainly aims

to find the privately optimal strategy, that is, the most profitable way for the

innovator. But whether the privately optimal strategy is also socially optimal re-

mains unclear. Therefore, I provide a welfare analysis to check whether licensing

or selling strategy provides a larger social welfare.

This chapter extends the analysis of Sinha (2016) and Banerjee and Poddar

(2019). Sinha (2016) compares uniform licensing with selling strategy in an asym-

metric Cournot duopoly market and shows the superiority of patent sale, while

welfare analysis is not considered in his paper. On the other hand, Banerjee and

Poddar (2019) consider discriminatory licensing and welfare analysis but with a

linear city model. They assume the market is matured, i.e., the demand is not

growing, and the products are well differentiated, which is more observed in most

developed countries. Also, in the linear city model, the firms compete in prices.

On contrary, firms produce homogeneous product and compete in quantities in

this paper and the Cournot model is used to model competition in homogeneous

products. Besides, this paper focuses on the technology transfer and patent li-

censing in the standard Cournot framework where the demand is elastic. Thus,

this paper fills the gap in the existing literature by considering both discrimina-

tory licensing and welfare analysis in an asymmetric Cournot duopoly market.
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This chapter contributes to the closed literature in the following four aspects.

First, it further shows the superiority of patent sale. However, the empirical

literature shows little evidence of patent sale. The majority of innovation transfers

are via licensing. So based on heterogeneous firms, I introduce a fuller picture

of the intellectual property strategy of the outside patentee in an asymmetric

duopoly market which allows the innovator to award different licenses to potential

licensees simultaneously or sequentially. Second, this study provides a welfare

analysis to see whether the privately optimal strategy is also socially optimal

or not. Third, the previous papers are generally from the standpoint of the

innovator. In this chapter, I also compare the incentives of the potential licensees

(i.e. asymmetric firms) to pay for the license, that is, whether the more efficient

or less efficient firm has higher incentive to acquire the license. Finally, two types

of innovation are analysed in this chapter. One is the step-eliminating innovation,

which generates the same size of cost reduction for both firms. The other one

is new process innovation, which helps the firms adopting a new process with

the same marginal cost. In other words, this chapter basically covers the most

common types of innovation.2

The result shows a consistent ranking of different commercial strategies avail-

able to the innovator for both types of innovations, that is, patent sale is more

profitable than the simultaneous licensing which in turn is better than the se-

quential licensing. For both types of innovations, the optimal sequence for the

innovator is the one which leads to the larger post-innovation cost difference and

the follower always has incentive to pay more for the license. Therefore, the

outside innovator always offers a fixed fee contract to the follower to extract this

larger payment.

The rest of the paper is organized as follows. Section 2.2 describes the model

and the structure of the licensing game. Section 2.3 characterizes the optimal
2In general, the innovation’s outcomes are commonly divided into two types, either a creation

of a good that is new to market, or an improvement to the existing product.
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discriminatory licensing and compares it with patent sale based on the step-

eliminating innovation. Section 2.4 proceeds in the same manner as section 2.3

but for the new process innovation. This is followed by the welfare analysis in

section 2.5. Finally section 2.6 concludes.

2.2 The Model

There are two types of players in the model; producers and an innovator.

Producers. Consider a Cournot duopoly with ex-ante asymmetric firms, firm

1 and firm 2. They produce a homogenous product and compete in quantities.

Firm 1’s initial marginal costs of production is c1 and firm 2’s is c2, where c1 < c2.

In other words, firm 1 is relatively more efficient than firm 2 initially. The distinct

initial production cost is where the firm heterogeneity lies in, which may lead to

different incentives for acquiring a new technology. The inverse demand function

is given by p = a−Q, where p is price of the product, Q = q1+q2 is the aggregate

quantities produced in the market and a is a positive demand intercept.

Innovator. There is an outside innovator (e.g. an independent research lab)

that owns a cost-reducing innovation. Two types of innovation are considered

in this paper. One is called common step-eliminating innovation which helps

the producers to decrease their marginal costs by x, thereby reducing the initial

marginal cost to ci − x. x is also known as the size of the innovation. The

other type of innovation is new process innovation which helps firms to replace

their previous production process with a brand new process with marginal cost

c, where 0 < c < c1 < c2. These inequalities indicate that the new innovation is

useful for both the more efficient and less efficient firm.

Finally, the objective of the innovator is to maximize the payoff from its inno-

vation by various available strategies. To be specific, the innovator has the option

to design a discriminatory licensing game to both firms or, alternatively, it can

sell the innovation to any single firm. In this chapter, I exclude the R&D decision
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of the innovator and assume instead that the technology has been discovered.

Discriminatory licensing game

As I mentioned before, if the outside innovator employes selling strategy, both

firms finally get the new technology. Therefore, in order to be comparable with

patent sale, I assume that the outside innovator offers two licenses to both firms

in the discriminatory licensing game.

The game structure is as follows. In the first stage of the discriminatory li-

censing game (see Figure 3.2.1), the outside innovator offers two distinct two-part

tariff contracts to both firms simultaneously or sequentially. In the second stage,

the firms decide whether to accept or reject its own contract. If simultaneous li-

censing is chosen by the innovator, two firms decide whether to accept or reject it

simultaneously3. If sequential licensing is chosen, the leader firm decides whether

to accept or reject it, then the follower firm observes the leader firm’s choice and

makes its own decision. In the third stage, the firms engage in Cournot duopoly

competition. As for the selling game (see Figure 2.2), the innovator decides to

sell its innovation to one of the two firms. If the innovation is sold, the new

patent holder has the option to license it further to the rival. Both games are

solved by backward induction.

In the post-innovation stage, suppose firm’s marginal cost vector is (c′i, c′j) and

let qi denote firm i’s Cournot equilibrium output and πi denote the corresponding

operative profit, i, j = 1, 2 and i ̸= j,

qi =
a− 2c′i + c′j

3
(2.1)

πi = (qi)
2 (2.2)

3The loop represents that firm j does not know whether firm i chooses accepting or rejecting,
that is, two firms play a simultaneous game.
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Figure 2.1: The structure of discriminatory licensing game

2.3 Common step-eliminating innovation

In case of common step-eliminating innovation, I assume that both firms produce

a positive output in the equilibrium irrespective of the outcome of the licensing

or selling game, which is guaranteed by the following assumptions.

Assumption 2.1 a > 2c2

Assumption 2.2 0 < x < c1

Firms produce at the marginal cost ci − x if they use the innovation. For

a meaningful licensing game, both firms should have positive marginal costs of

production after adopting the innovation. Therefore the size of innovation should

be c1 − x > 0 and then c2 − x > 0 automatically holds. In addition, firms are

assumed to be active, which means the innovation is ’non-drastic’. That is to

say, neither of the firms with the new innovation could charge a monopoly price

and drive the other firm with the older technology out of the market. Thus, in

this framework, as long as the equilibrium output of firm 2 is still positive when

firm 1 exclusively gets access to the new innovation, it ensures the innovation is

14



Figure 2.2: The structure of selling game

non-drastic. It gives the upper bound for the size of innovation x < a− 2c2 + c1,

which is satisfied given assumptions 2.1 and 2.2.

2.3.1 Simultaneous discriminatory license

Consider the case where the outside innovator offers two unique two-part tariff

contracts (F1, r1) for firm 1 and (F2, r2) for firm 2 simultaneously, where Fi ⩾ 0

denotes the fixed fee paid to the outside innovator, and 0 ⩽ ri ⩽ x denotes the

per-unit royalty rate, with i = 1, 2.

The normal form of the game can be expressed as,

Table 2.1: The normal form of simultaneous game with step-eliminating innova-
tion

Firm 2

Accept Reject

Firm 1
Accept πaa

1 − F1, π
aa
2 − F2 πar

1 − F1, π
ra
2

Reject πra
1 , πar

2 − F2 πrr
1 , πrr

2
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where the first and second terms in supercript denote the firm i’s choice, and

the rival firm j’s choice, respectively, with a for accepting, r for rejecting. With

different pairs of post innovation marginal costs (c′1, c′2), by plugging into Eq.(2.1)

and (2.2), the relevant variables in Table 2.1 can be calculated as follows,

πaa
i = (qaai )2 =

(a− 2ci + cj − 2ri + rj + x)2

9
(2.3)

πar
i = (qari )2 =

(a− 2ci + cj − 2ri + 2x)2

9
(2.4)

πra
i = (qrai )2 =

(a− 2ci + cj + rj − x)2

9
(2.5)

πrr
i = (qrri )2 =

(a− 2ci + cj)
2

9
(2.6)

Assume that any firm would accept the license if it is weakly better off than

not accepting it. In other words, as long as firm i’s profit if it accepts the license

is equal or greater than if it rejects given the strategy of its rival, firm i would

accept the license.

In case of patent sale, the buyer has the option to license it further to the

rival or not. If the buyer is not permitted to license further, the selling strategy

is equivalent to the discriminatory licensing when the outside innovator only

offers one license. Sinha (2016) finds that the buyer of the patent would always

license the technology to its rival and none of them has any incentive to withhold

the technology after buying the patent. That is to say, if (Accept,Reject) or

(Reject,Accept) is the Nash equilibrium, it cannot be more profitable for the

innovator. Therefore, I consider (Accept, Accept) as the unique Nash equilibrium

of the game, and this is the case if and only if,

πaa
1 − F1 ⩾ πra

1

πar
1 − F1 ⩾ πrr

1

πaa
2 − F2 ⩾ πra

2
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πar
2 − F2 ⩾ πrr

2

Solving the above system of inequalities gives,

F1 ⩽ πaa
1 − πra

1 ⩽ πar
1 − πrr

1

F2 ⩽ πaa
2 − πra

2 ⩽ πar
2 − πrr

2

Therefore in this situation, the outside innovator can charge the profit dif-

ference of firm i between it accepts and rejects the contract given its rival firm

always accepts the contract, i.e., Fi = πaa
i − πra

i , i = 1, 2.

From the outside innovator’s perspective, the objective is to maximize the

total revenue RST from simultaneous licensing to both firms by choosing royalty

rates r1 and r2, which is detemined as follows,

RST (r1, r2) =F1 + F2 + r1 · qaa1 + r2 · qaa2

=
(a− 2c1 + c2 − 2r1 + r2 + x)2

9
− (a− 2c1 + c2 + r2 − x)2

9

+
(a− 2c2 + c1 − 2r2 + r1 + x)2

9
− (a− 2c2 + c1 + r1 − x)2

9

+r1(
a− 2c1 + c2 − 2r1 + r2 + x

3
) + r2(

a− 2c2 + c1 − 2r2 + r1 + x

3
)

where F1 and F2 are from the previous result. After simplification,

max
r1,r2

RST (r1, r2) =− 2r21
9

+
r1(−a+ 2c1 − c2 − 2r2 + 3x)

9

− 2r22
9

+
r2(−a+ 2c2 − c1 + 3x)

9
+

4x(2a− c1 − c2)

9

s.t. 0 ⩽ r1 ⩽ x

0 ⩽ r2 ⩽ x

Using the Kuhn-Tucker conditions to solve the following Lagrangian function,

L(r1, r2, λ1, λ2, λ3, λ4) = RST (r1, r2) + λ1r1 + λ2r2 + λ3(x− r1) + λ4(x− r2)

The critical points of L are the solutions (r1, r2, λ1, λ2, λ3, λ4) to the following

system of equations,
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∂L

∂r1
=

3x− a+ 2c1 − c2 − 2r2 − 4r1
9

+ λ1 − λ3 = 0

∂L

∂r2
=

3x− a+ 2c2 − c1 − 2r1 − 4r2
9

+ λ2 − λ4 = 0

λ1 ⩾ 0, r1 ⩾ 0, λ1r1 = 0

λ2 ⩾ 0, r2 ⩾ 0, λ2r2 = 0

λ3 ⩾ 0, x− r1 ⩾ 0, λ3(x− r1) = 0

λ4 ⩾ 0, x− r2 ⩾ 0, λ4(x− r2) = 0

(2.7)

This system of equations defines different pairs of optimal royalty rates r∗i .

To sum up, the following lemma characterizes the optimal simultaneous discrim-

inatory licensing contract.

Lemma 2.1 When the outside innovator offers two distinct contracts to the firms

simultaneously, the optimal licensing policy depends on the size of innovation,

1) if 0 < 3x ⩽ a− 2c2 + c1, only fixed fees are charged.

2) if a − 2c2 + c1 < 3x ⩽ a − 5c1 + 4c2, the innovator offers a fixed fee contract

to firm 1 and a two-part tariff contract to firm 2.

3) if 3x > a− 5c1 +4c2, the innovator offers different two-part tariff contracts to

firms.

From Lemmas 2.1, it is found that if x goes up, that is, as the innovation gets

better at cost cutting, the optimal contract for each firm changes from a fixed-fee

to a two-part tariff. The economic intuition can be explained as follows. There

are two main effects of patent licencing. The first effect is the overall efficiency

gain in the industry and the second effect is the increase in competition between

the two firms (Poddar and Sinha, 2010). For a relatively small cost reduction,

the post-innovation cost gap relative to the market size approximately remains

the same as in the pre-innovation stage, that is, the competitive effect can be

ignored. Overall efficiency gain can be appropriated by the optimal fixed fee.
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As the size of cost reduction increases, the market share of less efficient firm

increases, which tends to reduce the industry profit. The outside innovator now

would like to charge a royalty for the less efficient firm to enlarge the effective

cost difference (including the royalty). But it is not always profit maximising as

the effective cost difference increases. There is a trade-off between total industry

profit and royalty revenue. Therefore for a sufficiently large cost reduction, the

optimal strategy for the outside innovator is also charging a royalty for the more

efficient firm, which has a competition-reducing effect in the market.

 

2.3.2 Sequential discriminatory license

Now consider the case when the outside innovator is offering two unique two-

part tariff contracts (Fi, ri) to firm i (referred as the leader) and then (Fj, rj)

to firm j (referred as the follower) in a sequence, i, j = 1, 2 and i ̸= j. Recall

that 0 ⩽ ri ⩽ x. Compared with the previous simultaneous discriminatory

license, the difference is that both contracts cannot be designed simultaneously

at the beginning of the game. The optimal contract for the follower is conditional

on the decision of the leader, which means that it may differ when the leader

accepts or rejects its own contract. Basically, I assume a lack of commitment

by the innovator. Hence, the game should be solved by backward induction.

The optimal contract for the follower should be designed subject to the leader’s

decision at first and then find the optimal contract for the leader.

Consider the case where the innovator first asks firm 1 and then firm 2. Since

firm 2 can observe firm 1’s decision, the incentive to get the innovation is likely

to be distinct, therefore the outside innovator is able to design different contracts

for firm 2 depending on the choice of firm 1.

Firstly, when firm 1 accepts the contract, the optimal strategy for firm 2 can

be designed as follows. If firm 2 accept the contract as well, firm 2’s profit is πaa
2

in Eq.(2.3). Otherwise, its profit turns to πra
2 in Eq.(2.5). The maximum fixed fee
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charged for firm 2 is the profit difference between it accepts or rejects. Therefore,

the maximum fee that the innovator could charge is F2 = πaa
2 − πra

2 from firm 2.

Then the objective of outside innovator is to maximize the revenue from firm 2

(related to r2) instead of the joint revenue, that is, F2+r2 ·qaa2 +r1 ·qaa1 by choosing

r2. It is easy to check that within the range 0 ⩽ r2 ⩽ x, ∂(F2+r2·qaa2 +r1·qaa1 )

∂r2
< 0, and

∂2(F2+r2·qaa2 +r1·qaa1 )

∂r22
< 0. Therefore in this case the optimum r2 will be set at 0 which

is the lower bound of r2. Thus, when firm 1 accepts the contract, the optimal

strategy is to offer a fixed fee contract with F2 = πaa
2 − πra

2 = 4x(a−2c2+c1+r1)
9

to

firm 2, which takes r1 as given.

Then, when firm 1 rejects the contract, the innovator can design another

strategy for firm 2. If firm 2 obtains the contract exclusively, firm 2’s profit is

πar
2 in Eq.(2.4). Otherwise, no one gets the cost reduction, which remains in the

pre-innovation stage leading to firm 2’s profit at πrr
2 in Eq.(2.6). Therefore, the

maximum fee that the innovator could charge is F2 = πar
2 − πrr

2 from firm 2. The

innovator now only maximizes the revenue from firm 2, F2 + r′2 · qar2 , by choosing

r′2. Similarly, note that the total payoff of the innovator is a concave function and

decreasing of r′2 given the restriction 0 ⩽ r′2 ⩽ x. Then the maximum revenue is

attained when r′2 is zero. Thus, the optimal strategy is still to offer a fixed fee

contract to firm 2 if firm 1 rejects the contract.

From the above analysis, the optimal mode for firm 2 is independent of firm

1’s decision. Whether firm 1 accepts or rejects its own contract, the outside

innovator always offers a fixed fee contract to firm 2 with different fees though.

Hence, the following lemma holds.

Lemma 2.2 If the outside innovator offers one license to a firm, a fixed fee

contract would always give the outside innovator maximum payoff.4

The intuition behind Lemma 2.2 is that the potential licensee (i.e., the fol-

lower) will receive the highest profit when it can take the full advantage of the
4It also holds if firm 1 is the follower.
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cost reduction no matter what the leader has chosen. This larger payoff can

be extracted by the outsider innovator with a fixed fee. Any combination of

fixed fee and royalty payment would reduce the amount of surplus subject to the

participation constraint of the follower.

The maximum revenue from firm 2 would always be a contract by means of

fixed fee whether firm 1 accepted or rejected previously. Hence, solving backwards

gives firm 1’s optimal contract. Given firm 2’s contract (i.e. r2 = 0), firm 1’s

payoff remains identical whether it accepts or rejects its own contract at the end

of the game. The maximum fixed fee charged for firm 1 is the profit difference

between it accepts or rejects. If both firms accept the contract, firm 1’s payoff

is πaa
1 in Eq.(2.3). While if firm 1 rejects then given firm 2 accepts, firm 1’s

no-acceptance payoff is πra
1 in Eq.(2.5). Therefore, the maximum willingness of

firm 1 to pay for the license will be F1 = πaa
1 − πra

1 . Recall firm 2’s willingness is

F2 = 4x(a−2c2+c1+r1)
9

. Now, the outside innovator will maximize the total payoff

Rij by choosing ri. The subscript ij, i = 1, 2 and i ̸= j denotes the sequence.

R12(r1) =F1 + r1 · qaa1 + F2

=
(a− 2c1 + c2 − 2r1 + x)2

9
− (a− 2c1 + c2 − x)2

9

+r1(
a− 2c1 + c2 − 2r1 + x

3
) +

4x(a− 2c2 + c1 + r1)

9

After simplification,

R12(r1) = −2r21
9

+
r1(−a+ 3x+ 2c1 − c2)

9
+

4x(2a− c1 − c2)

9

One can easily check that R12(r1) is a concave function of r1, and the uncon-

strained maximization with respect to r1 of the above function yields the interior

soluton,

r̂1 =
3x− (a− 2c1 + c2)

4

Note that 0 ⩽ r1 ⩽ x. The following lemma charaterises the optimal licensing

contract if the innovator first asks firm 1 and then firm 2.
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Lemma 2.3 Consider the sequence when the outside innovator first offers a con-

tract to firm 1 then firm 2. The optimal licensing policy depends on the size of

innovation,

1) when 0 < 3x ⩽ a − 2c1 + c2, only fixed fees are charged and the innovator’s

payoff is R12 =
4x(2a−c1−c2)

9
;

2) when 3x > a−2c1+c2, the innovator offers a two-part tariff contract to firm 1

and a fixed fee contract to firm 2, and its payoff is R12 =
4c21+c22+(−4a−20x−4c2)c1+(2a−38x)c2+a2+58ax+9x2

72
.

Next, change the sequence. Considering the innovator first asks firm 2 whether

it accepts the contract (F2, r2), and then firm 1 (F1, r1).

Following the same logic as before, the innovator would always offer a fixed

fee contract to the follower, that is firm 1, with F1 =
4x(a−2c1+c2+r2)

9
in this case.

The total payoff of the innovator turns out to be,

R21(r2) = −2r22
9

+
r2(−a+ 3x+ 2c2 − c1)

9
+

4x(2a− c1 − c2)

9

One can easily check that R21 is a concave function of r2, and the uncon-

strained maximization with respect to r2 of the above function yields the interior

soluton,

r̂2 =
3x− (a− 2c2 + c1)

4

With the restriction 0 ⩽ r2 ⩽ x, the following lemma charaterises the optimal

licensing contract if the innovator first asks firm 2 and then firm 1.

Lemma 2.4 Consider the sequence when the outside innovator first offers a con-

tract to firm 2 then firm 1. The optimal licensing policy depends on the size of

innovation,

1) when 0 < 3x ⩽ a − 2c2 + c1, only fixed fees are charged and the innovator’s

payoff is R21 =
4x(2a−c1−c2)

9
;

2) when 3x > a−2c2+c1, the innovator offers a fixed fee contract to firm 1 and a
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two-part tariff contract to firm 2, and its payoff is R21 =
4c22+c21+(−4a−20x)c2+(2a−38x−4c2)c1+a2+58ax+9x2

72
.

The intuition behind Lemmas 2.3 and 2.4 can be explained as follows. The

outside innovator maximises the total payoff by choosing the leader’s royalty rate.

Rewrite the maximisation problem using a general form,

Rij(ri) = πaa
i (ri)− πra

i + riq
aa
i (ri) + Fj(ri)

The optimal r∗i is implicitly determined by,

dRij(ri)

dri
=

∂πaa
i (ri)

∂ri
+ qaai (ri) + ri

∂qaai
∂ri

+
∂Fj(ri)

∂ri
= 0

The first term captures the marginal losses in the leader’s profit, which is

negative. The second and third terms capture the marginal gains/losses from

the royalty payment. And the last term captures the marginal gains from the

follower’s fixed fee, which is positive. Therefore the equilibrium royalty rate is

determined by the overall balance of these gains and losses. Lemmas 2.3 and

2.4 show that the optimal contract moves from a fixed-fee contract to a two-part

tariff contract for the leader firm. From Lemma 2.2, the follower is always offered

a fixed fee contract, that is, the follower’s effective cost is reduced by the size of

innovation. If the cost reduction is relatively small, i.e., the initial cost asymmetry

is relatively large, the outside innovator wants to keep the cost asymmetry and

also provides a fixed fee contract to the leader so that it can extract the increment

in the industry profit. On the contrary, if the cost reduction is relatively large,

i.e., the initial cost asymmetry is relatively small, the outside innovator charges

a royalty to the leader to make the cost asymmetry larger.

Now we are in position to compare the total payoff of the innovator between

different sequences. The optimal contracts with different sequences are shown in

Figure 2.3. By comparing the total payoffs of the innovator, R21 ⩾ R12 always

holds irrespective of the size of innovation given the assumptions. Therefore,

23



Proposition 2.1 For a step-elimination innovation, if the outside innovator

offers two unique contracts to the inside firms in a sequence, it does better by first

licensing to the less efficient firm followed by the more efficient firm.

Figure 2.3: Optimal contract with different sequences

Proof: I divide into three parts according to the size of innovation 3x, which

is shown in Figure 2.3.

Part 1. 0 < 3x ⩽ a− 2c2 + c1

The optimal contracts for firms are identical irrespective of the sequence, and

therefore the total revenue of the innovator is identical.

Part 2. a− 2c2 + c1 < 3x ⩽ a− 2c1 + c2

R12 −R21 = − (a−2c2+c1−3x)2

72
< 0

Part 3. 3x > a− 2c1 + c2

R12 −R21 =
(c2−c1)(2a−c1−c2−6x)

24

It is obvious that (2a−c1−c2−6x) is decreasing in x, therefore the maximum

value is attained when x is at the lower bound,

(2a− c1 − c2 − 6x)

∣∣∣∣
x=

a−2c1+c2
3

= 3(c1 − c2) < 0

Since c2 − c1 > 0 given the assumption, R12 − R21 for the range of values in

Part 3 is always negative.

The intuition behind proposition 2.1 is as follows. Since firm’s profit exhibits

convexity in its own marginal cost, the more efficient firm generates a larger profit

increment than the less efficient firm given the same cost reduction. And the

increment can be extracted by the outside innovator with a fixed fee. Therefore,
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a fixed fee contract for the more efficient firm (r1 = 0) provides a higher payoff

for the outside innovator. Besides, r2 > 0 makes firm 1 more competitive. The

sequence in which the innovator first asks firm 2 and then firm 1 achieves this

outcome. The selling strategy in Sinha (2016) states that the outside innovator

is better off by selling the innovation to the more efficient firm and then license

to the less efficient firm. Although the sequence is not identical, the principle is

consistent that the more efficient firm (firm 1) obtains the contract by means of

fixed fee.

Now, the optimal contracts under simultenous and sequential discriminatory

licensing are designed respectively (See Figure 2.4). Accordingly, I compare the

payoffs of the outside innovator between those two ways to establish a more

complete fully flexible licensing scheme.

Proposition 2.2 If the outside innovator offers two licenses to the inside firms,

simultaneous licensing is more profitable than the sequential licencing.

Figure 2.4: Optimal contract under simultaneous and sequential license

Proof: If 0 < 3x ⩽ a − 5c1 + 4c2, the optimal contracts are identical with

simultaneous licensing and sequential licensing (sequence 21). If 3x > a− 5c1 +

4c2, the revenue with sequential licensing is maximised with restricted by r1 =

0 while that with simultaneous licensing is maximised without the restriction.

Therefore, sequential license is nothing but simultaneous licensing given r1 = 0.

Thus simultaneous license is superior.

It is interesting to see that simultaneous licensing is more profitable than

the sequential licensing. Since the outside innovator always offers a fixed fee
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contract to the follower irrespective of the leader’s choice, the leader’s profit

remains the same under both types of licensing when it rejects the contract while

its rival accepts. That is to say, when the leader rejects, the threat point does not

increase although the innovator designs another contract for its rival. Therefore,

the sequential licensing can be regarded as a special case of simultaneous licensing,

because the innovator cannot credibly commit to r1 > 0.

The fully flexible discriminatory licensing scheme is established now. From the

inside firm’s perspective, the other aim of this chapter is to compare the incentives

of asymmetric firms to obtain the license. Suppose (Fi, ri) is the contract of firm

i that the outside innovator offers, the incentive here is the willingness to pay

for the license in its totality and should, therefore, include both the fixed and

variable part, i.e., Fi + ri · qi, where Fi denotes the fixed fee and ri · qi denotes

the royalty payment. By comparing the incentives of firm 1 and 2, I have the

following proposition.

Proposition 2.3 For the step-eliminating innovation, the more efficient firm

always has incentive to pay more for the license than the less efficient firm.

Proof: See appendix.

The intuition for proposition 2.3 is as follows. Due to the asymmetric setting,

firm 1 which has a lower marginal cost, produces more and owns a larger market

share before the innovation. Since the outside innovator announces to offer two

licenses to the firms, given its rival accepts the offer, firm 1 is threatened by

the situation where firm 2 may catch up with it, leading to a relatively lower

market share than before. Whereas it is not the case for the less efficient firm.

Firm 2 initially occupies a lower market share and given its rival obtains the cost

reduction, it faces either staying the same size of cost gap or even increasing the

comparative cost disadvantage. The results illustrate that the fear of losing its

leader position provides the more efficient firm with a higher incentive to pay

for the license. That is, the more efficient firm has more to lose than the less
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efficient firm. It is analogous of another proposition, called the efficiency effect

which states that the incumbent has a stronger incentive to innovate than the

entrant. Besides, it also implies that the innovator nevertheless wants to license

to both firms, since only the large firm threatened by losing its higher market

share has incentive to pay more for the license.

2.3.3 Selling game

I now compare the above fully flexibility licensing game with the selling game

where the innovator wants to sell the innovation to one of the firms by charging a

fixed fee and the buyer firm can then license the new technology to its rival with

any licensing strategy. Note that the ownership of the innovation is transferred

from the innovator to another entity under selling policy, therefore it can be

only sold to one potential buyer and then the innovator loses all control of the

innovation in contrast to it can be licensed to both firms under licensing. If one

firm rejects the selling contract, then it goes to the other firm. This issue in this

structure has been analyzed in detail by Sinha (2016) and I invoke his result in

the analysis here.

Results (Sinha (2016)): In case the outside innovator decides to sell the prop-

erty rights in the first stage of the game, then the optimal choice is to set a fixed

price for the patent and the more efficient firm buys it. The innovator receives

the payoff Rs = x(a − c1). The complete selling game is in the first stage, the

more efficient firm buys the patent at a fixed fee (i.e., r1 = 0), and then in the

second stage, the buyer further licenses it to the less efficient firm at a royalty

rate which is the same as the size of cost reduction (i.e., r2 = x). Both firms get

the cost reduction at the end.

Since the purpose is to identify whether the selling revenue can be replicated

by the fully flexible licensing scheme, I now compare the payoffs of the outside in-

novator between the complete optimal discriminatory licensing scheme and patent

sale to get the result. The following proposition states the optimal mechanism
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for maximizing the value of the new innovation for the outside innovator in an

asymmetric Cournot duopoly market for a common step eliminating innovation.

Proposition 2.4 The patent sale is strictly better than patent discriminatory

licensing to the firms for a common step eliminating innovation in asymmetric

Cournot duopoly market.

Proof: See appendix.

From the above analysis, it shows that the fully flexible discriminatory licens-

ing is worse than patent selling game from the outside patentee’s view. With the

selling policy, the post-innovation marginal costs turns to (c1 − x, c2). Although

both firms get the cost reduction, since the per-unit royalty for firm 2 is equal

to the size of cost reduction, the post marginal cost of firm 2 remains the same

as beginning c2, while firm 1 gets the cost reduction without royalty payment,

which leads to the possible largest cost asymmetries c2 − c1 + x. In terms of

the nature of asymmetric Cournot duopoly, the total industry profit increases

as the asymmetry between two firms increases, therefore the outside innovator

is able to extract the largest increment of total profits. From another point of

view, the superiority of selling policy comes from the ability to promise firm 1 the

best possible outcome (r2 = x) while at the same time threaten with the worst

(r2 = 0), which brings the highest possible F1. Hence, the selling policy takes

full advantage of the asymmetry of the producers.

However, with licensing policy, the post-innovation marginal costs turns to

(c1 − x + r1, c2 − x + r2). Since the outside innovator simultaneously offers two

contracts to the inside firms, it cannot achieve the same as selling policy due

to commitment problems. From the optimal discriminatory licensing strategy,

the post cost asymmetry is smaller than that in selling policy, therefore the

total industry profit is not as high as that in selling policy. Hence, the outside

innovator’s revenue with licensing is less than the selling revenue.

The result further shows that the superiority of patent sale for the step-
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eliminating innovation is even stronger than previously shown in Sinha (2016)’s

paper. While as mentioned before, patent sale transfers the ownership of the

patent right from the outside innovator to the buyer. If the outside innovator

tends to hold the property right such that it can further conduct R&D to up-

date the innovation, this paper proposes a more flexible licensing scheme. And

I compare the total payoff between discriminatory licensing in this paper and

uniform licensing game in Sinha (2016)’s work and find that it is indeed better

than uniform one due to less restricted.

2.4 New process innovation

I proceed to find the optimal discriminatory licensing scheme of the new process

innovation for the outsider patentee in the same manner as I have done for the

common step-eliminating innovation in the previous section. In case of new pro-

cess innovation, I assume that the new technology with marginal cost c is more

advanced than the original technology of both firms such that 0 < c < c1 < c2,

so the difference in pre-innovation costs is wiped out in the post-innovation stage

and any firm that uses the new technology would have the same marginal cost c.

Compared with step-elimination innovation which reduces the marginal costs by

the same size, the new process innovation leads to different magnitudes of cost

reduction for the firms, that is to say, the less efficient firm reaps a higher cost

reduction if the new technology is applied. For the more efficient firm, the cost

reduction would be x1 = c1 − c and for the less efficient firm, the cost reduction

would be x2 = c2 − c, which naturally indicates that x1 < x2. Therefore the

results may differ from those with step-eliminating innovation.

Assumption 2.1 (a > 2c2) guarantees that both firms are still active in the

post-innovation stage even when firm 1 exclusively gets the access to the new

technology and turns to be more efficient, which illustrates that the new process

innovation considered in this chapter is non-drastic.
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2.4.1 Simultaneous discriminatory licensing

Consider the case where the outside innovator offers two unique two-part tariff

contracts (F1, r1) to firm 1 and (F2, r2) to firm 2 simultaneously, where Fi ⩾ 0

denotes the fixed fee paid to the outside innovator, and 0 ⩽ ri ⩽ ci − c denotes

the per-unit royalty rate, with i = 1, 2. Assume that any firm would accept the

license if it is weakly better off than not accepting it.

Table 2.2: The normal form of simultaneous game with new process innovation

Firm 2

Accept Reject

Firm 1
Accept πaa

1 − F1, π
aa
2 − F2 πar

1 − F1, π
ra
2

Reject πra
1 , πar

2 − F2 πrr
1 , πrr

2

where

πaa
i =

(a− c− 2ri + rj)
2

9
(2.8)

πar
i =

(a− 2c+ cj − 2ri)
2

9
(2.9)

πra
i =

(a− 2ci + c+ rj)
2

9
(2.10)

πrr
i =

(a− 2ci + cj)
2

9
(2.11)

Following the same logic as before, the outside innovator can at most charge

the profit difference of firm i between it accepts and rejects the contract given its

rival firm always accepts its own contract, i.e., Fi = πaa
i − πra

i .

From the outside innovator’s perspective, the objective is to maximize the

total revenue RST from licensing to both firms by choosing royalty rates r1 and

r2, which is detemined as follows,
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RST =F1 + F2 + r1q
aa
1 + r2q

aa
2

=
(a− c− 2r1 + r2)

2

9
− (a− 2c1 + c+ r2)

2

9
+

(a− c− 2r2 + r1)
2

9
− (a− 2c2 + c+ r1)

2

9
+

r1(
a− c− 2r1 + r2

3
) + r2(

a− c− 2r2 + r1
3

)

(2.12)

After simplification,

max
r1,r2

RST (r1, r2) =− 2r21
9

+
r1(−a− 3c+ 4c2 − 2r2)

9

− 2r22
9

+
r2(−a− 3c+ 4c1)

9

+
a(4c1 + 4c2 − 8c)

9
+

4c(c1 + c2)

9
− 4(c21 + c22)

9

s.t. 0 ⩽ r1 ⩽ c1 − c

0 ⩽ r2 ⩽ c2 − c

Using the Kuhn-Tucker conditions to solve the following Lagrangian function,

L(r1, r2, λ1, λ2, λ3, λ4) = RST (r1, r2)+λ1r1+λ2r2+λ3(c1−c−r1)+λ4(c2−c−r2)

The critical points of L are the solutions (r1, r2, λ1, λ2, λ3, λ4) to the following

system of equations,

∂L

∂r1
=

4c2 − a− 3c− 2r2 − 4r1
9

+ λ1 − λ3 = 0

∂L

∂r2
=

4c1 − a− 3c− 2r1 − 4r2
9

+ λ2 − λ4 = 0

λ1 ⩾ 0, r1 ⩾ 0, λ1r1 = 0

λ2 ⩾ 0, r2 ⩾ 0, λ2r2 = 0

λ3 ⩾ 0, c1 − c− r1 ⩾ 0, λ3(c1 − c− r1) = 0

λ4 ⩾ 0, c2 − c− r2 ⩾ 0, λ4(c2 − c− r2) = 0

(2.13)

This system of equations defines different pairs of optimal royalty rates r∗i .

Recall the size of new marginal cost satisfies 0 < c < c1 < c2. To sum up, the
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following lemma characterizes the optimal simultaneous discriminatory licensing

contract with a new process innovation.

Lemma 2.5 When the outside innovator offers two distinct contracts to the firms

simultaneously, the optimal licensing policy depends on the initial cost asymmetry

and the magnitude of new marginal cost,

For relatively small inital cost asymmetry, i.e., c2 < a+3c1
4

,

1) when −a+ 4c2 < 3c < 3c1, only fixed fees are charged;

2) when −a + 8c1 − 4c2 < 3c < −a + 4c2, the innovator offers a two-part tariff

contract to firm 1 and a fixed fee contract to firm 2;

3) when 0 < 3c < −a + 8c1 − 4c2, the innovator offers different two-part tariff

contracts to firms.

For relatively large initial cost asymmetry, i.e., c2 > a+3c1
4

,

4) when 3(a + 4c1 − 4c2) < 3c < 3c1, the innovator offers a per-unit royalty

contract to firm 1 and a fixed fee contract to firm 2;

5) when 0 < 3c < 3(a+4c1 − 4c2), the innovator offers a two-part tariff contract

to firm 1 and a fixed fee contract to firm 2.

For relatively small initial cost asymmetry, the result shows a consistent move

similar to Lemma 2.1 that the optimal contract changes from a fixed fee contract

to a two-part tariff contract for each firm as c decreases, i.e., cost reduction

increases. Whereas for relatively large initial cost asymmetry, it is not the case.

2.4.2 Sequential discriminatory licensing

Now, the outside innovator offers two distinct contracts (F1, r1) to firm 1 and

(F2, r2) to firm 2 in a sequence. Recall that 0 ⩽ r1 ⩽ c1 − c and 0 ⩽ r2 ⩽ c2 − c.

Following the same logic as I have done with common step-eliminating inno-

vation, firstly, consider the case where the innovator first asks firm 1 and then

firm 2. Since firm 2 can observe firm 1’s decision, the incentive to get the inno-

vation is likely to be distinct, therefore the outside innovator is able to design a
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different contract for firm 2 depending on the choice of firm 1.

From Lemma 2.2, it is found that the follower’s optimal mode is independent

of the leader’s decision, which indicates the outside innovator would always offer

a fixed fee contract to firm 2, i.e., r2 = 0. If firm 1 accepts, the maximum

willingness of firm 2 to pay for the license is F2 = πaa
2 − πra

2 = 4(c2−c)(a−c2+r1)
9

,

which treats r1 as given.

Although the outside innovator is fully flexible to design a new contract for

firm 2 if firm 1 rejects, firm 1’s payoff remains identical at the end of the game,

that is to say, the threat point of firm 1 does not change. Thus the maximum

fixed fee charged for firm 1 is the same as that in the simultaneous licensing

with r2 = 0. If both firm accept the contract, firm 1’s payoff is πaa
1 in Eq.(2.8).

While if firm 1 rejects then given firm 2 accepts, firm 1’s no-acceptance payoff

is πra
1 in Eq.(2.10). Therefore, the maximum fixed fee changed for firm 1 is

F1 = πaa
1 −πra

1 = (a−c−2r1)2

9
− (a−2c1+c)2

9
. Now, the outside innovator will maximize

the total payoff R12 by choosing r1,

R12(r1) =F1 + r1 · qaa1 + F2

=
(a− c− 2r1)

2

9
− (a− 2c1 + c)2

9
+

r1 · (
a− c− 2r1

3
) +

4(c2 − c)(a− c2 + r1)

9

(2.14)

One can easily check that R12(r1) is a concave function of r1, and the uncon-

strained maximization with respect to r1 of the above function yields the interior

soluton,

r̂1 =
4c2 − a− 3c

4

Now depending on the parameter configurations 0 ⩽ r1 ⩽ x, which results in

different optimal royalty r∗1. To summarize the above cases, the following lemma

charaterises the optimal licensing contract if the innovator first asks firm 1 and

then firm 2.
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Lemma 2.6 Consider the sequence that the outside innovator first offers a con-

tract to firm 1 then firm 2. The optimal licensing policy depends on the initial

cost asymmetry and the magnitude of new marginal cost,

For relatively small inital cost asymmetry, i.e., c2 < a+3c1
4

,

1) when −a+ 4c2 < 3c < 3c1, only fixed fees are charged;

2) when 0 < 3c < −a+4c2, the innovator offers a two-part tariff contract to firm

1 and a fixed fee contract to firm 2;

For relatively large inital cost asymmetry, i.e., c2 > a+3c1
4

,

3) when 3(a + 4c1 − 4c2) < 3c < 3c1, the innovator offers a per-unit royalty

contract to firm 1 and a fixed fee contract to firm 2;

4) when 0 < 3c < 3(a+4c1 − 4c2), the innovator offers a two-part tariff contract

to firm 1 and a fixed fee contract to firm 2.

Then, change the sequence where the outside innovator first asks firm 2 and

then firm 1. Following the same steps as before, the optimal contract for firm

1 is a fixed fee contract with F1 =
4(c1−c)(a−c1+r2)

9
and then the outside innovator

maximises the total revenue by choosing r2,

R21(r1) =F2 + r2 · qaa2 + F1

=
(a− c− 2r2)

2

9
− (a− 2c2 + c)2

9
+

r2 · (
a− c− 2r2

3
) +

4(c1 − c)(a− c1 + r2)

9

(2.15)

The unconstrained maximization with respect to r2 yields the interior soluton

r̂2 = 4c1−a−3c
4

. Depending on the magnitude of r̂2, the following lemma chara-

terises the optimal licensing contract if the innovator first asks firm 2 and then

firm 1.

Lemma 2.7 Consider the sequence that the outside innovator first offers a con-

tract to firm 2 then firm 1. The optimal licensing policy depends on the magnitude

of new marginal cost,

1) when 3c > −a+ 4c1, only fixed fees are charged;
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2) when 3c < −a + 4c1, the innovator offers a fixed fee contract to firm 1 and a

two-part tariff contract to firm 2.

Now, I determine the sequence which provides a higher total payoff. The

optimal contracts with different sequences are shown in Figure 2.5 and 2.6 based

on different initial cost asymmetries. Figure 2.5 illustrates the situation where

the initial cost gap is relatively small, c2 < a+3c1
4

while Figure 2.6 shows the

situation where the initial cost gap is relatively large, c2 > a+3c1
4

. By comparing

the total payoffs of the innovator, R12 ⩾ R21 always holds given the assumptions.

Therefore,

Figure 2.5: Sequential license for a new process innovation(a− 4c2 + 3c1 > 0)

Figure 2.6: Sequential license for a new process innovation(a− 4c2 + 3c1 < 0)

Proposition 2.5 For a new process innovation, if the outside innovator offers

two unique contracts to the inside firms in a sequence, it does better by first

licensing to the more efficient firm following by the less efficient firm.

Proof: See appendix.

Compared with the step-eliminating innovation (stated in Proposition 2.1),

the optimal sequence is opposite. The less efficient firm experiences a higher cost

reduction than the more efficient firm if they both use the new technology, that
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is to say, the less efficient firm benefits more and therefore a fixed fee contract

for the less efficient firm provides a larger payoff for the outside innovator, which

is achieved by the sequence of first firm 1 followed by firm 2.

Now, the optimal contracts under simultenous and sequential discriminatory

license are designed respectively (See Figure 2.7 and 2.8). Accordingly, I compare

the payoffs of the outside innovator between those two ways to establish the

complete fully flexible licensing scheme.

Figure 2.7: Optimal contract under simultaneous and sequential license(a−4c2+
3c1 > 0)

Figure 2.8: Optimal contract under simultaneous and sequential license(a−4c2+
3c1 < 0)

Proposition 2.6 If the outside innovator offers two licenses to the inside firms,

simultaneous license is better than the sequential licence.

Proof: Sequential licensing is nothing but simultaneous licensing given r2 =

0. Thus simultaneous licensing is better.

The fully flexible discriminatory licensing scheme is established now. Simi-

larly, from the inside firm’s perspective, whether the more efficient firm or the

less efficient firm has a higher incentive to pay for the new technology is identified

as follows.
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Proposition 2.7 For the new process innovation, no matter what types of con-

tracts that the outside innovator offers to the inside firms, the less efficient firm

always has a higher incentive to pay for the license than the more efficient firm.

Proof: See appendix.

Compared with the proposition 2.3 which states that the more efficient firm

always has a higher incentive to pay for the license for a step-elimination inno-

vation, the result for a new process innovation is opposite. The intuition is that

with the new process innovation, the less efficient firm gains a larger cost reduc-

tion compared with the more efficient firm, and the cost disadvantage is wiped

out, which provides a higher profit incentive for the less efficient firm to pay for

the license.

2.4.3 Selling game

Sinha (2016)’s Result: For the new process innovation, when the patent is sold

by the outside patentee then it directly sells the technology to the more efficient

firm at a fixed price in the first stage of the game and the buyer firm in the

second stage further licenses the technology to the less efficient firm at a per-

unit royalty rate r2 = c2 − c. And thus, the outside patentee receives Rs =

(a−2c+c2)2

9
− (a−2c1+c)2

9
+ (c2 − c) · (a−2c2+c)

3
.

Under both types of innovation, the more efficient firm buys the patent. The

reason is deeply associated with the nature of asymmetric Cournot duopoly in

the product market. When the efficient firm buys the patent, it creates larger

cost asymmetry leading to higher industry profit. This higher profit is mostly

captured by the more efficient firm and therefore, it wants to pay more for the

patent.

Hence, by comparing the payoffs from patent sale and fully flexible discrimi-

natory licensing for the new process innovation, I have the following proposition,
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Proposition 2.8 The patent sale is strictly better than patent discriminatory

licensing for a new process innovation in an asymmetric Cournot duopoly market.

Proof: See appendix.

Similarly, the outside innovator obtains the largest payoff by patent sale. It

follows a similar logic as the step-eliminating innovation. With the patent sale,

the post innovation marginal costs becomes (c, c2). Although the less efficient

firm gets the license for the new technology, its effective marginal cost remains

the same as that in the pre-innovation stage since the per-unit royalty is equal to

the size of cost reduction. It is equivalent to the situation where the more efficient

firm exclusively gets the license and captures an even larger market share, making

the largest possible industry profits.

However, with licensing policy, the post innovation marginal costs turn to

(c + r1, c + r2). The comparative cost advantage of firm 1 decreases, making

firm 1 occupy a relatively smaller market share in equilibrium compared with

selling policy. Therefore the industry profit is not as high as that in patent sale.

The total revenue that the outside innovator can extract from the industry profit

increment therefore is lower.

To sum up, both types of innovations show a consistent ranking of revenues

from patent sale, simulataneous and sequential licensing. The patent sale is in-

deed the most profitable policy for the outside innovator for both step-eliminating

innovation and new process innovation. That is to say, patent sale is privately op-

timal for the innovator and the following section provides a comparative analysis

to identify whether patent sale is socially optimal or not.

2.5 Welfare analysis

From the previous section, it is found that patent sale provides the largest revenue

for the outside innovator. However, whether patent sale is also socially optimal is
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unclear in the existing literature. In this section, I compare discriminatory license

and patent sale from the welfare point of view to fill the research gap. The welfare

analysis is conducted in two parts, consumer surplus and total surplus.

2.5.1 Consumer surplus

Suppose that the vector of post marginal costs is (c′1, c
′
2). From Eq.(2.1) and

(2.2), the industry output Q is,

Q =
2a− (c′1 + c′2)

3

where (c′1 + c′2) is the sum of firms’ marginal costs. With linear demand

function and constant marginal cost, the consumer surplus (CS) is,

CS =

∫ Q

0

p(Q)dQ− pQ =
1

2
Q2

Therefore the maximization of consumer surplus is equivalent to maximis-

ing the industry output, and maximising the industry output is equivalent to

minimising the sum of firms’ marginal costs.

For step-eliminating innovation, the post-innovation marginal cost turns to

(c1 − x + r∗1, c2 − x + r∗2) in the case of discriminatory licensing, and (c1 − x, c2)

in the case of patent sale. With the optimal r∗1 and r∗2, it is found that the

sum of the marginal costs is lower in the case of discriminatory licensing (i.e.,

c1 + c2 + r∗1 + r∗2 − 2x < c1 + c2 − x). Similarly, for new process innovation,

the post-innovation marginal cost is (c+ r∗1, c+ r∗2) in the case of discriminatory

licensing, and (c, c2) in the case of patent sale. It is also the case that the sum of

marginal costs is lower with discriminatory licensing (i.e., 2c+ r∗1 + r∗2 < c+ c2).

Therefore, for any type and any size of innovation, QL > QS, where L for

license and S for sale. Thus, CSL > CSS. In particular, consumer surplus is

the largest when the outside innovator offers fixed fee contracts to both firms.

Whereas consumer surplus of patent sale is the smallest which illustrates it does

not benefit the consumers. It is interesting to see that consumer surplus is greater
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with the licensing than patent sale. From the previous section, patent sale is

found to be the most profitable way for the outside innovator, in other words,

firms spend more with buying the patent but less with licensing. Therefore firms

with licensing pass less on to the consumers, which benefits the consumers.

2.5.2 Total surplus

The total surplus (TS) in this game is the sum of consumer surplus, producer’s

net profits and the innovator’s total payoff. The innovator’s payoff is a transfer

from the welfare point of view, which means the total surplus should either include

the innovator’s payoff, or equivalently, only the producer’s operative profits, i.e.,

net profits before their payments to the innovator. Therefore the total production

costs matter. Since the post-innovation cost structure is different for two types

of innovation, I analyse them seperately.

Step-eliminating innovation

The firms produce at different marginal costs in the last stage. The total surplus

(TS) can be calculated by,

TS = a(q1 + q2)−
1

2
(q1 + q2)

2 − (c1 − x)q1 − (c2 − x)q2

Combined with the equilibrium quantities, the equilibrium social welfare can be

determined.

Proposition 2.9 For a step-eliminating innovation, the equilibrium social wel-

fare in the case of discriminatory licensing is larger than that in the case of patent

sale if the initial cost asymmetry is relatively small, i.e., c2 < a+4c1
5

.

Proof: See appendix.

For the patent sale, firm 1 buys the contract by paying a fixed fee while

firm 2 pays for the license by means of royalty which is equal to x. It leads

to the largest possible cost asymmetry in the post innovation stage, and the
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more efficient firm (firm 1) occupies an even larger market share. While for the

discriminatory licensing, the post cost asymmetry is smaller than that of patent

sale. Previous section established that the equilibrium industry output associated

with license is larger than that in the case of patent sale. This is an advantage

of license over patent sale from the perspective of social welfare. In contrast, the

disadvantage of license over patent sale is that it brings an equilibrium in which

the less efficient firm (firm 2) occupies a relatively larger market share compared

with the patent sale. And this disadvantage will become more serious when the

initial cost asymmetry between firms increases. Accordingly, when the initial cost

asymmetry is relative small, social welfare under discriminatory licensing can be

larger than that under patent sale.

It is noteworthy that the ranking of patent sales and licensing is ambiguous

in the literature. Banerjee and Poddar (2019) conduct a welfare analysis between

licensing and selling with an outside patentee and two potential licensees under

Hotelling’s linear city model and find that selling of innovation is not only pri-

vately optimal, it is also socially optimal. In contrast, Niu (2019) considers the

innovation transfer from an inside innovator and shows that the social welfare

under licensing can be larger than that under selling when the initial cost gap is

not too large, which is consistent with my results.

New process innovation

The firms produce at identical marginal costs, c, in the last stage. The total

surplus (TS) can be calculated by,

TS =a(q1 + q2)−
1

2
(q1 + q2)

2 − c(q1 + q2)

=(a− c)Q− 1

2
Q2

Take derivative with respect to the total output Q,

dTS

dQ
= a− c−Q = p− c > 0

41



which immediately follows that the total surplus is increasing in total output

Q. Since the total output is higher with discriminatory licensing, for a new

process innovation, the discriminatory license is better than the patent sale, not

only beneficial for the consumers but also for the whole society. Thus although

the patent sale is privately optimal, it is not socially optimal.

2.6 Conclusions

The commonly studied way to transfer the new technology in existing literature

is patent licensing, while Tauman and Weng (2012) first propose another possi-

ble way which is patent sale. The difference between them lies in whether or not

ownership of the innovation is transferred. Sinha (2016) states that patent sale

is strictly better than patent licensing. However, patent licensing in his paper

is either offering one contract or two identical contracts to the firms. But with

patent sale, two firms obtain the new technology by different contracts sequen-

tially in fact. Therefore, I consider the case where the outside innovator takes full

advantage of the firm heterogeneity and designs different contracts to the firms

simultaneously or even in a sequence, and compare the total payoff with patent

sale.

The results further shows the superiority of patent sale in an asymmetric

Cournot duopoly market for both step-eliminating innovation and new process

innovation. Furthermore, I proceed with the welfare analysis which is absent

in Sinha (2016)’s paper. For the step-eliminating innovation, the welfare under

patent licensing can be larger than that under patent sale if the initial cost

asymmetry is not too large. And for the new process innovation, patent licensing

is always better off than patent sale from welfare point of view. That is to say,

although patent sale is privately optimal, it is not socially optimal.

There are some possible extensions to this study. First, Assumption 4.1 re-

stricts that the innovation analysed in this study to be non-drastic. That is, each
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firm is still active in the post innovation stage. Therefore, it can be relaxed to

consider drastic innovation later. Second, I compare the fully flexible licensing

scheme with patent sale from the standpoint where the innovation is owned by an

outside innovator which is not a producer in the market. Therefore, whether the

patent sale is strictly better for an inside innovator remains questionable. Dis-

cussions on this issue can be found in Fan et al. (2018) and Niu (2019). Third,

the difference between licensing and patent sale is whether the ownership of the

property rights is transferred or not. Therefore licensing can be a multi-period

game while selling is a one-off business. The model can be extended to cover

the R&D stage afterwards and then verify whether the patent sale is still strictly

better off. Fourth, it would be an interesting empirical test to verify if indeed the

large (or more efficient) firms spend more to buy a license than the small (or less

inefficient) firms for a step-eliminating innovation and opposite for a new process

innovation. Finally, if the flexible licensing scheme further allows the value of

royalty rate to be negative, it may replicate the selling strategy or even be more

profitable.

Appendix A
Lemma 2.1

Case 1 Corner solution

(r1, r2, λ1, λ2, λ3, λ4) = (0, 0, a−2c1+c2−3x
9

, a−2c2+c1−3x
9

, 0, 0)

This solution is feasible if 0 < 3x ⩽ a− 2c2+ c1. In this case, the optimal royalty

rates are r∗1 = 0, r∗2 = 0. The outside innovator offers a fixed fee contract with

Fi =
4x(a−2ci+cj)

9
to firm i. And the total payoff is RST (0, 0) =

4x(2a−c1−c2)
9

.

Case 2 Corner solution

(r1, r2, λ1, λ2, λ3, λ4) = (0, 3x−(a−2c2+c1)
4

, a−5c1+4c2−3x
18

, 0, 0, 0)

This solution is feasible if a − 2c2 + c1 < 3x ⩽ a − 5c1 + 4c2. In this case,
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the optimal royalty rates are r∗1 = 0, r∗2 = 3x−(a−2c2+c1)
4

. The outside innovator

offers a fixed fee contract with F1 =
x(a−3c1+2c2+x)

3
to firm 1 and a two-part tariff

contract with F2 = (a−2c2+c1+x)(5a−10c2+5c1−3x)
36

to firm 2. And the total payoff is

RST (0, r
∗
2) =

c21+4c22+(−38x+2a−4c2)c1−(4a+20x)c2+a2+58ax+9x2

72

Case 3 Interior solution

(r1, r2, λ1, λ2, λ3, λ4) = (3x−(a−5c1+4c2)
6

, 3x−(a−5c2+4c1)
6

, 0, 0, 0, 0)

This solution is feasible if 3x > a − 5c1 + 4c2. In this case, the optimal royalty

rates are r∗1 = 3x−(a−5c1+4c2)
6

, r∗2 = 3x−(a−5c2+4c1)
6

. The outside innovator offers a

two-part tariff contract with Fi =
(3x+a−5ci+4cj)(2a−7ci+5cj)

27
to firm i, and the total

payoff is RST (r
∗
1, r

∗
2) =

7c21+7c22+(−a−21x−13c2)c1−(a+21x)c2+a2+42ax+9x2

54
.

Lemma 2.3

Case 1 If 0 < 3x ⩽ a− 2c1 + c2, r̂1 ⩽ 0.

The optimal royalty rate r∗1 = 0. The outside innovator offers fixed fee contracts

to both firms with Fi =
4x(a−2ci+cj)

9
. The total payoff of the outside innovator

therefore is R12 =
4x(2a−c1−c2)

9
.

Case 2 If 3x > a− 2c1 + c2, 0 < r̂1 < x.

In this case, the optimal royalty is r∗1 = r̂1 =
3x−(a−2c1+c2)

4
. The outside innovator

offers a two-part tariff contract to firm 1 with F1 =
(5(a−2c1+c2)−3x)(a−2c1+c2+x)

36
and

a fixed fee contract with F2 = x(a−3c2+2c1+x)
3

to firm 2. The total payoff of the

innovator is R12 =
4c21+c22+(−4a−20x−4c2)c1+(2a−38x)c2+a2+58ax+9x2

72
.

Lemma 2.4

Case 3 If 0 < 3x < a− 2c2 + c1, r̂2 < 0.

The optimal royalty rate r∗2 = 0. The outside innovator offers fixed fee contracts

to both firms as well, which is identical as case 1 in previous sequence. The total

payoff is R21 =
4x(2a−c1−c2)

9
.
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Case 4 If 3x > a− 2c2 + c1, 0 < r̂2 < x.

In this case, the optimal royalty rate is r∗2 = r̂2 = 3x−(a−2c2+c1)
4

. The outside

innovator offers a fixed fee contract to firm 1 with F1 = x(a−3c1+2c2+x)
3

and a

two-part tariff contract to firm 2 with F2 =
(a−2c2+c1+x)(5(a−2c2+c1)−3x)

36
. The total

payoff of the innovator is R21 =
4c22+c21+(−4a−20x)c2+(2a−38x−4c2)c1+a2+58ax+9x2

72
.

Lemma 2.5

If a− 4c2 + 3c1 > 0, i.e., c2 < a+3c1
4

,

Case 1 Corner solution

(r1, r2, λ1, λ2, λ3, λ4) = (0, 0, a+3c−4c2
9

, a+3c−4c1
9

, 0, 0)

This solution is feasible if −a + 4c2 < 3c < 3c1. In this case, the optimal

royalty rates are r∗1 = 0, r∗2 = 0. The outside innovator offers fixed fee con-

tracts to both firms with Fi = 4(ci−c)(a−ci)
9

. The total payoff is RST (0, 0) =

4(a+c)(c1+c2)−4(c21+c22)−8ac

9
.

Case 2 Corner solution

(r1, r2, λ1, λ2, λ3, λ4) = (4c2−a−3c
4

, 0, 0, a+3c+4c2−8c1
18

, 0, 0)

This solution is feasible if −a + 8c1 − 4c2 < 3c < −a + 4c2. In this case, the

optimal royalty rates are r∗1 = 4c2−a−3c
4

, r∗2 = 0. The outside innovator offers a

two-part tariff contract with F1 =
(a−c−4c2+4c1)(5a−4c1−4c2+3c)

36
to firm 1 and a fixed

fee contract with F2 = (c2−c)(a−c)
3

to firm 2. The total payoff is RST (r
∗
1, 0) =

a2+(−58c+32c1+24c2)a+9c2+(32c1+8c2)c−32c21−16c22
72

.

Case 3 Interior solution

(r1, r2, λ1, λ2, λ3, λ4) = (8c2−a−3c−4c1
6

, 8c1−a−3c−4c2
6

, 0, 0, 0, 0)

This solution is feasible if 0 < 3c < −a + 8c1 − 4c2. In this case, the optimal

royalty rates are r∗1 = 8c2−a−3c−4c1
6

, r∗2 = 8c1−a−3c−4c2
6

. The outside innovator offers

two-part tariff contracts to both firms with Fi =
2(a−2cj+ci)(a−8cj+10ci−3c)

27
to firm
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i. The total payoff is RST (r
∗
1, r

∗
2) =

a2+9c2+(20a+12c−16c2)c1+(20a+12c)c2−8c21−8c22−42ac

54
.

If a− 4c2 + 3c1 < 0, i.e.,c2 > a+3c1
4

,

Case 4 Corner solution

(r1, r2, λ1, λ2, λ3, λ4) = (c1 − c, 0, 0, a+c−2c1
9

, c−a+4c2−4c1
9

, 0)

This solution is feasible if 3(a + 4c1 − 4c2) < 3c < 3c1. In this case, the optimal

royalty rates are r∗1 = c1 − c, r∗2 = 0. The outside innovator offers a per-unit

royalty contract to firm 1 and a fixed fee contract with F2 =
4(c2−c)(a−c2+c1−c)

9
to

firm 2. The total payoff is RST (c1 − c, 0) =
c2+(3a+5c+4c2)c1+4ac2−7ac−6c21−4c22

9
.

Case 5 Corner solution

(r1, r2, λ1, λ2, λ3, λ4) = (4c2−a−3c
4

, 0, 0, a+3c+4c2−8c1
18

, 0, 0)

This solution is feasible if 0 < 3c < 3(a + 4c1 − 4c2). In this case, the optimal

royalty rates are r∗1 = 4c2−a−3c
4

, r∗2 = 0. The outside innovator offers a two-

part tariff contract with F1 = (a−c−4c2+4c1)(5a−4c1−4c2+3c)
36

to firm 1 and a fixed

fee contract with F2 = (c2−c)(a−c)
3

to firm 2. The total payoff is RST (r
∗
1, 0) =

a2+(−58c+32c1+24c2)a+9c2+(32c1+8c2)c−32c21−16c22
72

.

Lemma 2.6

If a− 4c2 + 3c1 > 0, i.e.,c2 < a+3c1
4

,

Case 1 When 3c ⩾ −a+ 4c2, r̂1 ⩽ 0

The optimal royalty rate is r∗1 = 0. Thus, the outside innovator offers two diffrent

fixed fee contracts to firms with Fi = 4(ci−c)(a−ci)
9

. The total payoff is R12 =

4(a+c)(c1+c2)−4(c21+c22)−8ac

9
.

Case 2 When 0 < 3c < −a+ 4c2, 0 < r̂1 < c1 − c

The optimal royalty rate r∗1 = r̂1 = 4c2−a−3c
4

. Thus, the outside innovator of-

fers a two-part tariff contract with F1 = (a−c−4c2+4c1)(5a−4c1−4c2+3c)
36

to firm 1
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and a fixed fee contract with F2 = (c2−c)(a−c)
3

to firm 2. The total payoff is

R12 =
a2+(−58c+32c1+24c2)a+9c2+(32c1+8c2)c−32c21−16c22

72
.

If a− 4c2 + 3c1 < 0, i.e.,c2 > a+3c1
4

,

Case 3 when 3c ⩾ 3(a− 4c2 + 4c1), r̂1 ⩽ c1 − c.

The optimal royalty rate r∗1 = c1−c. Thus the outside innovator offers a per-unit

royalty contract to firm 1 with r∗1 = c1 − c and a fixed fee contract to firm 2 with

F2 =
4(c2−c)(a−c2+c1−c)

9
. The total payoff is R12 =

c2+(3a+5c+4c2)c1+4ac2−7ac−6c21−4c22
9

.

Case 4 when 0 < 3c < 3(a− 4c2 + 4c1), 0 < r̂1 < c1 − c

The optimal royalty rate r∗1 = r̂1 =
4c2−a−3c

4
, which is identical as case 2.

Lemma 2.7

Case 5 If 3c > −a+ 4c1, r̂2 < 0.

The optimal royalty rate is r∗2 = 0. The outside innovator offers two distinct

fixed fee contracts to both firms which is completely identical as case 1. R21 =

4(a+c)(c1+c2)−4(c21+c22)−8ac

9
.

Case 6 If 3c < −a+ 4c1, 0 < r̂2 < c2 − c.

The optimal royalty rate r∗2 = r̂2 = 4c1−a−3c
4

. Thus, the outside innovator of-

fers a fixed fee contract to firm 1 with F1 = (c1−c)(a−c)
3

and a two-part tar-

iff contract to firm 2 with F2 = (a−4c1+4c2−c)(5a−4c1−4c2+3c)
36

. The total payoff is

R21 =
a2+(−58c+32c2+24c1)a+9c2+(32c2+8c1)c−32c22−16c21

72
.

Appendix B

Proof of Proposition 2.3: Let Ii to denote firm i’s incentive to pay for the

license.

I1 = F1 + r1q1 =
4(x−r∗1)(a−2c1+c2−r∗1+r∗2)

9
+ r1(

a−2c1+c2−2r∗1+r∗2+x

3
)
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I2 = F2 + r2q2 =
4(x−r∗2)(a−2c2+c1−r∗2+r∗1)

9
+ r2(

a−2c2+c1−2r∗2+r∗1+x

3
)

Given the size of cost reduction x, the optimal royalty rates are different.

Recall r∗i in Lemma 2.1.

For r∗1 = 0, I1 − I2 =
2r∗22
9

+
r∗2(a−2c2+c1+5x)

9
+ 4x(c2−c1)

3
> 0.

For r∗1 =
3x−(a−5c1+4c2)

6
, r∗2 =

3x−(a−5c2+4c1)
6

, I1 − I2 =
(c2−c1)(2a−c1−c2+42x)

18
> 0.

Therefore, I1 > I2 always holds.

Proof of Proposition 2.4: Recall for any size of cost reduction x, the

revenue of patent sale is Rs = x (a − c1). And the optimal contract under fully

flexible licensing scheme is shown in Fig.4.

Part 1. 0 < 3x ⩽ a− 2c2 + c1

Rs −RST =
x(a− 5c1 + 4c2)

9
> 0 (2.16)

Part 2. a− 2c2 + c1 < 3x ⩽ a− 5c1 + 4c2

Rs −RST =
−9x2 − c21 − 4c22 + (−34x− 2a+ 4c2)c1 + (4a+ 20x)c2 − a2 + 14ax

72
(2.17)

One can see that the difference follows a quadratic and concave function of

x, therefore plugging the higher bound of x = a−5c1+4c2
3

to obtain the minimum

of the first derivative,
d(Rs −RST )

dx

∣∣∣∣
x=

a−5c1+4c2
3

=
2a− c1 − c2

18
> 0

Therefore, the difference is always increasing with 3x ∈ (a−2c2+c1, a−5c1+

4c2]. The minimum difference is obtained at the lower bound,

Rs −RST

∣∣∣∣
x=

a−2c2+c1
3

=
(a− 5c1 + 4c2)(a− 2c2 + c1)

27
> 0

Therefore, Eq.(2.17)>0 always holds.

Part 3. 3x > a− 5c1 + 4c2

Rs −RST =
−9x2 − 7c21 − 7c22 + (a− 33x+ 13c2)c1 + (a+ 21x)c2 − a2 + 12ax

54
(2.18)
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Similarly, the difference follows a quadratic and concave function of x, there-

fore as long as the differences is not negative at either the lower or higher bound of

x, the difference is always positive. Firstly, set x at the lower bound x = a−5c1+4c2
3

,

D1 ≡ Rs −RST

∣∣∣∣
x=

a−5c1+4c2
3

=
23c21 + 5c22 + 2a2 − 20ac1 + 16ac2 − 26c1c2

54
(2.19)

Take partial derivative with respect to c1,

∂D1

∂c1
=

−10(a− 2.3c1 + 1.3c2)

27
< 0

It shows that the difference is decrasing of c1, thus it attains the minimum

when c1 tends to the higher cost c2. Hence, plugging the value c1 = c2, the

minimum of equation (19) is,

D1

∣∣∣∣
c1=c2

=
(a− c2)

2

27
> 0

Therefore, D1 > 0 always holds.

Given the assumptions, the higher bound x = c1 and a− 2c2 + c1 > c1. If the

difference in Eq.(2.18) at x = a− 2c2 + c1 is not negative, it is sufficient to show

the difference at x = c1 is positive. Thus, set x = a− 2c2 + c1,

D2 ≡ Rs −RST

∣∣∣∣
x=a−2c2+c1

=
−49c21 − 85c22 + 2a2 − 38ac1 + 34ac2 + 136c1c2

54
(2.20)

Take partial derivative with respect to c1,

∂D2

∂c1
=

−19(a− 68
19
c2 +

49
19
c1)

27

The sign of partial derivative depends on the sign of (a − 68
19
c2 +

49
19
c1). With

3x > a− 5c1 +4c2 and x < c1, 3c1 > a− 5c1 +4c2 must hold in this case, that is,

a < 8c1 − 4c2. Since a > c2 in assumption 2.1, a is feasible when 2c2 < 8c1 − 4c2,

that is, c1 > 3
4
c2. Therefore,

a− 68

19
c2+

49

19
c1 > 2c2−

68

19
c2+

49

19
c1 =

49

19
c1−

30

19
c2 >

49

19
∗ 3
4
c2−

30

19
c2 =

27

76
c2 > 0
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Therefore, ∂D2

∂c1
< 0, which shows that the difference is decreasing in c1, thus

it attains the minimum when c1 tends to the higher limit c2. Hence, plugging the

value c1 = c2, the minimum of equation (2.20) is,

D2

∣∣∣∣
c1=c2

=
(a− c2)

2

27
> 0

Therefore, D2 > 0 always holds.

Since the difference follows a quadratic and concave function of x, it is positive

at both the lower and higher bound of x in this part. Therefore Eq.(2.18) is always

positive.

Proof of Proposition 2.5:

Fig.5: If a− 4c2 + 3c1 > 0,

Part 1. 0 < 3c < −a+ 4c1

R12 −R21 =
(c1 − c2)(a− 2c2 − 2c1 + 3c)

9
(2.21)

c1 − c2 < 0 given the assumption. a − 2c2 − 2c1 + 3c is increasing in c, thus

the maximum is attained at the higher bound c = −a+4c1
3

,

(a− 2c2 − 2c1 + 3c)

∣∣∣∣
c=

−a+4c1
3

= 2(c1 − c2) < 0

Thus, Eq.(2.21)>0 always holds.

Part 2. −a+ 4c1 < 3c < −a+ 4c2

R12 −R21 =
(a− 4c2 + 3c)2

72
> 0 (2.22)

Part 3. 3c > −a+ 4c2

The optimal contracts for firms are identical irrespective of the sequence, and

therefore the total revenue of the innovator is identical, i.e., R12 = R21.

Fig.6: If a− 4c2 + 3c1 < 0,

Part 1. 0 < 3c < −a+ 4c1

Eq.(2.21) still applies, which is positive.

Part 2. −a+ 4c1 < 3c < 3(a− 4c2 + 4c1)
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Eq.(2.22) still applies, which is positive.

Part 3. 3c > 3(a− 4c2 + 4c1)

R12 −R21 =
(c− c1)(a+ c+ 2c1 − 4c2)

9
(2.23)

c− c1 < 0 given the assumption. a+ c+ 2c1 − 4c2 is increasing in c, thus the

maximum is attained at the higher bound c = c1,

(a+ c+ 2c1 − 4c2)

∣∣∣∣
c=c1

= a− 4c2 + 3c1 < 0

under this situation.

Thus, Eq.(2.23)>0 always holds.

Proof of Proposition 2.7: Let Ii denote firm i’s incentive to pay for the

license.

I1 = F1 + r1q1 =
4(c1−c−r∗1)(a−c1−r∗1+r∗2)

9
+ r1(

a−c−2r∗1+r∗2
3

)

I2 = F2 + r2q2 =
4(c2−c−r∗2)(a−c2−r∗2+r∗1)

9
+ r2(

a−c−2r∗2+r∗1
3

)

Given the marginal cost of new technology c, the optimal royalty rates are

different. Recall r∗i in Lemma 2.5.

For r∗2 = 0, I1 − I2 = −2r∗21
9

+
r∗1(−a+5c)

9
+

c2(−4a−4c−4r∗1)

9
+

4c22
9

+ 4c1(a+c−c1)
9

.

Take derivative with respect to r1, d(I1−I2)
dr1

= (5c−4c2−4c1−a)
9

< 0. Therefore the

difference when r∗2 = 0 is a decreasing function of r1 given the Assumptions. It

attains the maximum when r∗1 = 0,

I1 − I2

∣∣∣∣
r∗1=0

=
4(c1 − c2)(a+ c− c1 − c2)

9
< 0

For r∗1 =
8c2−a−3c−4c1

6
, r∗2 =

8c1−a−3c−4c2
6

, I1 − I2 =
4(c1−c2)(a+c1+c2−3c)

9
< 0.

Therefore, I1 < I2 always holds.

Proof of Proposition 2.8:

Fig.7 If a− 4c2 + 3c1 > 0,

Part 1. 0 < 3c < −a+ 8c1 − 4c2

Rs−RST =
−a2 − 9c2 + (4a+ 12c− 16c2)c1 + (10a+ 18c)c2 − 16c21 − 22c22 − 12ac

54
(2.24)

51



One can see that the difference follows a quadratic and concave function of

c, therefore as long as the difference (2.24) is not negative at either the lower or

higher bound of c, the difference is always positive. Firstly, set c at the lower

bound c = 0,

D1 ≡ Rs −RST

∣∣∣∣
c=0

=
−a2 + (4a− 16c2)c1 + 10ac2 − 16c21 − 22c22

54
(2.25)

Take partial derivative with respect to c1,

∂D1

∂c1
=

2(a− 8c1 + 4c2)

27
< 0

It shows that the difference is decrasing of c1, thus it attains the minimum

when c1 tends to the higher limit c2. Hence, plugging the value c1 = c2, the

minimum of equation (2.25) is,

D1

∣∣∣∣
c1=c2

= − 1

54
a2 − 11

27
c22 +

7

27
ac2

which is a concave function of a. Since a belongs to (2c2, 4c2) under this situation,

then evaluate the mininum of D1 at the two extreme values. At the upper limit

a = 4c2, D1 =
c22
3
, which is positive. At the lower limit a = 2c2, D1 =

c22
27

, which

is also positive. Therefore, D1 > 0 always holds.

Then, set c at the upper bound c = −a+8c1−4c2
3

,

D2 ≡ Rs −RST

∣∣∣∣
c=

−a+8c1−4c2
3

(2.26)

Take partial derivative with respect to a,

∂D2

∂a
=

2(a− 4c1 + 3c2)

27
> 0

It shows that the difference is increasing of a, thus it attains the minimum

when a tends to the lower limit 4c2 − 3c1. Hence, plugging the value to obtain

the minimum of equation (2.26) is,

D2

∣∣∣∣
a=4c2−3c1

=
(c2 − c1)

2

3
> 0
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Therefore, D2 > 0 always holds. Thus, for the parameter configurations

0 < 3c < −a+ 8c1 − 4c2, Rs is strictly larger than RST .

Part 2. −a+ 8c1 − 4c2 < 3c < −a+ 4c2

Rs −RST =
−9c2 − a2 − 24c22 + (16a+ 32c)c2 − 14ac

72
(2.27)

The payoff difference follows a quadratic and concave function of c, therefore

evaluating it at the two extreme values. At the upper limit c = −a+4c2
3

, Rs−RST =

(a−c2)2

27
> 0. At the lowest possible limit c = 0 which is even smaller than the

lower limit for this part, Rs − RST =
−a2−24c22+16ac2

72
, which is a concave function

of a and it is maximised at a = 8c2, which is larger than the range of a. Therefore

the payoff difference turns to the minimum c22
18

> 0 when a = 2c2.

Thus, the difference (27) is always positive for the parameter configurations

−a+ 8c1 − 4c2 < 3c < −a+ 4c2.

Part 3. −a+ 4c2 < 3c < 3c1

Rs −RST =
(a− c2)(c2 − c)

9
> 0 (2.28)

given c < c1 < c2 < a.

Fig.8: If a− 4c2 + 3c1 < 0, i.e., c2 > a+3c1
4

Part 1. 0 < 3c < 3(a− 4c2 + 4c1)

Rs −RST =
−9c2 − a2 − 24c22 + (16a+ 32c)c2 − 14ac

72
(2.29)

The payoff difference is a concave function of c. Broaden the range of c in this

part to c ∈ (0, c1). Now evaluate the difference (29) at the two extreme values. At

the lower limit c = 0, the difference is proved to be positive in previous section.

At the higher limit c = c1, the difference becomes −9c21−a2−24c22+(16a+32c1)c2−14ac1
72

,

which is increasing of a under this situation. Thus the minimum is attained

− c21
8
+ c1c2

18
+

c22
18

when a = 2c2. The expression is increasing of c2 and c2 > 3
2
c1,

therefore the minimum is c21
12

> 0.

Thus, the payoff difference (2.29) is positive.
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Part 2. 3(a− 4c2 + 4c1) < 3c < 3c1

Rs −RST =
−c2 + 2c21 − c22 + (a− c− 4c2)c1 + (a+ 5c)c2 − 2ac

9
(2.30)

Following the same way as above. In terms of c, at the lower limit c = 0,

Rs − RST =
a(c1+c2)−4c2c1+2c21−c22

9
, which is increasing in a, therefore it attains

the minimum of (c2−c1)2+c21
9

> 0 when a = 2c2. At the higher limit c = c1,

Rs −RST = (c2−c1)(a−c2)
9

> 0 given c1 < c2 < a. Thus, the payoff difference (2.30)

is positive.

Proof of Proposition 2.9: The equilibrium total surplus TS∗ is calculated

by,

TS∗ = a(q∗1 + q∗2)−
1

2
(q∗1 + q∗2)

2 − (c1 − x)q∗1 − (c2 − x)q∗2

where q∗1 =
a−2c1+c2−2r∗1+r∗2+x

3
and q∗2 =

a−2c2+c1−2r∗2+r∗1+x

3
, which depend on the

optimal royalty rates r∗1 and r∗2.

For the optimal discriminatory licensing policy, the optimal royalties r∗1 and

r∗2 depend on the size of cost reduction x. For the patent sale, r∗1 = 0 and r∗2 = x.

Firstly, consider the case when r∗1 = 0. Take derivative with respect to r2,

dTS∗

dr2
=

−(a− 5c2 + 4c1 + r2 + x)

9

If (a − 5c2 + 4c1) > 0, i.e., c2 < a+4c1
5

, dTS∗

dr2
< 0 (sufficient condition), which

indicates the equilibrium total surplus is a decreasing function of r2. Recall

r2 ∈ [0, x], therefore the patent sale where r∗2 = x provides the lowest social

welfare when r∗1 = 0.

Then, consider the case when r∗1 = 3x−(a−5c1+4c2)
6

and r∗2 = 3x−(a−5c2+4c1)
6

,

which is the optimal solution when 3x > a − 5c1 + 4c2. Let DTS denote the

difference between the equilibrium total surplus TS∗
L and TS∗

S,

DTS = TS∗
L−TS∗

S =

(
2 a

27
+

25 c1
54

− 29 c2
54

)
x+

491 c1
2

648
+
(−20 a− 962 c2) c1

648
+
491 c2

2

648
−5 ac2

162
+
5 a2

162

which shows that DTS is a linear function of x. Set x at the lower bound
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x = a−5c1+4c2
3

,

DTS

∣∣∣∣
x=

a−5c1+4c2
3

=
(2a− c1 − c2)(2a− 4c2 + c1)

72
> 0

Then set x at the upper bound x = c1,

DTS

∣∣∣∣
x=c1

=
791 c1

2

648
+

(28 a− 1310 c2) c1
648

+
5 a2

162
− 5 ac2

162
+

491 c2
2

648

Take partial derivative with respect to a, ∂DTS |x=c1

∂a
= 10a−5c2+7c1

162
> 0, therefore

the minimum is attained when a = 2c2 (Assumption 2.1), which equals 791 c12

648
−

209 c2 c1
108

+ 59 c22

72
> 0. Thus, DTS > 0 always holds. That is to say, for x > a−5c1+4c2

3
,

the equilibrium total surplus under licensing is always larger than that under

patent sale irrespective of the initial cost asymmetry.

To sum up, for any size of cost reduction, the equilibrium total surplus under

licensing is strictly larger than that under patent sale if c2 < a+4c1
5

.
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Chapter 3

R&D behaviours with Firm
heterogeneity

3.1 Introduction

Starting from the pioneering works of Schunmpeter (1942) and Arrow (1962), the

relationship between firm size and innovation has been highly discussed in the

literature. The early literature studies what happens when all firms are either

large or small, but neglect the realistic situation when firms of different sizes

interact. Given the asymmetric setting, the conventional presumption (Pavitt et

al.,1987; Scherer, 1991; Cohen and Klepper, 1996a; Cockburn and Henderson,

2001) is that the low-cost firm (referred as the large firm) engages more in R&D

than the high-cost firm (referred as the small firm). In that way, the cost gap

between firms is getting even larger. However, a wave of empirical studies hold

a different view that small firms act as the engines of technological change and

innovative activity, at least in certain industries. Therefore, it naturally leads to

the research question: what factors may work against the trend so that the small

firms spend more on R&D and the gap is narrowed by R&D.

By employing the United States data, Acs and Audretsch (1988, 1990) find

that the small firms exhibit apparently more innovative activity than do large

firms in some industries, for example, plastics products and electronic compo-

nents. For UK, the result in Pavitt et al. (1987) is consistent with the analysis

58



of R&D performing firms in the USA. Small firms produce more than 45% of

all innovations in some sectors (e.g., machinery and instruments). Moreover,

Kleinknecht and Reijnen (1991) argue that there must be an undercounting of

small firms R&D in official dataset of Netherlands, and state that their find-

ings have implications for the reliability of data on R&D in small business in

other OECD member countries. Similarly, Patel and Pavitt (1995) also claim

that there is a serious limitation with R&D statistics in that they reflect very

imperfectly the technological contribution of small firms while very often small

firms do not even figure in the R&D data. Furthermore, R&D statistics consid-

erably overestimate the contribution of large firms to R&D and there is a sizable

variation between large and small firms across different industries.

As for theoretical research, a few papers examine the factors that influence

R&D investment decision with different firm sizes. Rosen (1991) highlights the

importance of considering both R&D project riskiness and R&D choices, and

concludes that the large firm prefers to choose a safer R&D project and invests

more than its smaller rival while small firms produce a disproportionate share of

major innovations. Poyago-Theotoky (1996) focuses on two different functional

forms how R&D affects initial costs of production. One is the additive cost

function which yields that the high cost firm spends less on R&D than the low

cost firm, and the other one is the multiplicative case which obtains a totally

different outcome characterized by the high cost firm spending more than its

low cost rival but not being able to overcome the initial cost gap. Yin and

Zuscovitch (1998) focus on product and process innovations, and find that the

large firm invests more in process innovation, while the small one is willing to

spend more resources to search for new products. Barros and Nilssen (1999)

explore two dimensions of asymmetry characterized by R&D efficiency and R&D

productivity with asymmetric firm sizes. They find that the ex ante high cost

firm may end up as the low cost firm because of differences in R&D technology

even if it conducts less R&D than the ex ante low cost firm.
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One of the possible factor considered in this chapter is R&D spillover. Firm

heterogeneity is a key feature of this chapter, which is explicitly formulated by

assumptions that two firms have different initial marginal costs of production.

The model consists of a two-stage game where the first stage is R&D competi-

tion and then Cournot production stage. Furthermore, spillover is an important

feature of R&D. To be specific, it implies that firms are able to benefit from other

firm’s R&D flow without payment. Due to the asymmetric setting, firms’ ability

to absorb the external knowledge is likely to differ as well.

The existing literature provides the rationale for asymmetric spillovers based

on two dimensions. First, the literature pertaining to the learning organization

(Fiol and Lyles 1985; Stata 1989) reveals that firms within the same industry do

not necessarily have the same capacities to learn. In the case of the innovative

firm (e.g. Raychem), it was observed that people at the cutting edge of their

field do not think anyone can teach them anything. Moreover, rivals may differ

in their absorptive capacity as the result of already existing differences in the

knowledge base and organizational firm characteristics. Second, for industries

characterized by high level of R&D (e.g. electronics, cars, medicine etc.), firms

in less developed regions produce goods that are of significantly lower quality

than that in developed regions (Zigic 1998; Baniak 2009; Taba 2016). Firms

with lower quality products aim to develop a production of high quality goods

to capture a bigger part of the market and make higher profits, but the high

quality producers are not interested in absorbing technology of rival firms since

it is ‘old’ for them. In addition, Singh (2007) and Knot et al. (2008) support the

asymmetric spillover hypothesis by providing empirically significant results.

De Bondt and Henriques (1995) propose that firms are likely to have a dif-

ferent ability to absorb the technological information and know-how in newly

created industries and asymmetries are likely to be the rule rather than the ex-

ception. Therefore, they analyze the effect of asymmetric spillovers between two

agents. The main difference in their model is that firms firstly choose to announce
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a leader or a follower role before conducting R&D and conclude that the leader

is the firm that absorbs the large spillovers in the unique equilibrium. Lukatch

and Plasmans (2000) make an extension to d’Aspremont and Jacquemin (1988)’s

model, which focuses on an asymmetric environment in terms of different size

and R&D efficiency of two agents. They assume that the advantage in size can

directly be translated into the advantage in cost, which means that the larger

firm with a lower marginal cost of production also has a lower per unit marginal

cost of research. Petit, Sanna-Randaccio and Sestini (2012) analyze how iden-

tical firms’ R&D investment decisions are affected by asymmetries in know-how

management capabilities and show that a better ability to manage knowledge

flows incentivizes the firm to invest more in R&D. Ishikawa and Shibata (2021)

examine the effects of asymmetric spillovers on R&D investment in an oligopoly

market. The main result is an increase in spillover asymmetry between firms

increases the difference in R&D investments between asymmetric and symmetric

spillovers. The recent literature with spillover rate mainly focuses on the compar-

ison between noncooperative and cooperative R&D in a symmetric setup. Thus

how asymmetric spillover affects R&D and then firm size is not well understood.

In this chapter, I assume an extreme case of asymmetric spillovers where

only the large firm’s R&D spills over to the small firm but not vice versa (i.e.,

one-way spillover), to see how it fluences the R&D behaviors and further the

cost gap. One-way spillover is firstly proposed by Amir and Wooders (1997),

which consider a uni-directional and stochastic spillover process whereby know-

how may flow only from the more R&D intensive firm to its rival in a binomial

framework: with probability β full spillover occurs and with 1− β zero spillover

occurs. They aim to show that the ex-ante identical firms engage in different R&D

levels and therefore end up with different sizes. Following Amir and Wooders

(1997), Tesoriere (2005) compares the sequential and simultaneous play at the

R&D stage, in order to assess the role of one-way spillover in stimulating or

attenuating endogenous firm asymmetry.
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Perhaps surprisingly, when considering the symmetry or asymmetry in firm

size and spillovers, the existing literature mostly covers the following conditions:

symmetric firms with symmetric spillovers, symmetric firms with asymmetric

spillovers, asymmetric firms with symmetric spillovers, but not asymmetric firms

with asymmetric spillovers. The extant literature has so far devoted little atten-

tion to how asymmetric spillover rate influences the relationship between firm

size and R&D intensities, therefore this chapter aims to fill the gap. Due to the

ex ante asymmetry in firm size, the large firm with lower marginal cost is initially

more advanced in technology than its rival. Therefore it is likely that only the

small firm is able to imitate the large firm to some extent, which implies the one-

way spillover only from the large firm to the small one. By employing one-way

spillover, this chapter aims to determine how it affects the R&D levels and how

the interaction of R&D further affects the cost gap. In other words, it provides

a theoretical basis that the one-way spillover is a possible factor to explain that

the small firm spends more on R&D shown from the empirical evidence and the

one-way spillover is able to stop the divergence between the firms so that the cost

gap is narrowed. Furthermore, this chapter provides a welfare analysis to see

whether the society prefers a larger cost gap or smaller cost gap, which is absent

in the existing literature.

The main results of this chapter are summarized as follows. Firstly, the one-

way spillover rate is a possible factor which yields that the small firm chooses

higher R&D intensities than the large firm and the cost gap is therefore narrowed.

With relatively small asymmetry, the small firm is able to catch up with the large

firm and it benefits both the consumers and the total welfare. However, from the

welfare point of view, it is not always better that the gap between firm narrows.

If the initial cost gap is relatively significant, the society prefers to even broaden

the gap further.

This chapter contributes to the literature in the following aspects. First, it

considers the asymmetry described by both firm size and spillover rate, which is
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more in line with realistic situation. Second, it provides policy statements about

whether the post-R&D market structure benefits the consumers and the society.

The rest of the paper is organized as follows. Section 3.2 describes the bench-

mark model and introduces the one-way spillover rate into the model, and char-

acterizes the equilibrium R&D. Section 3.3 provides some comparative statics

and main results. Section 3.4 provides a welfare analysis. Concluding remarks

are provided in Section 3.5.

3.2 The Model
3.2.1 The benchmark model

The benchmark follows a standard two-stage duopoly model of the existing R&D

literature. Consider an industry consisting of two firms producing a homogenous

product with different initial marginal costs ci, playing the following two-stage

game. In the first stage, firms simultaneously choose a process R&D level (or

R&D intensity), xi, with xi ∈ (0, ci), i = 1, 2, which results in the post-R&D

marginal cost c′i = ci − xi > 0. That is to say, each firm chooses its autonomous

cost reduction level (R&D output) in this model. The research cost to firm i

associated with the cost reduction xi follows a quadratic equation which is given

by,

r(xi) =
γx2

i

2
(3.1)

which implies r(xi) ⩾ 0, r′(xi) > 0. Additionally, γ > 0 is an inverse measure

of the efficiency of R&D.

In the second stage, after observing the new marginal costs, firms compete in

the product market by choosing quantities, qi, which naturally leads to a Cournot

duopoly competition, facing a linear inverse demand, p = a−Q, where Q = q1+q2

is the total industry output. The two-stage game yields a subgame-perfect Nash

equilibrium solved by backward induction.
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Assume that demand is high enough relative to the initial marginal cost to

ensure that the Cournot competition yields a unique pure Nash equilibrium where

both firms are active in the product market for all possible R&D levels that they

may undertake, that is,

Assumption 3.1 a > 2ci, for i = 1, 2

Assumption 3.1 guarantees that the Nash equilibrium output of each firm in

the Cournot competition is positive, which means both firms are willing to invest

in R&D and still be active in the market after the R&D stage.

The ex-ante asymmetric firm size is a key feature of the model, which is

reflected by having different initial marginal cost ci. Firm 1 is assumed to be

larger than firm 2, that is, c1 < c2. Since two asymmetric firms are active in the

market, the initial cost gap cannot be quite large. Introduce λ which equals to

the difference between firms’ marginal cost of production to measure the absolute

cost gap. The initial cost gap therefore is λ = c2 − c1. Assumption 3.1 implies

that the range of λ, 0 < λ < a−2c1
2

, holds before engaging in R&D.

Solve the game backwards. In the final production stage, the marginal cost

of firm i is ci − xi. Firm i maximises its operative profit πi given by, i, j = 1, 2

and i ̸= j,

πi = (p− (ci − xi)) · qi = (a− qi − qj − ci + xi) · qi (3.2)

The Cournot equilibrium output is,

qi =
a− 2ci + cj + 2xi − xj

3
(3.3)

and the corresponding equilibrium profit is,

πi = (qi)
2 (3.4)

The total industry output is,
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Q =
2a− ci − cj + xi + xj

3
(3.5)

Since the consumer surplus is CS = Q2

2
, it is obvious that R&D level has a

positive effect on the total output, and consequently, on the consumer welfare.

In the first stage, firms choose their R&D levels simultaneouly. Taking into

account how the firms would choose to produce, firm i chooses xi in order to

maximise its overall profit Πi,

Πi = πi − r(xi) = (qi)
2 − γx2

i

2
(3.6)

The best response function of xi given xj is,

xi(xj) =
4(a− 2ci + cj − xj)

9γ − 8
(3.7)

This shows us that the R&D level xj is strategic substitute for xi.

The second-order condition requires 9γ − 8 > 0. And the stability condi-

tion that the best response functions cross correctly, requires γ > 4
3

where the

best response functions cross correctly (Henriques 1990). Therefore, I make the

following assumption to limit the R&D efficiency parameter γ.

Assumption 3.2 γ > 4
3

The equilibrium R&D level is,

xb
i =

4[(3γ − 4)a+ 3γcj + (4− 6γ)ci]

(3γ − 4)(9γ − 4)
(i, j = 1, 2 and i ̸= j) (3.8)

Since I consider the situation where both firms are willing to invest in R&D,

both xb
1 and xb

2 must be positive. Assumptions 3.1 and 3.2 guarantee that xb
1 is

positive.1 To guarantee that xb
2 is also positive, I make the following additional

assumption.
1The proof is shown in Appendix
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Assumption 3.3 γ > 4(a−c2)
3(a−2c2+c1)

Since λ = c2−c1, combining with assumption 3 gives the relationship between

parameters λ and γ where both firms invest in R&D, i.e. γ > 4(a−c2)
3(a−c2−λ)

(see Fig.1).

Therefore, the difference between xb
1 and xb

2 is,

△ x = xb
1 − xb

2 =
4λ

3γ − 4
> 0 (3.9)

Remark 3.1 The lower the initial marginal cost, the higher the equilibirum R&D

level.
∂xi

∂ci
< 0, ∂xi

∂cj
> 0

From the above analysis, it is shown that the optimal research level of the

large firm is always higher than that of the small firm. Thus, the cost gap between

firms is broadened by the activities at the R&D stage. Moreover, with higher

intial cost gap λ, the difference between the large and small firm’s R&D is even

larger.

The idea behind the result is intuitive to comprehend. Since the operative

profit function exhibits convexity in intial marginal cost, i.e., ∂πi

∂ci
< 0, ∂

2πi

∂c 2
i

> 0,
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the marginal profit from a reduction in own costs for the initial low cost firm is

greater than that for the high cost firm. And the cost reduction in the model is

the R&D level chosen by the firm. Hence, a low cost firm always faces a larger

incentive effect to spend on R&D that will reduce its cost of production relative

to a high cost firm. If both firms get the same cost reduction, then the low cost

firm will produce more so that to increase its profit by more than the high cost

firm. Thus the low cost firm has a stronger incentive to spend on cost-reducing

R&D. The incentive effect for the low cost firm exceeds the same incentive for the

high cost firm. Therefore the conventional presumption that a low cost firm will

be more willing to spend on R&D comes through, which results in an outcome

of persistent dominance with the large firm moving ahead and the gap between

firms growing even larger.

In the following, I introduce a one-way spillover rate into the model to see

how it affects the R&D intensities and therefore affects the heterogeneity.

3.2.2 A one-way spillover

Suppose now the small firm is able to absorb the technological infromation from

the large firm to some extent. That is to say, the large firm’s R&D flows to

the small firm with a spillover rate β, which forms a part of the effective cost

reduction for the small firm without payment, but not the other way around. It is

realistic due to the ex ante asymmetric position. Compared with the benchmark

setting, the modified model illustrates how the spillover rate influences the R&D

levels with firm heterogeineity and accordingly how the cost gap varies. Xi is the

firm’s effective cost reduction (effective R&D output).

X1 = x1

X2 = x2 + βx1

with β ∈ [0, 1]. In this model, it is large firm’s R&D output that spillovers to
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the small firm.2 When β = 0, it is identical to the benchmark setting.

Therefore, the post-R&D marginal costs for firm i is c′i = ci −Xi, i = 1, 2.

Suppose that the research cost follows the same quadratic equation which is

shown in Eq (3.1). I follow the same steps as in the benchmark model to solve

the model by backward induction.

In the production stage, maximising the operative profit πi yields the Cournot

equilibirum outputs which are given by,

q1 =
a− 2c1 + c2 + (2− β)x1 − x2

3
(3.10)

q2 =
a− 2c2 + c1 + (2β − 1)x1 + 2x2

3
(3.11)

Therefore, the total industry output is,

Q =
2a− c1 − c2 + x1 + x2 + βx1

3
(3.12)

At the R&D stage, each firm chooses its own R&D level to maximise overall

profit, Πi, which leads to the following best response functions for R&D levels,

x1(x2) =
2(2− β)(a− 2c1 + c2 − x2)

9γ − 2(β − 2)2
(3.13)

x2(x1) =
4(a− 2c2 + c1 + (2β − 1)x1)

9γ − 8
(3.14)

9γ > 2(β − 2)2 and 9γ > 8 guarantee that the SOCs are satisfied and the

objective functions are strictly concave with respect to own R&D level. 9γ >

2(2−β)(3−β) follows from the stability condition proposed by Henriques (1990),

which requires the best response functions to cross correctly. It is calculated from∣∣∣dx1

dx2

∣∣∣ < 1 using the best response functions given by Equations (3.13) and (3.14).

2In contrast, for another common used model (introduced by Kamien et al, 1992), the firms’
decision variable is R&D investment yi for firm i. Firm’s unit cost reduction is f(Yi), where f is
an R&D production function and Yi is firm i’s effective R&D investment, which is determined by
the combined individual R&D expenditure and a spillover part. Given y1, y2, firm i’s effective
R&D investment is Yi = yi+βyj(i, j = 1, 2 and i ̸= j). Thus, in this context, it is expenditures
or R&D inputs that spillover to rivals. A thorough comparison of input versus output spillovers
is given by Amir (2000).
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Assumption 3.2 (γ > 4
3
) guarantees that the restrictions for γ implied by

SOCs and stability condition hold for all β ∈ [0, 1].

Therefore, the asymmetric Nash equilibrium research levels are,

x∗
1 = 2(2− β)

A

B
=

4A

B
− 2β · A

B
(3.15)

x∗
2 = 4

[C +D]

B
=

4C

B
+ 4 · D

B
(3.16)

where

A = (3γ − 4)a+ (4− 6γ)c1 + 3γc2 > 0

B = (9γ − 4)(3γ − 4)− 2β [3γ(β − 4) + 4] > 0

C = (3γ − 4)a+ (4− 6γ)c2 + 3γc1 > 0

D = 2β [(3− β)a− (2− β)c1 − c2] > 0

Given the assumptions, the signs of A,B,C,D are all positive.3 Therefore

the equilibria x1 and x2 are indeed interior and positive.

3.3 Comparative statics

To make the notation clear, the equilibrium R&D levels (3.15) and (3.16) yield

the total R&D level TX∗ = x∗
1 + x∗

2, the effective cost reductions X∗
1 for firm 1

and X∗
2 = x∗

2 + βx∗
1 for firm 2, which further results in the total cost reductions

TC∗ = X∗
1 + X∗

2 . Then, I proceed to the following comparative statics and

propositions. Lemma 3.1 characterizes how the one-way spillover rate affects the

equilibrium R&D level and the corresponding equilibrium output.

Lemma 3.1 The effects of change in spillover rate on the equilibrium R&D levels

and the corresponding equilibrium output are,
dx∗

1

dβ
< 0, dx∗

2

dβ
> 0; dq∗1

dβ
< 0, dq∗2

dβ
> 0

3The sign of A,B,C,D are proved in Appendix.
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Proof: Taking first derivatives of equilibrium R&D levels with respect to β,

dx∗
1

dβ
= −2A

B
+ [2(2− β)A · (−B−2 ·B′(β))] (3.17)

with B′(β) = −12γ(β−2)−8. The sign of (17) depends on the sign of B′(β).

Since B′′(β) = −12γ < 0, the minimum B′(β) = B′(1) = 12γ − 8 > 0 given the

assumptions. Therefore, dx∗
1

dβ
< 0.

dx∗
2

dβ
=− 4C

B2
·B′(β) + (

4D′(β)

B
− 4DB′(β)

B2
)

=−
48

[
(6β − 15

2
)γ + (β − 2)2) · ((a− 2c1 + c2)γ − 4

3
(a− c1)

]
B2

(3.18)

Given the assumtpions and β ∈ [0, 1], (6β − 15
2
)γ + (β − 2)2 is increasing with β.

When β = 1, It is equal to 1− 3
2
γ which is less than 0. Thus, (6β− 15

2
)γ+(β−2)2

is always negative. In addition, (a−2c1+c2)γ− 4
3
(a−c1) is always positive given

the assumptions.

Therefore, dx∗
2

dβ
> 0.

Recall Equation (3.10) and (3.11), the equilibrium output is given by,

q∗1 =
a− 2c1 + c2 + (2− β)x∗

1 − x∗
2

3

q∗2 =
a− 2c2 + c1 + (2β − 1)x∗

1 + 2x∗
2

3

Totally differentiate with respect to β,

dq∗1
dβ

=
∂q1
∂x1

· dx1

dβ
+

∂q1
∂x2

· dx2

dβ
+

∂q1
∂β

=
1

3

[
(2− β) · dx

∗
1

dβ
+ (−dx∗

2

dβ
) + (−x∗

1)

]
Since 2− β > 0, dx∗

1

dβ
< 0 and dx∗

2

dβ
> 0, dq∗1

dβ
< 0.

dq∗2
dβ

=
∂q2
∂x1

· dx1

dβ
+

∂q2
∂x2

· dx2

dβ
+

∂q2
∂β

=
1

3

[
(2β − 1) · dx

∗
1

dβ
+ 2

dx∗
2

dβ
+ (2x∗

1)

]
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Since dx∗
2

dβ
> 0, the sign of dq∗2

dβ
depends on the remaining part. Set L(β) ≡

(2β − 1) · dx∗
1

dβ
+ 2x∗

1.

dL(β)

dβ
=
1296γ

[
27γ2

2
+ (9β2 − 22.5β − 3)γ + β3 − 6β2 + 12β − 2

]
−B3

·
[
(a− 2c1 + c2)γ − 4

3
(a− c1)

]
(γ − 8

9
)

−B3

Given the assumptions, (γ − 8
9
) > 0,

[
(a− 2c1 + c2)γ − 4

3
(a− c1)

]
> 0 and

B > 0.[
27γ2

2
+ (9β2 − 22.5β − 3)γ + β3 − 6β2 + 12β − 2

]
is increasing in γ > 4

3
. When

γ = 4
3
, it equals b3 + 6[(b − 3

2
)2 + 3

4
] > 0. Therefore, dL(β)

dβ
< 0. The minimum

L(β) is attained at β = 1, L(1) = 54(γ− 8
9
)((a−2c1+c2)γ− 4

3
(a−c1))

(9γ−4)2(3γ−2)
> 0.

Therefore, dq∗2
dβ

> 0.

From the equilibrium R&D levels shown in (3.15) and (3.16), the first term

captures the incentive effect explained in section 2, i.e., 4A
B

> 4C
B

due to c1 < c2.

That is, the incentive effect drives the large firm to engage more in R&D than the

small firm. However, the second term containing β reflects the impact of spillover

on R&D levels, named spillover effect. It is obvious that the sign of the second

term in Eq (3.15) is negative while that in Eq (3.16) is positive, which implies

that the spillover effect favors the high cost firm but harms the low cost firm.

Therefore whether the large or small firm has higher total incentive to engage in

R&D depends on the relative magnitude of two effects.

From Lemma 3.1, the spillover rate β has an opposite effect on the R&D

levels chosen by two firms. It is intuitive that the large firm decrases the R&D

level when its research output spills over to its rival to some extent. Since the

large firm’s output and the corresponding profit in equilibrium decreases with

spillover, the firm has a lower marginal benefit from R&D, which leads to a lower

equilibrium R&D level in the presence of spillover.

On the other hand, it is interesting to see that the small firm invests more

in R&D with higher spillover. It chooses a higher R&D level even though it can
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benefit from the large firm by taking ”free ride” without any own R&D.

From Lemma 3.1, it immediately follows that x1 − x2 is decreasing with β.

If β = 0, as in the benchmark model, the large firm invests more than the small

firm, x∗
1 > x∗

2. While if β = 1, firm 1’s equilibrium R&D level becomes minimum

and firm 2’s becomes maximum, which are given by,

x∗
1

∣∣∣∣
β=1

=
2 [3γ(a− 2c1 + c2)− 4(a− c1)]

(9γ − 4)(3γ − 2)

x∗
2

∣∣∣∣
β=1

=
4 [3γ(a− 2c2 + c1) + 2(c2 − c1)]

(9γ − 4)(3γ − 2)

If and only if the maximum x∗
2 is larger than the minimum x∗

1, there is an

intersection between x∗
1(β) and x∗

2(β) as β increases. With any β above the

intersection, the small firm invests more. Then the following result is proceeded.

Proposition 3.1 There is always a sufficiently high spillover parameter such

that the small firm chooses to invest more than the large firm if (1) the initial

cost gap is not too large (i.e., λ < a−c1
5

); (2) the initial cost gap is relatively

large (i.e., a−c1
5

< λ < a−c1
3

) and the R&D efficiency is relatively small (i.e.,
4(a−c2)

3(a−2c2+c1)
< γ < 4(a−2c1+c2)

3(5c2−4c1−a)
).

Proof: The difference between x∗
2 and x∗

1 at β = 1 is,

(x∗
2 − x∗

1)

∣∣∣∣
β=1

=
6γ(a− 5c2 + 4c1) + 8(a− 2c1 + c2)

(9γ − 4)(3γ − 2)

where (9γ − 4)(3γ − 2) > 0 and 8(a− 2c1 + c2) > 0 given the assumptions.

If a− 5c2 + 4c1 > 0, i.e., λ < a−c1
5

, the above difference must be positive.

If a− 5c2 + 4c1 < 0, i.e., λ > a−c1
5

, that the above difference larger than zero

requires γ < 4(a−2c1+c2)
−3(a−5c2+4c1)

.

Proposition 3.1 implies that the one-way spillover indeed drives the small firm

to invest more than the large firm under certain conditions. It does not violate

the assumption that the knowledge spills over from more R&D intensive firm to

less one since the direction depends on the pre-R&D cost structure rather than
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the size of R&D investment. Moreover, the situation is analogous of leapfrogging

which refers to the ability of developing or less developed countries to make a

“quick jump in economic development”. Only if the initial cost is large enough

(i.e. λ > a−c1
5

) and the R&D efficiency is relatively low (i.e., γ > 4(a−2c1+c2)
−3(a−5c2+4c1)

),

the incentive effect strictly dominates the spillover effect so that the large firm

has higher incentive to engage in R&D even though its R&D fully flows to its

rival.

Figure 3.1 shows the equilibrium R&D levels for each firm with β = 0 and

β = 1 as the initial cost gap λ changes. In the benchmark setting (dashed lines), it

is obvious that firm 1 always spends more than firm 2 and the difference increases

as the cost gap increases. With β = 1, the figure shows that as long as the initial

cost gap λ is not too big (around 22), firm 2 has higher incentive to engage in

R&D than firm 1.

Figure 3.1: Equilibrium R&D levels (a = 100, c1 = 20, γ = 5)
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In Poyago-Theotoky (1996)’s multiplicative case, which assumes that R&D

affects the cost of production in a multiplicative way, she considers the incen-

tive effect and the effectiveness factor, and finds that the high cost firm always

spends more on R&D and produces a larger R&D output than the low cost firm

irrespective of the size of initial cost gap. It indicates that the effective factor

always dominates the incentive effect. While the relative magnitude of spillover

effect proposed in this chapter and incentive effect depends on the initial cost

gap.

Due to one-way spillover, the effective cost reduction of the small firm consists

of both its autonomous R&D output and the know-how from the large firm. Next,

I identify the effect of β on the effective cost redution for firm 2.

Lemma 3.2 The effective cost reduction for the small firm increases with β.
dX∗

2

dβ
> 0.

Proof: Totally differentiate X∗
2 = x∗

2 + βx∗
1 with respect to β,

dX∗
2

dβ
=
dx∗

2

dβ
+ β · dx

∗
1

dβ
+ x∗

1

=
72γ (1− β)(β + 9γ

2
− 3)

[
(a− 2c1 + c2)γ − 4

3
(a− c1)

]
B2

> 0

given the assumptions and c1 < c2.

From Proposition 3.1, when β = 1, the small firm still chooses lower R&D

levels than the large firm if the initial cost gap is quite large. However, how the

post-R&D cost gap varies depends on the relative magnitude of the effective cost

reduction instead of R&D level between firms. From Lemma 3.2, the effective

cost reduction for the small firm monotically increases with β, therefore it must

be greater than that for the large firm for some β.

With the one-way spillover, the post-R&D cost gap c′2 − c′1 = (c2 − X2) −

(c1 −X1) = (c2 − c1) + (X1 −X2). Therefore, comparing the post-R&D cost gap

with the initial cost gap is equivalent to identifying the sign of X1 − X2. From
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Lemmas 3.1 and 3.2, dX1

dβ
< 0 and dX2

dβ
> 0. Therefore, it immediately follows

that the post-R&D cost gap c′2 − c′1 is decreasing with β.

d(c′2 − c′1)

dβ
=

dX1

dβ
− dX2

dβ
< 0

Compared with the initial cost gap c2− c1, with β = 0, the benchmark model

shows that the post-R&D cost gap is widened. With β = 1, the post-R&D cost

gap is the smallest given by,

c′2 − c′1 = (c2 − c1) + (x1 − (x2 + x1)) = (c2 − c1)− x2

It is obviously smaller than the initial cost gap due to the fact that the

small firm fully absorbs the R&D from the large firm. Since the cost gap is

monotonically decreasing with the spillover rate, there must exist a threshold β

where the cost gap between firms narrows for any β > β.

Proposition 3.2 The cost gap is narrowed by R&D if β exceeds β ∈ (0, 1) where

β =
1

6γ(a− 2c1 + c2)
· (9γ(a− 2c1 + c2) + 4(c1 − c2)

−
√

81γ2(a− 5

3
c2 +

2

3
c1)(a− 2c1 + c2)− 24γ(c1 − c2)(a− 2c1 + c2) + 16(c1 − c2)2)

(3.19)

Proof: The condition of narrowing the gap is equivalent to that firm 2’s

effective cost reduction is larger than firm 1’s. Setting X2 > X1, one can get the

threshold β̄ ∈ (0, 1).

Proposition 3.2 shows the condition where the cost gap is narrowed, but it

does not show which firm ends up with lower cost. Next, I focus on the condition

where the small firm catches up with the large firm, that is, the small firm ends

up with a lower cost.
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When β = 1, we know that the cost gap reaches its minimum, which is,

(c′2 − c′1)

∣∣∣∣
β=1

=
6γ

[
9(c2−c1)(γ− 4

9
)

2
− (2a− c1 − c2)

]
(9γ − 4)(3γ − 2)

If it is no more than zero, the small firm is able to catch up with the large

firm, which yields,

γ ⩽ 2(2a+ c2 − 3c1)

9(c2 − c1)

Figure 3.2: marginal cost of production after R&D stage
(a = 100, c1 = 20, γ = 5)

Combined with Assumption 3.3, such a γ exists only when the initial cost gap

is relatively small. Figure 3.2 illustrates the new marginal cost of each firm with

β = 0 and β = 1 as the initial cost gap λ increases. One can see that with full

spillover rate, the initial high cost firm ends up as a lower cost firm only when λ

is relatively small (around 8). Then, the following proposition is obtained.
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Proposition 3.3 If 4(a−c2)
3(a−2c2+c1)

< γ ⩽ 2(2a−3c1+c2)
9(c2−c1)

, which requires the initial cost

gap being relatively small, the small firm is able to catch up with and even reverse

the position with the large firm when β = 1. Otherwise, the small firm never

catches up with the large firm.

In Poyago-Theotoky (1996)’s multiplicative case, although the high cost firm

spends more on R&D, it still ends up with a higher cost than its rival, hence it

is not able to overcome the initial asymmetry regardless of the initial size of the

cost gap. While with one-way spillover, it is possible that the initial high cost

firm ends up as the larger firm.

After analysing the individual R&D level, I proceed to the comparative statics

of total R&D levels.

Lemma 3.3 The total R&D levels chosen by two firms decrease with β.
d TX∗

dβ
< 0

Proof: Totally differentiate TX∗ = x∗
1 + x∗

2 with respect to β,

dTX∗

dβ
= −

36[(a− 2c1 + c2)γ − 4
3
(a− c1)](

9γ2

2
+ (β2 + 4β − 10)γ + 4(β−2)2

3
)

B2

Given the assumptions, [(a − 2c1 + c2)γ − 4
3
(a − c1)] > 0. The sign of dTX∗

dβ

depends on the remaining part in the numerator. Set M(β) ≡ 9γ2

2
+ (β2 + 4β −

10)γ + 4(β−2)2

3
.

dM(β)

dβ
= (2γ +

8

3
)β + 4(γ − 4

3
) > 0

given the assumptions. Therefore, the minimum M is attained at β = 0, M(0) =

(9γ−8)(3γ−4)
6

> 0.

Therefore, dTX∗

dβ
< 0.

By decomposing the effect of β on total R&D levels, since dx∗
1

dβ
< 0 while

dx∗
2

dβ
> 0, Lemma 3.3 indicates that β has a larger effect on the equilibrium

R&D for the large firm than that for the small one. The increment in the small
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firm’s level of R&D does not compensate for its competitor’s lower investment

in response to a change in the spillover parameter. Therefore, the total research

levels chosen by two firms are the highest when there is no spillover, which is

the sum of equilibrium R&D in the benchmark setting. As for the total R&D

expenditure, since the research cost follows a quadratic form of R&D output, how

the total R&D expenditure changes with β is not equivalent to the changes of

total R&D levels.

Totally differenciate the total R&D expenditure with respect to β.

d[r(x1) + r(x2)]

dβ
= γ

(
x1

dx1

dβ
+ x2

dx2

dβ

)
If the initial cost gap is relatively large, the total R&D expenditure decreases

with β due to x∗
1 > x∗

2 and Lemma 3.3. While if the initial cost gap is not that

large, it is easy to check that d[r(x1)+r(x2)]
dβ

∣∣∣∣
β=0

< 0 and d[r(x1)+r(x2)]
dβ

∣∣∣∣
β=1

> 0, which

indicates that the total R&D expenditure first decreases and then increases with

β. The smaller the initial cost gap is, the faster the small firm increases its R&D

level due to spillover. It is intuitive that when the initial cost gap is small, it is

more likely for the small firm to catch up with the large firm, therefore the effect

of knowledge spillover is more apparent. Hence, although the total R&D level

decreases, the increment of small firm’s research cost is much greater than the

reduction of large firm’s cost so that the total R&D expenditure increases when

the spillover is large.

Lemma 3.4 The total cost reductions of the firms due to R&D increase with β

for β ∈ (0, β̂) where β̂ =

√
(3γ−2)(3γ−4)−(3γ−4)

2
< 1

2
:

d TC∗

dβ
> 0 with β ∈ (0, β̂).

Proof: Totally differentiate TC∗ = X∗
1 +X∗

2 with respect to β and set it equal

to zero,

dTC∗

dβ
= −

108γ[(a− 2c1 + c2)γ − 4
3
(a− c1)][(3β − 3

2
)γ + β2 − 4β + 2]

B2
= 0
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where [(a−2c1+c2)γ− 4
3
(a−c1)] > 0 given the assumptions. The roots of the

above derivative are β̂ =

√
(3γ−2)(3γ−4)−(3γ−4)

2
> 0, β̂2 =

−
√

(3γ−2)(3γ−4)−(3γ−4)

2
< 0.

Since β ∈ [0, 1], β̂2 is excluded.

β̂ − 1

2
=

√
(3γ − 2)(3γ − 4)− (3γ − 3)

2

=

√
9γ2 − 18γ + 8−

√
9γ2 − 18γ + 9

2
< 0

Therefore, dTC∗

dβ
> 0 with β ∈ (0, β̂) where β̂ < 1

2
.

Decompose the effect of β on the total cost reduction.

d(X∗
1 +X∗

2 )

dβ
=

d(x∗
1 + x∗

2)

dβ
+ β

dx∗
1

dβ
+ x∗

1

From Lemma 3.3, the first term d(x∗
1+x∗

2)

dβ
< 0. From Lemma 3.1, the second

term β
dx∗

1

dβ
< 0. The result shows that x∗

1 (the only positive term) is large enough

only when the spillover is small enough (β < β̂), because the whole expression is

positive.

Compared with the symmetric spillovers, the total cost reduction optimal

spillover rate β̂ = 1
2
. From the total industry output shown in Eq.(3.12), max-

imising the total industry output Q is equivalent to maximising the total cost

reduction x1+x2+βx1 and moreover, maximising consumer surplus is also equiva-

lent to maximising the total industry output Q. Lemma 3.4 shows that with small

spillover, i.e., β < 1
2
, the industry output increases so that the price of product

decreases. Therefore, by introducing asymmetry in terms of both initial costs and

spillover rates, from the consumer’s point of view, spillover benefits consumers as

long as it is a slightly smaller spillover β than in the symmetric case.

Proposition 3.4 Any spillover rate β increases the total cost reduction with less

R&D levels. i.e., TC(β) ⩾ TC(0) and TX(β) ⩽ TX(0) for all β.

Proof:

Lemma 3.3 states that the total R&D levels decreases with β (the red line

in Figure 3.3) while lemma 3.4 shows the concavity of total cost reduction in β
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Figure 3.3: Comparison between total cost reductions and total R&D levels
(a = 100, c1 = 20, c2 = 30, γ = 5)

(the blue curve in Figure 3.3) with TC(1) = TC(0) = 8a−4c1−4c2
9γ−4

for all parameter

values. The dashed line denotes the total R&D levels, i.e., the total cost reduc-

tions in the benchmark (β = 0). It is evident that for any spillover, the total

cost reduction is higher than that without spillover but the total R&D levels are

lower than those without spillover.

The total cost reduction is a concave function of β ∈ (0, 1). Surprisingly, the

total cost reduction when β = 0 is identical with that when β = 1 even though

firms are asymmetric. That is to say, when the large firm’s R&D fully spills

over to its rival, the increment in the effective cost reduction for firm 2 exactly

offsets the decrease in cost reduction for firm 1, which means given any spillover

rate, the total cost reduction with spillover is larger than without spillover. In

addition, Lemma 3.3 shows that the total R&D levels are dcreasing in β, that
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is, the total R&D costs are decreasing in β. Combining Lemmas 3.3 and 3.4,

Proposition 3.3 indicates that the one-way spillover decreases the R&D costs

while always increases the total cost reduction, industry outputs, and consumer

surplus, compared with the benchmark model.

Consider the equilibrium overall profits, which is the difference between the

operative profit in the second stage and the R&D cost in the first stage. Since

the large firm decreases the R&D level, and further decreases the equilibrium

output, both the operative profits and R&D costs decrease. Conversely, both the

operative profits and R&D costs increase for the small firm. That is to say, β

has same directional effects on these two parts for each firm while the effects are

opposite between the firms. Therefore, how the equilibrium overall profit varies

depends on which part is stronger. The result is shown as follows.

Π∗
1 =π∗

1 −
γx∗2

1

2

=

(
a− 2c1 + c2 + (2− β)x∗

1 − x∗
2

3

)2

− γx∗2
1

2

(3.20)

Π∗
2 =π∗

2 −
γx∗2

2

2

=

(
a− 2c2 + c1 + (2β − 1)x∗

1 + 2x∗
2

3

)2

− γx∗2
2

2

(3.21)

Lemma 3.5 The effects of change in spillover rate on equilibrium overall profits

is, dΠ∗
1

dβ
< 0, dΠ∗

2

dβ
> 0.

Proof: Totally differentiate (3.20) and (3.21) with respect to β,

dΠ1

dβ
=

∂Π1

∂x1

· dx1

dβ
+

∂Π1

∂x2

· dx2

dβ
+

∂Π1

∂β

where the first term is zero in equilibrium.

∂Π1

∂x2

=
2(a− 2c1 + c2 + (2− β)x1 − x2)

9
· (−1) < 0

∂Π1

∂β
=

2(a− 2c1 + c2 + (2− β)x1 − x2)

9
· (−x1) < 0
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dx2

dβ
> 0

Therefore, dΠ1

dβ
< 0.

dΠ2

dβ
=
∂Π2

∂x2

· dx2

dβ
+

∂Π2

∂x1

· dx1

dβ
+

∂Π2

∂β

=0 +
2(a− 2c2 + c1 + (2β − 1)x1 + 2x2)

9
·
[
(2β − 1) · dx

∗
1

dβ
+ 2x∗

1

]
where 2(a−2c2+c1+(2β−1)x1+2x2)

9
> 0 given the assumptions. I defined L(β) ≡

(2β − 1) · dx∗
1

dβ
+ 2x∗

1 in the proof of Lemma 3.1 and proved it larger than zero.

Therefore, dΠ2

dβ
< 0.

Lemma 3.5 shows that the effect of β on the profits is stronger than that on

the R&D costs for both firms. Moreover, similar as the individual R&D levels

and Cournot outputs, β has opposite effects on individual firm’s overall profits,

therefore how the total producer surplus changes depends on which one domi-

nates. Since the producer surplus follows a fourth degree polynomial equation

with respect to β, it is hard to identify the sign of the first derivative. Therefore,

I use a numerical solution to get the following observations4.

Observation 1 If a− 4c2+3c1 < 0, i.e., λ > a−c1
4

, the producer surplus always

decreases with β. That is to say, the effect on the large firm dominates that on

the small firm.

Observation 2 if a− 5c2+4c1 > 0, i.e., λ < a−c1
5

, the spillover that maximises

the producer surplus is larger than 1
2
. That is to say, the increment of small firm’s

overall profit is larger than the loss of large firm’s as long as β is not too high.

3.4 Welfare Analysis

From the previous analysis, the threshold spillover rate that narrows the cost

gap β̄, and maximises the total cost reduction β̂ are obtained. This section
4The values of the parameters are calibrated to meet all the restrictions placed in this

analysis. I also try to prove them analytically which is shown in appendix.

82



focuses on the spillover rate that maximises the total welfare and compares these

three measures. Because one might consider that an ideal spillover rate from the

society’s point of view would reduce the cost gap and the dominance of the larger

firm. Here I test this logic. Therefore, this section aims to look at the issue

of how R&D affects the heterogeneity, then given that increasing or decreasing

heterogeneity, whether it is necessarily good compared to what comes from the

welfare analysis, in order to provide the policy implication. To be specific, the

question is whether it is better from the welfare point of view that the firms

become more identical or that the gap even widens.

To find the socially optimal spillover rate, define the social welfare in the usual

way as the sum of firms’ profit and consumer surplus,

W (x1, x2, q1, q2) =
1

2
(q1 + q2)

2 + q21 + q22 −
γx2

1

2
− γx2

2

2
(3.22)

Given the Cournot equilibrium in the production stage of the game and the

equilibrium R&D levels in the R&D stage of the game, one can write social welfare

as a function of the spillover rate by substituting the Cournot outputs (Eq.(3.10)

and (3.11)) into W (x1, x2, q1, q2), which yields,

W (β) =
1

B2

[
54γ (W1β

4 −W2β
3 +W3β

2 +W4β +W5)
]

(3.23)
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where

W1 =(γ − 16

27
)(a− c1)

2

W2 =6(a− 2c1
3

− c2
3
)(γ − 16

27
)(a− c1)

W3 =(−13a2

3
+ (

13c1
3

+
13c2
3

)a− c21
3
− c22

3
− 11c1c2

3
)γ2

+ (17a2 + (−64c1
3

− 38c2
3

)a+
32c1c2

3
+

16c21
3

+ c22)γ

− 22a2

27
+ (

32c1
3

+
160c2
27

)a− 128c1c2
27

− 80c21
27

− 16c22
27

W4 =(
40a2

3
+ (−31c1

3
− 49c2

3
)a+

11c1c2
3

+
10c21
3

+
19c22
3

)γ2

+ (−224a2

9
+ (

212c1
9

+
236c2
9

)a− 100c1c2
9

− 56c21
9

− 68c22
9

)γ

+
256

27
(a− c1

2
− c2

2
)2

W5 =6(γ − 4

9
)((a2 + (−c1 − c2)a+

11c21
8

− 7c1c2
4

+
11c22
8

)γ2

+ (−8a2

3
+ (

8c1
3

+
8c2
3
)a− 13c21

6
+

5c1c2
3

− 13c22
6

)γ

+
16a2

9
+ (−16c1

9
− 16c2

9
)a+

8c21
9

+
8c22
9
)

The problem of the social planner is now to choose the spillover rate β that

maximizes total welfare, as given by Eq (3.23), that is,

β∗ = argmax
β

W (β). (3.24)

Owing to the difficulty of figuring out a fourth degree polynomial equation,

and since the aim is to compare the magnitudes among cost gap threshold β, total

cost reduction optimal β̂ and socially optimal β∗, it is not necessary to solve for

the closed form solution of socially optimal β∗. Therefore I used a numerical

solution in order to show how the total welfare varies with β and the comparison.

Before the simulation, the parameters should be calibrated. In addition to

the restrictions on parameters implied by SOCs and the stability condition which

are shown in Assumptions, there are two important conditions in the problem
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setup that must be satisfied. These conditions are: Q ⩽ a, and x2 + βx1 ⩽ c2,

which include endogenous variable and therefore it is impossible to adjust the

parameters before solving the problem in order to make the above conditions

hold.

Therefore, I run the series of simulations and sensitivity tests to figure out

which set of parameters will satisfy the above two conditions. In the simulations,

I have fixed a, the parameter of the demand function capturing the size of the

market at 100. In addition, γ, the R&D efficiency parameter is set at 5. Changing

these parameter values does not lead to qualitatively different results, as both a

and γ have a scaling effect only. Furthermore, I have fixed the initial marginal

cost of firm 1, which is the large firm, at c1 = 20. Firm 2’s initial marginal cost c2
varies from 20 to 50, that is, λ ∈ [0, 30]. Table 3.1 explains the simulation input

parameters. Specifically, I assume a difference value of λ = 10 to represent ‘small

asymmetry’ in initial marginal cost and a difference value of λ = 30 to indicate

‘large asymmetry’. I derive the following set of results.

Table 3.1: Simulation input parameters
Parameters Values Explanations
c1 20 firm 1’s initial marginal cost
c2 c1 + λ firm 2’s initial marginal cost
λ [0,30] initial cost gap
β [0,1] spillover rate
γ 5 R&D efficiency
a 100 market size

Result 1 If the initial cost gap is relatively small (i.e., λ = 10), β < β̂ < 0.5 <

β∗.

Figure 3.4 shows how the post-R&D cost gap, the consumer surplus, the

producer surplus and the total welfare change with β when the initial cost gap is

λ = 10. In Figure 3.4(a),the grey dashed line denotes the initial cost gap level.
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Figure 3.4: Optimal β with small asymmetry

It is obvious that for any β > β̄ where β̄ = 0.22, the post-R&D cost gap is

narrowed by R&D. Figure 3.4(b) implies that the total output Q is increasing

and then decreasing in β. Equation (3.12) tells that maximising the total output

is equivalent to maximising the total cost reduction TC and Lemma 3.4 shows

the total cost reduction is maximised at β̂ < 1
2
. Therefore, β̂ which is the optimal

total cost reduction spillover rate also maximises the consumer surplus. Figure

3.4(c) illustrates that the producer surplus also exhibits a concavity in β.

Since both consumer surplus and producer surplus exhibit a concavity in β,

the total welfare must follow concavity which is shown in Figure 3.4(d), and it is

maximised at β∗ = 0.65. Compared with the benchmark (β = 0), the consumer

surplus, producer surplus and total welfare are always higher for any β. The

intuition is as follows. Due to the one-way spillover, the effective cost reduction

decreases for the large firm while increases with β for the small firm. If the initial
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Figure 3.5: Optimal β with large asymmetry

cost gap is relatively small, the increment of the small firm’s profit is greater than

the loss of large firm’s profit due to the convexity of the profit function in its own

cost of production. At the same time, the consumer surplus is increasing and

total R&D costs are decreasing, all these elements work together and lead to a

higher total welfare.

The comparison between the three measures (β < β̂ < β∗) implies that the

cost gap decreases in socially optimal and total cost reduction optimal spillover

rate, which means that if the intial cost gap is relatively small, it is a good thing

for both consumers and the society that the firms become more similar. That is

to say, the society would prefer firms to be more competitive if the gap between

them is not too large.
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Result 2 If the initial cost gap is relatively large (i.e., λ = 30), β∗ < β̂ < 0.5 <

β̄.

Figure 3.5 shows how the post-R&D cost gap, the consumer surplus, the

producer surplus and the total welfare change with β when the initial cost gap

is λ = 30. Similarly, in Figure 3.5(a), the grey dashed line denotes the initial

cost gap level. It is obvious that for any β > β̄ where β̄ = 0.66, the post-R&D

cost gap is narrowed by R&D. Figure 3.5(b) implies that the consumer surplus is

maximised at the spillover rate that maximises the total cost reduction, which is

β̂ < 1
2
. However, figure 3.5(c) illustrates that the producer surplus is decreasing

with β.

Figure 3.5(d) shows that the spillover is always detrimental for the social

welfare (i.e., β∗ = 0) if the initial cost gap is already significant. It is intuitive

that since the initial cost gap is large, even if the large firm’s R&D fully flows

to the small firm, the gap between them is still relatively large. Due to the

one-way spillover, the effective cost reduction decreases for the large firm while

increases for the small firm. The decrement to the large firm’s productive profit

is much higher than the increment to the small firm’s so that the overall profits

are decreasing with spillover. Although the consumer surplus is increasing and

total R&D costs are decreasing, it cannot compensate the loss of overall profits,

therefore the total welfare declines with β.

The comparison between the three measures (β∗ < β̂ < β̄) implies that the

cost gap increases in socially optimal and total cost reduction optimal spillover

rate, which means that if the intial cost gap is already significant, it is not a

bad thing for both consumers and the society that the gap between firms further

widens. From the society’s perspective, the policy that can affect the spillover

rate would not be to minimise the cost gap, since that is not socially optimal.
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3.5 Conclusions

This chapter has investigated the properties of a two-stage R&D model that

departs from the standard setting by adopting firm heterogeneity. The majority

of existing literature states that the large firm is more innovative so that the

gap between them even widens. However, empirical studies show that the small

firm may invest more than the large firm in some industries. Therefore, I mainly

focus on the possible factor that drives the small firm to invest more in R&D

to explain the empirical data and how the factor affects the R&D choices of

asymmetric firms and the subsequent market structure.

One factor considered in this chapter is the one-way spillover rate where only

the large firm’s R&D flows to the small firm due to ex ante asymmetric setting.

I find that it indeed increases the small firm’s incentive to invest in R&D even

though it can benefit from the large firm by taking free ride, and the cost gap

between them is narrowed. Moreover, from the welfare point of view, I find that

if the initial cost asymmetry is relatively small, the society prefers the firms to be

even more similar. While if the initial cost asymmetry is already significant, it is

not a bad thing for both consumers and the society that the gap further widens.

There are some possible extensions of this study. First, since the one way

spillover plays a detrimental role for the large firm, it is interesting to see whether

it is in the best interest of the large firm to guard the spillover rate β to make sure

it is not too large by paying a guarding fee if β were to be a choice variable for

the large firm. Second, each firm chooses its R&D output which spills over from

the large firm to the small firm in this paper. Another commonly used model

is when each firm chooses R&D input (i.e. investment) and there is investment

spillover. Whether the same results hold and the comparison between approaches

is a possible extension. Third, the one-way spillover is actually an extreme case of

two-way asymmetric spillovers between the asymmetric firms. The model can be

extended to employ two-way asmmetric spillovers and get more general results.
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Finally, since the most employed R&D cost function γx2

2
indicates that the firms

spend the same amount of money to achieve the cost reduction x irrespective of

the firm size. I think it is not realistic since it is more complicated for the more

advanced firm to enhance its technology further. Therefore, a modified R&D

cost function which is negatively related to the initial cost ci might be another

possible factor to explain why the small firm invests more than the large firm.

I have tried to organise such a R&D cost function which is shown in appendix.

But it still needs a further analysis.

Appendix

Proof of the sign of equilibrium R&D levels:

1) Benchmark model

Remind the equilibrium R&D level in Eq.(3.8),

xb
1 =

4[(3γ − 4)a+ 3γc2 + (4− 6γ)c1]

(3γ − 4)(9γ − 4)

xb
2 =

4[(3γ − 4)a+ 3γc1 + (4− 6γ)c2]

(3γ − 4)(9γ − 4)

The denominator (3γ − 4)(9γ − 4) > 0 given assumption 3.2. Since c1 < c2,

xb
1 > xb

2 hold. For xb
2, to make (3γ− 4)a+3γc1 + (4− 6γ)c2 = 3γ(a− 2c2 + c1)−

4(a− c2) > 0, γ should be larger than 4(a−c2)
3(a−2c2+c1)

. Therefore I make assumption

3.3.

Hence, both xb
1 and xb

2 are positive given assumptions.

2) In the presence of one-way spillover

Remind the equilibrium R&D level in Eq.(3.15) and (3.16),

x∗
1 = 2(2− β)

A

B
=

4A

B
− 2β · A

B

x∗
2 = 4

[C +D]

B
=

4C

B
+ 4 · D

B
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where
A =(3γ − 4)a+ (4− 6γ)c1 + 3γc2

B =(9γ − 4)(3γ − 4)− 2β [3γ(β − 4) + 4]

C =(3γ − 4)a+ (4− 6γ)c2 + 3γc1

D =2β [(3− β)a− (2− β)c1 − c2]

For A,
A =(3γ − 4)a+ (4− 6γ)c1 + 3γc2

=(3γ − 4)

(
a− 6γ − 4

3γ − 4
c1 +

3γ

3γ − 4
c2

)
=(3γ − 4)

(
a− 2c2 + c1 +

9γ − 8

3γ − 4
(c2 − c1)

)
> 0

For B,

(9γ − 4)(3γ − 4) > 0 given the assumptions. [3γ(β − 4) + 4] is obviously

decreasing in γ. Therefore the maximum is attained at γ = 4
3
, which is negative

(4β − 12 < 0). Therefore, B > 0.

For C,

C =(3γ − 4)a+ (4− 6γ)c2 + 3γc1

=3γ(a− 2c2 + c1)− 4(a− c2)

C > 0 requires γ > 4(a−c2)
3(a−2c2+c1)

, which is made in assumption 3.3.

For D, given assumption 3.1, a > 2c2 and c1 < c2,

[(3− β)a− (2− β)c1 − c2] > [(3− β) · 2c2 − (2− β)c2 − c2] > 0. Therefore,

D > 0.

Hence, the equilibrium R&D level for both the large firm and the small firm

is positive.

Decreasing returns R&D cost function

The factor in this section considers the R&D cost function, the quadratic function

in Eq. (3.1), which is most utilized in the existing R&D literature. It is associated
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to the R&D intensity xi and the R&D efficiency γ. Based on asymmetric firms,

Lukatch and Plasmans (2000) considers asymmetric R&D efficiencies. They as-

sumes that the large firm has a lower marginal cost of production and also a lower

per unit marginal cost of research, i.e., c1 < c2 and γ1 < γ2 hold simultaneously.

That is to say, the large firm’s research expenditure is even lower than the small

firm’s in order to realize a same cost reduction, which further favors the large firm

to engage in R&D. However, this is contradict to the reality. It is much more

complicated for the large firm to do the research and enhance its technology fur-

ther than the small one, which means that the research costs function should be

negatively related to the initial marginal cost ci. That is to say, with the same

research intensity xi, the resarch cost for the large firm is higher than that for the

small one. Accordingly, reconstruct the research costs function r(ci, xi) which is

characterized by decreasing returns due to different initial cost,

r(ci, xi) =
γ(xi + z − ci)

2

2
− γ(z − ci)

2

2
(3.25)

where r(xi) ⩾ 0, r′(xi) > 0, r′(ci) < 0. z is a constant slightly larger than ci.

Following the same process as before, the best response function of xi given xj

is,

xi(xj) =
4(a− 2ci + cj − xj)− 9γ(z − ci)

9γ − 8
(3.26)

Similarly, the second-order condition requires γ > 8
9
. And the stablitiy con-

dition requires γ > 4
3
.

The equilibrium research level is,

xe
i =

4(a− ci)− 9γ(z − ci)

9γ − 4
(3.27)

The difference between xe
1 and xe

2 is,

xe
1 − xe

2 = c1 − c2 < 0 (3.28)
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which is always smaller than zero, that is, xe
1 < xe

2. It indicates that the small

firm always has higher incentives to engage in R&D than the large one irrespetive

of γ, compared with the previous case in which the research costs function is only

related to research level xi. The cost gap after R&D stage turns to c′2 − c′1 = 0.

It indicates that the small firm just catches up with the large firm and two post

symmetric firms engage in Cournot competition with the same marginal costs in

the production stage.

The results point towards the necessity of empirical work to help us ascertain

the exact nature of R&D cost functions.
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Chapter 4

Dynamic R&D competition with
stochastic outcomes

4.1 Introduction

Research and development (R&D) activity has regarded as the fundamental en-

gine to create innovations. The key features of R&D activity are risky(uncertain),

costly and continuous. This chapter presents a model of R&D process in which

there is both R&D uncertain outcome and dynamic interaction between com-

petitors as the game proceeds. There are two main approaches in the existing

literature how the uncertainty of R&D process is modelled. One is characterized

by technological uncertainty, which emphasizes how quickly a new technology

arrives, in other words, the length of time required for a successful innovation.

(Loury, 1979; Dasgupta and Stiglitz, 1980; Lee and Wilde, 1980; Malueg and

Tsutsui, 1997; Erkal and Piccinin, 2010). The other one, adopted in this chapter,

assumes stochastic outcomes, that is, whether the firm succeeds or fails to make a

progress given an investment in R&D (Aoki, 1991; Choi, 1993; Matsumura, 2003;

Horner, 2004; Xing, 2018). As for dynamic interaction considered in this chapter,

it refers to how the R&D choice of firms interact in a multi-period game.1 Since

most of the existing literature focuses on a single period game, it is not quite
1Dynamic interaction can be either a multi-period game or a repeated game. I focus on

a multi-period game in this chapter since firms make a decision in each period based on the
outcome of last period.
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consistent with the common feature of R&D process in the realistic situation.

The incentives to invest in R&D might vary as the game proceeds, according to

the position of a firm in the game relative to its rival and relative to the end of

the game (Zizzo, 2002).

As I mentioned, R&D is an uncertain, costly and continuous process. The

majority of the existing literature focuses on one or the other of R&D features,

while this paper combines two important and common features of R&D process

to bridge the research gap. The aim of this chapter is to see how the firms’

incentives to engage in R&D are affected in a multi-period game in the presence

of uncertainty. Moreover, firms are assumed identical at the beginning of the

competition, which means there is no technological difference between firms. Due

to the uncertain outcomes and multi-period competition, this chapter also aims

to identify how the technological difference between the firms evolves.

Broadly speaking, the theoretical models on R&D competition are divided

into the patent race, tournament2 and the incremental investment models3. Patent

race model, which is widely employed to study the R&D competition, assumes

that only the winner of the race will be awarded a prize. Most patent race lit-

erature focuses on investigating the effects of technological uncertainty. In those

papers, the technological uncertainty is modelled as an exponential process. Early

works show that firms decide on their R&D investment once and forever, due to

the memoryless feature of the exponential distribution (Loury, 1979; Lee and

Wilde, 1980; Malueg and Tsutsui, 1995). Reinganum (1981) allows that firm’s

effort also to depend on the rival’s knowledge levels, and shows that firms increase

their R&D efforts as time goes on. Malueg and Tsutsui (1997) adopt Reinganum’s

(1981) setup, with the addition that firms have imperfect knowledge about the

exponential distribution governing the arrival timing of the new technology. They
2Patent race is firstly introduced by Gibert and Newbery (1982). Baye and Hoppe (2003)

establish the strategic equivalence between tournament and patent race games, therefore the
tournament approach is ignored here.

3Incremental investment model is first proposed by Athey and Schmutzler (2001).
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find that firms reduce their R&D efforts as time passes without success since they

are more pessimistic about the final success. Considering dynamic patent race

without uncertainty, that is, strategic interaction, Fudenberg et al (1983) and

Harris and Vickers (1985) propose a strong result of ’ϵ-preemption’, that is, a

small ϵ advantage at the start of the race is sufficient to ensure that the follower

drops out from the race immediately. Fershtman and Markovich (2010) focus on

the firms’ asymmetric ability in R&D and use a two-firm multistage R&D race

model to analyze the effect of patents, imitations and licensing arrangements on

the speed of innovation.

Later work tried to combine both technological uncertainty and dynamic setup

to achieve a better characterization of patent race model. Harris and Vickers

(1987) develop two models. The first one is a ’tug-of-war’, where a prize is

won by the first player to achieve a given lead over its rival. In the model,

the player that is ahead, makes greater efforts than the follower. The second

model is a ‘multi-stage race’, where the winner is the first of the two players

to make a given number of advances. In this model, the leader makes greater

efforts than the follower if the leader is close to success in the sense of having

no more than two stages to go. Efforts are greater when the gap between the

competitors diminishes. Zizzo (2002) designs an experimental test of Harris and

Vickers’ model, but the experiment provides only limited support for the theory.

It illustrates that tied competitors invest more when nearer to the end of the race

and also, leaders did not invest more than followers.

The other model of R&D competition, incremental investment model, empha-

sizes the non-exclusivity of the new technology and non-uniqueness of the prize.

Specifically, firms in the same industry may be located at different technological

levels along a certain direction, in which technological progress is achieved step

by step with multiple prizes. Each competitor can independently acquire tech-

nological progress, that is to say, the winner is no longer unique, but a follower

cannot overtake the leader with a single innovation. This type of competition co-
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incides with one of the main features in this paper, multi-period game. Athey and

Schmutzler (2001) build a model of dynamic oligopolistic competition with ongo-

ing investment, but with deterministic R&D process. They provide circumstances

under which the leading firm tends to invest more so that the gap between them

widens. With stochastic R&D process, Aoki (1991) and Horner (2004) present a

model of dynamic competition between two firms that repeatedly engage in R&D

in an endless game. Aoki (1991) focuses on the dynamic stochastic R&D and pro-

poses a basic idea without characterizing the equilibrium. The intuitive result

with stochastic R&D is that a leader may choose not to invest if the probability

of success is small, thereby favoring the follower. Horner (2004) builds a model

in which the R&D investment choice is restricted to two levels, either Higher

effort level or Low effort level. Besides, in every period, the payoff is restricted

to two constant values, R for the leader and −R for the follower. He derives the

Markov perfect equilibria and finds that firms exert the high level effort under

two distinct circumstances: while sufficiently ahead, to outstrip their rival and

secure a durable leadership; while behind, to regain leadership and prevent the

situation from worsening to the point where their rival outstrips them.

In this chapter, I employ incremental investment framework in order to cap-

ture dynamic nature of R&D, and combine it with stochastic R&D outcomes, to

capture the uncertainty. Following Horner (2004), I define the state of the game,

i.e., position, as the difference between the total number of successes of firm i and

those of its rival, which also represents the technological difference. There are 3

main differences from Horner (2004)’s paper. First, two initially symmetric firms

compete for a finite number of periods, which means the deadline of the game

is exogenous. The model is more applicable to markets where there is an end-

period, for example, development of Covid vaccine. Besides, it is more related to

some government contracts which sets the deadline for a successful innovation,

therefore firms are asked to engage in R&D in a finite time horizon. Second, in

each period, both firms simultaneously choose their own R&D level which is a
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continuous variable instead of discrete levels as in Horner (2004), and the proba-

bility of success increases with the investment. Third, the payoff of each firm in

each period depends on the relative position. That is, I assume the payoff is an

increasing function in position, which implies that the firm that is more advanced

earns more. While Horner (2004) merely assumes that the payoff for the leader

and follower is two constant values. Since the innovation is a risky, costly and

continuous process, it cannot be simply modelled as a repeated game for such a

market structure. When a firm makes its own decision on R&D in each period,

it is not only maximizing the periodic profit, but also takes into account how

the R&D investment in this period affects the following periods. More precisely,

the history determines the choice and the corresponding outcomes. The model

covers both symmetric and asymmetric situations4 and captures both rivalry and

dynamic interactions5.

The main analytical results are obtained for the simplest 2-period game. Fo-

cusing on the same period, this chapter ranks the equilibrium R&D investments

in different situations. That is, the firm invests the most if it is one lead ahead of

its rival, followed by the situation where the firms are at the same technological

level, and then the firm invests the least if it is one lag behind its rival. Fur-

thermore, the corresponding equilibrium profit shows the same ranking as the

R&D investments. It is consistent with Grossman and Shapiro (1985) and it is

analogous of another proposition in the R&D literature, according to which the

firm with lower initial costs in a Cournot duopoly has a higher incentive than its

rival to engage in R&D. Due to the stochastic property, the game has various

end outcomes with different probabilities, which shows that the probability of

firms being asymmetric rises continuously as the game proceeds, implying that

two firms are diverging instead of evolving neck to neck.
4Symmetric(asymmetric) situation denotes the firm’s technological level is identi-

cal(different).
5Considering each period, different firm’s R&D choice interacts. Considering periods over

time, R&D choice of each period interacts.
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Considering the R&D investment over time, I find that the less periods are

remaining, the less investment the firm wants to conduct, irrespective of the

leader or follower. That is to say, the firm in the beginning of the game invests

the most and its investment decreases as the game goes on. It is intuitive that

the firm knows that being a leader is more profitable than being a follower and

the incremental profit is increasing with the number of leads, therefore at the

beginning of the game, it has the highest incentive to invest in R&D in order to

become the leader.

Furthermore, all the analytical results obtained from the 2-period game can

be extended to the T-period game. Besides, some numerical results are obtained

for the T-period game, which mainly focus on the time paths of R&D investments

and technological difference, and the effect of the key exogeneous parameter, α,

which denotes the revenue multiplier from successful innovation. The numerical

simulation shows the consistency with ‘the joint-profit effect’ and ‘the endpoint

effect’.6 That is to say, the leader with more leads ahead of its rival has higher in-

centive to invest in R&D since the joint profit increases with larger technological

difference. Moreover, since firms know the finishing line of the game, it relaxes

the investment incentive near or at the finishing line. Furthermore, α presents

different effects on the leader and follower’s R&D investment, because it always

increases the leader’s incentive to engage in R&D while may decrease the fol-

lower’s. However, from the industry’s perspective, the total R&D increases with

α. Finally, the numerical result shows that although the probability of firms being

asymmetric indeed increases continuously as the game proceeds, the technolog-

ical difference between firms is not as big at the end of the game. Specifically,

the revenue multiplier slows the divergence.

The structure of the rest of the chapter is as follows. Section 4.2 describes the
6The joint-profit effect and endpoint effect are firstly proposed in Budd, Harris and Vickers

(1993), which identify how market structure evolves in a dynamic competition between two
asymmetric firms
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model and sections 4.3 presents the main analytical results. Section 4.4 contains

the numerical simulation and further results. Section 4.5 concludes and make

suggestions for future research.

4.2 The Model

There are two ex ante symmetric firms in the industry, firm 1 and firm 2.7 They

play a T-period R&D competition game, indexed by t = 1, 2, ..., T . Time is

discrete and T > 1. In each period, both firms simultaneously choose their own

R&D expenditure, or investment levels. For each firm, there are two possible

R&D outcomes, success or failure. Therefore, there are three possible cases in

every period, where both firms succeed, one firm succeeds while the other fails

and both fail. A firm can be in one of three positions, even, ahead or behind.

The R&D outcome is assumed to be independent across periods and firms,

which means the probability of success only depends on its current R&D choice.

In particular, it does not depend on its rival’s strategy. Following Choi (1993), let

p(xi
t) be the probablity of success for firm i if it invests xi

t in R&D. The properites

of the probability function are stated in Assumption 4.1.

Assumption 4.1 (i) p(0) = 0, lim
x→∞

p(xi
t) = 1;

(ii) p′(xi
t) ⩾ 0 with p′(0) = ∞ and p′(∞) = 0;

(iii) p′′(xi
t) ⩽ 0

Part (i) of Assumption 4.1 states that if firm invests nothing, it will definitely

fail and all probabilities belong to the interval [0,1). Parts (ii) and (iii) state that

the probability of success increases with R&D expenditure but at a decreasing

rate. Assumption 4.1 guarantees an interior solution of the model.

Position is meant to capture the overall situation till period t. Following

Horner(2004), I define the position of the game in period t, n, as the difference
7Or use i, j = 1, 2 and i ̸= j to denote either of these firms in the rest of the chapter.
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between the total number of successes of firm i and those of its rival, where

n = −(t− 1),−(t− 2), .., 0, ...t− 2, t− 1. To be specific, in every period t, each

player observes all outcomes and choices up to and including period t − 1, and

then makes its own choice on R&D investment xi
t(n) based on its position n. At

the beginning of the game, n is equal to zero. Overall, firm i has more successes in

period t than does firm j if and only if n is positive. To be specific, the following

analysis is from firm i’s perspective. Firm i acts as the leader, which is n leads

ahead of its rival in period t whenever n > 0, while firm i acts as the follower,

which is |n| lags behind its rival whenever n < 0. When n = 0, both firms are

located at the same techonology level.

In every period, the net profit of each firm is the difference between the

revenue, which depends on the firm’s position, and the cost, which is equivalent

to its R&D expenditure. The more advanced the firm is, the higher revenue it

earns. Therefore, I assume that the revenue is an increasing function in n. For the

firm who is n leads ahead of its rival, the revenue is assumed to be αnπ, while the

revenue of its rival is α−nπ (α > 1), where α denotes the revenue multiplier from

successful innovation. Naturally, if both firms are at the same technology level,

the revenue is identical at π. In the related R&D literature, when considering both

R&D stage and production stage, the R&D cost function contains a parameter

capturing the R&D efficiency8. Since production stage is ignored in this model,

α can be regarded as the measurement of R&D efficiency indirectly. Larger α

implies more efficient R&D, therefore it brings higher marginal revenue.

Moreover, it is assumed that the aggregate revenue (αn + α−n)π increases in

n as well. First, it is consistent with Cournot model where the profit of the firm

with successful cost reduction innovation increases and that of its rival decreases

while the joint profits increase. Second, we try to keep the model as tractable

as possible so that α is the only exogenous variable is included in the revenue
8For example, in Chapter 3, R&D cost function is r(x) = γx2

2 if firm chooses R&D output
x, where γ is a measurement of R&D efficiency.
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function.

Besides, an additional successful unilateral innovation increases the aggregate

revenue. In other words, increasing marginal revenue is assumed in the model,

which may occur in certain industries or stages of a company’s development, es-

pecially some emerging technology industry like artificial intelligence. Aldrich

and Martinez (2001) states that at the early stage of a company, when it suc-

cessfully engages in technological innovation, incremental marginal returns arise

as investment in R&D increases to solve more technical challenges and improve

the competitiveness of products or services.

Assume the discount factor δ = 1. In each period, firm i maximises the

overall value, which includes both the current period profit and the expected

profits of future periods. Given R&D choices xi
t(n) and xj

t(n), the corresponding

probability of success and failure are denoted by pit(n), qit(n) for firm i and pjt(n),

qjt (n) for firm j, where q = 1− p. The current profit of firm i is denoted by πi
t(n),

and the overall value is denoted by V i
t (n). The game yields a subgame perfect

equilibrum which is solved by backward induction.

In every period t, given the outcomes up to and including period t − 1, firm

i at position n maximises the overall value, i, j = 1, 2 and i ̸= j.

max
xi
t(n)

V i
t (n) = πi

t(n) + E(V i
t+1(n)) (4.1)

where
πi
t(n) =

[
pit(n)p

j
t(n) + qit(n)q

j
t (n)

]
αnπ

+pit(n)q
j
t (n)α

n+1π + qit(n)p
j
t(n)α

n−1π − xi
t(n)

(4.2)

E(V i
t+1(n)) =

[
pit(n)p

j
t(n) + qit(n)q

j
t (n)

]
V i
t+1(n)

+pit(n)q
j
t (n)V

i
t+1(n+ 1) + qit(n)p

j
t(n)V

i
t+1(n− 1)

(4.3)

Notice that in the last period where t = T , E(V i
t+1(n)) = E(V j

t+1(n)) = 0.

Due to the dynamic setting and rivalry interaction, the game structure is

rather complicated, therefore the following analysis starts from the simplest 2-

period game and then extend to T-period game.
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4.3 Analytical Results
4.3.1 2-period game

Figure 4.1: 2-period game structure

Set T = 2. Figure 4.1 shows the structure of a 2-period game. At the

beginning of the first period, firms that start symmetric (n = 0), simultaneously

choose to invest xi
1 and xj

1 in R&D, and then both observe the outcomes. Given

the position after period 1 (n = −1, 0 or 1), both firms simultaneously choose

xi
2(n) and xj

2(n) and then the profits are realized. The game yields a subgame

perfect Nash equilibrium solved by backward induction.

Period 2 In period 2, both firms have observed the research outcomes of period

1 and the profits have been realized. According to various outcomes, the firm

chooses different R&D investments to maximise profits. To make the notations

clear, let xiS
2 , xiL

2 and xiF
2 denote firm i’s R&D investment when firms are sym-

metric, firm i is the leader and firm i is the follower after period 1, respectively.
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Case 1 Both firms succeeded or failed in period 1, which means they are

still located at the same technology level, i.e. n = 0. Firm i maximises,

πiS
2 =

[
p(xiS

2 )p(xjS
2 ) + q(xiS

2 )q(xjS
2 )

]
π + p(xiS

2 )q(xjS
2 ) απ + q(xiS

2 )p(xjS
2 )

π

α
− xiS

2

(4.4)

The optimal xiS∗
2 satisfies the first order condition,

p′(xiS∗
2 ) π

[
p(xjS

2 ) + α(1− p(xjS
2 )) − p(xjS

2 )
1

α
− (1− p(xjS

2 ))

]
= 1 (4.5)

In case 1, as firms are symmetric, the equilibrium R&D expenditures are

identical. xiS∗
2 = xjS∗

2

Case 2 Firm i succeeded while the rival firm j failed in period 1, which

means firm i is one lead ahead of firm j, i.e. n = 1. Firm i maximises,

πi L
2 =

[
p(xi L

2 )p(xj F
2 ) + q(xi L

2 )q(xj F
2 )

]
απ + p(xi L

2 )q(xj F
2 )α2π + q(xi L

2 )p(xj F
2 )π − xi L

2

(4.6)

For firm j which failed in period 1, it maximises

πj F
2 =

[
p(xi L

2 )p(xj F
2 ) + q(xi L

2 )q(xj F
2 )

] π

α
+ p(xi L

2 )q(xj F
2 )

π

α2
+ q(xi L

2 )p(xj F
2 )π − xj F

2

(4.7)

The equilibrium xiL∗
2 and xjF∗

2 satisfy the first order conditions,

p′(xiL∗
2 ) π · α

[
p(xj F

2 ) + α(1− p(xj F
2 )) − 1

α
· p(xj F

2 )− (1− p(xj F
2 ))

]
= 1

(4.8)

p′(xjF∗
2 ) π · 1

α

[
p(xi L

2 ) + α(1− p(xi L
2 )) − 1

α
· p(xi L

2 )− (1− p(xi L
2 ))

]
= 1

(4.9)

Due to Assumption 4.1, the second-order condition is always satisfied because

of the concavity assumption on the probability function. Besides, it guarantees

that the positive interior solution exists since p′(0) = ∞. Hence, the first-order

conditions implicitly define the best response functions of firm i and j, xiL∗
2 (xjF

2 )
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and xjF∗
2 (xiL

2 ). The intersection of the two reaction functions give the Nash

equilibrium in R&D expenditures (xiL∗
2 , xjF∗

2 ).

Case 3 Firm i failed while the rival firm j succeeded in period 1, which

means firm i is one lag behind firm j, i.e. n = −1. Case 3 is omitted since firm

i with n = −1 is equivalent to the situation where firm j with n = 1 in Case 2.

Both cases 2 and 3 denote the situation where the technological difference is one

after period 1.

One of the aims is to identify how R&D investments vary with different posi-

tions n. Rewrite the FOCs and organize a system of equations F (α, n, xi
2, x

j
2) = 0

and G(α, n, xi
2, x

j
2) = 0 to analyze the effects of n on the equilibrium R&D expen-

ditures xi
2(n) and xj

2(n) using implicit function theorem. Notice that although n

is a discrete variable due to its economic implication, but functions F and G are

monotonic functions in n, therefore they are differentiable in n in order to obtain

the comparative statics.

F (α, n, xi
2, x

j
2) = p′(xi

2) π · αn

[
p(xj

2) + α(1− p(xj
2))−

1

α
· p(xj

2)− (1− p(xj
2))

]
− 1

(4.10)

G(α, n, xi
2, x

j
2) = p′(xj

2) π · 1

αn

[
p(xi

2) + α(1− p(xi
2))−

1

α
· p(xi

2)− (1− p(xi
2))

]
− 1

(4.11)

If n = 0, the solution to the system of Equations (4.10) and (4.11) defines

the symmetric equilibrium xiS∗
2 . If n = 1, it gives the equilibrium xiL∗

2 in case 2

and if n = −1, the equilibrium xiF∗
2 in case 3. Therefore, sign

{
∂xi∗

2

∂n

}
induces the

ranking for the equilibrium R&D expenditures between the cases.
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Take partial derivatives with respect to n, xi
2, x

j
2 for both functions,

∂F

∂xi
2

= p′′(xi
2) π · αn · (α− 1) · (1− α

α
p(xj

2) + 1) < 0 (4.12)

∂F

∂xj
2

= p′(xi
2) π · αn−1 · (α− 1) · (1− α) · p′(xj

2) < 0 (4.13)

∂G

∂xi
2

= p′(xj
2) π · 1

αn+1
· (α− 1) · (1− α) · p′(xi

2) < 0 (4.14)

∂G

∂xj
2

= p′′(xj
2) π · 1

αn
· (α− 1) · (1− α

α
p(xi

2) + 1) < 0 (4.15)

∂F

∂n
= p′(xi

2) π · (α− 1) · (1− α

α
p(xj

2) + 1) · αn lnα > 0 (4.16)
∂G

∂n
= −p′(xj

2) π · (α− 1) · (1− α

α
p(xi

2) + 1) · α−n lnα < 0 (4.17)

Due to Assumption 4.1 and α > 1, the signs of Equations (4.12) to (4.27) are

easy to check.

The determinant of Jacobian matrix is,

J =

∣∣∣∣∣
∂F
∂xi

2

∂F

∂xj
2

∂G
∂xi

2

∂G

∂xj
2

∣∣∣∣∣ = ∂F

∂xi
2

· ∂G
∂xj

2

− ∂F

∂xj
2

· ∂G
∂xi

2

(4.18)

The stability condition, which requires that the best response functions cross

correctly (Henriques, 1990), is calculated from
∣∣∣∂xi

2

∂xj
2

∣∣∣ < 1. From (4.10) and (4.11),

according to implicit function theorem,

∣∣∣∣∂xi
2

∂xj
2

∣∣∣∣ =
∣∣∣∣∣∣−

∂F

∂xj
2

∂F
∂xi

2

∣∣∣∣∣∣ =
∂F

∂xj
2

∂F
∂xi

2

< 1

∣∣∣∣∣∂xj
2

∂xi
2

∣∣∣∣∣ =
∣∣∣∣∣∣−

∂G
∂xi

2

∂G

∂xj
2

∣∣∣∣∣∣ =
∂G
∂xi

2

∂G

∂xj
2

< 1

which imply ∂F

∂xj
2

> ∂F
∂xi

2
and ∂G

∂xi
2
> ∂G

∂xj
2

. Therefore, J is strictly positive. The

sufficient conditions for the stability conditions to hold are,

p′ip
′
j(1− α) > p′′i ((1− α)pj + α) (4.19)

p′jp
′
i(1− α) > p′′j ((1− α)pi + α) (4.20)
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Besides, firms’ R&D investment choices are strategic substitutes due to ∂xi
2

∂xj
2

<

0.

Then the derivatives ∂xi∗
2

∂n
, ∂xj∗

2

∂n
can be solved from,

∂xi∗
2

∂n
= − 1

J

∣∣∣∣∣
∂F
∂n

∂F

∂xj
2

∂G
∂n

∂G

∂xj
2

∣∣∣∣∣ = − 1

J

(
∂F

∂n
· ∂G
∂xj

2

− ∂F

∂xj
2

· ∂G
∂n

)
(4.21)

∂xj∗
2

∂n
= − 1

J

∣∣∣∣∣
∂F
∂xi

2

∂F
∂n

∂G
∂xi

2

∂G
∂n

∣∣∣∣∣ = − 1

J

(
∂F

∂xi
2

· ∂G
∂n

− ∂F

∂n
· ∂G
∂xi

2

)
(4.22)

The signs of (4.21) and (4.22) depend on the term in parentheses. It is obvious

that the term in parentheses of (4.21) is always negative and that of (4.22) is

positive. Thus, we have the following Lemma.

Lemma 4.1 ∂xi∗
2

∂n
> 0,

∂xj∗
2

∂n
< 0, that is, xiL∗

2 > xiS∗
2 > xiF∗

2

It shows that the equilibrium xi∗
2 increases with the leads ahead. Firm i invests

the most in period 2 if it is the only one who succeeded in period 1. Conversely,

it invests the least in period 2 if only the rival succeeded in period 1. Since

the revenue is assumed to be αnπ, the marginal benenit from a given fixed level

of R&D is increasing with n. At the same time, the marginal cost of exerting

effort is the same. Therefore the firm with more leads would like to exert more

efforts in R&D. It is consistent with Grosman and Shapiro (1985). Moreover, it

is analogous of another proposition in the R&D literature, which states that the

firm with lower initial costs in a Cournot duopoly has a higher incentive than its

rival to engage in cost-reducing R&D.

Next, consider how the equilibrium profits of firm i in period 2 changes as n

changes. The corresponding equilibrium profits of firm i is,

πi
2(n) = p(xi

2) p(x
j
2) α

nπ + p(xi
2) (1− p(xj

2)) α
n+1π+

(1− p(xi
2)) p(x

j
2) α

n−1π + (1− p(xi
2)) (1− p(xj

2)) α
nπ − xi

2

(4.23)

Totally differentiating eq.(4.23) with respect to n gives,

dπi
2

dn
=

∂πi
2

∂xi
2

∂xi∗
2

∂n
+

∂πi
2

∂xj
2

∂xj∗
2

∂n
+

∂πi
2

∂n
(4.24)
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The first and second terms on the right-hand side represent the indirect effects,

which are the change in profit due to the induced change in its own and rival

firm’s R&D investments. Since in the Nash equilibrium the R&D investment of

firm i is already at optimum, the first term is identially zero. The third term

shows the direct effect of a change of the number of leads on profits. Since profits

increase with every single success, the third term is always positive.

Now identify the sign of the second term ∂πi
2

∂xj
2

,

∂πi
2

∂xj
2

= p(xi
2)p

′(xj
2)α

nπ − p(xi
2)p

′(xj
2)α

n+1π + (1− p(xi
2))p

′(xj
2)α

n−1π − (1− p(xi
2))p

′(xj
2) α

nπ

= p(xi
2)p

′(xj
2)α

nπ (2− α− 1

α
) + p′(xj

2) α
nπ (

1

α
− 1)

Since α > 1, ∂πi
2

∂xj
2

is always negative. Therefore, according to eq.(4.24), the

equilibrium profit is an increasing function of the position n.

Lemma 4.2 ∂πi∗
2

∂n
> 0,

∂πj∗
2

∂n
< 0. That is to say, πiL∗

2 > πiS∗
2 > πiF∗

2 .

The intuition behind Lemma 4.2 is that since the leader firm after period 1

invests more in R&D than the follower firm, and the probability of success in-

creases with the R&D expenditure and the revenue increases with more successes,

the leader firm is more likely to win in the next period and ends up with higher

revenue. Although the leader spends more on R&D, the expected revenue is even

larger which leads to higher corresponding profits.

In addition, α is another key exogenous parameter which has effects on R&D

investment in this model. Consider how α affects the equilibrium R&D invest-

ments and the corresponding profits. The analytical results focus on the sym-

metric case where n = 0, which defines the symmetric equilibrium outputs, xS∗
2

and πS∗
2 . The partial derivative of eq.(4.10) when n = 0 with respect to α is,

∂F

∂α
= p′(xi

2) π ·

[
1− p(xj

2) +
p(xj

2)

α2

]
> 0 (4.25)
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Using implicit function theorem,

dxS∗
2

dα
= −

∂F
∂α

∂F
∂xi

2
+ ∂F

∂xj
2

> 0

It shows that the equilibrium R&D investment in symmetric case is an in-

creasing function of the revenue multiplier α. Unsurprisingly, larger revenue

increment provides higher incentive to engage in R&D if firms are at the same

technological level.

dπS∗
2

dα
=

∂πi
2

∂xi
2

dxiS∗
2

dα
+

∂πi
2

∂xj
2

dxjS∗
2

dα
+

∂πi
2

∂α

with
∂πi

2

∂α
= p(xi

2)(1− p(xj
2))π − p(xj

2)(1− p(xi
2))π

α2
> 0

The first term in the RHS is zero since xi
2 is at optimum. The second term is

negative while the third term is positive. Therefore the sign depends on whether

the direct effect dominates the indirect effect or conversely. Although α increases

the R&D investment, its impact on profits is ambiguous.

Period 1 According to different outcomes of period 1, solving period 2 problem

gives the different equilibrium R&D investments xiS∗
2 , xiL∗

2 , xiF∗
2 , and the corre-

sponding equilibrium profits πiS∗
2 , πiL∗

2 and πiF∗
2 . Moving backward to period 1,

firm i chooses xi
1 to maximise not only the periodic profit πi

1, but also taking into

account the expected profits in period 2, E(πi
2).

V i
1 =πi

1 + E(πi
2) (4.26)

where

πi
1 =

[
p(xi

1)p(x
j
1) + q(xi

1)q(x
j
1)
]
π + p(xi

1)q(x
j
1) απ + q(xi

1)p(x
j
1)

π

α
− xi

1 (4.27)

E(πi
2) =

[
p(xi

1) p(x
j
1) + q(xi

1)q(x
j
1)
]
πi∗S
2 + p(xi

1)q(x
j
1) π

iL∗
2 + q(xi

1) p(x
j
1) π

iF∗
2

(4.28)
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The equilibrium xi∗
1 satisfies the first order condition,

dV i
1

dxi
1

=
∂πi

1

∂xi
1

+
∂E(πi

2)

∂p(xi
1)

· dp(x
i
1)

dxi
1

= 0 (4.29)

where

∂E(πi
2)

∂p(xi
1)

= p(xj
1) π

iS∗
2 + (1− p(xj

1)) π
iL∗
2 − p(xj

1) π
iF∗
2 − (1− p(xj

1)) π
iS∗
2

= p(xj
1)(π

iS∗
2 − πiF∗

2 ) + (1− p(xj
1))(π

iL∗
2 − πiS∗

2 )

(4.30)

Due to the ranking of the equilibrium profits in period 2, ∂E(πi
2)

∂p(xi
1)

> 0. There-

fore, evaluating the FOC of (4.29) at xi
1 = xiS∗

2 yields,

dV i
1

dxi
1

∣∣∣∣
xi
1=xiS∗

2

= 0 +
∂E(πi

2)

∂p(xS
2 )

· dp(x
S
2 )

dxS
2

> 0 (4.31)

The first term of eq.(4.29) is equivalent to the first order condition of the

symmetric case in period 2 which implicitly defines xiS∗
2 (i.e., eq.(4.5)). The

second term which is positive tells that the expected profits of period 2 increase

with the R&D investment in period 1. In addition, it is easy to check the second-

order condition is always satisfied (negative). Therefore the equilibrium R&D

investment in period 1 xi∗
1 is larger than that in period 2 of symmetric case xiS∗

2 .

Proposition 4.1 If firms are at the same technology level, each firm has higher

incentive to invest in R&D in period 1 than in period 2, i.e., xi∗
1 > xiS∗

2 .

The intuition behind Proposition 4.1 is as follows. Due to the multi-period

nature of the game and stochastic R&D outcomes, firm’s R&D choice in period

1 affects not only period 1’s profits, but also the expected profits of period 2.

Since being a leader gives the most while being a follower is the worst in period

2, the higher the probability of success, the more the expected profits in period

2, which gives further incentives for the firm to invest in period 1.

Due to the stochastic R&D outcomes, there are 5 different positions for a

specific firm at the end of the 2-period game, which are shown in Figure 4.1. To
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determine whether the firms are evolving neck to neck or diverging, one could

calculate the probability of each possible outcome. Let Pt be the probability of

being symmetric at the end of period t. At the beginning of the game, both firms

are at the same technology level, that is, P0 = 1. After period 1, the probability

of firms still being symmetric, that is, both firms succeed or fail in period 1,

is P1 = p(x1)
2 + (1 − p(x1))

2. Then at the end of the game, i.e., the end of

period 2, there are three possible paths leading to the position where n = 0. The

probability is,

P2 = (p(x1)
2+(1−p(x1))

2)·(p(xS
2 )

2+(1−p(xS
2 ))

2)+2·p(x1)(1−p(x1))·p(xF
2 )(1−p(xL

2 ))

Proposition 4.2 The probability of firms being symmetric decreases as the game

proceeds, i.e., P0 > P1 > P2.

Proof: It is obvious that,

P1 − P0 =p(x1)
2 + (1− p(x1))

2 − 1

=− 2p(x1)(1− p(x1)) < 0, as 0 < p(x1) < 1

P2 − P1 =(p(x1)
2 + (1− p(x1))

2) · (p(xs
2)

2 + (1− p(xs
2))

2 − 1)

+ 2 · p(x1)(1− p(x1)) · p(xF
2 )(1− p(xL

2 ))

=(p(x1)
2 + (1− p(x1))

2) · (−2 · p(xs
2)(1− p(xs

2)))

+ 2 · p(x1)(1− p(x1)) · p(xF
2 )(1− p(xL

2 ))

as xF
2 < xs

2 < xL
2 and p′(x) > 0, p(xF

2 ) < p(xs
2) < p(xL

2 ). Therefore,

p(xs
2)(1− p(xs

2)) > p(xF
2 )(1− p(xL

2 )) > 0

Besides,

(p(x1)
2 + (1− p(x1))

2)− 2 · p(x1)(1− p(x1)) = 4(p(x1)−
1

2
)2 ⩾ 0

113



Combine the above two terms,

P2 − P1 < 0

4.3.2 T-period game

To make the results more general, following is the analysis for the T-period game.

The last period’s problem in the T-period game is similar to the last period’s

problem in the 2 period game of the last section. The only difference is the range

of position n, from 3 possible values in 2-period game to 2T − 1 possible values,

where n = −(t− 1),−(t− 2), ..0, ..t− 2, t− 1. Recall the FOCs of maximisation

problems for the final period are as follows,

F (α, n, xi
T , x

j
T ) = p′(xi

T ) π · αn

[
p(xj

T ) + α(1− p(xj
T ))−

1

α
· p(xj

T )− (1− p(xj
T ))

]
− 1

(4.32)

G(α, n, xi
T , x

j
T ) = p′(xj

T ) π · 1

αn

[
p(xi

T ) + α(1− p(xi
T ))−

1

α
· p(xi

T )− (1− p(xi
T ))

]
− 1

(4.33)

Using the implicit function theorem, it was shown that dx
i∗
T (n)

dn
> 0 and dxj∗

T (n)

dn
<

0 in the final period, which further implies that the corresponding equilibrium

profit dπi∗
T (n)

dn
> 0 and dπj∗

T (n)

dn
< 0.

Next, consider the R&D investments in other intermediate periods which are

not analysed in the 2-period game. Moving back to the period t = T − 1, firm i

maximises the total value by choosing xi
T−1(n),

V i
T−1(n) =πi

T−1(n) + E(πi
T (n))

=
[
piT−1(n)p

j
T−1(n) + qiT−1(n)q

j
T−1(n)

] [
αnπ + πi∗

T (n)
]

+piT−1(n)q
j
T−1(n)

[
αn+1π + πi∗

T (n+ 1)
]

+qiT−1(n)p
j
T−1(n)

[
αn−1π + πi∗

T (n− 1)
]
− xi

T−1(n)

(4.34)
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The rival firm j’s objective is,

V j
T−1(n) =πj

T−1(n) + E(πj
T (n))

=
[
piT−1(n)p

j
T−1(n) + qiT−1(n)q

j
T−1(n)

] [
α−nπ + πj∗

T (n)
]

+piT−1(n)q
j
T−1(n)

[
α−(n+1)π + πj∗

T (n+ 1)
]

+qiT−1(n)p
j
T−1(n)

[
α−(n−1)π + πj∗

T (n− 1)
]
− xj

T−1(n)

(4.35)

The equilibrium xi∗
T−1(n) and xj∗

T−1(n) satisfy,

∂V i
T−1(n)

∂xi
T−1(n)

= pi
′

T−1(n)
{
pjT−1(n)

[
αnπ + πi∗

T (n)− αn−1π − πi∗
T (n− 1)

]
+(1− pjT−1(n))

[
αn+1π + πi∗

T (n+ 1)− αnπ − πi∗
T (n)

]}
− 1 = 0

(4.36)

∂V j
T−1(n)

∂xj
T−1(n)

= pj
′

T−1(n)
{
piT−1(n)

[
α−nπ + πj∗

T (n)− α−(n+1)π − πj∗
T (n+ 1)

]
+(1− piT−1(n))

[
α−(n−1)π + πj∗

T (n− 1)− α−nπ − πj∗
T (n)

]}
− 1 = 0

(4.37)

Similar to 2-period game, implicit function theorem for a system of equations

gives comparative statics results on how xi∗
T−1(n) and xj∗

T−1(n) respond to n. Let

H and Z represent the first-order conditions given in (4.42) and (4.43).

∂xi∗
T−1

∂n
= −

∂H
∂n

∂Z

∂xj
T−1

− ∂H

∂xj
T−1

∂Z
∂n

∂H
∂xi

T−1

∂Z

∂xj
T−1

− ∂H

∂xj
T−1

∂Z
∂xi

T−1

(4.38)

The denominator of the above expression can be interpreted as a stability

condition and, hence, is positive. Besides, it is easy to check ∂H
∂n

> 0, ∂Z
∂n

< 0 and
∂Z

∂xj
t−1

< 0.
∂H

∂xj
T−1

= pi
′

T−1(n)p
j′

T−1(n) ·M (4.39)

where
M =αnπ + πi∗

T (n)− αn−1π − πi∗
T (n− 1)− (αn+1π + πi∗

T (n+ 1)− αnπ − πi∗
T (n))

=(2αnπ − αn−1π − αn+1π) + (2πi∗
T (n)− πi∗

T (n− 1)− πi∗
T (n+ 1))

(4.40)

where (2αnπ − αn−1π − αn+1π) = αn−1π · (2α− 1− α2) < 0 due to α > 1.

The sign of (2πi∗
T (n)−πi∗

T (n−1)−πi∗
T (n+1)) expresses whether the increment

of equilibrium profits follows an increasing rate in n. The numerical result in the
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next section shows that the gain being one more lead ahead is more than the loss

being one less lead ahead, that is, (2πi∗
T (n)− πi∗

T (n− 1)− πi∗
T (n+ 1)) < 0.

Therefore, ∂H

∂xj
t−1

< 0 implies that the numerator of eq.(4.44) is negative, which

further shows ∂xi∗
T−1(n)

∂n
> 0 and conversely, for the rival firm ∂xj∗

T−1(n)

∂n
< 0.

Moving to the period t = T −2, it follows that the maximisation problem has

the same structure of period T − 1 due to the iteration. Therefore, I have the

following result.

Proposition 4.3 In each period t, the firm’s R&D investment is increasing in

the number of leads, i.e., dxi∗
t (n)

dn
> 0.

Since the revenue function is assumed to be αnπ, the gain from an additional

innovation starting from location n is αn(α− 1)π, whereas starting from location

n − 1, it is αn−1(α − 1)π which is smaller than αn(α − 1)π. Therefore it drives

the increase in the firm’s R&D investment with its location.

Next, consider how the equilibrium total value in period t responds to the

position n. Totally differentiating eq.(4.40) with respect to n gives,

dV i
t

dn
=

∂V i
t

∂xi
t

∂xi∗
t

∂n
+

∂V i
t

∂xj
t

∂xj∗
t

∂n
+

∂V i
t

∂n
(4.41)

The first term on the RHS is zero since in the Nash equilibrium the R&D

investment of firm i is already at optimum. The third term shows the direct

effect of a change of the number of leads on profits. Since profits increase with

every single success, the third term is always positive. One can check ∂V i
t

∂xj
t

< 0 and

from the previous analysis, ∂xj∗
t

∂n
< 0, which implies the second term is positive.

Therefore, the overall effect of a change in position n on total value is positive.

Proposition 4.4 In each period, firm i’s total value increases in the number of

leads, i.e., dV i∗
t (n)

dn
> 0.

In addition, I analyze how the R&D investment changes across periods while

keeping the position fixed.
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First, it follows the same logic to compare the equilibrium R&D investment

in each period xi∗
t (n) with that in the final period xi∗

T (n) as to compare x∗
1 with

xS∗
2 in the 2-period game.

dV i
t (n)

dxi
t(n)

=
∂πi

t(n)

∂xi
t(n)

+
∂E(πi

t+1(n))

∂xi
t(n)

= 0 (4.42)

The first term has the same expression as the first order condition of the final

period problem ∂πi
T (n)

∂xi
T (n)

, which implicitly defines the equilibrium R&D investment

of the final period xi∗
T (n). One can check the second term ∂E(πi

t+1(n))

∂xi
t(n)

is always

positive due to the ranking of equilibrium profits at different positions (∂π
i
t(n)

∂n
> 0)

and Assumption 4.1. Therefore, the first term must be negative which implies

that xi∗
t (n) > xi∗

T (n).

When comparing the equilibrium R&D investments in any two consecutive

periods, I have the following result. The complete proof is shown in the Appendix.

Proposition 4.5 For the same position, the firm decreases the investment as the

game proceeds, i.e., xi∗
t−1(n) > xi∗

t (n).

4.4 Numerical Simulations

In order to illustrate the equilibrium properties of the T -period model, I further

provide some results of a numerical simulation. In this part, I assume that the

probability function is given by,

p(xi
t) =

xi
t

1 + xi
t

(4.43)

It has the following properties: p(0) = 0, lim
x→∞

p(x) = 1, p′(xi
t) =

1
(1+xi

t)
2 > 0 and

p′′(x) = − 2
(1+xi

t)
3 < 0.

Before starting the simulation, the parameters in the model need to be cali-

brated. Because (4.49) does not satisfy assumption p′(0) = ∞, we need to choose

parameter values that ensure that the firms are active for all T periods. In this

model, the total number of periods T is exogenous. In the analytical analysis,
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I make Assumption 4.1 which then implies that the firms are active during the

whole game regardless of parameters α and π, which means that both firms are

willing to invest in R&D in each period. In the analytical part, it is guaranteed by

Assumption 4.1 regardless of parameters α and π. However, it is relatively hard

to come up with a simple probability function which perfectly satisfies Assump-

tion 4.1. The probability function in (4.49) does not ensure that the solution to

the FOCs is an interior solution without restrictions on α and π. π is a scale pa-

rameter, which denotes the revenue if both firms are at the same technology level,

therefore changing the value of π does not lead to qualitatively different results.

While α denotes the revenue multiplier from successful innovation, or a measure-

ment of R&D efficiency. Therefore, I fix π sufficiently large at π = 1000 and

mainly focus on the effect of α. Table 4.1 summarizes the simulation parameters.

Hence, the numerical results focus on the following issues:

• The time paths of the R&D investment and technological difference, given

T = 10;

• The effect of α, which denotes the revenue multiplier, where α ∈ (1, 2).

Table 4.1: Simulation parameters
Parameters Values Explanations
α (1,2) revenue multiplier
T 10 Total number of periods
π 1000 Benchmark revenue
t 1,2,..,10 Each period
xi Endogenous Firm i’s R&D investment

4.4.1 Time paths of the R&D investments and values

First, I show that the analytical results obtained from the 2-period game extend

to the T-period game.

In the 10-period game, Figure 4.2 shows the individual equilibrium R&D
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Figure 4.2: Equilibrium R&D investment in period t at position n(α = 1.2, T =
10)

investments of firms i and j in each period t at each position n. Since firm i with

n < 0 is identical to firm j with n > 0, Figure 4.2 is drawn where firm i acts as

the leader (shown with ∗) and firm j acts as the follower, that is, n > 0, which is

enough to capture all cases.

The firm’s R&D investment trajectories exhibit following features:

i) in each period t, the leader invests more than the follower;

ii) in each period t, the more leads firm i is ahead, the more it invests. More-

over, it increases at an increasing rate;

iii) at each position n, the R&D investment decreases as the game proceeds.

The time paths of R&D investments resonates with the results in previous

chapters. Chapter 2 shows that the leader has higher incentive to pay for the

license for a process innovation. Both indicate that in general, the gap between
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Figure 4.3: Equilibrium value in period t at position n(α = 1.2, T = 10)

firms tends to widen, although chapter 3 provides a possible factor (i.e. asym-

metric spillover rate) which works against the trend.

The corresponding equilibrium value of the firm experiences a similar pattern

as shown in Figure 4.3. The results are consistent with the ’joint-profit’ effect

proposed in Budd, Harris and Vickers (1993), which states that the leader tends

to make greater investments if joint profits from the product market are higher

when the gap between firms grows. Although the product market is ignored in this

model, the joint profits αn + 1
αn increase with n, which denotes the technological

difference. Moreover, it is also consistent with the asymmetric Cournot duopoly,

where the total industry profit is increasing as the asymmetry between two firms

increases. The intuition is that being a leader is more profitable than being a

follower and the firm can benefit from being the leader more if there are more

periods remaining in the game. Therefore, at the beginning of the game, the firm
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Figure 4.4: Total R&D investments in period t at position n(α = 1.2, T = 10)

has the highest incentive to invest in R&D in order to become the leader and as

the game continues, the firm knows that it is much closer to the finishing line, and

the incentive therefore decreases. It is analogous with the statement proposed by

Budd, Harris and Vickers (1993). They point out the endpoint effect that relaxes

efforts at or near the endpoint.

Figure 4.4 illustrates the trajectory of total R&D investment. Since both the

leader and follower decrease the individual R&D investment over time, it is ob-

vious that the total R&D investment decreases as the game proceeds. Moreover,

Figure 4.4 shows that in each period t, the total R&D investment increases as

the technological difference increases. To be specific, with bigger technological

difference between the firms, the leader will invest more than the follower will

reduce it. We know from the previous analysis, the technological difference n

and time path t have opposite effects on the R&D investments, however, Figure
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4.4 shows that the total R&D investment reaches the peak at the beginning of

the game (t=1), which illustrates that the endpoint effect is stronger than the

joint-profit effect if α is not too large.

4.4.2 The effect of α on R&D investments

Figure 4.5 and 4.6 show how leader’s (firm i) and follower’s (firm j) R&D in-

vestments vary in each period as α changes, respectively. The black bold line

represents the R&D investment if firms are symmetric, that is n = 0, in each pe-

riod and it is obviously increasing with α, which is proved in the previous section.

And they are identical in Figure 4.5 and 4.6. Specifically, in Figure 4.5, all other

curves above the black one represent the leader’s R&D investment at position

n = 1, 2, ..., t− 1 respectively. For example, in period 3, the top curve represents

xi∗
3 when n = 2, and the middle one is xi∗

3 when n = 1. Figure 4.5 shows that the

leader firm invests more with higher α and with more steps ahead, i.e. larger n,

the effect of α is more significant. It is not surprising that the leader’s incentive

to engage in R&D increases since the increment of profits grows with α.

By contrast, in Figure 4.6, all curves below the black one represent follower’s

R&D at position n = 1, 2, .., t − 1. For example, in period 3, the bottom curve

represents xj∗
3 when n = 2, and the middle one is xj∗

3 when n = 1. If the follower

is not much behind, it increases the R&D investment with higher α, while as the

game goes on, if the firm is behind by more lags, it shows initially increasing

and then decreasing trend with α. It is intuitive that if the follower is a few

lags behind, the probability that it gets closer to the leader or even catches up

with the leader is higher than that with much more lags behind. Therefore, the

incentive to engage in R&D increases in α. However, with more lags behind, the

probability to catch up with the leader is even lower with higher α.

From the industry’s perspective (shown in Figure 4.7), the total R&D invest-

ment increases with α, which means the effect of α on leader’s R&D dominates

that on follower’s. Futhermore, the effect of α is even stronger when the techno-
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Figure 4.5: Leader’s R&D investments with changing α
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Figure 4.6: Follower’s R&D investments with changing α
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Figure 4.7: Total R&D investment with changing α
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logical difference is larger.

4.4.3 Time paths of the technological difference and the
effect of α

One of the aims is to identify how the technological difference between two ini-

tially identical firms evolves with stochastic R&D outcomes in a multi-period

game. Is it the case that two firms are neck to neck or they are diverging as

the game proceeds? Therefore, the main issues are to determine a measurement

of technological difference and divergence. In each period t, n is defined as the

difference between the total number of successes of firm i and those of its rival,

where n = −(t − 1),−(t − 2), .., 0, ..t − 2, t − 1. The situation where firm i is

n leads ahead is equivalent to where firm i is |n| lags behind from the whole

industry’s perspective. That is to say, |n| expresses the technological difference

between firms. As per divergence, due to the stochastic outcomes and dynamic

game, although there are t+ 1 possible outcomes, i.e., |n| = 0, 1, ..., t, at the end

of each period t, many paths could lead to one of the outcomes. As the game

goes on, since the possible values of n increase likewise, it is hard to normalize

the divergence. Let pt |n express the probability of technological difference |n| in

period t. Therefore pt |n̸=0 is employed to measure the divergence when consid-

ering different α. Notice p0 |n=0 = 1 and p10 |n therefore denotes the probability

of different possible outcomes at the end of the 10-period game.

Figure 4.8 shows that the probability of being symmetric (shown with ∗) con-

tinuously decreases as the game proceeds. It is consistent with the expectation

that firms who start symmetric become more asymmetric with time. In addition,

Figure 4.8 shows that the probability of being symmetric at the end of the game

increases with α. To be specific, with lower value of α (around 1.2), pt |n ̸=0 is

higher than pt |n=0, which means firms are more likely to end up with being

asymmetric. By contrast, with relatively higher value of α, although the proba-

bility being asymmetric increases as the game continues, they are more likely to
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Figure 4.8: Time paths of the technological difference with changing α (T = 10)

be symmetric at the end. Since α represents the revenue multiplier, the intuition

is that with higher α, the firm knows that it can earn more with a single success,

which gives larger incentive to invest in R&D so that the probability of success

becomes larger. But if both increase their investment, they are more likely to

be symmetric at the end. In general, it indicates that although the probability

being asymmetric increases, the technological difference between firms is not as

big at the end of the game.

4.5 Conclusions

In this chapter, I mainly focus on two research questions, how dynamic compe-

tition and stochastic outcome of R&D affect firms’ equilibrium R&D investment

and how the technological difference between two initially identical firms evolves

over time. The model is different from the traditional patent race model. The

127



model in this chapter allows firms to invest in every period and both are likely

to obtain the technology progress in every period. The key endogenous param-

eter, position n, captures the history and I assume the revenue depends on the

position. I find that the leader has higher incentive to invest than the follower

and the more leads the firm is ahead, the more investment it makes. As the

game proceeds, both the leader and follower decrease R&D. That is to say, the

position n and time path t show opposite effects on R&D investment. Which

one dominates depends on the exogenous parameter α. As for the evolution of

technological difference between firms, since firms start from a symmetric posi-

tion, the probability being asymmetric indeed increases continuously. However,

since I assume both firms are active during the whole game, the technological

difference is not so big at the end of the game.

There are some possible ways to extend this chapter in future research. First,

the probability of success is assumed to be independent across periods in this

model. More realistically, if the firm invests significantly in the previous periods

but fails, then it may succeed in the upcoming period by investing a little. There-

fore, the probability of success depends on cumulative R&D. Second, if a firm is

allowed to exit the market, the end of game should be modeled as being endoge-

nous instead of exogenous. Therefore, relaxing Assumption 4.1 to coincide with

the endogenous end of the game is another possible extension. Third, it might

be interesting to know if we can infer from R&D investment data whether the

firm has succeeded or not.

Appendix

Proof of Proposition 4.3

Let xi
m(n) and xj

m(n) denote the R&D investment of firm i and its rival firm j

in period m, where m = 1, 2, ..., t and n = −(m−1),−(m−2), ., 0, ..,m−2,m−1,

and the corresponding probability of success and failure are denoted by pim(n),
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Figure 4.9: The structure of 2-period and 3-period game

qim(n) for firm i and pjm(n), qjm(n) for firm j, where q = 1 − p. In addition, the

total payoff of firm i and j in period m is denoted by V i
m(n) and V j

m(n).

The firms are symmetric at the beginning, that is, n = 0. Suppose that

there are t periods left in the game. Take any contingent plan of investments for

firm i: (xi
1, x⃗

i
2, . . . , x⃗

i
t). x⃗i

2 contains three different investment levels, which are

xi
2(n = −1), xi

2(n = 0), xi
2(n = 1), depending on if firm i won, tied, or lost in

period 1. In general, x⃗i
t contains 2t− 1 different investment levels, depending on

what happened in the previous t− 1 periods. So does pim.

Considering a 2-period game, where t = 2, the total payoff is,

V i
1 |t=2 = π1 + E(π2) (4.44)
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where

π1 =(pi1p
j
1 + qi1q

j
1)π + pi1q

j
1 · απ + qi1p

j
1 · α−1π − xi

1

E(π2) =(pi1p
j
1 + qi1q

j
1) ·

[
(pi2(0)p

j
2(0) + qi2(0)q

j
2(0))π + pi2(0)q

j
2(0) · απ + qi2(0)p

j
2(0) · α−1π − xi

2(0)
]

+pi1q
j
1 ·

[
(pi2(1)p

j
2(1) + qi2(1)q

j
2(1))απ + pi2(1)q

j
2(1) · α2π + qi2(1)p

j
2(1) · π − xi

2(1)
]

+qi1p
j
1 ·

[
(pi2(−1)pj2(−1) + qi2(−1)qj2(−1))α−1π + pi2(−1)qj2(−1)π + qi2(−1)pj2(−1)α−2π − xi

2(−1)
]

(4.45)

The equilibrium R&D investments in a 2-period game include xi∗
1 , x

i∗
2 (n =

0), xi∗
2 (n = 1), xi∗

2 (n = −1), which satisfy,

∂V i
1 |t=2

∂xi∗
1

=
∂π1

∂x1

+
∂E(π2)

∂x1

= 0 (4.46)

∂V i
1 |t=2

∂xi∗
2 (n = 0)

= (pi1p
j
1 + qi1q

j
1) ·

∂πi
2(n = 0)

∂xi∗
2 (n = 0)

= 0 (4.47)

∂V i
1 |t=2

∂xi∗
2 (n = 1)

= pi1q
j
1 ·

∂πi
2(n = 1)

∂xi∗
2 (n = 1)

= 0 (4.48)

∂V i
1 |t=2

∂xi∗
2 (n = −1)

= qi1p
j
1 ·

∂πi
2(n = −1)

∂xi∗
2 (n = −1)

= 0 (4.49)

Next, consider a 3-period game, where t = 3. Let yi1, y⃗i2, y⃗i3 denote the contin-

gent plans for 3-period game.

V i
1 |t=3 = π1 + E(π2) + E(π3) (4.50)

π1 =(pi1p
j
1 + qi1q

j
1)π + pi1q

j
1 · απ + qi1p

j
1 · α−1π − yi1

E(π2) =(pi1p
j
1 + qi1q

j
1) ·

[
(p⃗i2p⃗

j
2 + q⃗i2q⃗

j
2)π + p⃗i2q⃗

j
2 · απ + q⃗i2p⃗

j
2 · α−1π − y⃗i2

]
+pi1q

j
1 ·

[
(p⃗i2p⃗

j
2 + q⃗i2q⃗

j
2)απ + p⃗i2q⃗

j
2 · α2π + q⃗i2p⃗

j
2 · π − y⃗i2

]
+qi1p

j
1 ·

[
(p⃗i2p⃗

j
2 + q⃗i2q⃗

j
2)α

−1π + p⃗i2q⃗
j
2 · π + q⃗i2p⃗

j
2 · α−2π − y⃗i2

]
E(πi

3) =(pi1p
j
1 + qi1q

j
1)
[
(p⃗i2p⃗

j
2 + q⃗i2q⃗

j
2) · πi

3(0) + p⃗i2q⃗
j
2 · πi

3(1) + q⃗i2p⃗
j
2 · πi

3(−1)
]

+pi1q
j
1 ·

[
(p⃗i2p⃗

j
2 + q⃗i2q⃗

j
2) · πi

3(1) + p⃗i2q⃗
j
2 · πi

3(2) + q⃗i2p⃗
j
2 · πi

3(0)
]

+qi1p
j
1 ·

[
(p⃗i2p⃗

j
2 + q⃗i2q⃗

j
2) · πi

3(−1) + p⃗i2q⃗
j
2 · πi

3(0) + q⃗i2p⃗
j
2 · πi

3(−2)
]

(4.51)

with πi
3(n) = (p⃗i3p⃗

j
3 + q⃗i3q⃗

j
3)α

nπ + p⃗i3q⃗
j
3 · αn+1π + q⃗i3p⃗

j
3 · αn−1π − y⃗i3.

Suppose the 3-period game’s equilibrium R&D investments in the first two
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periods are yi∗1 , y
i∗
2 (n = −1), yi∗2 (n = 0), yi∗2 (n = 1), which satisfy

∂V i
1 |t=3

∂yi∗1
=

∂π1

∂yi1
+

∂E(πi
2)

∂yi1
+

∂E(πi
3)

∂yi1
= 0 (4.52)

∂V i
1 |t=3

∂yi∗2 (n = 0)
= (pi1p

j
1 + qi1q

j
1) ·

∂πi
2(n = 0)

∂yi2(n = 0)
+

∂E(πi
3)

∂pi2
· dp

i
2

dyi2
= 0 (4.53)

∂V i
1 |t=3

∂yi∗2 (n = 1)
= pi1q

j
1 ·

∂πi
2(n = 1)

∂yi2(n = 1)
+

∂E(πi
3)

∂pi2
· dp

i
2

dyi2
= 0 (4.54)

∂V i
1 |t=3

∂yi∗2 (n = −1)
= qi1p

j
1 ·

∂πi
2(n = −1)

∂yi2(n = −1)
+

∂E(πi
3)

∂pi2
· dp

i
2

dyi2
= 0 (4.55)

Firstly, compare Eq.(4.53)(4.54)(4.55) with (4.59)(4.60)(4.61) respectively.

∂E(πi
3)

∂pi2
|n=0= (pi1p

j
1 + qi1q

j
1) ·

[
pj2

(
πi
3(0)− πi

3(−1)
)
+ qj2

(
πi
3(1)− πi

3(0)
)]

> 0

∂E(πi
3)

∂pi2
|n=1= pi1q

j
1 ·

[
pj2

(
πi
3(1)− πi

3(0)
)
+ qj2

(
πi
3(2)− πi

3(1)
)]

> 0

∂E(πi
3)

∂pi2
|n=−1= qi1p

j
1 ·

[
pj2

(
πi
3(−1)− πi

3(−2)
)
+ qj2

(
πi
3(0)− πi

3(−1)
)]

> 0

From the previous Proposition, the equilibrium profits in the last period follow
∂πi

3(n)

∂n
> 0, which induces that ∂E(πi

3)

∂p⃗i2
are always positive. Combined with p′(y) >

0, all the second terms in Eq.(4.59)(4.60)(4.61) are positive. Therefore, every

equilibrium R&D investment in the second period yi∗2 (n = 0), yi∗2 (n = 1), yi∗2 (n =

−1), is larger than the corresponding xi∗
2 (n = 0), xi∗

2 (n = 1), xi∗
2 (n = −1).

Next, compare yi∗1 with xi∗
1 . Eq.(4.52) with (4.58). The first term is the

same, which implicitly defines the equilibrium R&D investment when firms are

symmetric in the last period.

∂E(πi
2)

∂xi
1

= p′i1 (p
j
1(π2(0)− π2(−1)) + qj1(π2(1)− π2(0))) > 0 (4.56)

∂E(πi
2) + E(π3)

∂yi1
= p′i1 (p

j
1(V2(0)− V2(−1)) + qj1(V2(1)− V2(0))) > 0 (4.57)

Then the key issue is to determine the magnitude between π2(n)− π2(n− 1)

with V2(n)− V2(n− 1). It is equivalent to compare dπ∗
2

dn
with dV ∗

2

dn
.

πi∗
2 (n) =(pi2p

j
2 + qi2q

j
2)α

nπ + pi2q
j
2 · αn+1π + qi2p

j
2 · αn−1π − xi

2

V i∗
2 (n) =(pi2p

j
2 + qi2q

j
2)(α

nπ + πi∗
3 (n)) + pi2q

j
2 · (αn+1π + πi∗

3 (n+ 1)) + qi2p
j
2(α

n−1π + πi∗
3 (n− 1))− yi2
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Both πi∗
2 (n) and πi∗

3 (n) are the equilibrium payoffs of the last period in 2-

period and 3-period game respectively. Therefore they are identical. Substitute

πi∗
3 with πi∗

2 ,

∆ ≡ V i∗
2 (n)− πi∗

2 (n) =(pi2p
j
2 + qi2q

j
2)(α

nπ + πi∗
2 (n)) + pi2q

j
2 · (αn+1π + πi∗

2 (n+ 1))

+qi2p
j
2(α

n−1π + πi∗
2 (n− 1))− yi2 − πi∗

2 (n)

Totally differentiate V i∗
2 (n)− πi∗

2 (n) with respect to n,

d∆

dn
=
∂∆

∂yi2

dyi2
dn

+
∂∆

∂yj2

dyj2
dn

+
∂∆

∂n
(4.58)

+
∂∆

∂πi∗
2 (n)

· π′i∗
2 (n) +

∂∆

∂πi∗
2 (n+ 1)

· π′i∗
2 (n+ 1) +

∂∆

∂πi∗
2 (n− 1)

· π′i∗
2 (n− 1)

(4.59)

The first term in (4.64) is zero and the second and third terms are positive.

(16) ≡(pi2p
j
2 + qi2q

j
2 − 1) · π′i∗

2 (n) + pi2q
j
2 · π′i∗

2 (n+ 1) + qi2p
j
2 · π′i∗

2 (n− 1)

=pi2q
j
2 · (π′i∗

2 (n+ 1)− π′i∗
2 (n))− qi2p

j
2 · (π′i∗

2 (n)− π′i∗
2 (n− 1))

Due to the convexity of the equilibrium payoff πi∗
2 in parameter n,

π′i∗
2 (n+ 1)− π′i∗

2 (n) > π′i∗
2 (n)− π′i∗

2 (n− 1) > 0

In addition,

pi2q
j
2 − qi2p

j
2 = pi2 − pj2 ⩾ 0 for n ⩾ 0

Therefore, (4.65) > 0, which immediately follows that d∆
dn

> 0, that is, dV ∗
2

dn
>

dπ∗
2

dn
, which further illustrates that ∂E(πi

2)

∂xi
1

in Eq.(4.62) is smaller than ∂E(πi
2)+E(π3)

∂yi1

in Eq.(4.63). According to Eq.(4.52) and (4.58), ∂π1

∂x1
is therefore larger than ∂π1

∂y1
,

which means y1 moves even furthur away from the maximization point in the last

period than x1, that is, y1 > x1.

Moreover, if the firms are still symmetric after period 1 in a 3-period game,

then it follows the same situation as the beginning of a 2-period game. That is
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to say, yi∗2 (n = 0) = xi∗
1 , yi∗3 (n = 0) = xi∗

2 (n = 0), yi∗3 (n = 1) = xi∗
2 (n = 1) and

yi∗3 (n = −1) = xi∗
2 (n = −1).

To summarize the proof above, one can get,

yi∗1 > yi∗2 (n = 0) > yi∗3 (n = 0)

yi∗2 (n = 1) > yi∗3 (n = 1)

yi∗2 (n = −1) > yi∗3 (n = −1)
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Chapter 5

Conclusion

This thesis has provided a fuller picture of technology development, from the

R&D stage to the technology diffusion stage. All the research questions are mo-

tivated by the features of R&D activity and market structure. At the R&D

stage, I studied how asymmetric firms’ R&D choices are affected by the one-way

spillover and accordingly, how the cost gap between firms varies. Moreover, by

employing the uncertain outcome of R&D, I studied how firms’ R&D choices are

affected in a multi-period game and how the technological difference between

initially identical firms evolves. After a successful innovation, the innovator now

is willing to maximise the return from this innovation. I introduced a fully flex-

ible discriminatory licensing scheme for the outside innovator in an asymmetric

duopoly market and determined the privately optimal and socially optimal strat-

egy.

The whole story can be explained as follows. Assume there are two firms

with the same technological level in the market. If they engage in R&D activities

themselves and try to make technological progress, the uncertainty of R&D under

long-term competition leads to a growing technological gap between two initially

symmetric firms. Now the small firm tries to stop the divergence and narrow the

gap with the large firm. I found that the one-way spillover is a possible factor

which drives the small firm to invest more in R&D so that the small firm may

catch up with the larger firm. If the firms just buy the license from an outside
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innovator, the small firm has higher incentive to pay for the license if it is a

product innovation while less incentive if it is a process innovation.

The three chapters analyse the R&D stage and diffusion stage separately.

Specifically, chapter 2 excludes the R&D stage of the innovator and assumes

instead that the technology has already been discovered. Chapter 3 and 4 only

focus on R&D stage under different environments. One possible extension is to

combine two stages and determine the optimal R&D choice and the corresponding

optimal licensing strategy to maximise the payoff for either the inside innovator

or outside innovator.

In addition, the innovation in chapter 2 is owned by an outside innovator

which is not a producer in the market. While the R&D activity in chapter 3 and

4 is done by the producers and therefore if it succeeds, they act as the inside

innovator. Another possible extension is to investigate under what conditions a

firm prefers to just act as an outside innovator without production and under

what conditions the firm prefers to be an inside innovator, which provides a

platform to link those two roles.

Another limitation of this thesis is that firms are always active in the market,

regardless of whether they obtain the license or not in chapter 2, or whether they

successfully engage in R&D in chapter 3 and 4. This assumption can be relaxed

to allow a firm to exit the market.
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