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ABSTRACT
The ICH E9 addendum introduces the term intercurrent event to refer to events that happen after treatment
initiation and that can either preclude observation of the outcome of interest or affect its interpretation. It
proposes five strategies for handling intercurrent events to form an estimand but does not suggest statistical
methods for estimation. In this article we focus on the hypothetical strategy, where the treatment effect is
defined under the hypothetical scenario in which the intercurrent event is prevented. For its estimation, we
consider causal inference and missing data methods. We establish that certain “causal inference estimators”
are identical to certain “missing data estimators.” These links may help those familiar with one set of
methods but not the other. Moreover, using potential outcome notation allows us to state more clearly the
assumptions on which missing data methods rely to estimate hypothetical estimands. This helps to indicate
whether estimating a hypothetical estimand is reasonable, and what data should be used in the analysis. We
show that hypothetical estimands can be estimated by exploiting data after intercurrent event occurrence,
which is typically not used. Supplementary materials for this article are available online.
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1. Introduction

The analysis of randomized trials is often complicated by the
occurrence of certain events that affect the interpretation of the
treatment effect or preclude the observation of the outcome of
interest. Such occurrences, termed “intercurrent events” (ICE)
by the recently-published ICH E9 addendum on estimands
(International Council for Harmonisation of Technical Require-
ments for Pharmaceuticals for Human Use 2019), include treat-
ment discontinuation, addition of rescue medication, or death
prior to measurement of the outcome of interest. In the presence
of such ICEs, the importance of clear specification of a trial’s
treatment effect “estimand” and how the statistical analysis tar-
gets this estimand has been increasingly recognized over the last
decade.

The U.S. National Research Council report on the Prevention
and Handling of Missing Data in Clinical Trials highlighted the
importance of trials clearly specifying the target estimand(s),
and how the trial design and statistical analysis should be chosen
to support its reliable estimation (National Research Council
2010). Since then, a number of authors have considered the
complex questions involved in how to choose and specify an
estimand and how to select an appropriate statistical method
to estimate it (Mallinckrodt et al. 2012, 2019, 2020; Carpenter,
Roger, and Kenward 2013; Holzhauer, Akacha, and Bermann
2015).

According to the ICH E9 framework, strategies for dealing
with intercurrent events must be specified when choosing and
defining the target estimand of a clinical trial. The addendum
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does not however specify how these might or should correspond
to statistical analysis methods. One of the proposed strategies
is labeled as hypothetical. Under the hypothetical strategy, the
causal effect is targeting what would have happened if the ICE
had (somehow) been prevented from occurring. For instance,
if rescue medication was not available or patients could be
prevented from discontinuing treatment. For patients in the
trial for whom the ICE did not occur, their observed outcome
corresponds to the outcome of interest under the hypothetical
strategy, whereas for those who experienced the ICE, the poten-
tial outcome of interest is missing. Consequently, the existing
literature has almost exclusively focused on tackling the problem
of estimation of hypothetical estimands from the perspective
of missing data, by deleting any outcomes observed after ICE
occurrence and applying methods such as direct likelihood (e.g.,
using linear mixed models) or multiple imputation (Qu et al.
2020).

Until recently (Lipkovich, Ratitch, and Mallinckrodt 2020;
Bowden et al. 2020; Qu et al. 2020; Michiels et al. 2021; Qu,
Luo, and Ruberg 2021), relatively little has been published on
the topic of estimation of estimands from the perspective of
modern casual inference. Indeed, perhaps surprisingly, the ICH
E9 addendum itself does not explicitly mention causal inference
concepts or methods, although these are clearly relevant.

The hypothetical strategy has been used when the ICE is
addition of rescue medication. A recent systematic review on
rescue medication in published trials of asthma and eczema
found that its use was not routinely reported or accounted
for, even when there was evidence of an imbalance in rescue
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medication between arms (Ster, Cornelius, and Cro 2020).
When analyses aiming to account for rescue medication were
reported, the authors of the review considered that they were
mainly targeting a hypothetical estimand with suboptimal
methods and concluded that further guidance was warranted.

In diabetes trials, rescue medication is usually available
for ethical reasons. An example of such a trial compared
dapagliflozin, dapagliflozin plus saxagliptin, and glimepiride
in patients with type 2 diabetes who were using metformin
(Müller-Wieland et al. 2018). Insulin therapy was available as
rescue medication. The analysis of the primary endpoint was
performed using a linear mixed model with fixed effects for
treatment group and covariates after deleting values beyond the
first use of rescue medication. Here, we will discuss alternative
approaches and their corresponding underlying assumptions,
using either only the values prior to rescue medication or the
full observed data including values after the ICE occurrence and
how they relate to this approach.

In this article, we review concepts from causal inference to
characterize precisely the conditions under which hypothetical
estimands can be estimated from trial data. We describe statisti-
cal estimators of these arising from both the causal inference and
missing data literatures, and establish that for each missing data
estimator there is a corresponding numerically identical causal
inference estimator, thereby unifying the sets of methods.

We begin in Section 2 with a review of the concepts and tools
in causal inference, first for a setting with a treatment decision
at a single time point, and then for a generalized setting where
treatment changes can occur at multiple times. In Section 3,
we consider the definition and estimation of a hypothetical
estimand in a simplified setting in which the ICE can only occur
at a single time point, linking it to the concepts and methods
reviewed in Section 2. In Section 4, we consider the more general
setup in which an ICE can occur at multiple time points. Finally,
we give conclusions in Section 5.

2. A Brief Review of Causal Inference Concepts,
Assumptions, and Estimators

In this section, we review the key concepts, assumptions and
estimation methods from causal inference for studies with time-
varying treatments, drawing on Hernan and Robins (2020),
Robins and Hernán (2009), Tsiatis et al. (2020), Daniel et al.
(2013), and Ding and Li (2018).

2.1. Identification Assumptions

2.1.1. Time-Fixed Treatment
Clinical trials usually compare two or more treatments for a
given condition and evaluate their effects on an outcome of
interest. The potential outcomes framework provides a formal
definition for such causal effects and the assumptions required
to estimate them (Rubin 1974). “Potential outcome” refers to the
response that would have been observed on a patient had they
been assigned a particular treatment. Thus, there is a potential
outcome for each patient for every treatment we might feasibly
assign to them. Except in certain special situations, patients only
receive one treatment and therefore only one of their potential
outcomes is observed.

The potential outcome, denoted Ya, expresses the outcome
Y under assignment to treatment a. We can then define the
target causal effect of interest (the estimand) as a contrast of
the distributions of such potential outcomes. For a dichotomous
treatment, A, we may for example be interested in the mean
difference, E(Ya=1) − E(Ya=0), or simply E(Y1) − E(Y0).

In RCTs, the treatment at baseline is assigned at random but
the occurrence of the ICE is not. As we will see in the next sec-
tion, the ICE can be considered a treatment that is not randomly
assigned. The causal effect of interest can be estimated if certain
identifiability assumptions are satisfied. First, the interventions
have to be sufficiently well defined to ensure consistency, which
states that the observed outcome corresponds to the potential
outcome under the treatment received: Y = Ya if A = a,
where A denotes the variable recording the treatment a given
patient receives (VanderWeele 2009). Consider an oncology trial
where we compare chemotherapy versus no chemotherapy. The
chemotherapy treatment would be considered ill-defined if the
type of chemotherapy and regimen are not specified. Also no
chemotherapy can imply no treatment or follow up at all or
just standard of care or many other options. As we would not
expect that different types of chemotherapy regimens would
yield similar outcomes, then the potential outcomes Ya are not
sufficiently well defined.

As patients can usually receive only one treatment, we com-
pare different groups of patients receiving the different treat-
ments of interest. Randomization ensures that the different
groups of patients have similar prognostic factor distributions.
In the absence of randomization, the effect estimate has to
be adjusted for a sufficient set of confounders to ensure that
patients are comparable in terms of their prognostic factors.
This is the second identifiability condition known as conditional
exchangeability. In other words, each of the potential outcomes
Ya for the different possible values of a has to be independent
of the actual treatment received A, given the confounders L:
Ya |� A|L.

Finally, the last identifiability assumption is positivity. This
means that for every patient, on the basis of their confounder
values L, there is a nonzero probability that they could receive
each of the treatments under study (Petersen et al. 2012). It
would not be sensible to consider patients who, on the basis of
one or more of their confounder values, would always receive
a given treatment. This could happen if, say, a particular con-
founder level implies contraindication for one of the treatments.
Therefore, all patients should have a nonzero probability of
receiving the different treatments P(A = a|L = l) > 0 for all
values of a and l such that P(L = l) > 0.

Directed acyclic graphs (DAGs) are a useful tool for encoding
causal assumptions. These graphs are composed of nodes that
represent random variables, including treatment, outcome and
covariates, and edges connecting the nodes (Figure 1). DAGs

Figure 1. Example of a direct acyclic graphs (DAG) relating treatment A, outcome
Y and confounders L.
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Figure 2. Directed acyclic graph (DAG) of a study with time-varying treatment.

are said to be directed because the edges have arrows indicating
the direction of the causal effect and acyclic because a directed
path that is, edge or series of consecutive edges, cannot lead
back to an initial node. The absence of an edge between two
nodes encodes the assumption that there is no direct causal
effect between them. In Figure 1, we would omit the edge L → A
in an RCT to show that A is assigned at random. Briefly, paths
between nodes are made up of (1) chains (e.g., L → A → Y),
(2) forks (e.g., A ← L → Y) and (3) inverted forks (e.g.,
A → Y ← L). The variable at the center of an inverted fork,
in this case Y , is known as a collider on that path. Associations
are transmitted along chains and forks but not along inverted
forks; thus, paths consisting only of chains and forks are called
open paths, but those containing at least one inverted fork are
closed. The association transmitted along an open path can be
blocked by conditioning on a central variable in a chain or fork,
but a closed path is unblocked by conditioning on a collider, and
correspondingly a conditional association induced. The compo-
sition of these 3-variable phenomena lead to an algorithm for
deciding whether or not a set of covariates is sufficient to control
for confounding. For example, in Figure 1, were the arrow from
A to Y to be removed, A and Y would be marginally associated
(via L) but conditionally independent given L, which indicates
that adjusting for L is sufficient to control for confounding under
the assumptions of this simple DAG.

2.1.2. Time-Varying Treatment
The preceding setup can be extended to a more general one
where treatment can change over time. Figure 2 shows a possible
DAG for a study where treatment can change at three time
points, with A0, A1, A2 denoting variables for treatment at each
time. The treatment at a given time point k can depend on
the earlier treatment values and also the earlier values of the
variables L. The final outcome of interest is denoted Y .

In the setting with time-varying treatments we are typically
interested in comparing different treatment regimes, that is dif-
ferent (hypothetical) ways of assigning treatments. A static treat-
ment regime is one in which the decision on which treatment

to assign at each time point does not depend on the time-
varying variables L, whereas dynamic regimes are those where
the treatment decisions can be based on the hypothetical values
of L that would be observed under that regime. As we will see
later, the hypothetical estimand of “no ICE” corresponds to a
static regime. For the DAG in Figure 2 a static regime is defined
by specifying particular values for the three treatment variables.
For example, assuming there are two treatments available, coded
0 and 1, a particular regime is ā = (0, 0, 0), which corresponds
to assigning the first treatment at each of the three time points.
The potential outcome under this regime is denoted Yā.

The identifiability conditions described previously for the
setting with a single treatment assignment can be extended to
this more general setting with time-varying treatments. The
no unmeasured confounding or exchangeability condition has
a number of different versions in the time-varying treatment
setting. For our purposes we use the following version, which
states

Yā |� Ak|Āk−1 = āk−1, L̄k (1)

for k = 0, 1, . . . , K and all static treatment regimes ā, where
Āk−1 = (A0, . . . , Ak−1) denotes the history of treatment
received through to time k − 1, and similarly for āk−1 and L̄k.
This condition is satisfied if treatment assignment at each time
point depends only on previous treatments and measured time-
varying confounders, as in the DAG in Figure 2. We will see
later that this assumption plays a critical role regarding which
variables are included in Lk in order to provide valid inferences.

The positivity condition is similarly extended in the time-
varying treatment setting to the following

P(Ak = ak|Āk−1 = āk−1, L̄k = l̄k) > 0 for all
(ak, āk−1, l̄k) that satisfy fĀk−1,L̄k

(āk−1, l̄k) > 0 (2)

for each k. In words, this says that for all combinations of treat-
ment histories and time-varying confounders up to time k − 1
that can occur in the study, there is a positive probability of each
of the possible treatments being given at time k. In fact, if we
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are interested in a particular treatment strategy, this condition
only needs to hold for treatment histories compatible with the
strategy of interest (see Technical Point 19.2 of Hernan and
Robins 2020). For example, if we are interested in the treatment
strategy of giving treatment zero throughout, ā = (0, . . . , 0), we
require only that

P(Ak = 0|Āk−1 = 0̄k−1, L̄k = l̄k) > 0 for all l̄k
that satisfy fĀk−1,L̄k

(0̄k−1, l̄k) > 0

for each k. We will see later that the positivity assumption plays
an important role in the feasibility of estimation of hypothetical
estimands where whether an ICE occurs depends deterministi-
cally on time-varying confounders.

In what follows, where there is no ambiguity introduced, we
use f (x|a, b, c) as shorthand for fX|A,B,C(x|a, b, c). In the case that
X is discrete, f (x|a, b, c) = P(X = x|A = a, B = b, C = c).

2.2. Estimation Methods

2.2.1. G-Formula
We now review the two most commonly adopted approaches for
estimation of the causal effects of treatment in the time-varying
treatment setting. The first is G-formula or G-computation.
Under the previously stated identification conditions, for a given
treatment regime ā the density function of the potential out-
comes under this regime can be shown (sec. 5.4 of Tsiatis et al.
2020) to be equal to

fYā(y) =
∫

l0

∫
l1

∫
l2

fY|Ā,L̄(y|ā, l̄)fL2|Ā1,L̄1(l2|ā1, l̄1)

fL1|A0,L0(l1|a0, l0)fL0(l0)dl2dl1dl0, (3)

where we have taken K = 2 for concreteness, ā = (a0, a1, a2)
and ā1 = (a0, a1). Often we will be interested in the mean
outcome under a given treatment regime, which can then be
shown to equal

E(Yā) =
∫

l0

∫
l1

∫
l2

E(Y|ā, l̄)f (l2|ā1, l̄1)f (l1|a0, l0)f (l0)dl2dl1dl0

= E
(
E

[
E

{
E(Y|Ā = ā, L̄)|Ā1 = ā1, L̄1

} |A0 = a0, L0
])

.
(4)

To implement G-formula we can specify and fit models for the
conditional distributions

f (y|ā, l̄),
f (lk|āk−1, l̄k−1), k = 1, . . . , K,
f (l0). (5)

If we are only interested in the mean outcome (as opposed to
other aspects of the distribution) under the treatment strategy,
then the conditional model for Y can be replaced with a model
for its conditional expectation. When the Lk are multivariate,
these regressions become multivariate, which is more difficult,
particularly if the components of Lk are a mixture of continuous
and discrete variables. An issue for this approach is that it is
not usually clear which order should be chosen. We note that a
similar issue arises in the specification of imputation models for
multivariate missing data (Erler, Rizopoulos, and Lesaffre 2019).

Having specified and fitted the models, the G-formula identi-
fication Equations (3) or (4) can be used. However, evaluation of
the integrals involved in general is difficult. To circumvent this,
a Monte Carlo integration approach can be used, in which the
values of the time-varying confounders Lk are simulated from
the fitted models sequentially. For further details, see, Daniel,
De Stavola, and Cousens (2011).

The resulting G-formula estimates of E(Yā) are consistent
provided the previously stated identification assumptions hold
and the models for the conditional distributions of the time-
varying confounders and the model for the outcome (5), are
correctly specified.

2.2.2. Inverse Probability of Treatment Weighting
A different approach is to use inverse probability of treatment
weighting to create a pseudopopulation in which the time-
varying treatment assignment is independent of the values of
the (time-varying) covariates. In other words, we create a pseu-
dopopulation in which there are no longer arrows into the
treatment nodes from any other node, but all other relationships
remain unaltered. This is achieved by weighting each patient by
the inverse of the probability of receiving the treatment they in
fact received at each time point given the covariate and treat-
ment history. This is the time-varying treatment extension of the
propensity score (the probability of treatment given covariates).
In the time-varying treatment setting, the (unstabilized) weight
for patient i is

Wi =
K∏

k=0

1
f (Ak,i|Āk−1,i, L̄k,i)

, (6)

where patient i’s treatment history is (A0,i, A1,i, . . . , AK,i), their
time-varying confounder history is (L0,i, L1,i, . . . , LK,i), and
Ā−1,i is taken to be zero for all i by definition. The potential
mean outcome under the treatment strategy of interest can then
be estimated as the weighted average of the outcomes among
those patients whose treatment history matches the treatment
strategy ā we are targeting:∑n

i=1 I(Āi = ā)WiYi∑n
i=1 I(Āi = ā)Wi

(7)

where I(·) denotes the indicator function.
In practice, the conditional distributions of the time-varying

treatment variables involved in the definition of the weights are
not known, but must instead be estimated. When there are only
two treatment options at each time, such that each Ak is binary,
these can be logistic regression models. The resulting estima-
tor of E(Yā) is consistent provided these models are correctly
specified, along with the same identification assumptions stated
previously.

3. Definition and Estimation of a Hypothetical
Estimand in a Simplified Setting

In this section, we apply the assumptions and methods intro-
duced in Section 2 to the problem of estimating a hypothetical
estimand in a randomized trial in which the ICE can take place
at only a single fixed time point. We then compare and contrast
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Figure 3. Directed acyclic graph (DAG) representation of a randomized trial where
the ICE occurring can only occur at a fixed time point. A0 denotes randomized
treatment, A1 occurrence of ICE, L0 baseline variables, L1 post-baseline variables
measured before the occurence of the ICE and Y final outcome.

the causal inference estimators with missing data estimators
which are currently more commonly adopted in practice for the
estimation of hypothetical estimands.

We consider inference under the setup depicted by the DAG
in Figure 3, which is a special case of the general time-varying
treatment setting described in Section 2.1.2. Here A0 represents
randomized treatment at baseline. Unlike Figure 2, there is no
arrow from L0 to A0 due to the fact that treatment at baseline
is randomly assigned. The second “treatment” variable A1 rep-
resents whether or not the ICE occurs for a particular patient.
The ICE can be considered a “treatment” because we want to
intervene on it to set it to 0.

The potential outcomes Ya0,a1 denote the outcome were we
to assign treatment a0 and intervene (somehow) on the ICE to
set it to level a1. The effect of treatment can be expressed as the
expected outcome of assigning the full population to treatment
1 versus assigning them to treatment 0 in the hypothetical
scenario were the ICE prevented from occurring:

E(Y1,0) − E(Y0,0). (8)

In some cases, the post-baseline variables (L1) can include
measurements of the outcome at intermediate visits. For
instance in a diabetes trial, L1 might consist of measurements of
glycemic control, like glycated hemoglobin (HbA1c) and fasting
plasma glucose (FPG), assessed at an intermediate follow-up
visit, while Y denotes HbA1c at the second (final) visit.

3.1. Causal Inference Estimation Approaches

The sequential exchangeability assumption (Equation (1)) holds
here, given covariates L0, L1, since the DAG in Figure 3 is a
special case of the general DAG in Figure 2. Informally this
can be seen to hold here because the treatment A0 is randomly
assigned and the ICE A1 (which is analogous to the “second
treatment”) is only influenced by assigned treatment A0 and
the measured variables L0 and L1. Thus, Ya0,a1=0 |� A0 and
Ya0,a1=0 |� A1|A0, L0, L1. We emphasize that L0 and L1 consist
of all variables which influence the ICE occurrence (A1) and
the outcome Y . In particular, it is not sufficient to specify L0

and L1 as simply the baseline and intermediate measures of
the outcome variable unless these are truly the only variables
influencing the occurrence of the ICE and outcome.

For the positivity assumption (Equation (2)), first since in
randomized trials P(A0 = 0) = P(A0 = 1) = 0.5, it is clearly
the case that P(A0 = a0|L0 = l0) = P(A0 = a0) > 0 for both
a0 = 0 and a0 = 1. Second, the occurrence of the ICE should
also satisfy that P(A1 = 0|A0 = a0, L0 = l0, L1 = l1) > 0 for all
possible l0 and l1 values in both treatment arms. This means that
for all possible combinations of L0, L1 and A0, the probability of
not having the ICE must be nonzero. Note that as we are only
interested in the potential outcomes in the absence of the ICE,
then P(A1 = 1|A0 = a0, L0 = l0, L1 = l1) > 0 is not required,
which implies that for some values of a0, l0 and l1 it can be that
P(A1 = 0|A0 = a0, L0 = l0, L1 = l1) = 1 without representing
a violation of the positivity assumption.

3.1.1. G-formula
From Equation (4) the G-formula estimator for the mean poten-
tial outcome under a general treatment regime ā is given by

E(Yā) =
∫

l0

∫
l1

E(Y|ā, l̄)f (l1|a0, l0)f (l0) dl1 dl0.

Unlike in the general observational study setting, in our setting
the first treatment A0 is randomly assigned. This means in par-
ticular that A0 |� L0, which in turn means that f (l0) = f (l0|a0).
Thus, the preceding equation can in our setting be written as

E(Yā) =
∫

l0

∫
l1

E(Y|ā, l̄)f (l1|a0, l0)f (l0|a0) dl1 dl0

=
∫

l0

∫
l1

E(Y|ā, l̄)f (l1, l0|a0) dl1 dl0.

To use this to estimate E(Yā) we could specify models for
E(Y|ā, l̄) and f (l1, l0|a0). To avoid having to specify a model,
we can use the empirical distribution of L0 and L1 among
those randomized to A0 = a0. This motivates the G-formula
estimator:

Ê(Yā) =
∑n

i=1 I(A0,i = a0)̂E(Yi|a0, a1, L0,i, L1,i)∑n
i=1 I(A0,i = a0)

(9)

which relies only on a model for E(Y|ā, l̄), that is, an appropriate
model for the mean of Y with A0, A1, L0, and L1 as covariates,
noting that our estimator then requires predictions from this
model where A1 is set to a1. If Y is continuous we might for
example choose a linear regression model with main effects of
randomized treatment A0, occurrence of ICE A1, L0, and L1.
This model would make use of all the observed data, including
outcomes Y which take place after an ICE. Through the inclu-
sion of A1 as a covariate, it models how the ICE influences the
final outcome Y . When the ICE is receipt of rescue medication,
this corresponds to use of the post-rescue outcomes with adjust-
ment for rescue, and this type of approach has been discussed
previously by Holzhauer, Akacha, and Bermann (2015).

As described previously, the hypothetical estimand corre-
sponds to the contrast of the treatment regimes ā = (1, 0) and
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ā = (0, 0), where we set A1 to 0. A G-formula estimator for the
hypothetical estimand under no ICE is thus,

Ê(Ya0,a1=0) =
∑n

i=1 I(A0,i = a0)̂E(Yi|a0, a1 = 0, L0,i, L1,i)∑n
i=1 I(A0,i = a0)

.

(10)

The G-formula estimator is thus predicting, for every patient
randomized to treatment group a0, what their outcome would
be were the ICE set to not occur.

Since here we are only interested in regimes which set a1 = 0,
we do not need in fact to model how occurrence of the ICE
influences Y , since we only need to predict outcomes under no
ICE a1 = 0. Thus, an alternative G-formula approach for the
hypothetical estimand is to only specify and fit a model among
those patients who did not experience an ICE (A1 = 0), that
is, for E(Y|A0 = a0, A1 = 0, L0, L1). For example if we are
interested in the potential outcome under a particular value
of the treatment A0 = a0 we might assume that E(Y|A0 =
a0, A1 = 0, L0, L1) = β

a0
0 + β

a0
1 L0 + β

a0
2 L1. This model can be

fitted by ordinary least squares to those randomized to A0 = a0
and for whom A1 = 0, giving estimates β̂

a0
0 , β̂

a0
1 , and β̂

a0
2 . The

G-formula estimator is then equal to

Ê(Ya0,a1=0) =
∑n

i=1 I(A0,i = a0)
{
β̂

a0
0 + β̂

a0
1 L0,i + β̂

a0
2 L1,i

}
∑n

i=1 I(A0,i = a0)
.

(11)
The approach which specifies and fits a model to only those
patients who did not experience the ICE makes fewer assump-
tions than the one which specifies and fits a model to all
observed data. The approach which uses all the data has the
potential to give improved precision of estimates (and hence
greater power), but is more vulnerable to model misspecifica-
tion. Similarly there is a tradeoff between precision and model
misspecification when fitting a single model and including the
randomized treatment A0 as covariate or fitting separate models
by treatment arm to relax modeling assumptions. The different
modeling alternatives can also be combined for example, sepa-
rate models by treatment arm among ICE-free.

3.1.2. Inverse Probability of Treatment Weighting
We now apply the general IPW estimator described in Sec-
tion 2.2.2. Applied to the current setting, the IPW estimator of
the mean of Ya0,a1=0 from Equation (7) is given by∑n

i=1 I(Āi = (a0, 0))WiYi∑n
i=1 I(Āi = (a0, 0))Wi

. (12)

This is a weighted mean of the outcomes from those patients
who were randomized to treatment a0 and in whom the ICE did
not occur. Under 1:1 randomization P(A0 = a0|L0) = 0.5, and
so the weights Wi are given by

Wi = 1
0.5

× 1
f (A1,i|A0,i, L0,i, L1,i)

= 2
f (A1,i|A0,i, L0,i, L1,i)

. (13)

Since the occurrence of the ICE is typically not under the investi-
gator’s full control, we must postulate and fit a model for P(A1 =

Figure 4. Single-world intervention graph (SWIG) resulting from the DAG shown in
Figure 3, intervening to set the ICE to a1 = 0.

0|A0, L0, L1). For example, we could fit a logistic regression for
A1 with A0, L0, and L1 as covariates. Here the logistic models to
estimate the weights could also be fitted separately by treatment
arm. As with G-formula, there is a similar trade off of making
the models less vulnerable to model misspecification but at the
expense of precision.

3.2. Missing Data Approaches

3.2.1. Likelihood Based Missing Data Approaches
As described in Section 1, currently a commonly adopted esti-
mation approach when targeting hypothetical estimands with
continuous endpoints is to fit a linear mixed model to the
repeated measures of the outcome variable using maximum
likelihood, after deleting any outcome measurements which
were made after the ICE took place. These are based on assum-
ing the resulting missing data are missing at random (MAR).

We will use the theory of DAGs to check whether MAR holds
for the missing hypothetical outcomes under the DAG shown in
Figure 3. To do so, we make use of an extension of DAGs: single
world intervention graphs (SWIGs), as described by Richardson
and Robins (2013). A SWIG takes as its input a DAG, and
shows the graph that would result under an intervention which
fixes the values of certain variables. Figure 4 shows the SWIG
that results if we intervene to set the ICE a1 = 0. Each vari-
able intervened on is split into two parts, the first (in capitals)
which denotes the original variable, taking whatever value it
would naturally take (without intervention), and the second part
(lower case) indicating the intervened value. Variables which
are affected by those variables intervened on are changed to
their potential outcome value under the specified values of the
intervened variables. Thus, when we intervene to set a1 = 0, Y
becomes Ya1=0.

Unlike the DAG, the SWIG in Figure 4 contains the partially
observed potential outcomes Ya1=0 of interest under the hypo-
thetical estimand. To check MAR, we note that the indicator of
missingness in the hypothetical outcomes Ya1=0 is identical to
the ICE variable A1, since it is those individuals with A1 = 1 for
which Ya1=0 is missing. MAR here means that the missingness
indicator A1 is independent of the partially observed Ya1=0

conditional on A0, L0 and L1. This conditional independence
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Figure 5. Directed acyclic graph (DAG) representation of randomized trial with ICE occurring at two time points.

can be read off from the SWIG, since once we condition on A0,
L0 and L1 there are no open paths from A1 to Ya1=0. Analogous
to the sequential exchangeability assumption, we emphasize that
we must ensure the variables used as L0 and L1 in estimation
do include all common causes of the ICE A1 and the outcome
Y . For example, while L0 and L1 may typically need to include
measurements of the outcome variable at baseline and the inter-
mediate time point, there will generally be additional common
causes of the ICE and outcome Y , and these must be included in
L0 and L1 for the DAG in Figure 3 to be correct.

Since the potential outcomes Ya1=0 which are of interest
for the hypothetical estimand are MAR given A0, L0 and L1,
it follows that an observed data likelihood analysis assuming
the missingness is ignorable will give consistent estimates in
this scenario under the previously stated assumptions and pro-
vided the full data model assumed is correctly specified. These
conclusions are in agreement with those of Holzhauer, Akacha,
and Bermann (2015), who proposed fitting a joint mixed effects
model for L0, L1, Y conditional on A0, after deleting post ICE
outcomes, or alternatively use of multiple imputation to impute
Ya1=0 in those with A1 = 1, again ensuring that L0, L1, A0 are
included in the imputation model.

We now show that particular observed data likelihood based
estimators are identical to particular G-formula estimators.
Consider the data on L0, L1 and Y in treatment group A0 = a0,
after deleting any Y values for individuals with A1 = 1. Suppose
that L1 is a single variable and that we fit a bivariate normal
model (a type of linear mixed model) to the resulting (L1, Ya1=0)
data in group A0 = a0 assuming MAR, with the means of L1 and
Ya1=0 depending linearly on L0 but with separate coefficients,
and an unstructured covariance matrix. The bivariate normal
model implies that

E(Ya1=0|A0 = a0, L0, L1) = β
a0
20 + β

a0
21 L0 + β

a0
22 L1

E(L1|A0 = a0, L0) = β
a0
10 + β

a0
11 L0.

The observed data likelihood function under MAR factorizes
(sec. 7.2 of Little and Rubin 2019) such that the MLEs of the
parameters in these two models are obtained by fitting the Ya1=0

model among those with Ya1=0 observed (here meaning A1 =

0) and for the L1 model using all patients. Then we have that

E(Ya1=0|A0 = a0, L0) = E
{

E(Ya1=0|A0 = a0, L0, L1)|A0 = a0, L0
}

= E(β
a0
20 + β

a0
21L0 + β

a0
22L1|A0 = a0, L0)

= β
a0
20 + β

a0
21L0 + β

a0
22(β

a0
10 + β

a0
11L0).

Taking expectations of this conditional on A0 = a0 we have

E(Ya1=0|A0 = a0) = β
a0
20 + β

a0
21 E(L0|A0 = a0)

+ β
a0
22(β

a0
10 + β

a0
11 E(L0|A0 = a0)).

Taking Ê(L0|A0 = a0) =
∑n

i=1 I(A0,i=a0)L0,i∑n
i=1 I(A0,i=a0)

as the nonparametric
MLE of E(L0|A0 = a0), by the invariance property of MLE the
MLE of E(Ya1=0|A0 = a0) is given by

Ê(Ya1=0|A0 = a0) = β̂
a0
20 + β̂

a0
21 Ê(L0|A0 = a0)

+ β̂
a0
22(β̂

a0
10 + β̂

a0
11 Ê(L0|A0 = a0)).

The model for L1 is fitted to all those with A0 = a0. A property
of ordinary least squares estimators is that the sample mean of
the dependent variable (here L1) is equal to the predicted value
of the dependent variable when the covariate is set to its sample
mean, such that

β̂
a0
10 + β̂

a0
11 Ê(L0|A0 = a0) =

∑n
i=1 I(A0,i = a0)L1,i∑n

i=1 I(A0,i = a0)
.

It follows that

Ê(Ya1=0|A0 = a0) =
∑n

i=1 I(A0,i = a0)
(
β̂

a0
20 + β̂

a0
21L0,i + β̂

a0
22L1,i

)
∑n

i=1 I(A0,i = a0)

which is identical to the G-formula estimator given in Equation
(11).

More commonly a linear mixed model is fitted which
assumes a common covariance matrix for (L1, Ya1=0) across
the two randomized groups with mean effects of A0 and L0.
A similar argument to the one above shows that the resulting
estimator is a G-formula estimator where we fit a single model
for Ya1=0 to both randomized groups, with A0 as a covariate (in
addition to L0 and L1).
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Finally, we note that a multiple imputation (MI) analysis
assuming MAR and based on the same modeling assumptions
as the likelihood based analysis is (up to Monte Carlo noise)
equivalent to the likelihood based analysis. Thus, corresponding
multiple imputation estimates which delete data after the ICE
occurs are equivalent to particular G-formula implementations.
The equivalence of imputation approaches and G-formula was
previously discussed by Westreich et al. (2015) and Qu et al.
(2020).

3.2.2. Inverse Probability of Missing Weighting
The potential outcomes of interest among those randomized to
A0 = a0 are Ya1=0. Since the event that A1 = 0 is precisely the
indicator of observation of the potential outcome of interest, the
standard IPW missing data estimator (Seaman and White 2013)
for E(Ya1=0|A0 = a0) can be seen to be identical to the “causal
inference” IPW estimator given in Equation (12).

3.3. Deterministic Intercurrent Events

In some trials the intercurrent event could be discontinuation of
randomized treatment or addition of rescue treatment. In some
therapy areas, for example, diabetes, the protocol specifies that
rescue treatment be given at/following a visit at time k if and only
if a measurement of glycemic control (e.g., via FPG or HbA1c)
exceeds some threshold. This has been termed a deterministic
MAR situation (Holzhauer, Akacha, and Bermann 2015), with
missing data estimation approaches advocated.

In such situations the positivity assumption is violated if
the protocol was followed. This implies that the hypothetical
estimand cannot be nonparametrically identified, which essen-
tially means it cannot be estimated without making untestable
modeling assumptions. Parametric G-formula, likelihood and
MI approaches can provide consistent estimates, but only by
extrapolating beyond the data. In particular, they must predict
the no ICE potential outcomes for those individuals who did
in fact have an ICE. When intercurrent events occur deter-
ministically, there are no similar patients in terms of A0, L0, L1
who did not have the ICE and hence have Ya1=0 observed.
If the extrapolation implied by the model is correct, we can
obtain consistent estimates. However, from the data alone, we
have no basis on which to judge whether the extrapolation is
justified. In such cases, the extrapolation can arguably only be
justified on the basis of external evidence, since the data offer
no information about whether the extrapolation is reliable.

In contrast, if the IPW approach is used, and the model
for ICE/missingness correctly incorporates the deterministic
ICE mechanism, for those with A1 = 0 because P(A1 =
0|A0, L0, L1) = 1 their true weight will be 2 as per Equation (13),
as well as for those with A1 = 1 because P(A1 = 1|A0, L0, L1) =
1. In this case, the estimator in Equation (12) would simply be
the unweighted average of outcomes in those with A1 = 0,
which in general will give a biased estimate.

4. Intercurrent Events at Multiple Time Points

We now consider the more realistic setting where the ICE can
occur at multiple time points. We consider the case where the

ICE can occur at two time points, denoted A1 and A2, and note
that our conclusions in this situation can be easily extended
to the general setup with more time points. The hypothetical
potential outcomes of interest now are Ya0,a1=0,a2=0 for a0 = 0
and a0 = 1. Figure 5 shows the DAG for this situation.

4.1. Causal Inference Approaches

4.1.1. G-formula
Using Equation (4) we have that

E(Yā) =
∫

l0

∫
l1

∫
l2

E(Y|ā, l̄)f (l2|ā1, l̄1)f (l1|a0, l0)f (l0)dl2dl1dl0.

As before because of randomization f (l0) = f (l0|a0) and so we
can write

E(Yā) =
∫

l0

∫
l1

∫
l2

E(Y|ā, l̄)f (l2|ā1, l̄1)f (l1, l0|a0)dl2dl1dl0.

(14)

To construct an estimator based on this, we specify and
fit a model for E(Y|Ā, L̄) and for f (L2|Ā1, L0, L1), while for
f (L1, L0|A0 = a0) we can again avoid modeling it by using
the empirical distribution of (L1, L0) in those randomized to
treatment a0. As before, we could fit models for E(Y|Ā, L̄) and
f (L2|Ā1, L0, L1) using data from all patients with suitable covari-
ate effect specification, or instead restrict them to those whose
treatment history Ā equals the hypothetical estimand regime of
interest ā = (a0, 0, 0). The former may be more efficient, but
it requires specification of more modeling assumptions. Taking
the latter approach, suppose we assume that

E(Y|A0 = a0, A1 = 0, A2 = 0, L0, L1, L2)

= β
a0
30 + β

a0
31 L0 + β

a0
32 L1 + β

a0
33 L2

E(L2|A0 = a0, A1 = 0, L0, L1) = β
a0
20 + β

a0
21 L0 + β

a0
22 L1. (15)

Then we have that

E {E(Y|A0 = a0, A1 = 0, A2 = 0, L0, L1, L2)|A0 = a0, A1 = 0, L0, L1}
= E

{
β

a0
30 + β

a0
31L0 + β

a0
32L1 + β

a0
33L2|A0 = a0, A1 = 0, L0, L1

}
= β

a0
30 + β

a0
31L0 + β

a0
32L1 + β

a0
33E(L2|A0 = a0, A1 = 0, L0, L1)

= β
a0
30 + β

a0
31L0 + β

a0
32L1 + β

a0
33(β

a0
20 + β

a0
21L0 + β

a0
22L1)

= β
a0
30 + β

a0
33β

a0
20 + (β

a0
31 + β

a0
33β

a0
21)L0 + (β

a0
32 + β

a0
33β

a0
22)L1.

Then using Equation (14) our G-formula estimator is

∑n
i=1 I(A0,i = a0){β̂a0

30 + β̂
a0
33 β̂

a0
20 + (β̂

a0
31 + β̂

a0
33 β̂

a0
21)L0,i

+(β̂
a0
32 + β̂

a0
33 β̂

a0
22)L1,i}∑n

i=1 I(A0,i = a0)
.

(16)

In words, for each patient randomized to treatment a0, this G-
formula estimator first predicts La0,a1=0

2 under the hypothetical
no ICE scenario and then predicts Ya0,a1=0,a2=0. Finally, it aver-
ages these predictions across the patients randomized to a0.
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Figure 6. SWIG resulting from DAG shown in Figure 5, intervening to set a1 = 0 and a2 = 0.

4.1.2. Inverse Probability of Treatment Weighting
For this setting when the ICE can occur at two time points, the
IPW estimator for the mean of Ya0,a1=0,a2=0 is a weighted mean
of the outcomes from those patients who were randomized to
treatment a0 and in whom the ICE did not occur at either of
the two intermediate time points. The weights are as defined in
Equation (6).

Unlike in the setting considered in Section 3, we could now
choose to model the occurrence of ICE at each time point using
all patients, with earlier occurrence of ICE as a covariate. How-
ever, since in the end we only need weights for those patients
who did not experience the ICE at either time point, we might
choose instead to model the occurrence of the ICE at time k
only among those who had not up to time k experienced an
ICE. Thus, like the G-formula, one has some flexibility and
choice about which data to use and what modeling assumptions
to make. Indeed, one may wish to avoid modeling how the
occurrence of an ICE depends on the past among those who
have already experienced an ICE.

4.2. Missing Data Approaches

4.2.1. Likelihood Based Missing Data Approaches
As noted earlier, missing data methods have previously been
advocated to and applied for estimating hypothetical estimands
by fitting mixed models to the repeated measurements of out-
comes after excluding any post ICE outcomes. This leads to a
so called monotone missingness pattern. We now show using a
SWIG derived from the DAG in Figure 5 that the hypothetical
potential outcomes of interest are again MAR.

The full data under the hypothetical estimand is now
(L1, La1=0

2 , Ya1=0,a2=0). There are missing values in La1=0
2 and

Ya1=0,a2=0, and if La1=0
2 is missing for an individual then so

is Ya1=0,a2=0. This is analogous to monotone dropout in a
longitudinal study. In this context, MAR can be expressed as
saying that at any given time, among those subjects who have
not yet dropped out, the probability of dropout before the next
follow-up visit is independent of future outcomes given the past
outcomes (Daniels and Hogan 2008).

Figure 6 shows the SWIG resulting from the DAG in Figure 5
if we intervene to set a1 = 0 and a2 = 0, and we can use this
to check MAR is satisfied. First we can immediately confirm
from the SWIG that A1 |� (La1=0

2 , Ya1=0,a2=0)|A0, L1, L0. Next we
must check that A2 |� Ya1=0,a2=0|A1 = 0, A0, L2, L1, L0. For this,
note that in those with A1 = 0, by the consistency assumption
L2 = La1=0

2 and A2 = Aa1=0
2 , and so this assumption is

equivalent to Aa1=0
2 |� Ya1=0,a2=0|A1 = 0, A0, La1=0

2 , L1, L0, and
the SWIG shows that this conditional independence condition
indeed holds. We emphasize again, that if there are, as there
typically would be, common causes of ICE occurrence and final
outcome additional to the repeated measurements of outcome,
they must be included in L0, L1, L2. Others have previously
discussed the use of missing data methods assuming MAR
whereby data after the ICE occurs are excluded from the analysis
(Holzhauer, Akacha, and Bermann 2015; Mallinckrodt et al.
2020). By using the machinery of causal diagrams, we are able to
clarify the conditions under which the MAR assumption would
be satisfied—namely that we have measured and conditioned on
all common causes of the ICE variables (here A1 and A2) and the
final outcome of interest (here Y).

As was the case with an ICE occurring at a single time point,
in the supplementary material we show that particular “missing
data estimators” and particular “causal inference estimators”
are equivalent. The fact that missing data approaches are valid
and are identical to particular causal inference estimators in
this setting is perhaps at first sight surprising, since it is often
said that a setting with time-dependent confounding affected
by treatment is one in which “standard approaches” are invalid,
with more complex g-methods required instead. For further
details, see the supplementary materials.

4.2.2. Inverse Probability of Missing Weighting
As before we note that we are considering the ICE as a “treat-
ment” and it is also the missing indicator because we are only
interested in the potential outcomes Ya1=0,a2=0 which would
occur in the absence of the ICE. However, when the ICE can
occur at more than one time point, the implementation of
IPW for missingness is equivalent to the one described in
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Section 4.1.2, where we fit the models to estimate the weights
at time point k restricted to those with A1:k−1 = 0̄.

5. Conclusion

To target a hypothetical estimand under no ICE, we have consid-
ered different estimators arising from the causal inference and
missing data literature. In doing so, we have shown that there are
close connections between estimators in these groups. Indeed,
we have shown that “missing data” likelihood based estimators
(observed data likelihood or multiple imputation) applied after
data post-ICE are deleted are implementations of the G-formula
method from causal inference. Similarly, inverse probability of
missing estimators for hypothetical estimands are also inverse
probability of treatment estimators from causal inference.

We believe this unification is helpful to those analyzing clin-
ical trial data not least because the assumptions required for
estimation, expressed via causal inference language, are arguably
more easily understood than missing data assumptions. In par-
ticular, we believe DAGs can be very useful tools for graphically
encoding what we may view as plausible for the causal rela-
tionships between variables, and from this, the validity of the
sequential exchangeability assumption can be assessed.

The causal inference lens also brings to the fore the impor-
tance of the positivity assumption. In trials where ICE occur-
rence is a deterministic function of biomarker values, such that
the assumption is violated, estimation via likelihood methods
or G-formula relies on extrapolation. The reasonableness of this
extrapolation should be assessed on a case by case basis, taking
into account the type of ICE, the disease context, and the extent
of the extrapolation being made. Sensitivity analyses may be
required given that the reliability of the extrapolation cannot be
assessed from the observed data. Alternatively, in such cases one
may choose to target a different estimand (Michiels et al. 2021).

It is worth noting that, in a given context, different hypothet-
ical estimands can be defined for a particular ICE. For instance,
in the case of use of rescue medication, we could conceive a
hypothetical scenario where rescue medication was not avail-
able for the early stage of the trial that is, no rescue medica-
tion in the first 6 months in a 36 months follow-up trial. The
alternatives could be to set a shorter/longer period of follow-
up or to consider not allowing rescue medication use in the
protocol. The hypothetical strategy could be regarded even more
broadly and instead of considering an intervention to set the
ICE to 0 for everyone, this could be set to a different value. For
example, this could mean assessing the randomized treatment
versus control treatment where everyone was to receive rescue
medication.

While we have shown that commonly used “missing data
estimators” for hypothetical estimands correspond to certain
causal inference estimators, we have also seen that there are
additional implementations of G-formula and IPW which could
be used instead. For example, contrary to current common
practice, it is possible to use the full data, including intermediate
and final outcomes assessed after the occurrence of the ICE, so
long as suitable adjustment is made for past ICE occurrence. As
seen in the simulations (supplementary material), this approach
offers the potential for more precise estimates, at the expense of
relying on more modeling assumptions.

There can be settings where it is plausible to borrow informa-
tion from patients with ICEs. Consider a diabetes trial assessing
the impact of a novel treatment with standard of care on achiev-
ing normal HbA1c levels. If a patient discontinues the novel
treatment and still achieves normal HbA1c levels, they would
probably have also had a positive outcome had they continued
on treatment.

It is worth noting that the hypothetical estimand is particu-
larly relevant to deal with ICEs that can be intervened on. For
instance we could conceive a trial where we could intervene
to avoid treatment interruptions due to administrative reasons
such as the ones derived from government enforced closures
during the current COVID-19 pandemic. In contrast, it would
probably be less sensible to consider a world were we could
intervene to avoid treatment discontinuation due to adverse
events. For these cases, a different strategy to deal with the ICE
is more reasonable.

We have assumed there is only one ICE under consideration.
In practice there is typically more than one ICE. With multiple
types of ICE which are all chosen to be handled using the hypo-
thetical strategy, the methods described here could be applied
with the A1, . . . , AK now denoting occurrence of at least one of
the ICEs. However, in order to avoid model misspecification it
may be preferable to define Ak as a vector indicating occurrence
or not of each of the ICE types at time k. If some ICE are to
be handle with using the hypothetical strategy and some using
treatment policy, if the treatment policy ICE precedes the hypo-
thetical ICE in time, it may be possible to consider the treatment
policy ICE as an additional time-varying covariate (i.e., as part
of L1, . . . , LK). We will address in more detail estimation in the
case of two or more ICE types in a subsequent paper.

The validity of the estimates given by the methods described
depends on the models being correctly specified, as shown by
the simulations (supplementary material). To make the esti-
mates more robust to model misspecification, so-called doubly-
robust estimators were developed (Bang and Robins 2005). The
idea is that the estimates are derived using two separate models
and only one of the models needs to be correctly specified to
obtain consistent estimates. The first model typically concerns
the treatment assignment (propensity score model) while the
second model is a model for the outcome. Section 21.3 of
Hernan and Robins (2020) describes calculation of a doubly
robust estimator in the time-varying treatment setting, which
could be applied for estimation of hypothetical estimands. To
provide further robustness to model misspecification, machine
learning approaches could also be explored (Van Der Laan and
Rubin 2006).

For the methods covered in the article, we did not discuss
variance estimation. First, the purpose of the article was to
provide feasible ways to implement existing estimators to target
hypothetical estimands, so the main focus was on the treatment
effect estimate. More importantly, as these are well established
estimators, there is already existing literature proposing differ-
ent ways of estimating the corresponding variance, including
bootstrapping and sandwich estimators. In fact, there are differ-
ent packages available to implement them in standard software
(van der Wal and Geskus 2011; McGrath et al. 2020).

We also did not discuss G-estimation (Hernan and Robins
2020). The difference between G-estimation and the other
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G-methods is that G-estimation estimates conditional treatment
effects within levels of L. In settings where conditional causal
effects are of interest, G-estimation may be of relevance.

In practice, there may be data missing for example, due to
missed visits. As we have discussed, certain estimators do not
use data after the occurrence of an ICE, and so missingness
in variables at follow-up visits occurring after ICEs present no
difficulties for these estimators. For patients with missing values
before occurrence of the ICE, their missing hypothetical (no
ICE) outcomes could be imputed, for example using MI. There
would be no need to differentiate between such missing values
and dataset missing because of the ICE, provided both common
causes of missingness and outcome, and common causes of the
ICE and outcome are conditioned on in the imputation models.
Alternatively, MI could first be used to impute any missing
actual (as opposed to hypothetical counterfactuals) data, fol-
lowing which any of the methods described previously (e.g., G-
formula or IPW) could be applied to estimate the hypothetical
no ICE estimand. Dealing with missing actual data with IPW
is less attractive, since its implementation when missingness
is non-monotone (as it often is), is difficult (Sun and Tchet-
gen Tchetgen 2018). Moreover, use of IPW may require one to
specify separate models for the missingness and occurrence of
ICE processes.

We hope that by drawing parallels between causal inference
and missing data methods and describing how the different
estimators work, the assumptions required for valid estimates
and showing feasible ways to implement them, researchers
involved in the design and analysis of clinical trials will be able
to successfully apply these methods to their trials.

Supplementary Materials

Equivalence of G-formula and likelihood based missing data approaches -
Simulations.
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