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ABSTRACT Three strains isolated by geosmin enrichment from a sand filter in an
Australian drinking water treatment works were genome sequenced to identify their
taxonomic placement, and a bench-scale batch experiment confirmed their geosmin-
degrading capability. Using the average nucleotide identity based on the MUMmer
algorithm (ANIm), pairwise digital DNA-DNA hybridization (dDDH), and phylogenomic
analyses, the strains were identified as Sphingopyxis species.

Proposed in 2001 (1), the genus Sphingopyxis currently comprises 21 validly published
species (2), belonging to the family Sphingomonadaceae of the class Alphaproteobacteria.

Sphingopyxis strains have been isolated from diverse natural environments, including volcanic
rock (3), freshwater (4), soils (5), seawater (6), and some contaminated sites (7–9). Sphingopyxis
species can utilize a broad range of carbon sources (1), including aromatic compounds such
as tetralin (10) and microcystins (11). Sphingopyxis species have also been found to biotrans-
form heavy metals and biodegrade polyethers, antibacterials, and geosmin (1, 12).

Sphingopyxis strains Geo24, Geo25, and Geo48 were originally isolated in the lab by
geosmin enrichment from a sand filter from an Australian drinking water treatment works
(13, 14). Geo24 and Geo25 were identified as part of a bacterial consortium able to biodegrade
geosmin as the sole carbon source (13), and Geo48 was later identified as an isolate capable
of geosmin biodegradation (14). The isolates were stored long term at 280°C, shipped on
charcoal transport swabs, streaked onto tryptic soy agar (TSA), and grown for 48 h at 30°C. All
strains were streaked three times to ensure the purity of individual colonies.

For genome sequencing, the strains were grown in 5 mL tryptic soy broth (TSB) at 30°C
for 48 h, and total DNA was extracted using the FastDNA spin kit for soil (MP Biomedicals).
Sequencing was performed on a NovaSeq 6000 SP instrument using a NEBNext Ultra II DNA
library prep kit. Between 7 and 9 million (150-bp) read pairs were generated for each genome.
The read quality was checked using FastQC v0.11.9, trimming and adapter removal was
performed using Fastp v0.20.1, and the genomes were assembled using Unicycler v0.4.7.
The genome sizes and other metrics are as follows: Geo24 has a size of 3.86 Mbp, 23 contigs,
an N50 value of 665,169 bp, and a GC content of 65.3%; Geo25 comprises 3.87 Mbp, 23
contigs, an N50 value of 672,543 bp, and a GC content of 65.3%; and Geo48 has a size of
3.96 Mbp, 25 contigs, an N50 value of 978,883 bp, and a GC content of 65.2%.

Phylogenetic analysis of Sphingopyxis strains Geo24, Geo25, and Geo48 was performed
against all available Sphingopyxis type strain genomes, downloaded using the NCBI genome
download tool v0.2.10 and annotated using Prokka v1.14.6. The average nucleotide identity
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FIG 1 ANIm, phylogeny, and geosmin biodegradation batch experiment results for novel Sphingopyxis species Geo24, Geo25, and Geo48,
isolated from an Australian drinking water treatment works sand filter. (A) ANIm heatmap produced using PyANI v0.2.12, depicting the average

(Continued on next page)
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(ANI) was calculated using PyANI v0.2.12 (Fig. 1A), and a phylogenomic tree was constructed
using OrthoFinder v2.5.4 (15, 16) and RAxML-NG v1.1 (17) (Fig. 1B). All three strains showed
an ANI of ,94% to the most closely related type strains and displayed phylogenomic dis-
tinction, indicating them as potentially novel species (Fig. 1B). Pairwise digital DNA-DNA
hybridization (dDDH) values were determined using the Type Strain Genome Server
(TYGS) with the most closely related type strains (18); the results indicated that all three
Sphingopyxis strains represent different species (dDDH, ,70%) than those previously
described (Table 1).

Geosmin biodegradation capacity was confirmed in a microcosm batch experi-
ment by analyzing the geosmin concentration over 7 days. Microcosms comprised
of 10 mL bacteria, diluted to 0.1 optical density at 600 nm (OD600), in basal salts me-
dium (BSM) (19) in vials with 20 mL headspace. Geosmin losses by volatilization
were controlled with microcosms of 10 mL BSM. Geosmin was added at 100 ng/L to
each microcosm and measured at 0, 4, and 7 days in triplicate using solid-phase
microextraction and gas chromatography mass spectrometry (GCMS) analysis. Significant
removal of geosmin was observed for all inoculated microcosms compared to the con-
trol (Fig. 1C), demonstrating that all three Sphingopyxis strains can degrade geosmin.

Data availability. The genome sequences and raw reads have been deposited in
the European Nucleotide Archive (ENA) under the project/study number PRJEB60073.
The accession numbers for the genome sequences are ERS14837053, ERS14837054,
and ERS14837055 for Geo24, Geo25, and Geo48, respectively.
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FIG 1 Legend (Continued)
nucleotide identity, as specified by the color bar key. Novel species are shown in bold against Sphingopyxis type strains. (B) Phylogenetic
tree created using OrthoFinder v2.5.4 and RAxML-NG v1.1 to show the relationship between novel Sphingopyxis species and available type
strain species, rooted with the type strain from the sister genus Novosphingopyxis. The maximum likelihood method was used with the LG
model and G4 distribution, with bootstrap support (100 replicates) shown next to each node. Novel Sphingopyxis species are shown in
bold. (C) Geosmin concentrations for microcosms in batch experiment comparing geosmin removal of novel Sphingopyxis species over
7 days. Bacteria (1 mL) grown in TSB, washed, and controlled to an OD600 of 1 were added to 9 mL BSM and spiked with 100 ngL21

geosmin. Blank control microcosms with 10 mL BSM, spiked with 100 ngL21 geosmin and with no inoculum, were run simultaneously.
Geosmin concentration analysis was performed using SPME with GCMS analysis. Asterisks indicate statistical significance from the blank
control at each time point, determined using the Mann-Whitney test.

TABLE 1 Basic metrics and pairwise dDDH values for novel Sphingopyxis species and the three most closely related type strainsa

Strain
Genome
size (Mbp)

GC
content (%)

Pairwise dDDH (%) with strain:

Geo24 Geo25 Geo48
Sphingopyxis
soli BL03

Sphingopyxis
lindanitolerans
WS5A3p

Sphingopyxis
macrogoltabida
203

Sphingopyxis sp. Geo24 3.86 65.3 100.0 76.4 50.0 27.5 25.8
Sphingopyxis sp. Geo25 3.87 65.3 100.0 76.4 50.0 27.5 25.8
Sphingopyxis sp. Geo48 3.96 65.2 76.4 76.4 51.2 27.1 26.2
Sphingopyxis soli BL03 3.63 65.8 50.0 50.0 51.2 27.5 25.9
Sphingopyxis lindanitoleransWS5A3p 4.15 65.3 27.5 27.5 27.1 27.5 25.9
Sphingopyxis macrogoltabida 203 5.75 64.9 25.8 25.8 26.2 25.9 25.9
a dDDH values were calculated using TYGS and according to the Sphingopyxis phylogenetic tree (Fig. 1A). Pairwise dDDH values of,70% indicate different species.
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