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Wearing a mask greatly reduced the possibility of infection during the COVID-19 pandemic. However, major inconveniences
occur regarding patients with upper limb amputations, as they cannot independently wear masks. As a result, bacterial con-
tamination is caused by medical staf touching the quilt when helping. Furthermore, this efect can occur with ordinary people due
to accidental touch. Tis research aims to design an automatic and portable face shield assistive device based on surface
electromyography (sEMG) signals. A concise face shield-wearing mechanism was built through 3D printing. A novel decision-
making control method regarding a feature extraction model of 16 signal features and a Softmax classifcation neural network
model were developed and tested on an STM32 microcontroller unit (MCU). Te optimized electrode was fabricated using a
carbon nanotube (CNT)/polydimethylsiloxane (PDMS).Te design was further integrated and tested, showing a promising future
for further implementation.

1. Introduction

In recent years, the COVID-19 epidemic has been rampant.
As a result, face shielding has been efectively used to avoid
the spread of the corresponding virus [1]. In the absence of a
shelter-in-place strategy, infections, hospitalizations, and
deaths were reduced by 37.7%, where the interquartile range
(IQR) was 36.1–39.4%, 44.2% (IQR: 42.9–45.8%), and 47.2%
(IQR: 45.5–48.7%), respectively, as nonmedical masks were
worn by 75% of the population reduced [2]. Te use of
general facemasks has signifcant benefts, especially if they
are adopted earlier, and at least some beneft is realized
across a range of epidemic intensities. Furthermore, masks
can be used in addition to other interventions, such as social
distancing and hygienic measures, ultimately resulting in a
nonlinear decrease in epidemic mortality and healthcare
system burden [3]. During the COVID-19 outbreak, many
new developments related to healthcare utilized electro-
myography (EMG) or electroencephalogram (EEG). Setia-
wan et al. proposed a stroke rehabilitation monitoring

method using EEG [4], Bano and Hussain could identify
patients that were infected by COVID-19 using the EMG
technique [5], and L. Jiang et al. developed an advising
device for at-home exercise using sEMG [6].

Some disabled and paralyzed patients, however, who
have both arms amputated cannot wear face masks inde-
pendently. According to the latest survey reported by China
Disabled Persons’ Federation, in 2010, China had 20.54
billion amputation patients [7], of which 2/3 were upper
limb amputees [8]. In addition, there is a nonnegligible
group that has a severe impairment of both upper-and triple-
limb functions [9]. However, assistance in public places
increases the risk of viral infection. Furthermore, cross-
infection in hospitals when nurses take care of paralyzed
patients and manually wear face shields can also occur. [10]
Nevertheless, patients who cannot or have difculties put-
ting on masks by themselves arrive at hospitals without
wearing masks or need to call a nurse for assistance at their
home. As a result, the person can get infected if the nurse or
people in the hospital are recessive carriers of COVID-19.
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Many casual activities, such as dining and drinking, require
that masks are constantly put on and of. However, some
patients cannot be assisted by nurses all day. In some public
places, directly touching the inside of a face shield by hand
can contaminate this equipment, reducing its protection
against infectious diseases and threatening health. We also
believe that a new hand-controlled face-shielding device
could be convenient for ordinary people. Hence, a non-
contact wearable face-shielding-wearing system is proposed.

Heckendorn [11] and Backers Today [12] separately
developed two automated face-shielding-wearing systems
controlled through buttons. Te automatic face shielding of
Heckendorn is promising due to its mechanical structure
and portability. Furthermore, the one designed by Backers
Today is convenient for drinking water. Tese designs,
therefore, reduce the possibility of contaminating face
shields and are conducive for people with disabilities.

Huang developed an automask utilizing an ultrasonic
sensor and an sEMG sensor that allowed the wearer to
actuate when sneezing by contracting the abdominal muscle
while manually covering the ultrasonic sensor [13]. Tis
design could detect and avoid the sneeze spreading; how-
ever, the situations in which such devices can be applied are
limited. Furthermore, the mask is not suitable for patients
with upper limb amputations, as it can only be actuated by
contracting the abdominal muscle while covering the ul-
trasonic sensor by hand. Te utilization of an HC-SR04
ultrasonic distance sensor would signifcantly harm the cost
efciency of the design. Te HC-SR04 module is an active
measurement instrument [14] that continuously emits an
echo pulse at a 40 kHz frequency [15]. Owing to the active
detection limit, the power consumption of the HC-SR04
module is incessant during wearing. In contrast, the sEMG
module is a passive measurement instrument whose power
consumption is much lower; therefore, it is more suitable for
casual wearing. Moreover, the ultrasonic distance sensor can
be accidentally triggered from the outer environment, such
as the clothing of the user or the impact caused by passing-by
pacers. Furthermore, the signals of ultrasonic distance
sensors commonly fuctuate (fuctuation phenomenon) [16],
even though a threshold value is set to avoid accidental
triggering. In addition, the control algorithm of the design
involved no signal classifcation, increasing the risk of ac-
cidentally triggering the mechanism. Te actuation and
control of the servo motor without a signal classifcation are
usually achieved by manually setting the threshold of the
triggering voltage amplitude. [15] However, unwanted spike
signals that trigger the actuators can be generated. For ex-
ample, accidental pressing on the sEMG sensors or external
force-induced position shift of the electrodes would create
spikes and noise. Furthermore, the fuctuation phenomenon
of the ultrasonic distance sensors contributes to more ac-
cidental actuation in Taliyah Huang’s design. Finally, con-
trolling the mask based on the abdominal muscle is not
feasible, as the body fat at a selected abdomen position
signifcantly varies depending on the person; therefore, the
EMG signal cannot be commonly applied. Diferent factors,
such as epidermal body fat, signifcantly infuence the sEMG
measurement, [17]. As lipids easily accumulate in the

abdomen, the abdominal muscle EMG could be weak to be
detected when facing thick abdominal fat tissue.

To solve these problems, we designed a portable, non-
contact, and automatic face-shielding-wearing device that
considers the EMG signals.

2. Background Knowledge

An electromyography instrument is used in EMG to record
muscle bioelectric signals. Tese electrical signals can de-
scribe some characteristic behaviors of the human muscles.
EMG signals can be used in many felds, such as clinical
applications [18] and human-computer interaction [19].
More direct monitoring of the human body can be achieved
through the analysis, processing, classifcation, and various
signal analysis methods of these signals [20]. New imple-
mentations of EMG, such as muscular paralysis disease
prediction using EMG, have been developed during the
pandemic [21].

However, people who are inconvenienced by wearing
masks often need to adapt themselves to EMG devices for a
long time. Commercial electrodes are generally Ag/AgCl
electrodes; however, these components should be avoided, as
they cause damage to human skin [22]. As a result, we used
carbon nanotubes, which are nontoxic, harmless, and pol-
lution-free [23], as the primary material for the electrode,
increasing its stronger skin afnity and allowing it to be
more suitable for long-term use.

Te proposed device collects and analyzes the human
body EMG signal, realizing thereafter, through machine
learning, the wearing and removal of the face shield
according to the human body EMG signal. As a result, it does
not need to be manually controlled. Tis study used the
specifc location of the muscle signal of a dual-channel
sEMG detector. We also improved the electrode material in
contact with the human body, resulting in a more suitable
material for long-term use. Based on the corresponding
signal feature processing and machine learning classifca-
tion, noncontact automatic face shielding and wearing could
be realized.

3. System Architecture and Methodology

Te main objective of this study was to design a portable
face-shielding device based on sEMG. Te user of the
proposed device could wear/undress the mask by con-
tracting two specifc muscles, fulflling the noncontact de-
mand for paralyzed patients with amputated upper limbs or
ordinary people, therefore avoiding the accidental touch of
the inner surface of the face shield. By selecting two inde-
pendent muscles that do not usually form a synergic pattern,
the device can be precisely actuated based on the corre-
sponding gesture, thereby avoiding accidental triggers. To
realize this purpose, at least three primary components were
involved: data acquisition units, portable data processing
units, and automatic face-shielding mechanisms.

A data fow chart of the designed system, composed of
these primary components, is shown in Figure 1. We use a 2
MyoWare™ Muscle Sensor (AT-04-001) [24] to achieve
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bichannel input of the sEMG signals, as the EMG signals of
two independent muscles were detected. A hardware
bandpass fltering circuit and rectifying and amplifying
procedures were integrated into the MyoWare module. Te
analog sEMG signal was further converted to a digital signal
through an analog to digital converter (ADC) on a
STM32F103ZET6 microcontroller unit (MCU), which is a
portable data processing unit. Based on the received data,
our algorithm yields a decision that fulflls the user demand.
Accordingly, the triggering signal is sent to the automatic
face-shielding mechanism via IIC based on the corre-
sponding gesture.

Many studies, among which the methodologies are
profound examples of our research, have been conducted on
implementations utilizing sEMG. References [25–28] in-
vestigatedmuscle selection for sEMG electrode placement or
gesture selection. References [26–30] analyzed the sEMG
signal preprocessing or segmentation. References [25–29]
studied a feature extraction procedure of the signal and a
classifcation method utilizing neural networks or a support
vector machine (SVM), which was integrated into [25–29].
Based on the methodologies investigated, our research
methodology can be summarized as indicated in Figure 2.

To increase the dermotropic property and electrical
conductivity of the electrodes, we have investigated the
improvement of the electrode material. Te mechanical
structural design targets a lightweight and conciseness
compatible wearable mechanism. As shown in Figure 2, the

model training of the EMG data fow can be divided into an
ofine data training process and a real-time model training.

In the ofine model training procedure, the data were,
frst, preprocessed. Afterward, serial feature extraction based
on the segmented data batches was conducted. Te classi-
fcation process was based on artifcial neural networks
(ANN) in this research.

Models are obtained through ofine training, regardless
of the real-time control of the mechanism and considering
datasets stored on a personal computer (PC). Further de-
velopment of these idealized models needs to be achieved
and calibrated in the real-time training procedure. Teir
parameters were, therefore, carefully adjusted based on the
actual performance of the device to achieve the optimized
conditions.

Our experimental setups of the data fow model training
are shown in Figure 3, which indicates the key components
for the feature extraction model and the classifcation neural
network training.Te red arrows represent the power supply
directions; the blue lines stand for data fows from the
peripheral devices to the MCU. In contrast, the yellow ar-
rows represent the opposite data fow. Both data fow
represented by the yellow and blue arrows should be omitted
during the real-time optimization to achieve the portability
of the design. Te green and grey arrows indicate the data
fow between the MCU and peripherals.

To illustrate the hardware selection, two MyoWare™
muscle sensors (AT-04-001) were selected for the sEMG

bi-channel sEMG
module

data processing unit peripheral
mechanism

feature
extraction classifcation actuationdata

acquisition
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Figure 1: Data fow chart of the proposed device.
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Figure 2: Research methodology diagram.
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signal detection. A 32-bit microcontroller composed of an
ARM Cortex-M3 core STM32F103ZET6 [31] MCU module
was selected to execute the computational tasks of this
portable device, owing to its computational performance
and stability. A push button, which was pressed to indicate
the need for the shielding mask, was used for signal labeling.
A 5V polymer battery was needed for the power supply. Te
PCA9685 module is a 16-channel PWM output motor
control module [32]. In this study, we realized control of a
FUTABA Corp. S3003 servo motor through IIC commu-
nication and PCA9685.

4. Design of Mechanism

Te mechanical design of the face-shielding device should
promote function, reliability, and economic characteristics.
To achieve a functional design, the basic motion form, as
well as the main measurement of the device, should be
analyzed based on practical applications. After completing
the overall design of the device, which is usually idealistic
and abstract, its reliability must be evaluated; therefore,
specifc parts, such as rockers and connectors, should be
selected, and mechanical calculations and analyses are
necessary to ensure the feasibility of movement. Certain
elements might also be modifed and optimized. Finally, the
material and manufacturing process are were selected based
on a limited budget.

Our face-shielding device must successfully take the face
shield on and of. To simplify this situation, it can be as-
sumed that the shield is moving around a fxed point. As this
is the only movement required, the device can be designed as
a planar mechanism, as shown in Figure 4(a). To further
simplify the system, a rigid four-bar linkage was used as the
basic structure.

As the only movement of the face shield is rotation, the
mechanism has only one degree of freedom (DOF). To fulfll
this requirement, a parallelogram form of the four-bar
linkage was used, as shown in Figure 4(b)). Based on this
adaptation, the rotary motion of the driver bar at the driven
bar is duplicated, therefore creating a stable parallel
relationship.

Te planar DOF is governed by the following equation:

M � 3(L − 1) − 2J1 − J2, (1)

where M is the DOF, L is the number of links, and J1 and J2
are the number of lower and higher pairs, respectively. In the
parallelogram linkage, where one bar is already fxed, L� 4,
J1 � 4, and J2 � 0; therefore,M� 1 based on equation (1). Tis
value of DOF indicates that the four-bar linkage of the
parallelogram fulflls the requirements of this study.

Te concept of the planar mechanism was, thereafter,
further refned into a 3Dmechanism by adding two identical
four-bar linkages connected by an axis, therefore completing
the structure that could be fxed on the neck of the subject
and achieving a rotary motion. Te dimensions of the
structure were based on the human face and actual move-
ment. Figure 5(a) demonstrates the 3D version of the device
constructed through SOLIDWORKS 2020. Two bases were
placed on either side of the neck of the subject, and a servo
motor was installed to drive rocker1, allowing it to complete
the rotary motion. Te face shield was placed between
connecting rod3 and rod4.

However, according to our requirements, bar2 should be
fxed to restrict the DOF to one. Moreover, the joints on
which the connectors should be used have not been de-
termined yet. As the stability of the structure must be en-
sured during operation, the movement of the bars moving
along the axle cannot be executed. As a result, based on the

MyoWareTM Muscle
Sensors (AT-04-001) PCA9685

push button

STM32F103ZET6

PC

polymer battery

S3003 servo
motor

Figure 3: Experiment setups for feature extraction and classifcation model training.
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reliability analysis, the joints were connected by bolts and
nuts, a new base was designed to restrict the movement of
bar2, and the diameters of the two axles were modifed to
ensure the axial constraint. Te optimized mechanism is
shown in Figure 5(b)).

In additive manufacturing (3D printing), simulations
can be directly transformed into real objects, resulting in a
swift process. Te simulation in SOLIDWORKS was already
implemented; therefore, due to the principle of economic
design, additive manufacturing was selected as our
manufacturing method. Te material that has been fre-
quently used in this process is resin, as it demonstrates
suitable rigidity for the rotation of light objects, such as face
shields. Te accuracy of this method, however, is not sat-
isfactory yet, which may result in higher dimensional and
geometric tolerances in each part.

Te proposed mechanism provides, therefore, a rela-
tively efective procedure for taking the face shield on and of
without requiring a complex structure. Furthermore, the
material selected for the face-shielding device is light and the
rigidity against the torque generated by the servo motor is

sufcient, resulting in less stress for the subjects when using
the device. However, the stability of the entire mechanism is
not perfect owing to its simple structure, therefore requiring
future improvements. Moreover, the mechanismmight wear
after a long-term operation due to the lack of protection.

5. Improvement of theMaterial of the Electrode

5.1. Background. Te standard sEMG electrode commonly
used in experiments is usually composed of gold (Au), silver
(Ag), or silver-silver chloride (Ag/AgCl). Ag/AgCl is the
most widely used material, as it has a lower baseline-noise
interface than that of the other electrodes. Most Ag/AgCl on
the market is present in the form of gel, for better ma-
neuverability. Tis material can also be used in the surface
coating of the electrode to reduce surface impedance and
improve signal quality [33].

However, Ag/AgCl electrodes have several problems.
Te proposed equipment must be designed considering that
people can wear it for a long time; however, the long use of
an Ag/AgCl electrode can easily stimulate the skin and afect

Face Shield

fxed lower pair

(a) (b)

Figure 4: Simplifed model of the device. (a) Simplifcation of the motion form. (b) Parallelogram confguration of the four-bar linkage.

face shield

servo motor
base

(3)

(4)

(1)

(2)

(a) (b)

Figure 5: Simulations of the device in SOLIDWORKS. (a) 3D mechanism of the face-shielding device, including two equal four-bar
linkages, two bases, and two connecting axles. (b) Optimized mechanism containing connectors and new supporting bases.

Journal of Healthcare Engineering 5



the signal quality after drying [34]. As a frequent replace-
ment of new electrode sheets and stimulation of human skin
are not considered in our design, an electrode that can be
worn for a long time was developed [35].

Owing to the good dispersibility of carbon nanotubes
(CNTs) and the fexibility of polydimethylsiloxane (PDMS),
CNT/PDMS composites are considered good fexible con-
ductors. Te nanotubes dispersed in the electrode were in
good contact with each other, forming a conductive path.
Conductivity tests showed that the electrical performance
depends on the concentration of carbon nanotubes. Fur-
thermore, electrode materials are safe for biomedical ap-
plications, as they are not easily afected by sweat on the
surface of the human body [36].

5.2. Materials and Methods

5.2.1. Material Parameters. Te CNT used in the electrode
was manufactured by Suzhou Tanfeng Tech. Inc., China.Te
purity and length of the carbon nanotube were over 95wt%
and 3–12 μm, respectively. Te multiwall CNT was manu-
factured through vapor deposition. PDMS was manufac-
tured by Shenzhen Xinwei New Material Co. Ltd. by using
909 potting glue.

5.2.2. Fabrication of Electrodes. Te electrode was composed
of an insulating layer, conductive flm, and button electrode,
as indicated in Figure 6.

Te CNT was dispersed into the PDMS precursor
(viscosity: 4000± 500,909-A, Xinwei NewMaterial Co., Ltd.)
and mixed through dispersion. A crosslinking agent (vis-
cosity: 100± 10,909-B, Xinwei New Material Co., Ltd),
whose ratio was 10 :1, was solidifed for 12 h at room
temperature. When this agent could not solidify, the button
electrode was embedded in the colloid and the solidifcation
process occurred for 24 h. A 10 :1 ratio of PDMSwas used on
the periphery, forming an insulating layer to facilitate
contact between the electrode and the skin. Table 1.

As shown in Table 2, the specifcations of the electrode
sheet must be defned to enable the usage of the equipment
for a long duration.Te diameter of the conductive electrode
part of the CNT/PDMS electrode sheet used in the exper-
iment was 10mm, which is a small part of the entire elec-
trode. Te conductive electrode (main body of the
electrode), whose length and width were 36.5mm and
30.2mm, respectively, was composed of a PDMS solid gel.
Te overall thickness of the electrode sheet was 2mm.

5.2.3. Electrical Test and Specifcation. Te impedances of
the electrodes were measured using an electric meter. Table 1
shows a test comparison diagram of commercial Ag/AgCl
electrodes and CNT/PDMS electrodes considering the same
specifcations.

Te transparent material in Figure 7 is the PDMS patch,
and the black component corresponds to the CNT/PDMS
electrode. Te button electrode was connected on top of the
CNT/PDMS to obtain an electrical signal from the device.

6. Electrode Positioning and Muscle Selection

Te muscles were selected in this study by mainly two
criteria: (1) if they are independent of each other; therefore,
they ought not to collaborate to execute the same gesture, to
reduce the possibility of accidentally actuating the mecha-
nism; (2) if the selected gesture pattern is easy to achieve.
Furthermore, face shielding should not afect the feasibility
and regularity of the selected pattern.

Te position and orientation of the muscle sensor
electrodes signifcantly afect the strength of the signal.
Owing to the diferential detection mode of the sensors, two
detection points and a reference position should be defned.
Te electrodes should be placed in the middle of the muscle
body and aligned with the muscle fbers [25]. Meanwhile, the
reference electrode should be placed on a separate section of
the body, such as the bony portion of the elbow or a
nonadjacent muscle. Due to the size of the MyoWare™
muscle sensors (AT-04-001), the sensors of the system are
closely positioned (C-position). As a result, the diferential
voltage between the two points in the middle of the muscle
body could be detected [37].

Button
electrode

Carbon
nanotubes

(CNT/PDMS)

Polydimethylsiloxane

Figure 6: Design of CNT/PDMS composite electrodes.

Table 1: Resistance comparison.

Ag/AgCl electrodes CNT/PDMS electrodes
600∼800Ω 200∼300Ω

Table 2: CNT/PDMS electrodes parameters.

Total size Conductive
diameter (mm)

Tickness
(mm)

Doping
quality

Length 36.5mm,
width 30.2mm 10 2 Less than

1 g

Figure 7: Sample of CNT/PDMS electrode.
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Figure 8 shows the positions of the electrode place-
ment based on the muscle. Te green box indicates the
correct positioning of the electrodes (midline of the
muscle belly between the innervation zone and myo-
tendinous junction) [24].

After comprehensive consideration of the two major
factors afecting the positioning of the electrodes, the
gesture pattern was defned based on the zygomaticus and
bicipital muscle of the arm. In particular, these muscles
were selected as they can be easily contracted and their
gestures can be executed by diferent users, such as patients
with upper limb amputation and ordinary people. Te
gesture pattern was defned as a signal trigger when both
muscles simultaneously contracted.Te detailed placement
of the electrodes is shown in Figure 9. To preserve the
accuracy and repeatability of the experiment, the contour
of the electrode was marked by using a luminous pen after
each test.

After attaching the electrodes to the surface of the
muscles, a bichannel ADC function was completed on the
MCU utilizing a timer interrupt and setting a sampling rate
of 100Hz. Te sampled data were stored in an array for
further processing.

7. Preprocessing and Feature Extraction

Te preprocessing of the sEMG signal usually involves
amplifcation [29], fltering [26, 27, 29], rectifying [26, 27],
and segmentation (or windowing) [28, 38]. An instrumental
amplifer, bandpass flter, and rectifying circuits were,
therefore, integrated into the MyoWare™ Muscle Sensors
(AT-04-001) [24]. As a result, only data segmentation could
not be conducted directly by the sensor.

A fxed-length segmentation method [38] was applied
in this study. Te windowing length was restricted to the
performance of the STM32MCU.Te coding process of the
MCU was conducted using Keil MDK v5.26 Software. Only
64, 256, and 1024 points of fast Fourier transformation

(FFT), which is a method to analyze the power-related
characteristics of signals from the aspect of the frequency
domain, were allowed on the F1 series of the STM32 [39].
Time-frequency analysis is an important key to EMG signal
feature extraction [40, 41]. Due to the selected sampling
rate and the requirement for a quick response, the FFTof 64
points was used in this study. To date, a windowing of 64
data points per batch has been set for feature extraction,
indicating that the response time for pattern recognition is
approximately 80ms, based on a calculation machine cycle
(MC).

Te acquired voltage amplitude data of the two inputs
and labeling data of the push button were sent from
STM32F103ZET6 to the PC using a universal asynchronous
receiver/transmitter (UART) and stored in text fles (.txt).
Te fles were later processed using MATLAB, as shown in
Figure 10, where the vertical and horizontal axis indicates
the amplitude and the timeline, respectively.Te peaks in the
fgure are spiky as this dataset was composed of over 15000
points of data, resulting in a contraction in the horizontal
display of the graph. Te data sent to MATLAB were raw
data that were not binned based on 64 batch sizes, as the
segmentation of the data was performed via MATLAB2019a
in this simulation stage.

During the feature extraction step of this study, the
model was frst simulated on a PC using MATLAB2019a to

Figure 8: Electrode placement illustration.

(a)

(b)

Figure 9: Muscle selection and electrodes placement. (a) Posi-
tioning of the electrode on zygomaticus. (b) Electrode positioning
on the bicipital muscle of the arm.
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test the proposed concept. Afterward, the model was coded
again using the C language and executed on MCU.

In this study, 16 features, of which 11 were based on the
time domain and 5 on the frequency domain, were collected
to analyze the binned datasets. Te features based on the
time domain were the integrated EMG (IEMG), mean ab-
solute value (MAV), modifed mean absolute value 1
(MMAV1) and 2 (MMAV2), mean absolute value slope
(MAVS), root mean square (RMS), variance (VAR),
waveform length (WL), threshold crossing (TC), Willison
amplitude (WAMP), and simple square integral (SSI).
Meanwhile, the features based on the frequency domain
were the frequency median (FMD), frequency mean (FMN),
modifed frequency median (MFMD), modifed frequency
mean (MFMN), and frequency ratio (FR).

Equation (2) indicates the IEMG defnition [42], where n

is the batch size of the segmented data (64) and Xi represents
ith data in the dataset. Te IEMG is the sum of the absolute
value of the EMG signal, which can be treated as a signal
power estimator [38].

IEMG � 
n

i�1
Xi


. (2)

Te MAV, MMAV1, and MMAV2 can be defned by
equation (3) [43], equation (4), and equation (5) [44], re-
spectively, where wi is the ith modifed weight of the mean
absolute value, which is an important characteristic of the
sEMG signals that are based on the time domain.

MAV �
1
n



n

i�1
Xi


, (3)

MMAV1 �
1
n



n

i�1
wi Xi


,

wi �
1, 0.25n≤ i≤ 0.75n,

0.5, otherwise,


(4)

MMAV2 �
1
n



n

i�1
wi Xi




wi �

1, 0.25n≤ i≤ 0.75n,

4i

n
, i< 0.25n,

4(i − n)

n
, i> 0.75n.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Te MAVS, which indicates the variation between two
adjacent batches, can be correctly represented by equation
(6) [38], where k represents the kth batch in the dataset.

MAVSk � MAVk+1 − MAVk. (6)

Te RMS can be described by equation (7) [39]. Tis
quantity is modeled as an amplitude-modulated Gaussian
random process whose RMS is related to the constant force
and nonfatigue contraction [38].

RMS �

�������

1
n



n

i�1
X

2
i




. (7)

Te VAR can be expressed by equation (8) [42]. Tis
quantity indicates the diference between the signals in the
dataset.

VAR �
1
n



n

i�1
Xi − X( 

2
. (8)

Te WL is defned by equation (9). Tis value, which is
the cumulative length of the waveform over a segment, is
infuenced by the waveform amplitude, frequency, and
duration [43].

WLk � 
n−1

i�1
Xi+1 − Xi


. (9)

Te threshold crossings (TCs) are defned as the in-
stances of the recorded data that crosses a threshold value
during one batch.

Equation (10) represents the WAMP [39], which is the
cumulative length of the waveform over a segment. Tis
quantity indicates the number of times that the diference of
consecutive amplitudes exceeded a predetermined thresh-
old, ℓ.

WAMPk � 
n−1

i�1
f Xi − Xi+1


 , f(x) �

1, x> ℓ,

0, otherwise.


(10)

Equation (11) represents the SSI. Tis quantity is the
cumulative length of the waveform over a segment. It also
represents the accumulation of the bathed data power [38].

SSIk � 
n

i�1
X

2
i . (11)
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Figure 10: Raw data sent from the MCU to PC.
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Equations (12) and (13) indicate the FMN [38] and FMD
[44], respectively. Tese quantities use FFT to calculate some
properties regarding the power spectrum density (PSD).
However, the Pwelch values must be obtained for the cal-
culation of the PSD in MATLAB.Tis is a difcult task to be
executed using an MCU, as similar results are difcult to be
obtained. Hence, in this study, we obtained a resemblance
[45] between the Pwelch method and the PSD calculated
using FFT through equations (14) and (15), respectively.Tis
procedure was added to the MCU using the built-in FFT
library from the STM32 DSP.

FMN �


n
i�1 fiPSDi


n
i�1 PSDi

,

fi �
i∗ sampling rate

2∗ n
,

(12)

FMD �
1
2



n

i�1
PSDi, (13)

Pwelch � 2 fft Xi( 


 
2
, (14)

PSD � fft Xi( 


 
2
. (15)

Te MFMN and MFMD were proposed by Phinyomark
et al. [44]. MFMN is calculated as the sum of the product of
the amplitude spectrum and frequency divided by the sum of
the spectral intensity. MFMD is defned as half of the sum of
the amplitude spectrum [38]. As a result, the amplitude
spectrum of the signal can result in a volatile FFT.

Te frequency ratio (FR) [46] is calculated in equation
(16), where fftmax and fftmin, respectively, represent the
maximum and minimum values of the dataset after the fast
Fourier transformation.

FR �
fftmin

fftmax
. (16)

Te fag label (FL) shown in equation (17) indicates the
decision after evaluating the received data batch. When the
dataset includes more than three sampled data points that
are labeled, the entire batch is considered for the demand of
the decision to trigger the actuator. Tis feature was omitted
in practical scenarios, and it is only available for real-time
calibration of the neural network classifer.

FL �
0, f< 3,

1, f≥ 3.
 (17)

Te feature extraction was frst built using MAT-
LAB2019a considering a raw dataset stored in txt fles. Each
fle contained more than 15000 samples of data. Sixteen
feature extractions were applied for each channel of the
sEMG signal, resulting in 32 features and one labeling data.
Tese data were stored in csv fles and were used, thereafter,
in the classifcation stage.

After the ofine data training procedure, the feature
extracting model was coded again using the C language and

downloaded into the MCU. Te FFT was obtained by using
the ARM_math and ARM_cFFT_Radix4 libraries [47]. 32
features were extracted from the two input channels. Te
output of the feature extraction was validated using a COM
helper application and a JLINK debugger.

8. Classification

Many classifcation methods, such as k-nearest neighbours
(k-NN) [26, 28], linear discriminant analysis (LDA)
[26, 39], quadratic discriminant analysis (QDA) [28],
support vector machine (SVM) [27, 28, 41], random tree
(RT) [28], random forest (RF) [28, 41], artifcial neural
networks (ANN) [26, 38, 41], Bayes classifer [26, 38], self-
organising map (SOP), and fuzzy classifers [41], are
available in the literature.

Te Softmax classifer has outstanding performance
when treating a multiclassifcation problem, as all types of
features are normalized according to the number of classes.
Furthermore, this classifer can clarify positive features [27].
In the binary classifcation problem in this study, the device
is required to distinguish the triggering signal from the
background noise, as the same triggering gesture pattern is
used for the masking and unmasking actions. In this case, a
Softmax classifer is adequate to solve this problem, as it
yields fewer parameters than that of the other classifers,
owing to its simplicity. A large number of parameters would
slow the computation speed and consume much fash
memory of theMCU. In addition, the increase in complexity
of the neural network results in the increase in difculty to
rewrite the model on a portable device.

We constructed the binary Softmax classifer using the
2.3.1 framework backend on TensorFlow 1.13.1. Te IDE
program on which the algorithm was developed was
Pycharm 2020.3–Python version 3.7. No GPU was required,
as the network structure and data type were not complicated.

For dataset recording, the person that tested the device
was placed in a comfortable position and the electrode was
frmly attached to the selected zygomaticus and bicipital
muscles. A series of random movements of the limbs and
changes in the countenance were performed while period-
ically executing the triggering pattern (simultaneous con-
traction of the zygomaticus and bicipital muscles).
Whenever the targeting pattern was executed, the subject
was requested to press the push button at the same time that
he labels the corresponding data batch.

Troughout the ofine model training stage, the features
were extracted using MATLAB and stored in csv fles, which
were, thereafter, used in the training of the neural network.
However, during the real-time optimization of the model,
the features were directly extracted by the portable data
processing unit and sent to the PC using UART. Tese data
were again stored in txt fles, which were, thereafter, con-
verted into csv fles for calibration. As a result, a more re-
alistic dataset was acquired, and the Softmax classifer could
be calibrated to achieve its best performance.

Te accessed data were shufed and, thereafter, divided
into a training dataset and the test dataset using the K-fold
method from the sklearn library. Meanwhile, the label value
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was converted into a one-hot code using the built-in
function of Keras.

Te structure of the constructed binary Softmax classifer
is shown in Figure 11. Overall, the classifer was composed of
one input layer, one hidden dense layer, and one output
layer. Te input layer had a 1× 32 input dimension and
received a fattened array of 32 features related to the
bichannel sEMG input, which could be fed to the network in
single frames or catches. Te hidden dense layer of the
classifer outputted an array of data size 1× 64. A drop-out
method, whose ratio was 0.02, was introduced to the net-
work to perform a regularization task, preventing the
overftting of the classifer. Te output dimension of the
network was the same as the class number (2).

For the neural network training process, 40 epochs of 50
batches for each step were implemented. A categorical loss
function was used for the loss assessment. Te Adam al-
gorithm was implemented for optimization.

Te performance analysis of the classifer is shown in
Figure 12. Figure 12(a) shows the training and validation
accuracy of the network. Te average accuracy of 97.7% was
achieved, and no signifcant diference was noticeable be-
tween the accuracies of the training and validation models,
indicating that no overftting or owe ftting occurred.
Figure 12(b) displays the loss of the network during the
training and test stages. Both losses converge to a single
value.

Te weights and biases of the trained model were, af-
terward, converted into arraymetrics.Te copied network of
the Softmax classifer was reconstructed using the C lan-
guage, and the parameters were included. Te resulting
neural network was repeatedly calibrated considering real-
time features sent from the MCU, which were updated to
increase the accuracy.

Nevertheless, not all 16 features used in this study should
be used during real clinical applications. Te FMN shows
no signifcant variation during the test, while the variation
of the other features was noticeable. Accordingly, some of
the 15 discussed features should be changed in clinical
applications.

9. Experiment and Results

Based on the mechanical structure 3D printed and real-time
models downloaded, a functioning prototype of the pro-
posed device was built, as indicated in Figure 13.

Te mechanism and circuitry of the device were welted
on a 5mm acrylic board using hot-melt adhesives. Actuation
of the mechanism was accomplished using a pair of
FUTABA S3003 servo motors. Two sets of 5V batteries were
afxed on the board due to the connection plugin shape
variance. In the left corner of Figure 13(c), the JLink device,
CH340 UARTmodule, and push button were detached using
the portable device.Te white ropes shown in Figure 13 were
used to fasten the device to the subject.

dense_input: InputLayer

dense: Dense

dropout: Dropout

dense_1: Dense

input: [(?, 32)]
[(?, 32)]

(?, 32)

(?, 64)

(?, 64)
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output:
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output:
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Figure 11: Neural network structure.
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Figure 12: Assessment of the Softmax classifer. (a) Training and
validation accuracy of the network. (b) Training and testing loss of
the network.

10 Journal of Healthcare Engineering



To test the accuracy of the actual prototype, the accuracy
was defned by [26]

ACC �
Tp

Tp + FN + FP

× 100%, (18)

where TP, FP, and FN denote the number of correct rec-
ognitions, incorrect recognitions, and missed gestures. Te
subject wore the portable device for 1min. Te results are
listed in Table 3.

Five tests were conducted considering a recording length
of 1min. Teir overall average accuracy was 95.3%. During
the test, the subject was asked to perform daily actions, such

as drinking or walking, to simulate casual activities.Te total
number of gestures was not confned; therefore, the ex-
periment could simulate casual activities within a fxed time
interval. Based on the test results, therefore, the proposed
portable face-shielding device was suitable for further
implementation.

10. Conclusion

A portable face-shielding device utilizing sEMG was pro-
posed, assembled, and proven to be feasible. Te purpose of
this research was to help disabled and paralyzed patients to
independently wear face shields, reducing the risk of con-
tamination due to the direct touch inside the face shield by
the hands of ordinary people. Furthermore, new electrode
materials using CNT/PDMS were proposed and tested to
evaluate their dermotropic properties and electrical con-
ductivity. Te proposed device shows promising prospects
for future implementation during the COVID-19 pandemic.
Further product transitions are encouraged to target wear
suitability and audience generalization.
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