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Sleep-related benefits to transitive inference are
modulated by encoding strength and joint rank
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Transitive inference is a measure of relational learning that has been shown to improve across sleep. Here, we examine this

phenomenon further by studying the impact of encoding strength and joint rank. In experiment 1, participants learned ad-

jacent premise pairs and were then tested on inferential problems derived from those pairs. In line with prior work, we

found improved transitive inference performance after retention across a night of sleep compared with wake alone.

Experiment 2 extended these findings using a within-subject design and found superior transitive inference performance

on a hierarchy, consolidated across 27 h including sleep compared with just 3 h of wake. In both experiments, consolida-

tion-related improvement was enhanced when presleep learning (i.e., encoding strength) was stronger. We also explored the

interaction of these effects with the joint rank effect, in which items were scored according to their rank in the hierarchy,

with more dominant item pairs having the lowest scores. Interestingly, the consolidation-related benefit was greatest for

more dominant inference pairs (i.e., those with low joint rank scores). Overall, our findings provide further support for

the improvement of transitive inference across a consolidation period that includes sleep. We additionally show that encod-

ing strength and joint rank strongly modulate this effect.

[Supplemental material is available for this article.]

Relational reasoning is the cognitive process of identifying and un-
derstanding relationships between stimuli or concepts. It involves
the ability to identify patterns (for example, similarities and differ-
ences between stimuli) and to understand how they relate to each
other (Halford et al. 2010). Relational reasoning is important for a
wide range of cognitive tasks, such as problem-solving (Dumas
et al. 2014), decision-making (Dumas 2016), and language acquisi-
tion (Gentner and Namy 2006). Transitive inference is a specific
type of relational reasoning that involves making inferences about
the relationships between items in a hierarchy. For example, if A is
dominant to B, and B is dominant to C, then we can infer that A
dominates C when probed (A?C). This type of inference requires
the ability to reason about the relationships between stimuli based
on their relative positions in a hierarchy. Transitivity, a property of
all ordered sets, has been studied extensively in human develop-
mental psychology for over a century (Piaget 1921) and by compar-
ative cognition research for close to half a century (McGonigle and
Chalmers 1977). However, the mechanisms underlying transitive
inference are not fully understood (Holyoak and Lu 2021).

One area of ongoing research in the study of transitive infer-
ence is the role of time- and sleep-dependent consolidation in
the formation and retention of transitive inference abilities.
Several studies have proposed that the process of memory consol-
idation, particularly that which occurs during sleep, plays an inte-
gral role in this cognitive phenomenon. This is based on the
premise that sleep serves not only to stabilize memories but to
qualitatively transform them, and this transformation may result
in the abstraction of the gist of a memory or the discovery of latent
structures underlying a learned material (Lewis and Durrant 2011;
Inostroza and Born 2013; Lewis et al. 2018; Lerner and Gluck
2019). In one of the first studies investigating the impact of time
and sleep on performance in the transitive inference task,

Ellenbogen et al. (2007) reported that participants performed tran-
sitive inferences significantly above chance if they were allowed a
night of sleep between training and testing, whereas those tested
immediately after the sessionwere at chance. This study also found
that there was a more pronounced improvement in performance
onmore distant inference pairs (e.g., B?E, which requires two infer-
ential steps to determine their relationship: C and D) when partic-
ipants had slept between the training and testing session. The
symbolic distance effect (SDE) is a phenomenon observed in vari-
ous cognitive psychology experiments where reaction times and/
or accuracy are affected by the numerical or conceptual distance
between stimuli (Moyer and Landauer 1967). Specifically, response
times decrease and accuracy increases as the distance between stim-
uli increases. It has been observed in various tasks and, in the con-
text of transitive inference, has been used to support the idea that
participants learn the relative ranks of stimuli in the hierarchy.
While Werchan and Gómez (2013, 2016) partially support this
sleep-dependent symbolic distance effect, their amended results
are not technically significant, and other variations also failed to
replicate the effect. For instance, a shorter delayed test (3 h) involv-
ing either a short nap or no nap (Morgan and Stickgold 2017) and
within-subject studies involving a 12-h delayed test on a six-item
hierarchy (Matorina and Poppenk 2021) or 24-h delayed test on
a seven-itemhierarchy (Berens and Bird 2022) found above-chance
inference performance at delayed test but no time-dependent SDE.

Studies have suggested that time and, more specifically, sleep
play a crucial role in the consolidation of newly acquired relational
knowledge, potentially helping to strengthen the connections be-
tween stimuli in a hierarchy and improve overall inference perfor-
mance (Lau et al. 2010; Alger and Payne 2016). Others have argued
that many earlier findings showing sleep-mediated benefits on
memory are not robust (Cordi and Rasch 2021) and that sleep-
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dependent benefits in statistical learning tasks are highly task-
dependent and implicit only (Lerner and Gluck 2019).We propose
that using diverse study designs and control variables can facilitate
the elucidation of boundary conditions for time- and sleep-
dependent gist extraction. Although considerable knowledge ex-
ists regardingmoderators of sleep-related benefits for nonrelational
episodic memories (Berres and Erdfelder 2021), it remains unclear
how these factors pertain to sleep-dependent generalization stud-
ies (Pereira et al. 2023). An essential factor of interest is encoding
strength, as studies may establish various learning criteria in their
study phase, depending on whether previous research suggested
that sleep enhances the retention of weaker memories to a greater
extent than stronger memories (Diekelmann et al. 2009) or vice
versa (Tucker and Fishbein 2008). While the use of a learning crite-
rion can ensure that participants have acquired aminimum level of
proficiency, individual differences in acquired performance can
lead to varying sleep benefits (Denis et al. 2021). We hypothesize
that encoding strengthwill affect not only overall inference perfor-
mance but also qualitativemeasures of hierarchical learning. Thus,
we not only expect to replicate earlier findings showing sleep-
dependent differences in symbolic distance effect (ameasure of rel-
ative positional encoding) but also propose an additional measure
of absolute positional encoding based on the summed rank of a
given pair’s constituent item ranks (e.g., if A >B>C the summed
rank of A?B would be 1 +2=3, and for B?C it would be 2+3=5), re-
ferred to here as joint rank value (Jensen et al. 2017).

This is motivated by two strands of research. On the one hand,
a study by Kao et al. (2020) extended the single-hierarchy transitive
inference (TI) paradigm by using a derived list (or derived hierarchy)
approach, in which participants were instructed to learn the ordinal
structure of five hierarchies consisting of five items each (e.g., AH1>
BH1 CH1>DH1>EH1, …, AH5>BH5>CH5>DH5>EH5). Participants
were then tested on both adjacent and nonadjacent pairs of items
from five different derived hierarchies, and responses were scored
such that the hierarchies were mixed but the ordinal positions of
all items on the derived hierarchy were maintained. This means
that the positions of items that were
learned during training sessions retained
their ordinal positions during testing ses-
sions but were paired with novel items
from different hierarchies (e.g., AH1>BH3

>CH5>DH2>EH3, …, AH5>BH4>CH2>
DH3>EH1). The investigators found evi-
dence of greater than chance accuracy on
these novel pairings during test as well as
an SDE and argued that it is only possible
for transitive inference to emerge in de-
rived hierarchies if paired with an addi-
tional representation of absolute position.

On the other hand, Ciranka et al.
(2022) focused on the behavioral model-
ing of emergent transitive inference dur-
ing relational learning. They showed that
inference performance is worse for infer-
ence trials with higher compared with
lower values for joint rank [e.g., accuracy
(B?D)≪ accuracy(C?E)]. The investigators
argued that this observed reduction in
the ability to differentiate between the
more dominant items (e.g., A?B, pair
with low joint rank value) compared
with the less dominant items (e.g., E?F,
pair with high joint rank value) could be
caused by compressed representations of
magnitude that can emerge from an asym-
metric learning policy. In other words, if

participants consistently update their belief only about the winner
(or loser) during premise pair learning, themodel predicts diminish-
ing rank-based discrimination as a function of joint rank value.

In two experiments, we studied the effect of encoding
strength, measured by immediate testing performance, on sleep
(experiment 1, Fig. 1A) and time-dependent (experiment 2, Fig.
1B) generalization while also examining the distance effect (Fig.
2A) and joint rank effect (Fig. 2C) and how these interact with con-
solidation across a period that includes sleep.

Results

Experiment 1

Behavioral results
Our primary interest was the inference pairs, which were tested
only at session 2 (postretention interval). One-sample t-tests
showed that inference performance was significantly higher than
chance for the sleep group (M=0.62, 95% CI [0.54, ∞], t(35) =
2.53, P=0.008) but not for the wake group (M=0.53, 95% CI
[0.45, ∞], t(35) = 0.62, P=0.271) (Fig. 3A). These results suggest a
sleep-dependent benefit to TI.

To test for baseline differences in premise pair memory that
might have confounded the above result, we performed a mixed
three-way ANOVA on the mean premise pair accuracy measure
with between-subjects factor group and within-subject factor ses-
sion and stimulus category. This revealed no effect for either of
the factors (smallest P=0.088) or their interactions (smallest P=
0.733) (Supplemental Table S2; Supplemental Fig. S1A). Note
that inference pairs were not tested at baseline. For detailed de-
scriptive statistics, see Supplemental Table S1.

Encoding strength
To assess the effects of our factors of interest (encoding strength
and group) on inference performance at test, we next conducted

A

B

Figure 1. Experimental procedure. (A) Experiment 1. Participants were randomly assigned to either
the wake group or the sleep group. The wake group started the experiment at 9:00 a.m. (±30 min),
and the sleep group started the experiment at 9:00 p.m. (±30 min). Both groups followed the same pro-
cedure. In session 1, participants learned three separate hierarchies to criterion (premise pairs only).
Immediately after training, participants were tested on all three hierarchies (premise pairs only). In
session 2, 12 h later, participants were tested again on all three hierarchies, as well as on the novel in-
ference pairs. (B) Experiment 2. All participants started between 9:00 a.m. and 11:00 a.m. In session
1, participants learned one hierarchy (remote; premise pairs only). Immediately after training, they
were tested on these premise pairs. In session 2, 24 h later, participants learned a second hierarchy
(recent; premise pairs only). Immediately after training, they were tested on these new premise pairs.
In session 3, 3 h later, participants were tested again, this time on premise pairs from both remote
and recent hierarchies, as well as their respective novel inference pairs.
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a hierarchical regression with a series of nested mixed-effects logis-
tic models. These models were random intercept-only models,
with “participant” serving as the random intercept. This design al-
lowed us to account for individual variations among participants.
We started with the group variable, which captured whether the
participant was in the sleep or wake condition; however, this did
not outperform the intercept-only null model [χ2(1) = 1.84, P=
0.18]. We then added the encoding strength variable, which mea-
sured the mean accuracy of premise pair recall at immediate test-
ing. This significantly improved the model’s ability to predict
accuracy compared with the null model [χ2(2) = 7.92, P=0.019].
Next, we added an interaction term between group and encoding
strength, which again significantly improved fit [χ2(1) = 15.15, P
<0.001]. In this final model, there was an interaction between
group and encoding strength (b̂=−0.31, 95% CI [−0.47, −0.15], z
=−3.89, P<0.001) (Table 1), suggesting that the effect of encoding
strength on accuracy differs significantly between the wake and
sleep groups. To probe the interaction, simple effects coefficients
were computed at 60% (ORsleep/wake = 1.30, SE=1.52, P=0.53)
and 80% (ORsleep/wake = 2.42, SE =1.52, P=0.03) values of encoding
strength, suggesting increased sleep-dependent benefit with stron-
ger encoding.

Distance
To evaluate the influence of distance on inference performance at
test, we continued the hierarchical regression analysis, extending
previous findings of the “group and encoding strength interac-
tion” model described above (Table 1, baseline model). We first
added the distance variable, which captured whether a given trial
was a “distant” (B?E; degree of separation: 3) or “close” (B?D or
C?E; degree of separation: 2) inference trial. This did not signifi-
cantly improve the fitmodel [χ2(1) = 0.11, P=0.74]. Next, we added

an interaction between group and distance, which significantly
improved fit [χ2(1) = 6.41, P=0.011]. Finally, we included a full fac-
torial combination of the predictor variables group, encoding
strength, and distance (comprised of all two-way interactions
and a three-way interaction) (see the Materials and Methods).
The additional terms did not significantly improve the model
[χ2(2) = 3.93, P=0.14]. The best-fitting model showed the same ef-
fects of group and encoding strength as reported by the baseline
model. Additionally there was a main effect of distance (b̂=0.34,
95% CI [0.02, 0.66], z= 2.07, P=0.039) and a distance× group in-
teraction (b̂=−0.57, 95% CI [−1.01, −0.13], z=−2.53, P =0.011)
(Table 2). To investigate the interaction, we calculated the coeffi-
cients of simple effects at close (ORsleep/wake = 1.47, SE=1.52, P=
0.36) and distant (ORsleep/wake = 2.59, SE=1.55, P= 0.03) pair values
of distance, suggesting increased sleep-dependent benefit for accu-
racy on inference pairs of greater symbolic distance. In summary,
this analysis showed that the symbolic distance over which partic-
ipants had tomake an inferencewas a significant predictor of infer-
ence performance and also that the impact of this differed between
sleep andwake groups, whereby the sleep benefit was especially ev-
ident for distant pair values (Fig. 3B).

Joint rank
In parallel to the above, we also assessed the effects of joint rank on
inference performance at test. We again started with our baseline
model, first adding the joint rank variable, which encoded the
summed rank of the inference pairs (B?D: 6, B?E: 7, and C?E: 8).
This did not significantly improve the model [χ2(1) =0.34, P=
0.56]. We next added the interaction between group and joint
rank, which again did not significantly improve the model [χ2(2) =
1.94, P=0.38]. Finally, we included a full factorial combination of
the predictor variables group, encoding strength, and joint rank.

A

B C

Figure 2. Experimental design. (A) Example hierarchy and hidden relational rank-order structure. Participants were presented with randomly generated
hierarchies from a stimulus set that involved either faces, scenes, or objects. Adjacent premise pairs (e.g., A?B) were used during training, and nonadjacent
inference pairs were used during a delayed test to assess relational learning. (B) Example training trials. Participants are asked on each trial to select the item
hiding a smiley face and were given feedback after each selection. (C) Stimulus pairs can be represented along two orthogonal feature dimensions: sym-
bolic distance (the difference in rank), which is represented on the X-axis, and joint rank (the sum of the ranks), which is represented on the Y-axis.
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The additional terms significantly improved thefit [χ2(4) =12.14,P=
0.016]. This model showed the same effects of group and group×
encoding strength as the baseline model. In addition, it showed
an effect of joint rank (b̂=0.85, 95% CI [0.21, 1.50], z=2.59, P=
0.010), encoding strength× joint rank interaction (b̂=−0.15, 95%
CI [−0.24, −0.05], z=−3.09, P=0.002), and a three-way interaction
between them (b̂=0.12, 95% CI [0.00, 0.24], z=1.99, P=0.047)
(Table 3). In order to examine the interaction, we computed the co-
efficients of simple effects for BD (JR: 6, ORsleep/wake =2.26, SE=1.55,
P=0.06) and CE (JR: 8, ORsleep/wake =1.43, SE=1.55, P=0.41) trials.
From this post-hoc analysis, we can conclude that for BD trials,
the odds of success in the sleep group compared with the wake
group were estimated to be 2.26 times higher, although this differ-

ence was not statistically significant (P=
0.06). In summary, this analysis showed
that joint rank was a significant predictor
and that it interacted with both baseline
encoding strength and whether partici-
pants consolidated across sleep (Fig. 3C).

Experiment 2

Behavioral results
As in experiment 1, mean inference per-
formance was significantly higher than
chance for the remote hierarchy (M=
0.56, 95% CI [0.50, ∞], t(69) = 1.80, P=
0.038) but not for the recent hierarchy
(M=0.53, 95% CI [0.47, ∞], t(69) = 0.75,
P=0.228) (Fig. 4A). These results suggest
a time-dependent benefit to TI.

To test for between-hierarchy base-
line differences in premise pair learning,
we performed a mixed three-way ANOVA
on mean premise pair performance with
within-subject factors hierarchy and ses-
sion and between-subjects factor stimulus
category. This revealed an effect of hierar-
chy (F(1,67) = 33.61, P<0.001, ĥ2

G = 0.098,
90% CI [0.015, 0.223]) with higher perfor-
mance for the recent hierarchy, and ses-
sion (F(1,67) =22.33, P<0.001, ĥ2

G = 0.027,
90% CI [0.000, 0.120]) showing decreased
performance at delayed test. There was no
main effect of the stimulus category or in-
teractions (smallest P-value=0.32) (Sup-
plemental Table S4; Supplemental Fig.

S1B). Note that inference pairs were not tested at baseline. For de-
tailed descriptive statistics, see Supplemental Table S3.

Thesefindings suggest that for premise pairs there is a baseline
difference in performance between the two hierarchies, whereby
participants had higher accuracy for the recent hierarchy at both
immediate and delayed tests (Fig. 4A).

Encoding strength
We examined the influence of encoding strength similar to exper-
iment 1. We first added the hierarchy variable to the null model,
which captured whether the participants’ performances relate to
the remote or recent hierarchy. The addition of this variable

A

B C

Figure 3. Experiment 1. Behavioral performance and factors predicting inference accuracy at delayed
test. (A) Rain cloud plot with mean and median performance across wake and sleep conditions. The
dashed line represents chance performance at 50%, and the dot represents mean values. (B)
Predicted probabilities of accuracy by distance and group, with distance levels of 2 and 3. (C )
Predicted probabilities of accuracy by joint rank and group, with joint rank levels ranging from 6 to
8. In B and C, shadowed areas represent 95% confidence intervals.

Table 1. Results of the mixed-effects logistic regression model examining the effects of group (wake/sleep) and encoding strength on
inference accuracy

Accuracy

Predictors Odds ratios CI P-value

(Intercept) 1.05 0.38–2.91 0.932
Group (wake) 4.98 1.28–19.30 0.020
Encoding strength 1.10 0.97–1.25 0.121
Group (wake) × encoding strength 0.73 0.63–0.86 <0.001
Random effects
σ2 3.29
τ00 participant 0.93
ICC 0.22
Nparticipant 24
Observations 1728
Marginal R2/conditional R2 0.050/0.258

Bold values are statistically significant (P< 0.05).
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significantly improved the model’s ability to predict accuracy
[χ2(1) = 4.00, P=0.045]. Next, we added the encoding strength var-
iable, which significantly further improved fit [χ2(1) = 107.39, P<
0.001]. Finally, we added an interaction term between hierarchy
and encoding strength, which also significantly improved the
model’s ability to predict accuracy beyond the previous model
[χ2(1) = 24.93, P<0.001]. The results of this analysis suggest that
both hierarchy and encoding strength have significant effects on
accuracy and that their interaction also plays an important role
in predicting accuracy on inference trials. As can be seen in Table
4, hierarchy was a significant predictor of the outcome variable
(b̂=1.54, 95% CI [0.68, 2.39], z=3.51, P<0.001), as was encoding
strength (b̂=0.58, 95%CI [0.47, 0.68], z= 10.92, P<0.001) and the
interaction between the two (b̂= -0.28, 95% CI [−0.39, −0.17], z=
−4.98, P<0.001). The interaction indicates that the effect of encod-
ing strength on accuracy differs significantly between the remote
and recent conditions. To probe the interaction, simple effects co-
efficients were computed at 60% (ORremote/recent = 1.16, SE=1.14, P
=0.24) and 80% (ORremote/recent = 2.04, SE =1.10, P<0.001) values
of encoding strength, suggesting an increased time-dependent
benefit with stronger encoding.

Distance
In order to assess how distance affects inference performance dur-
ing testing, we conducted a hierarchical regression analysis that

builds on the baseline model (Table 4). We first added the distance
variable, which significantly improved the model’s ability to pre-
dict accuracy compared with the baseline model [χ2(1) = 9.55, P=
0.002]. Next, we added an interaction term between hierarchy
and distance, which did not significantly improve themodel’s abil-
ity to predict accuracy [χ2(1) = 0.51, P=0.47]. Finally, we included
the full factorialmodel (see theMaterials andMethods), but the ad-
ditional terms did not significantly improve the fit [χ2(3) = 2.47, P=
0.48]. The best fitting model showed the same effects of hierarchy,
encoding strength, and hierarchy× encoding strength as reported
by the baseline model. Additionally, there was a main effect of dis-
tance (b̂=0.25, 95%CI [0.09, 0.41], z=3.09, P=0.002) (Table 5). In
summary, this analysis showed that the symbolic distance over
which participants had to make an inference was a significant pre-
dictor of inference performance, but this did not significantly dif-
fer between hierarchies (Fig. 4B).

Joint rank
In parallel, we assessed the effects of joint rank on inference perfor-
mance at test. We first added the joint rank to the baseline model
(Table 4), which did not significantly improve fit [χ2(1) = 0.38, P=
0.54]. Next, we added an interaction term between hierarchy and
joint rank, which again did not significantly improve the model’s
ability to predict accuracy [χ2(2) = 3.47, P=0.18]. Last, we com-
pared a full factorial combination of the predictor variables

Table 2. Results of the mixed-effects logistic regression model examining the effects of group (wake/sleep), encoding strength, and
symbolic distance on inference accuracy

Accuracy

Predictors Odds ratios CI P-value

(Intercept) 1.05 0.37–2.92 0.931
Group (wake) 5.00 1.28–19.45 0.020
Encoding strength 1.10 0.97–1.25 0.120
Group (wake) × encoding strength 0.73 0.63–0.86 <0.001
Group (wake) × distance 0.57 0.36–0.88 0.011
Random effects
σ2 3.29
τ00 participant 0.93
ICC 0.22
Nparticipant 24
Observations 1728
Marginal R2/conditional R2 0.054/0.263

Bold values are statistically significant (P<0.05).

Table 3. Results of the mixed-effects logistic regression model examining the effects of group (wake/sleep), encoding strength, and joint
rank on inference accuracy

Accuracy

Predictors Odds ratios CI P-value

(Intercept) 1.04 0.37–2.93 0.944
Group (wake) 5.05 1.28–19.84 0.021
Encoding strength 1.11 0.98–1.25 0.113
Group (wake) × encoding strength 0.73 0.62–0.85 <0.001
Group (wake) × joint rank 0.53 0.23–1.25 0.148
Encoding strength × Joint rank 0.86 0.78–0.95 0.002
(Group [wake] × encoding strength) × joint rank 1.13 1.00–1.28 0.047
Random effects
σ2 3.29
τ00 participant 0.96
ICC 0.23
Nparticipant 24
Observations 1728
Marginal R2/conditional R2 0.060/0.272

Bold values are statistically significant (P<0.05).
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hierarchy, encoding strength, and joint rank. The additional terms
significantly improved the model’s ability to predict accuracy
[χ2(4) = 14.53, P=0.0058]. The best fitting model showed the
main effect for joint rank (), in addition to the effects shown in
the baseline model. Furthermore, there was a two-way interaction
effect between hierarchy and joint rank (b̂=−0.01, 95% CI [−1.93,
−0.10], z=−2.17, P=0.030) and a three-way interaction between
hierarchy, encoding strength, and joint rank (b̂=−0.15, 95% CI
[0.03, 0.27], z= 2.44, P=0.015) (see Table 6). In order to examine
the interaction, we computed the coefficients of simple effects
for BD (ORremote/recent = 2.03, SE=1.14, P<0.001) and CE
(ORremote/recent = 1.63, SE =1.14, P<0.001) trials. From this post-
hoc analysis, we can conclude that for BD trials, the odds of success

in the remote compared with the recent
conditionwere estimated to be 2.03 times
higher, while for CE trials it was only 1.63
times higher (Fig. 4C).

Discussion

The transitive inference (TI) paradigm
evaluates how well individuals can grasp
the relational arrangement of a group of
stimuli without relying on any overt hier-
archical cue while learning about them.
To achieve this, the training involves dis-
playing pairs of images selected from a
predetermined list of neighboring items
in order of rank and providing incentives
for participants to correctly identify the
dominant item. Work in both humans
and other animals has supported the
idea that the ability to assess relational
dominance fornonneighboring inference
items relies on some form of gist abstrac-
tion and that this is facilitated by time-
and sleep-dependent memory consolida-
tion in humans (Lewis and Durrant
2011; Inostroza and Born 2013; Lewis
et al. 2018; Lerner and Gluck 2019).
While initial findings (Ellenbogen et al.
2007; Werchan and Gómez 2013, 2016)
showed strong time- and sleep-dependent
benefits in inference performance and
sleep-dependent SDE, subsequent studies
that implemented modified parameters
failed to replicate these findings, suggest-

ing that the time/sleep–inference relationship may be more com-
plex and dependent on specific experimental conditions (Cordi
and Rasch 2021). Here, we evaluated whether we could partially
replicate the original time- and sleep-dependent TI findings by
Ellenbogen et al. (2007) in two experiments that involved learning
multiple hierarchies with lower learning criterion and using a
broader range of stimuli compared with the original study.

Crucially, our data support earlier findings (Ellenbogen et al.
2007; Werchan and Gómez 2013, 2016) by showing increased in-
ference performance at delayed test in the experimental sleep
group (experiment 1) (Table 1) and in the remote condition (exper-
iment 2) (Table 4) compared with control. Interestingly, both of
these effects increase as a function of encoding strength

A

B C

Figure 4. Experiment 2. Behavioral performance and factors predicting inference accuracy at delayed
test. (A) Rain cloud plot with mean and median performance across remote and recent hierarchy con-
ditions. The dashed line represents chance performance at 50%, and the dot represents mean values. (B)
Predicted probabilities of accuracy by distance and hierarchy, with distance levels of 2 and 3. (C)
Predicted probabilities of accuracy by joint rank and hierarchy, with joint rank levels ranging from 6
to 8. In B and C, shadowed areas represent 95% confidence intervals.

Table 4. Results of the mixed-effects logistic regression model examining the effects of hierarchy (remote/recent) and encoding strength on
inference accuracy

Accuracy

Predictors Odds ratios CI P-value

(Intercept) 0.02 0.01–0.05 <0.001
Hierarchy (recent) 4.65 1.97–10.96 <0.001
Encoding strength 1.78 1.60–1.97 <0.001
Hierarchy (recent) × encoding strength 0.75 0.68–0.84 <0.001
Random effects
σ2 3.29
τ00 participant 1.44
ICC 0.31
Nparticipant 70
Observations 3360
Marginal R2/conditional R2 0.105/0.378

Bold values are statistically significant (P< 0.05).
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(Supplemental Fig. S2A,B). Our second experiment followed a de-
sign similar to that of Berens and Bird (2022), which found no
time-dependent benefit in TI. We speculate that this could be
due to differences in either difficulty (we used six items vs. their
seven-item hierarchy) or encoding strength due to training dura-
tion (our 66% learning criterion vs. their large number of fixed tri-
als for each hierarchy). While training to ceiling can eliminate
baseline learning-related differences in premise pair encoding
strength, whichwe observed in experiment 2 (Fig. 4), it can also ex-
acerbate practice effects due to increased familiarity with task de-
mands during the recent hierarchy condition, leading to altered
consolidation dynamics (Denis et al. 2020, 2021; Petzka et al.
2021). In experiment 2, we observed a time-dependent benefit in
TI despite weaker encoding strength in the remote compared
with recent condition, even though we found encoding strength
to be a strong predictor of delayed inference performance overall,
which highlights the importance of retention interval × encoding
strength interaction.

Concerning the sleep-dependent SDE shown in past work
(Ellenbogen et al. 2007; Werchan and Gómez 2013), we were
able to replicate this in our a.m.–p.m. design in experiment 1
(Fig. 3) but could not replicate it in the within-subject design of ex-
periment 2. The latter results are a common pattern in studies us-
ing a longitudinal design (Matorina and Poppenk 2021; Berens

and Bird 2022). This again could be caused by practice effects
whereby SDEmight take less time to emerge in the recent hierarchy
condition due to familiarity with task demands.

To the best of our knowledge, we are the first to explore the
time- and sleep-dependent joint rank effect (JRE). JRE—whereby
participants, when comparing performance for pairs that have
equivalent symbolic distance, exhibit lower accuracy the higher
the cumulative sum of the item ranks—has been observed in
both primates (Munoz et al. 2020; Ciranka et al. 2022) and humans
(Jensen et al. 2017; Ciranka et al. 2022). JRE has been suggested as a
valuable complementary variable to symbolic distance, as it serves
as a measure of absolute positional encoding during serial learning
and retrieval (Jensen et al. 2017) and is indicative of a cognitive
model supporting TI (Behrens et al. 2018). The reduced ability to
choose between more dominant items (e.g., B?D, pair with low
joint rank value) compared with less dominant items (e.g., C?E,
pair with higher joint rank value) observed in wake-only studies
could be caused by compressed representations of magnitude
that can emerge from an asymmetric learning policy (Ciranka
et al. 2022). Interestingly, our two studies found that this pattern
reversed across a retention interval containing sleep, with partici-
pants showing a lesser ability to discriminate during low-
dominance inference pairs (C?E, JR: 8), and a greater ability to dis-
criminate between high-dominance items (B?D, JR: 6) after

Table 6. Results of the mixed-effects logistic regression model examining the effects of hierarchy (remote/recent), encoding strength, and
joint rank on inference accuracy

Accuracy

Predictors Odds ratios CI P-value

(Intercept) 0.02 0.01–0.05 <0.001
Hierarchy (recent) 4.68 1.98–11.07 <0.001
Encoding strength 1.78 1.61–1.98 <0.001
Joint rank 0.89 0.50–1.58 0.691
Hierarchy (recent) × encoding strength 0.75 0.67–0.84 <0.001
Hierarchy (recent) × joint rank 0.36 0.15–0.91 0.030
Encoding strength × joint rank 1.00 0.92–1.08 0.991
(Hierarchy [recent] × encoding strength) × joint rank 1.16 1.03–1.31 0.015
Random effects
σ2 3.29
τ00 participant 1.46
ICC 0.31
Nparticipant 70
Observations 3360
Marginal R2/conditional R2 0.109/0.383

Bold values are statistically significant (P<0.05).

Table 5. Results of the mixed-effects logistic regression model examining the effects of hierarchy (remote/recent), encoding strength, and
symbolic distance on inference accuracy

Accuracy

Predictors Odds ratios CI P-value

(Intercept) 0.02 0.01–0.05 <0.001
Hierarchy (recent) 4.67 1.98–11.03 <0.001
Encoding strength 1.78 1.61–1.98 <0.001
Distance 1.29 1.10–1.51 0.002
Hierarchy (recent) × encoding strength 0.75 0.67–0.84 <0.001
Random effects
σ2 3.29
τ00 participant 1.45
ICC 0.31
Nparticipant 70
Observations 3360
Marginal R2/conditional R2 0.108/0.381

Bold values are statistically significant (P<0.05).
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consolidation (Figs. 3, 4). This “inverse joint rank effect” could sug-
gest active time- and/or sleep-dependent consolidation processes,
whereby experience is reorganized based on the learned absolute
rank structure, prioritizing high-dominance items over low-
dominance ones (van Rijn et al. 2016; Liu et al. 2019, 2021).

While the current study cannot provide a mechanistic expla-
nation for this phenomenon, one explanation could relate to dif-
ferences in wake/sleep replay dynamics, as it pertains to how
veridical or “structured” online versus “disjointed” offline (in
sleep) sequential reactivations can affect TI performance (Brodt
et al. 2023). Moreover, while replay can be forward and reverse in
both wake and sleep (and whether their relative frequencies differ
across these states is still unclear), a dominance of forward replay in
sleep could potentially explain our observation of inverse joint
rank after consolidation across sleep (Findlay et al. 2020). A further
explanation could involve offline replay prioritizing dominant,
high-valued items at the expense of lower-ranked items
(Momennejad 2020). Extending existing computational models
of transitive inference with biologically inspired replay and fitting
to delayed test data could help adjudicate between these possibili-
ties (Mattar and Daw 2018; Jensen et al. 2019; Ciranka et al. 2021;
Roscow et al. 2021).

One limitation of this study stemmed from the fact that we
did not record sleep. Although experiment 1 compared consolida-
tion across 12 h of wake and 12 h including an overnight sleep, we
cannot assume that the benefit observed in the overnight condi-
tion relates specifically to sleep rather than to a combination of
wake and sleep. Our second study suffered from the same problem
but to an even greater extent, as we now compared consolidation
across 27 h, including a night of sleep, versus consolidation across
3 h. Future studies could determine the specific importance of sleep
for these effects more definitively by recording polysomnography.

A further limitation of our study was the use of a relatively
small sample size in our first experiment. Although we were able
to obtain significant results, a larger sample size would have in-
creased the generalizability and robustness of our findings.
Additionally, while we used well-established transitive inference
tasks to assess memory consolidation, these tasks do not capture
all aspects of relational memory, and other cognitive processes
may have played a role in our results.

The results of our study have important implications for under-
standing the role of time and/or sleep in memory consolidation and
suggest that both play a key role in the formation of the relational
memories underlying transitive inference. Given that transitive in-
ference is a fundamental cognitive process that is involved in a
wide range of daily activities, our findings may have implications
for developing computational models of consolidation and improv-
ing learning andmemory in educational and clinical settings. Future
studies may explore whether manipulating the online/offline replay
or duration of sleep/wakeful rest can enhance transitive inference
performance to better understand how rank-order effects emerge
during learning and evolve over time, potentially leading to the de-
velopment of interventions that can improve memory consolida-
tion. Additionally, conducting sleep and memory studies using a
derived hierarchies approach like the one used by Kao et al. (2020),
where participants need to generalize across hierarchies, would pro-
vide a better chance at disentangling sleep-dependent effects on rel-
ative versus absolute encoding as well as investigating more flexible
forms of generalization than single-hierarchy studies can.

In summary, we corroborated earlier findings showing that
consolidation across a period of time including sleep benefits infer-
ence performance. We also showed that this benefit increases as a
function of encoding strength and therefore argue that TI studies
that use a “learn to criterion” approach during training should con-
sider encoding strength as a relevant predictor, since there can be
significant variation in premise pair performance using standard

approaches. Our data, in combination with prior reports, suggest
that the emergence of the sleep-dependent symbolic distance ef-
fectmay be influenced by experimental design. Specifically, studies
that use between-subjects designs have found such effects, whereas
those using within-subject designs have not. The joint rank effect
provides a complementary dimension of the mental model that
participants used in solving this task, which is understudied in
the transitive inference literature. We found that it is a strong pre-
dictor of inference performance and a sensitive measure of time-
and sleep-dependentmemory consolidation, affected by encoding
strength.

Materials and Methods

Participants

Experiment 1
Twenty-four adults (age =22 yr ± 3.72 yr) with no self-reported his-
tory of neurological, psychiatric, sleep, or motor disorders partici-
pated in the experiment. All participants provided written
informed consent and were reimbursed for their time. The experi-
ment was approved by the School of Psychology Ethics Committee
at Cardiff University. All participants agreed to abstain from caf-
feine and alcohol during the study and for 24 h before it.

Experiment 2
A total of 74 participants completed the study, recruited from
Prolific (https://www.prolific.co), an online platform for psycho-
logical research. Four participants were excluded from the study
due to technical issues related tomultiple submissions in either ses-
sion 1 or session 2. Participants (age =23.37 yr ± 4.1 yr) had normal
or corrected to normal vision, with no self-reported history of neu-
rological, psychiatric, sleep, or motor disorders. All participants
provided informed consent electronically and were reimbursed
for their time. The experiment was approved by the School of
Psychology Ethics Committee at Cardiff University. All partici-
pants agreed to abstain from caffeine and alcohol during the study
and for 24 h before it.

Procedure

Experiment 1
Participants were randomly assigned to one of two groups: wake or
sleep. Two participants were discarded for not being able to reach
the criterion (66% accuracy in two consecutive blocks on middle
pairs). Both groups participated in two sessions: an initial training
with an immediate test session and a delayed test session separated
by 12 h.Wake group participants arrived at the laboratory at 9:00 a.
m. (±30 min) for the first session and came back at 9:00 p.m. (±30
min) for the second one, carrying on with their normal daily rou-
tines. Those in the sleep group arrived at the laboratory at 9:00 p.m.
(±30min) and came back the next morning at 9:00 a.m. (±30min).

Premise pair training. Training involved the presentation and learning of
the five-item pairs of each of the stimulus categories in a six-item
hierarchy, referred to here as “premise pairs.” A hierarchy can be
schematically represented with letters A>B>C>D>E>F where
“>” describes the relationship “choose over” (e.g., “A>B” denotes
“choose ‘A’ over ‘B’”). The order within the hierarchy was
randomly selected for each participant at the start of the training
phase. Premise pairs were presented on the screen, such that one
image was located at the top of the screen and the other one was
located at the bottom. On each trial, after the participant saw one
of the five premise pairs (either A?B, B?C, C?D, D?E, or E?F), they
were required to identify the correct item through a process of trial
and error (Fig. 2B). However, with repeated exposure and feedback,
participants were able to learn the correct item and make accurate
selections. If the participant selected the correct item of the pair,
the chosen item was replaced by a smiling face stimulus on the
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left side of the screen, and the other itemwas presented on the right
side. When participants selected the wrongmember of the pair, the
chosen item was substituted by an angry face stimulus also on the
left side of the screen and the other item was on the right. Finally,
a purple circle in the middle of the screen was presented to
indicate the end of each trial.

Items were organized into blocks, each containing 10 trials of
each stimulus category (a total of 30 trials per block). Therefore,
each block presented each of the five items of each hierarchy twice,
counterbalancing the position fromtop tobottomor vice versa (e.g.,
A?B and B?A, where A was the correct selection in both trials).
Additionally, all the premise pairs within each hierarchy were pre-
sented in a pseudorandom order to minimize the chance of reveal-
ing the latent hierarchy (e.g., A?Bwas never followedbyB?C). At the
end of each block, the mean accuracy for that block was shown on
the screen to keep participants engaged with the task. Additionally,
the order of the stimulus categories was counterbalanced across par-
ticipants. All participants underwent a minimum of three blocks of
training. After the third block, performance was automatically
scored for each stimulus category. If the performance on the “mid-
dle premise pairs” (B?C, C?D, and D?E) for two of the last three
blockswas >66% for any givenhierarchy, the participant stopped re-
ceiving feedback for that particular hierarchy. Premise pairswere still
displayed for such hierarchies to avoid different number of presen-
tations across hierarchies. When the criterion, or a maximum of
10 blocks, was reached for all three stimulus categories’ participants,
the program automatically stopped. Participants were given a 5-min
break before advancing to the next phase.

Immediate and delayed test. During the immediate test, a block protocol
similar to that, in the premise pair training was used with the
exception that feedback cues were removed. Participants
performed a total of four blocks, and in between blocks a series
of two easy arithmetic problems had to be solved as a distractor
task to clear the participant’s short-term memory (von Hecker
et al. 2019). Following a delay of 12 h, participants returned to
the laboratory for the delayed test phase. This phase involved
three novel inference pairs (B?D, B?E, and C?E) and an anchor
pair (A?F), in addition to the five premise pairs. Participants were
instructed that they may see novel combinations and, if that
happened, to make their best guess on that trial. At the end of
each trial, participants were asked how sure they were of their
answer on a scale ranging from −2 (guessing) to +2 (completely
sure). Similar to the immediate test, participants performed four
blocks with two arithmetic problems between each block. After
completing this phase, participants had to fill out a
questionnaire to probe their awareness of the existence of a
latent hierarchy underlying the items in each stimulus category.
A mixed logistic regression analysis was conducted to analyze the
data obtained from the immediate and delayed test phases,
allowing for the examination of the effects of encoding strength,
distance, and joint rank variables on participants’ performance.

Experiment 2
Participants were required to complete three sessions: the first ses-
sion in themorning (between 9:00 a.m. and 11:00 a.m. local time),
the second session 24 h later (between 9:00 a.m. and 11:00 a.m. lo-
cal time), and the third session 3 h after completing the second ses-
sion (or 27 h from the first). The first session had an initial training
and immediate test part for only one hierarchy (named remote hi-
erarchy). The second session was structured the same but partici-
pants learned a completely novel hierarchy (recent hierarchy).
Finally, for the last session, a test involving both hierarchies was
performed (delayed test).

Premise pair training. Training protocol was identical to experiment 1
with respect to instructions, stimuli, and learning criterion; the
only difference was that participants learned only one hierarchy
per training session. Participants had to reach the learning
criterion (66% accuracy in two consecutive blocks on middle
pairs) for a given hierarchy within 10 blocks.

Immediate and delayed test. The immediate test phase was also identical
to experiment 1 and only tested the hierarchy learned in its
respective session. Following a delay of 3 h after session 2,
participants were required to complete the delayed test phase.
Similar to experiment 1, this phase involved three novel
inference pairs and an anchor pair, in addition to the five
premise pairs for both remote and recent hierarchy, and lasted
four blocks. Participants were instructed that they may see novel
combinations and, if that happened, to make their best guess on
that trial. Similar to the immediate test, participants performed
four blocks with two arithmetic problems between them but
were not asked to provide confidence ratings after each trial.
After completing this phase, participants had to fill out a
questionnaire to probe their explicit awareness of the existence
of a latent hierarchy underlying the items for each hierarchy
and, finally, complete a hierarchical recall test whereby they were
asked to explicitly reconstruct the order of items in the hierarchy
to assess implicit awareness. A mixed logistic regression analysis
was conducted to analyze the data obtained from the immediate
and delayed test phases, allowing for the examination of the
effects of different variables on participants’ performance.

Apparatus and stimuli
In experiment 1, a computerized memory task was presented in a
quiet roomusing PsychToolbox (Kleiner et al. 2007), while in exper-
iment 2 participants completed the experiment on their own com-
puter or tablet device using a web browser (e.g., Chrome).
Experiment 2 was programmed using PsychJS (Peirce 2007) and
run through the Pavlovia platform (https://pavlovia.org). In the first
experiment, the visual stimuli consisted of three sets of images (re-
ferred to here as stimulus categories), including female faces, unusu-
al objects, and landscapes, each comprising six items. These items
were selected randomly from a set of 12 images for each category.
In the second experiment, participants were randomly assigned to
one of the stimulus categories, with both the remote and recent hi-
erarchies consistingof a six-item subset. All the itemswere presented
in grayscale and matched for luminescence. Each item was distin-
guishable from the items within and between stimulus categories.
In the first experiment, the order of the category presentation
was counterbalanced across participants, and the order of the stim-
uli within each relational hierarchy was completely randomized
for each subject in both experiments at the start of the learning
phase.

Statistical analyses
To examine the relative impact of encoding strength, distance, and
joint rank on delayed inferential performance, separate hierarchi-
cal multiple regression analyses were conducted for distance and
joint rank. It is crucial to highlight that these models were random
intercept-only models, with “participant” serving as the random
intercept. This design allowed us to account for individual varia-
tions among participants. Additionally, we used specific transfor-
mations on the variables used. First, we mean centered the
distance and joint rank variables to enhance interpretability and
reduce multicollinearity among predictor variables. Additionally,
we applied a transformation to the encoding strength variable by
multiplying the original values, which initially ranged between 0
and 1, by a factor of 10, enabling us to assess the impact of encod-
ing strength in terms of a rate per unit of 10%.

To first identify the contributions of encoding strength, we
entered our experiment-specific condition factor into the model
in step 1 (group in experiment 1 and hierarchy in experiment 2),
encoding strength in step 2, and the interaction of these measures
at step 3 as predictors of memory recall for inferential pairs.
Next, we extended the interactionmodel by adding in the distance
factor as step 4, an interaction between distance and the
respective condition factor as step 5, and finally a model that in-
cluded a full factorial combination between condition, encoding
strength, and distance as step 6. We also repeated this for joint
rank replacing distance. An alpha value of P<0.05 was used for
all analyses.
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In the regression tables, under the random effects header, var-
ious symbols represent different aspects of the statistical model. The
residual variance (σ2) is a measure of the variability in the response
variable “accuracy” thatwas not captured by the predictors included
in the model. This served as an estimate of the average distance of
each observation from the predicted values. The term τ00 participant
denotes the variance of the random intercepts for “participants.”
Thismeans that we allowed each participant to have their ownbase-
line “accuracy” value and estimated the variability of these baselines
across all participants. The intraclass correlation coefficient (ICC)
represents the proportion of total variability in “accuracy” that
can be attributed to differences between participants. Finally, the
marginal R2 and conditional R2 values provide estimates of how
well the model explains the variability in “accuracy.” Marginal R2

represents the proportion of variance explained by the fixed effects
alone, while conditional R2 takes into account both fixed and ran-
dom effects (Nakagawa et al. 2017).

We used R (version 4.2.2) and the R packages lme4, afex, and
emmeans for all our statistical analyses (Bates et al. 2015; https://
CRAN.R-project.org/package=emmeans; https://CRAN.R-project
.org/package=afex) and sjPlot for generating the regression tables
(https://CRAN.R-project.org/package=sjPlot). We used the papaja
package (https://github.com/crsh/papaja) to format and generate
an APA-style documents.
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