
Veteleanu et al. 
Journal of Neuroinflammation          (2023) 20:169  
https://doi.org/10.1186/s12974-023-02850-6

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Neuroin�ammation

Alzheimer’s disease-associated complement 
gene variants influence plasma complement 
protein levels
Aurora Veteleanu1, Joshua Stevenson‑Hoare2, Samuel Keat1, Nikoleta Daskoulidou1, Henrik Zetterberg3,4,5,6,7, 
Amanda Heslegrave3,6, Valentina Escott‑Price2, Julie Williams1, Rebecca Sims8, Wioleta M. Zelek1†, 
Sarah M. Carpanini1† and Bryan Paul Morgan1*† 

Abstract 

Background Alzheimer’s disease (AD) has been associated with immune dysregulation in biomarker and genome‑
wide association studies (GWAS). GWAS hits include the genes encoding complement regulators clusterin (CLU) 
and complement receptor 1 (CR1), recognised as key players in AD pathology, and complement proteins have been 
proposed as biomarkers.

Main body To address whether changes in plasma complement protein levels in AD relate to AD‑associated 
complement gene variants we first measured relevant plasma complement proteins (clusterin, C1q, C1s, CR1, factor 
H) in a large cohort comprising early onset AD (EOAD; n = 912), late onset AD (LOAD; n = 492) and control (n = 504) 
donors. Clusterin and C1q were significantly increased (p < 0.001) and sCR1 and factor H reduced (p < 0.01) in AD 
plasma versus controls. ROC analyses were performed to assess utility of the measured complement biomark‑
ers, alone or in combination with amyloid beta, in predicting AD. C1q was the most predictive single complement 
biomarker (AUC 0.655 LOAD, 0.601 EOAD); combining C1q with other complement or neurodegeneration makers 
through stepAIC‑informed models improved predictive values slightly. Effects of GWS SNPs (rs6656401, rs6691117 
in CR1; rs11136000, rs9331888 in CLU; rs3919533 in C1S) on protein concentrations were assessed by comparing pro‑
tein levels in carriers of the minor vs major allele. To identify new associations between SNPs and changes in plasma 
protein levels, we performed a GWAS combining genotyping data in the cohort with complement protein levels 
as endophenotype. SNPs in CR1 (rs6656401), C1S (rs3919533) and CFH (rs6664877) reached significance and influ‑
enced plasma levels of the corresponding protein, whereas SNPs in CLU did not influence clusterin levels.

Conclusion Complement dysregulation is evident in AD and may contribute to pathology. AD‑associated SNPs 
in CR1, C1S and CFH impact plasma levels of the encoded proteins, suggesting a mechanism for impact on disease 
risk.
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Background
Alzheimer’s disease is a progressive neurodegenerative 
disease and the most common cause of dementia, inflict-
ing enormous personal, social, economic and societal costs 
[1]. Classical AD pathology comprises amyloid beta (Aβ) 
plaque deposition and hyperphosphorylated tau (p-tau) 
tangle accumulation [2], although Aβ plaques are frequent 
in brains of cognitively unimpaired elderly individuals [3]. 
Early diagnosis, essential for effective interventions, is dif-
ficult. Genetic, behavioural, imaging and fluid biomarker 
methods have all been proposed. In cerebrospinal fluid 
(CSF), levels of the Aβ42 and Aβ40 peptides, total or hyper-
phosphorylated tau (tTau or pTau), neurofilament light 
(NfL; nonspecific marker of neuronal damage) and glial 
fibrillary acidic protein (GFAP; marker of astrocytic reac-
tivity) collectively establish the AT(N) (amyloid/tau/neu-
rodegeneration) diagnostic framework for AD, currently 
the best predictive biomarker set [4]. Given the invasive 
nature and cost of CSF collection and brain imaging, relia-
ble blood biomarkers that facilitate AD diagnosis are much 
needed; plasma AT(N) biomarkers can be informative in 
predicting AD [5, 6], but other biomarkers are needed. AD 
genetics point to the immune system as a potential source.

Inflammation has long been recognised as a culprit in 
neurodegenerative diseases, with many chronic inflamma-
tory conditions, including obesity, diabetes and inflamma-
tory bowel disease, associated with increased risk for AD 
[7–9]. An intact blood brain barrier (BBB) ensures brain 
immune privilege; however, BBB disruption occurs in AD 
permitting immune mediators from the periphery to pene-
trate the brain parenchyma and cause brain inflammation. 
Neuroinflammation markers, including pro-inflammatory 
cytokines [10], have been proposed as biomarkers for neu-
rodegenerative diseases. Complement is a core part of the 
innate immune system and potent driver of inflammation 
in immune defence and in pathology. Evidence implicating 
complement in AD emerged in the 1980s; immunostain-
ing of brain tissue showed C1q, C3, factor H (FH), and 
clusterin colocalising with Aβ plaques and surrounding 
sites of neuronal damage [11, 12]. Moreover, aggregated 
Aβ directly activated the complement cascade by interact-
ing with C1q [13], and C1s displayed chaperone activity 
to inhibit aggregation of Aβ1–42 fibrils in vitro [14]. Many 
studies of complement proteins as AD biomarkers in 
plasma and/or CSF have been published with inconsistent 
results, although plasma clusterin consistently emerges as 
a biomarker for AD [15, 16].

Sporadic AD shows a significant contribution from 
genetics, accounting for 68–79% heritability for late onset 
(after 65 years) AD (LOAD), rising to over 90% for those 
with onset before 65 (early onset; EOAD) [17]. Seventy-
five genome-wide significant AD risk loci have been iden-
tified to date [18]; these include the complement genes 

CLU and CR1, both in the top 5 most significant hits in 
GWAS [19], and recently a suggestive association with 
C1S (OR 1.05, p = 9.9 ×  10–7) [18]. The risk variants in 
these genes are single nucleotide polymorphisms (SNPs) 
in non-coding regions (rs11136000, rs9331888 in CLU; 
rs6656401 in CR1; rs3919533 in C1S), or within exonic 
regions, causing amino acid substitutions (rs6691117 
in CR1; I2065V). The CLU minor allele at rs11136000 is 
associated with reduced AD risk [20]. AD risk SNPs in 
CR1 are associated with CR1 length polymorphism; the 
minor allele at rs6656401 marks carriers of the CR1*2 
isoform expressing an additional long homologous repeat 
and C3b binding site [21]. Initially identified as risk for 
age related macular degeneration (AMD), SNPs in FH 
have been associated with rate of cognitive decline in AD 
and shown to modify FH mRNA expression in the brain, 
leading to impaired complement regulation [22, 23]. For 
other non-coding SNPs in complement genes, mecha-
nism of effect is not known.

While previous large genetic studies have performed 
GWAS to identify new loci associated with AD, GWAS 
using an intermediate phenotype (including plasma or CSF 
protein levels, imaging data, or any other quantifiable trait) 
allow a deeper analysis of uncharacterised mechanisms of 
effect [24–28]. The endophenotype more directly inter-
rogates the effect of a single gene, is genetically simpler, 
evaluates the direct effect of the SNP and is less impacted 
by other genetic and biological variables than conventional 
GWAS. The resultant reduction in “noise” increases statis-
tical power enabling the use of smaller cohorts. Using pro-
tein biomarker concentrations as endophenotype permits 
interpretation of the role of GWAS-implicated intronic 
SNPs by linking them directly to a change in plasma levels. 
This approach can also identify novel SNPs that influence 
the expression of a protein of interest and increase statis-
tical power by focusing on a single quantitative trait [29, 
30]. Although our focus was on AD GWAS-implicated 
SNPs in complement genes, the endophenotype approach 
enables additional complex genetic analysis to screen for 
all genomic loci that associate with changes in plasma lev-
els of the complement biomarkers, critical because pro-
tein expression is determined by a multi-locus consensus 
involving coding and non-coding regions.

We measured five complement biomarkers, clusterin, 
soluble CR1 (sCR1), C1s, C1q and FH, selected based on 
genetic or functional association with AD, in a cohort 
comprising 504 cognitively unimpaired elderly controls, 
912 EOAD and 492 LOAD subjects. Predictive value of 
individual complement biomarkers and sets of comple-
ment biomarkers in combination with AT(N) markers was 
assessed in ROC analysis. Complement biomarker levels 
were then used as endophenotype in a GWAS to identify 
SNPs that impacted complement biomarker levels.
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Main body
Methods
Subjects
Sporadic AD and control plasma samples [n = 504 
control, 912 EOAD (onset < 65  years), 492 LOAD 
(onset > 65  years)] were a subset of the AD Car-
diff Cohort, collected between 2004 and 2020 from 

individuals recruited from UK community and hospi-
tal settings using MRC, Moondance Foundation, and 
Health and Care Research Wales (HCRW) funding 
(Table  1). All individuals were of Caucasian descent. 
The effect of storage time was tested and found not 
to significantly affect concentrations of the measured 
proteins.

Table 1 Cohort clinical, demographic, and genetic information

EOAD early onset AD, LOAD late onset AD, MMSE mini mental state examination, MAF_A minor allele frequency in individuals with AD, MAF_U minor allele frequency in 
control individuals
a EOAD and LOAD subjects were significantly younger than control subjects (p < 0.0001)

EOAD LOAD Control

Number 912 492 504

Sex, n (%)

 Female 425 (46.6) 243 (49.39) 282 (56)

 Male 487 249 222

Age at onset

 Mean (SD) 58 (5.16) 71 (5.34) n/a

 Range 28–65 66–90 n/a

Age at  inclusiona

 Mean (SD) 64 (5.7) 76 (5.46) 82.5 (6.8)

 Range 30–90 66–97 59–100

 Disease duration (SD) 5.7 (3.6) 4.5 (2.9) n/a

 MMSE score (SD) 16.34 (10) 18 (9.23) 27.4 (5.5)

APOE status, n (%)

 ε4 (−) 402 184 400

 ε4 (+) 491 (55) 289 (61) 93 (18.9)

CLU rs11136000, n (%) (MAF_A = 0.3659, MAF_U = 0.4)

 CC 370 (40.57) 204 (41.46) 172 (34.68)

 TC 412 (45.18) 227 (46.14) 242 (48.79)

 TT 130 (14.25) 61 (12.4) 82 (16.53)

CLU rs9331888, n (%) (MAF_A = 0.29, MAF_U = 0.28)

 CC 462 (50.77) 236 (51.42) 254 (51.84)

 GC 374 (41.1) 177 (38.56) 201 (41.02)

 GG 74 (8.13) 46 (10.02) 35 (7.14)

CR1 rs6656401, n (%) (MAF_A = 0.1958, MAF_U = 0.1735)

 GG 596 (65.49) 290 (63.18) 336 (68.71)

 AG 285 (31.32) 145 (31.59) 137 (28.02)

 AA 29 (3.19) 24 (5.23) 16 (3.27)

CR1 rs6691117, n (%) (MAF_A = 0.1822, MAF_U = 0.1792)

 AA 593 (65.02) 332 (67.48) 337 (68.08)

 GA 299 (32.79) 148 (30.08) 144 (29.09)

 GG 20 (2.19) 12 (2.44) 14 (2.83)

C1S rs3919533, n (%) (MAF_A = 0.1545, MAF_U = 0.1667)

 TT 659 (72.26) 336 (68.43) 345 (68.86)

 CT 237 (25.99) 146 (29.74) 138 (27.54)

 CC 16 (1.75) 9 (1.83) 18 (3.6)

CFH rs6664877, n (%) (MAF_A = 0.175, MAF_U = 0.1549)

 CC 575 (65.64) 309 (69.44) 313 (71.62)

 TC 286 (32.65) 124 (27.87) 114 (26.1)

 TT 15 (1.71) 12 (2.69) 10 (2.28)
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AD diagnosis was established using a comprehen-
sive, standardized and validated clinical and neuropsy-
chological assessment [31], in accordance with the 
National Institute of Neurological and Communication 
Disorders and Stroke and the Alzheimer’s disease and 
Related Disorders Associations (NINCDS-ADRDA) 
clinical diagnostic criteria for AD. All diagnoses were 
based on a semi-structured interview with known 
validity for AD pathology (i.e. positive predictive value 
of 92–95%) which included: mini-mental state exami-
nation (MMSE); The Cambridge Mental Disorders of 
the Elderly Examination (CAMDEX; informant inter-
view); The Blessed Dementia Scale; The Bristol Activi-
ties of Daily Living Scale; Webster Rating Scale; Global 
Deterioration Scale (GDS); Cornell Scale for Depres-
sion in Dementia; Neuropsychiatric Inventory (NPI) 
(12-item version) [31, 32]. Control subjects were either 
spouses of AD patients or selected from primary-care 
practices situated in the same geographical areas. 
Assessment of controls was as described above, includ-
ing CAMDEX and GDS; exclusion criteria were the 
presence of dementia, depression, delirium, or other 
illnesses likely to significantly reduce cognitive func-
tion. Controls were purposely selected for advanced 
age (age range 59–100; mean 82.5) with no dementia 
to reduce the potential for conversion to disease [33]. 
Age at assessment, sex, MMSE score, and genome-
wide array genotyping (Illumina 610, Illumina 550, or 
global screening array) was available for most samples. 
Age at onset was also available for 1396 cases, and dis-
ease duration was calculated for these. Ethical approval 
was obtained from the Multi-centre Research Ethics 
Committee, relevant local ethics committees and NHS 
trusts in the recruiting regions. Demographics are sum-
marised in Table 1.

Measurement of complement proteins by ELISA
Five complement components (clusterin, sCR1, C1s, 
C1q, FH) were measured in all plasma samples by ELISA. 
Antibodies, protein standards, and assay characteristics 
are detailed in Additional file  1: Table  S1. Plasma sam-
ples stored at − 80  °C were defrosted immediately prior 
to assay, vortexed briefly, diluted in phosphate-buffered 
saline containing 0.05% Tween-20 (PBST) and 0.2% 
bovine serum albumin (BSA) and kept on ice or stored at 
− 80 °C until used.

Capture antibodies were immobilised overnight at 4 °C 
on 96-well immunoplates (Fisher Scientific #1039451) at 
concentrations between 2–20  µg/ml in 50  µl/well car-
bonate-bicarbonate buffer (pH 9.6). Wells were blocked 
by incubation with 100 µl 2% BSA in 0.05% PBST for 1 h 
at 37  °C, washed once with PBST, and plasma samples 

or protein standards (50 µl) added at a suitable dilution 
(Additional file  1: Table  S1). Plates were incubated for 
90 min at 37 °C, washed three times and detection anti-
bodies added at concentrations between 1–2  µg/ml in 
50 µl/well 0.2% BSA in PBST for 1 h at 37 °C. For assays 
where the detection antibody was not directly labelled, 
HRP-labelled secondary antibody (anti-mouse or anti-
rabbit IgG as appropriate, Jackson ImmunoResearch 
#715-035-151, #711-035-152) was added to washed 
plates at a suitable dilution for 1  h at 37  °C. Finally, 
plates were washed and developed using OPD substrate 
(Sigma-Aldrich, #P9187) for 3–15  min (consistently for 
each assay), followed by addition of 5%  H2SO4 to quench 
the reaction. Optical densities were read at 492 nm using 
a microplate reader (Infinite F50, Tecan #30190077). All 
samples were measured in duplicate, blinded to diagno-
sis. Intra- and inter-assay coefficients of variation were 
below 15% for all assays.

Measurement of p‑tau181, Aβ40, Aβ42, NfL, GFAP
Plasma concentrations of p-tau181, Aβ40, Aβ42, NfL 
and GFAP had previously been measured in these sam-
ples using Simoa assays (Quanterix, Billerica, MA, USA) 
[34]. The measurements were performed in one round of 
experiments using one batch of reagents with the ana-
lysts blinded to diagnosis and clinical data. Intra-assay 
coefficients of variation were below 10%.

Statistics
Data were analysed by constructing an 8-point stand-
ard curve using known concentrations of pure protein 
for each assay, interpolating the averaged optical den-
sity values for each sample on the curve, and multiply-
ing the obtained values by the dilution factor. Data were 
plotted using GraphPad Prism 5, tested for normality 
using the Kolmogorov–Smirnov test and found not to 
be normally distributed. Data were analysed statistically 
(α = 0.05) using IBM SPSS Statistics 26 by Mann–Whit-
ney, Kruskal–Wallis tests with Dunn’s multiple compari-
sons post-hoc test, generalised linear models adjusting 
for sex and age (formula: Protein ~ Age + Sex + Phe-
notype) or Pearson correlations as appropriate. To 
test the effect of SNPs on protein levels, an interac-
tion term between SNP and disease was used (formula: 
Protein ~ Age + Sex + Phenotype*SNP).

For ROC analyses, a series of generalised linear models 
(GLMs) using different combinations of protein meas-
urement data were constructed in R using the base “stats” 
package, with a “binomial” model for error distribution 
and link function specified. EOAD and LOAD pheno-
types were separated and classified as “1” for EOAD, “2” 
for LOAD and “0” for controls. The GLMs followed the 
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formula pattern: Phenotype ~ Protein 1 (+ Protein 2…). A 
stepAIC (Akaike Information Criterion) model was run 
for both EOAD and LOAD to identify the optimal fea-
tures to retain in the final model. To enhance the gener-
alisability and applicability of our approach, models with 
fewer protein measurements were favoured. Data were 
randomly split 70:30 into “training” and “test” sets to pre-
vent over-fitting and stratified to maintain case/control 
proportions; area under the curve (AUC) of the “test” 
data in ROC analysis was reported. Prior to analysis, 
protein levels were adjusted for age and sex and stand-
ardised to a mean of 0 and standard deviation of 1 to 
maintain equal contributions of each protein to analyses 
and prevent bias from proteins with wider ranges; both 
unadjusted and adjusted values were tested in the ROC 
analysis. The different models were compared using ROC 
curves; 95% confidence intervals were calculated using 
the default ‘bootstrap’ method with 2000 replicates for 
each AUC to provide a measure of uncertainty and model 
stability.

GWAS
All individuals included in the analysis had both genetic 
and biomarker information available. Genotype data were 
quality controlled (QCed) as described previously [35] 
and imputed via the Michigan Imputation Server using 
Minimac3 [36] and the Haplotype Reference Consor-
tium reference panel. The data were combined and QCed 
with heterozygosity abs(F-het) > 5%, missing data pro-
portion per person > 5%, related individuals with π̂ > 0.2, 
gender mismatch, or were population outliers based on 
European population from 1000 Genomes [37]. Variants 
with minor allele frequency (MAF) < 1%, missing data 
proportion (MISS) > 5%, or Hardy–Weinberg Equilibrium 
(HWE) p ≤  10–6 were excluded. To exclude batch effects, 
an association test was run between controls and vari-
ants; those variants with p-value < 0.001 were excluded, 
retaining 480,021 variants. Genetic data were aligned to 
human genome assembly GRCh37/hg19 and imputed as 
described above. Finally, all data were combined, related 
individuals with π̂ > 0.2 were removed, and variants with 
MAF < 5%, poor accuracy of imputation (INFO) < 0.8, 

MISS > 5% or HWE p ≤  10–6 were removed. After these 
corrections the final dataset contained 4,618,496 variants.

Genome-wide SNP-based association analyses were 
performed for each complement biomarker using linear 
regression modelling with PLINK as previously described 
[34]. Association analyses of SNPs with the biomarkers 
were adjusted for age and sex, five principal components 
(PCs) and case–control status (“caseness”), the latter 
introduced to reduce the variation due to differences in 
association patterns of biomarkers between cases and 
controls while retaining all available samples in the analy-
sis to maintain statistical power. Genetic data for index 
SNPs associated with AD in CLU, CR1, C1S, and APOE 
(rs7412, rs429358) were extracted using PLINK, and LD 
between them determined using PLINK (https:// www. 
cog- genom ics. org/ plink/2. 0/, [38]). Manhattan plots 
were generated using qqman library in R, and association 
results for a particular gene/region were visualised using 
LocusZoom online tool (http:// locus zoom. org, [39]). Raw 
GWAS data were uploaded to LocusZoom and set for 
PLINK analysis, the SNP of interest was specified under 
“region to display” with a ± 50–200 Kb flanking size, and 
R-square was determined in relation to the specified SNP, 
or the most significant SNP for CFH.  R2 scores were cal-
culated using the hg19/1000 Genomes Nov 2014 EUR 
dataset.

Results
Levels of complement proteins in plasma are altered in AD
We measured complement components C1q, clusterin, 
sCR1, C1s, and FH, selected because each has been 
implicated in AD by immunohistochemistry, biomarker 
analyses or genetics. Compared to controls, early and 
late AD cases had significantly higher levels of plasma 
C1q (149.8 µg/ml EOAD, 142.9 µg/ml LOAD, 107.9 µg/
ml control; p < 0.001, Fig.  1A) and clusterin (224.6  µg/
ml EOAD, 205.8  µg/ml LOAD, 195.8  µg/ml control, 
p < 0.005; Fig. 1B). In control but not AD subjects, clus-
terin levels were significantly lower in men compared to 
women (206.8 vs 182.8  µg/ml, p < 0.001; Fig.  1B). Com-
pared to controls, early and late AD cases had signifi-
cantly lower levels of plasma sCR1 (15.29 ng/ml EOAD, 

(See figure on next page.)
Fig. 1 Complement proteins in AD. A C1q plasma levels were significantly elevated in both early and late onset AD compared to controls; there 
were no significant gender differences in C1q levels. B Clusterin levels were significantly elevated in early and late onset AD compared to controls; 
levels were significantly higher in females compared to males in controls but not AD. C Soluble CR1 levels were significantly decreased in AD 
compared to controls though significance was lost when split into early and late onset AD groups; levels were significantly lower in male subjects 
in AD and control groups. D Plasma C1s levels did not differ significantly between AD and controls; levels were significantly lower in males 
compared to females in the control group. E FH levels were significantly decreased in both early and late onset AD compared with controls; levels 
were significantly lower in males compared to females in the AD group. Data were corrected for age and sex; results are shown as mean ± SD, 
analysed using Mann–Whitney tests or generalised linear models including age and sex as covariates. *p < 0.05; **p < 0.01; ***p < 0.001. M male, F 
female. Numbers for each data set are shown in Table 1

https://www.cog-genomics.org/plink/2.0/
https://www.cog-genomics.org/plink/2.0/
http://locuszoom.org
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Fig. 1 (See legend on previous page.)
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15.32  ng/ml LOAD, 16.74  ng/ml control; p = 0.031, 
Fig. 1C) and FH (353.7 µg/ml EOAD, 359.7 µg/ml LOAD, 
382.3 µg/ml control, p < 0.05, Fig. 1E). Plasma sCR1 levels 
were lower in males compared to females in AD and con-
trol samples (14.83 vs 15.82 ng/ml in AD, p < 0.001; 15.41 
vs 17.82 ng/ml in control, p < 0.001, Fig. 1C). In AD cases, 
FH levels were significantly lower in men compared to 
women (346.3 vs 366.2  µg/ml, p < 0.01, Fig.  1E). Plasma 
levels of C1s did not differ between AD and control sub-
jects (28.22 µg/ml EOAD, 28.02 µg/ml LOAD, 27.72 µg/
ml control, Fig.  1D). In control but not AD samples, 
males had significantly lower levels of C1s compared to 
females (26.52 vs 28.71 µg/ml, p < 0.05, Fig. 1D).

Complement protein levels correlate with each other 
and some AT(N) markers
To identify patterns of dysregulation in the comple-
ment system and relationships between complement 
and already established AD biomarkers, we performed 
correlation analyses. Significant positive correlations 
were identified between C1s/C1q, C1q/FH, C1s/FH 
in both AD and control groups (p < 0.001, Additional 
file  1: Table  S2). No significant correlations were iden-
tified between complement protein levels and MMSE 
score, age at onset/study inclusion or disease duration. 
In controls, significant positive correlations were found 
between complement and AT(N) biomarker levels: clus-
terin/NfL; sCR1/GFAP, sCR1/NfL; C1q/Aβ40, while in 
the AD group there were significant negative correlations 
between clusterin/Aβ40, clusterin/Aβ42 (Additional 
file 1: Table S2).

ROC analyses identify complement proteins 
that distinguish AD from controls
ROC analyses were performed on complement and 
AT(N) biomarkers to determine their utility in distin-
guishing LOAD and EOAD from control (Fig.  2). The 
AD groups were analysed separately because direction 
of effect for each protein (Additional file 1: Fig. S1) and 
distributions of protein concentrations across groups and 
ages (Additional file 1: Figs. S2–S3) differed significantly 
between LOAD and EOAD (Additional file 1: Table S3). 

Protein levels, unadjusted (Fig.  2A, B) and adjusted for 
age/sex (Fig.  2C, D) were included in ROC analyses for 
comparison. Among complement proteins analysed indi-
vidually, C1q reached the highest AUC (0.601 for EOAD, 
0.655 for LOAD), while amyloid markers performed best 
among AT(N) proteins (Aβ40 0.616 for EOAD, 0.657 
for LOAD; Aβ42 0.611 for EOAD, 0.665 for LOAD; 
Fig. 2A–D); the Aβ42/Aβ40 ratio had a low AUC in both 
AD groups (0.491 EOAD, 0.561 LOAD). StepAIC mod-
els were used to identify best model for each phenotype. 
For EOAD, combining Aβ40, Aβ42/Aβ40, GFAP and 
C1q gave an AUC of 0.681 (AIC 1064.17); for LOAD, 
Aβ40, Aβ42/Aβ40, pTau181, NfL, GFAP, CR1, C1q, FH 
gave an AUC of 0.824 (AIC 644.41) (Additional file  1: 
Table S4). Inclusion of other biomarkers did not signifi-
cantly improve performance (Fig.  2E, F). DeLong tests 
confirmed that levels of the implicated proteins had a 
significant effect on the predictive capacity of the over-
all model after accounting for age, sex and APOE status 
(Additional file 1: Table S5). Complete ROC statistics for 
the protein biomarker comparisons between EOAD and 
controls, LOAD and controls and EOAD and LOAD, 
both unadjusted and adjusted for age and sex are shown 
in Additional file 1: Tables S6 and S7.

Clusterin levels are not impacted by AD risk SNPs or APOE 
status
SNPs in CLU previously identified in AD GWAS [18] 
[rs11136000, rs9331896, rs2279590 in linkage dis-
equilibrium (LD;  r2 > 0.85) and rs9331888  (r2 with 
rs11136000 = 0.26)] were tested for impact on plasma 
clusterin by comparing levels in carriers of the minor 
alleles at rs11136000 (T/C, used as surrogate for SNPs 
in LD) and rs9331888 (G/C) with carriers of the major 
allele. Neither the SNP cluster defined by rs11136000 
nor the unlinked SNP rs9331888 impacted clusterin 
levels, whether assessed in the whole sample set, AD 
alone or control alone (Fig.  3A, B). When using an 
interaction term between SNPs and disease status in 
a series of GLMs, no significant effects were found 
for either rs11136000 or rs9331888 on clusterin levels 
(Additional file 1: Table S8). There was no significant 

Fig. 2 ROC Curves demonstrate the AD predictive capacity of complement biomarkers. ROC curves were generated using multiple GLMs 
for each protein. AUC statistics for individual (A–D) or combined (E, F) analytes are shown for EOAD (A, C, E) and LOAD (B, D, F). 95% confidence 
intervals, calculated using bootstrapping with 2000 replicates, are included in brackets for each GLM. Proteins unadjusted (A, B) and adjusted (C, 
D) for age and sex were included for comparison. Linear predictors were selected based on results of stepAIC models of adjusted data for EOAD 
(E) and LOAD (F), with the best model based on highest AICs relative to model complexity plotted first (EOAD = Aβ40 + Aβ40/Aβ42 + GFAP + C1q; 
LOAD = Aβ40 + Aβ40/Aβ42 + pTau18 + NfL + GFAP + CR1 + C1q + Factor H for LOAD) and then 3 regressive steps from the stepAIC results plotted 
sequentially

(See figure on next page.)
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Fig. 2 (See legend on previous page.)



Page 9 of 18Veteleanu et al. Journal of Neuroinflammation          (2023) 20:169  

Fig. 3 Effects of genetic variants in CLU on clusterin protein levels. A, B No significant effects of either rs11136000 (A: marking the LD block) 
or rs9331888 (B) in CLU were identified on plasma levels of clusterin). C Clusterin levels were not significantly different between APOE genotypes. 
Data are shown as mean ± SD and were analysed statistically using Kruskal–Wallis test with Dunn’s multiple comparisons post‑hoc test. Numbers 
for homozygote and heterozygote carriers of each SNP are shown in Table 1. D Manhattan plot of GWAS results of the whole sample set using 
plasma clusterin levels as an intermediate phenotype found no significant variants
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effect of APOE status on clusterin levels, although 
there was a non-significant trend towards increased 
levels in APOEε4 carriers (Fig.  3C). To determine 
whether any other SNPs in the genome were associ-
ated with plasma clusterin levels, a GWAS was per-
formed with plasma clusterin as endophenotype. The 
resulting Manhattan plot did not show any genetic 
variants in CLU or elsewhere in the genome that sig-
nificantly associated with clusterin plasma levels 
(Fig. 3D).

AD risk SNPs in CR1 significantly impact sCR1 levels
The impact of AD-associated SNPs in CR1 on plasma 
sCR1 levels was tested. Presence of the minor allele 
at rs6691117 (Ile2065Val, G/A) associated with sig-
nificantly reduced plasma sCR1 levels in the combined 
cohort but when separated into AD and control groups 
the significance was lost (Fig.  4A). The intronic SNP 
rs6656401 (A/G) marks the AD-associated copy number 
variation in CR1; presence of the minor allele was asso-
ciated with significantly higher sCR1 levels in the whole 
population and after separation into AD and control 
groups (Fig. 4B). An interaction term between SNPs and 
disease status in a series of GLMs revealed no signifi-
cant effects for either rs6691117 or rs6656401 on plasma 
sCR1 levels (Additional file  1: Table  S8). GWAS on the 
combined cohort identified a cluster of genome-wide 
significant loci in chromosome 1; LocusZoom views 
showed that these were within CR1 in high LD with 
rs6656401, further strengthening the robust association 
between the rs6656401-tagged LD block and increased 
plasma sCR1 levels (Fig.  4D). In contrast, rs6691117 
did not reach GWS for association with plasma sCR1 
changes (Fig. 4E).

C1s levels are significantly affected by SNPs in C1S
Carriers of the minor allele at rs3919533 (C/T) in C1S 
had significantly lower C1s levels (Fig.  5A). GWAS 
performed on the combined cohort identified signifi-
cant hits impacting C1s concentration in chromosome 
12; LocusZoom views revealed a cluster of significant 
SNPs within C1S on chromosome 12 in moderate LD 
with the risk SNP rs3919533 located upstream of C1S 
(Fig. 5B, C).

FH levels are significantly affected by SNPs in CFH
The impact of AD-associated SNPs in CFH on plasma 
FH levels was tested. Carriers of the minor allele at 
rs6664877 (T/C) in CFH had a significant increase in FH 
levels in the combined cohort and after separation into 
AD and controls (Fig.  6A). GWAS performed on the 
combined cohort using plasma FH levels as endophe-
notype identified GWS hits in chromosome 1; Locus-
Zoom views revealed clusters of significant SNPs within 
CFH and also in the adjacent CFHR4 gene (Fig.  6B, C). 
Rs6664877 (T/C) in CFH was the most significant SNP 
impacting FH levels (p = 1.05 ×  10–9).

Discussion
As the incidence of AD climbs ever higher, there is a 
critical need for early detection, accurate diagnosis and 
prediction of disease risk. Predictive tests would enable 
population screening, close monitoring of at-risk indi-
viduals and pre-symptomatic intervention. Numerous 
studies have explored fluid biomarkers. The combination 
of CSF pTau, Aβ and neurofilament (AT(N)) aid diag-
nosis and are highly informative of disease progression, 
particularly useful in selection for and monitoring of 
clinical trials [5, 6]. However, CSF sampling is invasive 
and the high sensitivity assays required to measure the 
AT(N) markers in plasma are costly, restricting their 
broader use. This prompted us to seek blood biomark-
ers reflecting changes in the inflammatory component 
of AD. Complement has long been associated with AD; 
many studies have shown complement proteins, includ-
ing C1q, clusterin, and FH, co-localising with Aβ plaques, 
and significant alterations in complement mRNA and 
protein levels in brain, plasma, and CSF in AD [12, 40]. 
Moreover, GWAS have consistently identified comple-
ment genes significantly associated with AD [18, 19].

We investigated plasma levels of AD-relevant com-
plement proteins (C1q, clusterin, sCR1, C1s, FH) in 
AD patients and controls, and assessed their prediction 
accuracy in diagnosing AD alongside AT(N) biomark-
ers. C1q, the initiator of classical pathway activation, is 
present in amyloid plaques; in  vitro, C1q enhanced Aβ 
aggregation but inhibited uptake of Aβ by microglia [41]. 
We found that plasma C1q was significantly increased in 
AD patients, suggesting increased complement activating 

Fig. 4 Effects of genetic variants in CR1 on sCR1 protein levels. A, B The minor allele (G) at rs6691117 was significantly associated with a decrease 
in sCR1, while the minor (A) allele at rs6656401 was strongly associated with increased sCR1 levels in plasma. Data are shown as mean ± SD 
and were analysed using Kruskal–Wallis with Dunn’s multiple comparisons post‑hoc tests. *p < 0.05; **p < 0.01; ***p < 0.001. Numbers 
for homozygote and heterozygote carriers of each SNP are shown in Table 1. C Manhattan plot of GWAS results on the whole sample set (n = 1667) 
with plasma sCR1 as endophenotype identifies multiple loci in the CR1 gene on chromosome 1 significantly associated with changes in plasma 
sCR1 levels. D, E LocusZoom plots in the region identify a cluster of significant SNPs in high LD with rs6656401 (D), while rs6691117 was below the 
significance threshold (E)

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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capacity. C1q showed the best prediction accuracy 
among the measured complement proteins, particu-
larly in late onset disease (AUC = 0.601 for EOAD, 0.655 
for LOAD); adding in other complement biomarkers or 
AT(N) biomarkers did not increase the predictive accu-
racy of C1q alone. C1q levels are reported to increase 
with age and associate with age-related arterial stiffness 
[42]. The controls in our cohort were deliberately selected 
for advanced age; therefore, the observed differences can-
not be explained by an age effect. C1q levels positively 
correlated with Aβ40 in controls, highlighting a subset 
of these who may be at increased risk for developing Aβ 
pathology.

Clusterin, also known as ApoJ, is the complement pro-
tein most studied as an AD biomarker. It is a multifaceted 
protein with important roles in AD pathology. It inhibits 
Aβ nucleation and enhances its clearance from the brain, 
and clusterin knockout mice develop Aβ deposition on 
cerebrovasculature [43–45]. Among its many roles, clus-
terin regulates the terminal pathway of complement, 
inhibiting formation of the membrane attack complex. 
Clusterin was previously reported to be increased in AD 
and mild cognitive impairment (MCI) plasma and CSF, 
although results are inconsistent [15, 46, 47]. In agree-
ment with the consensus, we found a significant increase 
in plasma clusterin levels in AD patients, particularly in 
EOAD; however, this did not translate into good predic-
tion accuracy in ROC analyses (AUC = 0.581 for EOAD, 
0.529 for LOAD). Clusterin can readily cross the BBB, has 
been shown to sequester Aβ40 and prevent Aβ42 aggre-
gation [14, 48–50]; the inverse correlation with plasma 
Aβ we identified may thus reflect ongoing changes in the 
AD brain. In controls, plasma levels of clusterin and NfL 
were positively correlated.

CLU, the gene encoding clusterin, is a major AD 
GWAS hit with multiple intronic SNPs identified, includ-
ing a SNP cluster in tight LD (rs11136000, rs9331896, 
rs2279590) and an unlinked SNP (rs9331888) [19]. The 
SNP cluster associated with decreased AD risk and bet-
ter cognitive scores [19, 20]; however, it was not associ-
ated with the increased CLU mRNA levels reported in 
AD brains [51]. GWAS using plasma clusterin as endo-
phenotype revealed no significant associations between 
clusterin levels and variants in CLU or elsewhere in the 

genome, demonstrating that the observed differences in 
clusterin plasma levels were not caused by genetic vari-
ation in CLU or other genes included in current GWAS 
genotyping arrays. The report that clusterin levels were 
increased in brains but not plasma of APOEε4 carriers 
[52–54] provoked us to test impact of APOE status on 
plasma clusterin levels; no significant differences were 
seen.

CR1, a receptor for the complement opsonic fragments 
C3b/C4b that plays key roles in immune complex han-
dling in the periphery, was linked to AD in GWAS [19]. 
We recently showed that CR1 is abundantly expressed 
in brain, and that expression is markedly increased in 
AD [55]. Four isoforms of human CR1 exist due to gene 
duplications and rearrangements, differing consider-
ably in length. The two common forms, CR1*1 and 
CR1*2, comprise respectively 4 and 5 functional units 
termed long homologous repeats; the latter is risk for 
AD [21, 55]. In the current study, sCR1 was significantly 
decreased in AD patients, supporting our past findings 
in an independent cohort [56]; however, ROC analyses 
showed poor predictive accuracy for sCR1 (AUC = 0.543 
for EOAD, 0.554 for LOAD). sCR1 levels correlated with 
NfL and GFAP levels in controls. SNPs in CR1 have pre-
viously been shown to significantly contribute to AD risk 
and influence plasma sCR1 levels [21, 57]. The minor 
allele at rs6656401, associated with expression of the risk 
variant CR1*2 [21], was linked to accelerated cognitive 
decline [58], reduced CR1 density on erythrocytes and 
increased sCR1 plasma levels [59]. We also found that 
carriers of the rs6656401 SNP, whether AD or control, 
had significantly increased plasma sCR1 levels. In con-
trast, carriers of the minor allele at rs6691117, a missense 
variant (I2065V) associated with decreased brain volume 
in MCI subjects [60], had significantly decreased sCR1 
levels; the membrane-proximal position of this amino 
acid change suggests an effect on proteolytic cleavage of 
CR1. The causative association between these SNPs and 
changes in plasma sCR1 levels was tested using endophe-
notype GWAS; the rs6656401-tagged LD block associ-
ated with expression of CR1*2 was highly significant in 
the analysis, confirming its direct effect on plasma sCR1 
levels; in contrast, the rs6691117 SNP did not reach GWS 
for association with plasma sCR1 changes.

(See figure on next page.)
Fig. 5 Effects of genetic variants in C1S on C1s protein levels. A Presence of the minor allele (C) at rs3919533 was gene dose‑dependently 
associated with lower C1s levels in both the AD and control groups. Data are shown as mean ± SD and were analysed statistically using Kruskal–
Wallis tests with Dunn’s multiple comparisons post‑hoc test. **p < 0.01; ***p < 0.001. Numbers for homozygote and heterozygote carriers of the SNP 
are shown in Table 1. B Manhattan plot of GWAS results on the whole sample set (n = 1713) shows loci in chromosome 12 were significantly 
associated with changes in plasma C1s levels. C LocusZoom plot displays a cluster of significant SNPs within C1S, in moderate LD with rs3919533
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Fig. 5 (See legend on previous page.)
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C1s in the C1 complex cleaves C4 and C2 to initiate 
the classical complement pathway. Our interest in C1s 
was sparked by the recent report of a near-GWS associa-
tion between rs3919533, a SNP located 5 kb upstream of 
C1S, and AD risk in European subjects [18]. No studies of 
C1s plasma levels in AD have been published, although 
C1s expression was decreased in CSF proteome of AD 
patients [61]. We found no difference in plasma C1s lev-
els between AD patients and controls. Nevertheless, we 
investigated whether the GWAS-implicated SNP impacts 
plasma C1s levels and found that carriers of the minor 
allele at rs3919533 had significantly lower C1s levels. When 
plasma C1s levels were used as an intermediate phenotype 
in GWAS, we identified a cluster of highly significant SNPs 
located within C1S, including rs3919533, that associated 
with significantly decreased plasma C1s levels in both AD 
and control subjects. Taken together, the data suggest that 
variants in C1S may contribute to AD risk through changes 
in plasma C1s levels.

FH, an essential regulator of the alternative pathway, 
was previously reported to be decreased in plasma and 
CSF from AD patients, the latter specifically in amyloid 
positive cases [62, 63]. Consistent with these reports, we 
found a significant decrease in plasma FH in AD patients. 
Lower FH levels may impact regulation of the alternative 
pathway amplification loop. Although no variants in CFH 
have been reported to associate with AD risk in GWAS 
in Caucasian populations, there are numerous associa-
tions with other inflammatory diseases, notably AMD, a 
retinal neurodegenerative disease that has many similari-
ties to AD [64, 65]. Two coding SNPs in CFH, rs1061170 
(Y402H) and rs800292 (I62V) strongly impact risk of 
AMD. Although neither of these SNPs were significant 
in AD GWAS in Caucasians, both were strongly associ-
ated with AD risk and rate of atrophy in a Chinese cohort 
[22]. In a small case–control study in a Caucasian popu-
lation, rs1061170 was associated with AD risk but only 
in individuals carrying the APOEε4 allele [23]. Although 
neither of these SNPs were significant in the FH endo-
phenotype GWAS, the analysis identified a LD cluster of 
GWS SNPs in CFH and downstream, adjacent to CFHR4, 
that associated with changes in plasma FH levels. The 
lead variant, rs6664877, was associated with significantly 
increased plasma FH levels in both AD and control 

subjects. This intronic CFH SNP has not been previ-
ously described or related to any pathology, making it, 
together with the SNPs in strong LD, interesting candi-
dates for further studies into roles of CFH variants in AD. 
A recent study of the genetic architecture of the human 
plasma proteome in healthy blood donors identified sev-
eral associations between protein levels and complement 
genes; notably, variants in CFH significantly associated 
with 59 proteins [66].

Conclusions
We demonstrate dysregulation of the complement sys-
tem in AD plasma compared to controls. Clusterin and 
C1q were elevated, and sCR1 and FH decreased. C1q lev-
els distinguished AD from controls with good predictive 
power particularly for LOAD (AUC 0.655). We show that 
SNPs in CR1, C1S, and CFH, some previously associated 
with AD, others novel, significantly influenced plasma 
concentrations of the respective proteins, suggesting a 
mechanism by which they impact disease risk. Although 
the changes observed are modest, we have shown before 
that even small changes in complement protein activi-
ties or levels can markedly impact risk of systemic dis-
eases [67]. Limitations of the work relate to the nature of 
the cohort: 1. Assignation to AD or control groups was 
done by extensive cognitive testing in the cohort with-
out recourse to imaging or CSF biomarker data; 2. The 
control and AD groups were not age-matched, indeed, 
controls were deliberately selected for advanced age with 
no evidence of cognitive impairment to exclude incipi-
ent cases, a clear advantage for genetic studies; 3. We 
split the AD cohort into early (onset before 65) and late 
(onset after 65), an arbitrary but useful distinction that 
can highlight early changes, but did not consider other 
potential stratifiers; 4. We did not include any individuals 
with mild cognitive impairment that could be followed 
over time, a future study could explore the time course 
of complement dysregulation in early disease to identify 
causative roles. Despite these limitations, our findings 
build a strong case for roles of genetically determined 
complement parameters in dictating risk of AD that may 
be useful in predicting AD and identifying novel routes 
to therapy.

Fig. 6 SNPs in CFH are significantly associated with changes in plasma FH levels. A Minor allele (T) carriers at rs6664877 had significantly higher 
plasma FH levels compared to major allele carriers in the combined cohort and in AD and controls analysed separately. Data are means ± SD 
and were analysed statistically using Mann–Whitney tests. **p < 0.01; ***p < 0.001. Numbers for homozygote and heterozygote carriers of the SNP 
are shown in Table 1. B Manhattan plot of GWAS results on the whole sample set (n = 1713) using plasma FH as endophenotype identifies loci 
in chromosome 1 significantly associated with changes in plasma FH levels. C LocusZoom analysis identifies a cluster of significant SNPs within CFH 
and a second cluster in the adjacent CFHR4 gene that influence plasma FH levels. Rs6664877 was the most significant hit

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Additional file 1: Table S1. Antibodies, proteins, and sample dilutions 
used in ELISA. All antibodies and standard proteins were produced in‑
house unless otherwise specified for each analyte. Comptech: Comple‑
ment Technology, Inc. Abbreviations: mAb = monoclonal antibody, CV 
= coefficient of variation. Table S2. Pearson correlation scores between 
complement proteins and AT(N) biomarkers in control (A) and case 
samples (B). The top right triangle shows Pearson r correlation scores, 
while the bottom left triangle shows p values (italics). Table S3. Medians, 
Inter‑Quartile Ranges (IQR) and Wilcoxon Rank Sum (Mann Whitney U) 
Test p‑values for comparing distributions of plasma protein levels in 
early‑onset Alzheimer’s disease (EOAD) vs. late‑onset Alzheimer’s disease 
(LOAD) (* = p<0.05; ** = p<0.01; *** = p<0.001). Table S4. ROC‑AUC 
statistics of stepAIC informed GLMs predicting disease status from plasma 
protein levels, adjusted for age and sex. Each stepAIC informed GLM 
model (Model), AUC values (AUC), Akaike Information Criterion (AIC), 
95% confidence intervals (generated from 2000 bootstrap replicates) 
(CI), Z scores (Z), standard error (SE) and p‑values (p‑value) are given for 
each GLM and resultant ROC curve for predicting EOAD and LOAD status 
against controls. Table S5. Receiver‑operator characteristic area under 
the curve (ROC‑AUC) statistics for three major confounders (age, sex and 
APOE status), plus each protein biomarker, in generalised linear models 
(GLMs) to predict AD status and results of DeLong tests, comparing GLMs 
containing the three confounders and GLMs containing the three con‑
founders plus each protein biomarker. Results are for Controls vs EOAD, 
Controls vs LOAD and EOAD vs LOAD, and each column contains the 
GLMs (Model), AUC of the resultant ROC curves, 95% confidence intervals 
(generated from 2000 bootstrap replicates) for the ROC‑AUC (CI), Z‑scores 
for the ROC‑AUC (Z), standard error for the ROC‑AUC (SE), p‑values for the 
ROC‑AUC (p‑value) and confidence intervals, Z‑scores and p‑values from 
the results of the DeLong test (CI Delong, Z Delong, p‑value Delong). 
Table S6. ROC‑AUC statistics of GLMs predicting disease status from 
plasma protein levels, unadjusted for age and sex. For each protein, AUC 
values (AUC), 95% confidence intervals (from 2000 bootstrap replicates) 
(CI), Z scores (Z), standard error (SE) and p‑values (p‑value) are given 
for predicting EOAD and LOAD status vs controls, and EOAD vs LOAD. 
Table S7. ROC‑AUC statistics of GLMs predicting disease status from 
plasma protein levels, adjusted for age and sex. For each protein, AUC 
values (AUC), 95% confidence intervals (from 2000 bootstrap replicates) 
(CI), Z scores (Z), standard error (SE) and p‑values (p‑value) are given for 
predicting EOAD and LOAD status vs controls, and EOAD vs LOAD. Table 
S8. Results of Generalised Linear Models (GLMs) estimating protein levels 
from Age, Sex and an interaction term between phenotype (Control vs 
EOAD, Control vs LOAD, Control vs AD) and certain genotypes (SNP rsIDs). 
Estimate values for each element (Estimate), the standard error (Std Error), 
the t‑value statistic (t‑value), significance thresholds (Pr(>|t|)) and formula 
used to create each GLM. Figure S1. Forest plot of regression coefficients 
(estimate values) of the generalised linear models (A = early‑onset Alzhei‑
mer’s disease (EOAD), B = late‑onset Alzheimer’s disease (LOAD)), showing 
the direction and strength of effect for ATN biomarkers and complement 

proteins measured for each AD group vs. controls. Proteins with negative 
coefficients are shown in green and those with a positive coefficient are 
shown in red. Proteins shown in grey were not statistically significant at 
the Bonferroni corrected p‑value significance thresholds (* = p<0.005; ** 
= p<0.001; *** = p<0.0001). Error bars indicate the standard error for each 
regression coefficient. Figure S2. Density plots showing distributions of 
plasma protein levels (each protein labelled below the X‑axes) for each 
of the groups (red = controls, green = early‑onset Alzheimer’s disease 
(EOAD), blue = late‑onset Alzheimer’s disease (LOAD)). Figure S3. Scatter 
plots showing distributions of plasma protein levels on the Y axes (each 
protein labelled on the Y‑axes) vs age at inclusion on the X‑axes for each 
of the groups (red = controls, green = early‑onset Alzheimer’s disease 
(EOAD), blue = late‑onset Alzheimer’s disease (LOAD)).
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