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Abstract
Motivated by the need for new materials and green energy production and conversion processes, a class of mathematical
models for liquid crystal elastomers (LCEs) integrated within a theoretical charge pump electrical circuit is considered.
The charge pump harnesses the chemical and mechanical properties of LCEs transitioning from the nematic to isotropic
phase when illuminated or heated to generate higher voltage from a lower voltage supplied by a battery. For the material
constitutive model, purely elastic and neoclassical-type strain energy densities applicable to a wide range of monodomain
nematic elastomers are combined, while elastic and photothermal responses are decoupled to make the investigation
analytically tractable. By varying the model parameters of the elastic and neoclassical terms, it is found that LCEs are
more effective than rubber when used as dielectric material within a charge pump capacitor.
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1. Introduction
To end the use of fossil fuels, more materials that enable green energy production and conversion processes are
sought and developed [1, 2]. In particular, flexible energy harvesters made of rubber-like materials demonstrate
great potential for generating low carbon renewable energy in emerging technologies [3, 4].

This paper considers a liquid crystal elastomer (LCE) incorporated in a theoretical charge pump electrical
circuit. Charge pumps are convenient and economical devices that use capacitors to generate higher voltages
from a lower voltage supplied by a source battery. The simplest capacitor consists of two parallel plate electrical
conductors separated by air or an insulating material known as the dielectric. The plates are connected to two
terminals, which can be wired into an electric circuit. When the performance of a capacitor changes by altering
the distance between plates or the amount of plate surface area, a variable capacitor is achieved.

LCEs are top candidates for dielectric material because they are capable of large strain deformations which
are reversible and repeatable under natural stimuli like heat and light [5, 6]. This is due to their unique molec-
ular architecture combining the flexibility of polymeric networks with liquid crystal self-organisation [7]. In
Figure 1, a capacitor with LCE dielectric between two compliant electrodes is presented schematically. Figure 2
depicts the LCE nematic–isotropic phase transition under thermal stimuli. Light-induced shape changes for
LCEs containing photoisomerising dye molecules can be represented in a similar manner.
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Figure 1. Schematic of parallel plate capacitor with LCE dielectric between two compliant electrodes.

Figure 2. Reversible natural deformation of LCE dielectric under nematic–isotropic phase transition caused by temperature variation.
The thickness d = λd0 and surface area A of the LCE change, while the volume is preserved, i.e., � = A0d0 = Ad. In the nematic
phase, the director n for liquid crystal orientation is aligned in the first Cartesian direction, parallel to the surface, while in the
isotropic phase, liquid crystal molecules are randomly oriented.

Figure 3. Charge pump electrical circuit with a single-cell supply battery of lower voltage V1 and a variable capacitor with capacitance
C that attains a higher voltage V2 [8].

A hypothetical charge pump which converts solar heat into DC electricity was proposed in Hiscock et al.
[8]. In that study, the LCE was described by the neoclassical model [9–11] and elastic and thermal responses
were decoupled to make the theoretical model analytically tractable.

In this paper, purely elastic and neoclassical-type strain-energy densities are combined. The resulting com-
posite model is applicable to a wide range of nematic elastomers and can be reduced to either the neo-Hookean
model for rubber [12] or the neoclassical model for ideal LCEs. As in Hiscock et al. [8], the elastic deformation
and photothermal responses are decoupled. Then, if heat or light is absorbed, the equilibrium uniaxial order
parameter can be determined by minimising the Landau–de Gennes approximation of the nematic energy den-
sity [7] or a Maier–Saupe mean field model function [13–16], respectively. By varying the model parameters of
the elastic and neoclassical terms, it is found that LCEs can be more effective than rubber when used as dielec-
tric material within a charge pump capacitor. Moreover, if the LCE is pre-stretched perpendicular to the director
and instabilities such as shear striping or wrinkling are avoided, then the capacitor becomes more efficient in
raising the voltage supplied by the source battery.

2. The charge pump circuit
The electrical energy potential stored by a capacitor, known as capacitance, is equal to C = q/V , where q is the
magnitude of the charge stored when the voltage across the capacitor is equal to V and is measured in farads
(F). Capacitance depends on both the geometry and the materials that the capacitor is made of.

Figure 3 represents schematically a charge pump electrical circuit where the voltage V1 supplied by an
external source (battery) is raised to voltage V2 using a variable capacitor with capacitance C. The diodes
prevent backflow of charge and act as voltage-activated switches. The alternative circuit illustrated in Figure 4
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Figure 4. Charge pump electrical circuit with a single-cell supply battery of lower voltage V1 and a variable capacitor with capacitance
C that attains a higher voltage V2 and recharges the supply battery [8].

Figure 5. Operating cycle of variable capacitor with the dielectric made of LCE generating a higher voltage V2 from a lower voltage
V1 [8].

allows for the supply battery to be recharged. Figure 5 shows the operating cycle of a variable capacitor with
LCE dielectric containing the following states [8]:

(A) The LCE is at the lowest temperature corresponding to the nematic state, Tn = TA, the input voltage from
a supply battery is V1, and the capacitor is charged to the initial charge q1. At this state, the capacitance is
equal to Cn = CA = q1/V1.

(B) The temperature rises to TB > TA, so the capacitance decreases to CB < CA, while the charge remains
equal to q1. Thus, the voltage across the capacitor increases to V2 = q1/CB > q1/CA = V1.

(C) The temperature continues to increase to the isotropic state, Ti = TC > TB, hence the capacitance further
decreases to Ci = CC < CB, but the voltage remains equal to V2, so the charge decreases to q2 = CCV2 <
CBV2 = q1.

(D) The temperature drops to TD < Ti, while the charge remains equal to q2 and the capacitance increases to
CD = q2/V1 > q2/V2 = CC. Upon further cooling to the initial temperature Tn, the battery with voltage
V1 charges the capacitor to the initial charge state q1 and the cycle can be repeated.

In the above notation and throughout this paper, indices “n” and “i” indicate a nematic or isotropic phase,
respectively.

During one cycle, the external source provides an electrical energy Win = V1 (q1 − q2) and produces Wout =
V2 (q1 − q2). Thus, the net output generated by this cycle is equal to:

W = Wout − Win = (V2 − V1) (q1 − q2) = −CnV 2
1

(
Ci

CB
− 1

)(
Cn

CB
− 1

)
. (1)

By defining the capacitance ratio:

ξ = Cn

Ci
> 1, (2)

the maximum generated output per cycle is equal to:

Wm(ξ ) = CnV 2
1

(ξ − 1)2

4ξ
. (3)
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This is attained when:

CB = 2CnCi

Cn + Ci
, (4)

or equivalently, when:
V2

V1
= ξ + 1

2
. (5)

For the LCE transitioning from a nematic to an isotropic phase and vice versa, changes in light instead of
temperature can be used as well.

3. The LCE strain-energy function
To describe the incompressible nematic LCE, the following form of the elastic strain-energy density function is
assumed [17–23]:

W (el)(F, n) = W (1) (F) + W (2)
(
G−1FG0

)
, (6)

where F denotes the deformation gradient from the reference cross-linking state, such that det F = 1, while
n is a unit vector for the localised direction of uniaxial nematic alignment in the present configuration and is
termed “the director.” The first term on the right-hand side of equation (6) represents the strain-energy density
associated with the overall macroscopic deformation, and the second term is the strain-energy density of the
polymer microstructure. In the second term, G0 and G denote the natural (or spontaneous) deformation tensor
in the reference and current configuration, respectively [6, 24].

Assuming the LCE to be intrinsically uniaxial, the natural deformation tensor takes the form:

G = a−1/6I + (
a1/3 − a−1/6

)
n ⊗ n, (7)

where I = diag(1, 1, 1) is the identity tensor and:

a = 1 + 2Q

1 − Q
, (8)

denotes the natural shape parameter, with Q representing the scalar uniaxial order of the liquid crystal mesogens
(Q = 1 corresponds to perfect nematic order, while Q = 0 is for the case when the mesogens are randomly
oriented). In the reference configuration, G is replaced by G0, with n0, a0, and Q0 instead of n, a, and Q,
respectively. Setting n0 = n = [1, 0, 0]T, the natural deformation tensors take the form:

G0 = diag
(

a1/3
0 , a−1/6

0 , a−1/6
0

)
, G = diag

(
a1/3, a−1/6, a−1/6

)
. (9)

The components of phenomenological model given by equation (6) are defined as follows:

W (1)(λ1, λ2, λ3) = μ(1)

2

(
λ2

1 + λ2
2 + λ2

3

)
, (10)

where μ(1) > 0 is a constant independent of the deformation, and {λ2
1, λ2

2, λ2
3} are the eigenvalues of the tensor

FT F, such that λ1λ2λ3 = 1, and:

W (2)(α1, α2, α3) = μ(2)

2

(
α2

1 + α2
2 + α2

3

)
, (11)

where μ(2) > 0 is a constant independent of the deformation, and {α2
1, α2

2, α2
3} are the eigenvalues of the elastic

Cauchy–Green tensor AT A, with the local elastic deformation tensor A = G−1FG0, such that α1α2α3 = 1. Note
that these components are derived from the classical neo-Hookean model for rubber [12].

The composite model defined by equation (6) thus takes the form:

W (el) = μ(1)

2

(
λ2

1 + λ2
2 + λ2

3

)+ μ(2)

2

(
α2

1 + α2
2 + α2

3

)
, (12)

and has the shear modulus in the infinitesimal strain equal to μ = μ(1) + μ(2) > 0. This strain-energy function
reduces to the neoclassical model for LCEs when μ(1) = 0 [9–11] and to the neo-Hookean model for rubber
when μ(2) = 0 [12].
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3.1. Photothermal responses

If azobenzene mesogens are embedded in the nematic elastomeric network, then, when photons are absorbed,
the so-called Weigert effect [25, 26] occurs where the dye molecules change from straight trans- to bent cis-
isomers, causing a reduction in the nematic order. To account for photothermal deformation of a dielectric
LCE, we adopt the following modified Maier–Saupe mean field model [13–16]:

W (ms)(Q, n) = μ(ms) (1 − c(Q, n))

[
g−1(Q)Q − log Z(Q) − J̃

2
Q2 (1 − c(Q, n))

]
, (13)

where Q and n are defined as before, μ(ms) = N (ms)kT , with N (ms) being the total number of mesogens per
unit volume and kT being the temperature per unit of energy, J̃ represents the average interaction between two
mesogens in the unit of energy, and c(·, ·) denotes the fractional number of cis molecules:

• If the light is polarised and α denotes the angle between nematic director n and the light polarisation,
then:

c(Q, n) = f
I
[
1 + Q

(
3 cos2 α − 1

)]
3 + I

[
1 + Q (3 cos2 α − 1)

] , (14)

where f is the fraction of photoactive mesogens, and I is the non-dimensional homogeneous light intensity.
• If the light is unpolarised and α is the angle between nematic director n and the light beam direction, then:

c(Q, n) = f
I
[
1 − (Q/2)

(
3 cos2 α − 1

)]
3 + I

[
1 − (Q/2) (3 cos2 α − 1)

] . (15)

The expressions for the functions g(·) and Z(·) are, respectively:

g(x) = −1

2
− 1

2x
+ 1

2x

√
3x

2

exp (3x/2)∫√
(3x/2)

0 exp (y2) dy
(16)

and

Z(Q) = exp
(
g−1(Q)

)
1 + g−1(Q) (1 + 2Q)

. (17)

In the absence of light, I = 0 and the energy function defined by equation (13) reduces to:

W (ms)(Q, n) = μ(ms)

(
g−1(Q)Q − log Z(Q) − J̃

2
Q2

)
. (18)

The ratio between photoactive and non-photoactive mesogens can also be taken into account [14, 15, 27].

4. Energy conversion
At state (A), the LCE dielectric is considered either in its natural configuration or pre-stretched perpendicular or
parallel to the nematic director, so that the surface area is increased and the distance between plates is reduced,
hence the initial capacitance increases. In all cases, the LCE can be actuated by illumination or heating.

Assuming μ � μ(ms), the energy functions W (el) and W (ms) described by equations (12) and (13), respec-
tively, can be treated separately, and the equilibrium scalar order parameter Q obtained by minimising the
function W (ms). Experimental results on photothermal shape changes in LCEs are reported in Finkelmann et al.
[28], Guo et al. [29], and Yu et al. [30]. In Goriely et al. [27], a general theoretical model for photomechani-
cal responses in nematic–elastic rods is presented. Photoactive LCE beams under illumination are modelled in
Norouzikudiani et al. [31]. Reviews of various light-induced mechanical effects can be found in Ambulo et al.
[32], McCracken et al. [33], Warner [34], and Wen et al. [35].
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Similarly, when heat instead of light is absorbed [8], the uniaxial order parameter Q can be determined by
minimising the following Landau–de Gennes approximation of the nematic energy density:

W (lc)(Q) =
2

Q2 −
3

Q3 +
4

Q4, (19)

where , , and are the material constants, with = (T ) depending on temperature [6]. For nematic LCEs, the
contribution of the above function to the total strain-energy density including both the isotropic elastic energy
and the nematic energy functions was originally analysed in Finkelmann et al. [24] and more recently in Mihai
et al. [36].

4.1. Natural deformation

When the LCE is in its natural configuration at state (A), as the capacitor is connected to the source battery, the
total energy function of the system takes the following form (see also Hiscock et al. [8]):

W(λ1, λ) = μ(1)

2

(
λ2

1 + λ−2
1 λ−2 + λ2

)+ μ(2)

2
a1/3a−1/3

0

(
λ2

1a−1a0 + λ−2
1 λ−2 + λ2

)− CV 2

2�
, (20)

where the last term represents the electrical energy per unit volume. Here, � = Ad is the volume of the
dielectric, with A being the surface area and d = λd0 being the distance between the conductive plates, V is the
voltage across the capacitor, and C is the capacitance given by:

C = ε⊥ε0⊥A

d
= ε⊥ε0⊥�

d2
0λ

2
, (21)

where ε0⊥ is the permittivity for the perfectly nematic phase, and ε⊥ is the relative permittivity when the director
is perpendicular to the electric field. The “⊥” notation stands for the electric field being applied perpendicular
to the nematic director.

We denote by Vm the voltage where the total energy is comparable to the stored elastic energy, such that:

V 2
m = μd2

0

ε0⊥
. (22)

Minimising the total energy function described by equation (20) with respect to λ1 gives:

W(λ) = μ(1)

2

⎡
⎣(μ(1)/μ(2) + a1/3/a1/3

0

μ(1)/μ(2) + a2/3
0 /a2/3

)1/2

λ−1 +
(

μ(1)/μ(2) + a1/3/a1/3
0

μ(1)/μ(2) + a2/3
0 /a2/3

)−1/2

λ−1 + λ2

⎤
⎦

+ μ(2)

2

a1/3

a1/3
0

⎡
⎣(μ(1)/μ(2) + a1/3/a1/3

0

μ(1)/μ(2) + a2/3
0 /a2/3

)1/2

λ−1a−1a0 +
(

μ(1)/μ(2) + a1/3/a1/3
0

μ(1)/μ(2) + a2/3
0 /a2/3

)−1/2

λ−1 + λ2

⎤
⎦

− μ

2
ε⊥V 2V−2

m λ−2.

(23)

At the initial state (A), where the LCE exhibits nematic alignment, there is no light, i.e., I = 0, and min-
imising the energy function defined by equation (18) with respect to Q yields the optimal value Q0. Similarly,
at this state, V = V1 and a = a0, hence the function given by equation (23) becomes:

Wn(λ) = μ

2

(
λ2 + 2λ−1

)− μ

2
vλ−2, (24)

where:

v = ε1V 2
1

V 2
m

, (25)
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denotes the operating voltage. By solving for λ = λn and v = vn, the following system of equations:

∂Wn

∂λ
= 0,

∂2Wn

∂λ2
= 0, (26)

we obtain:

λn = 1

41/3
and vn = 3λn

4
= 3

44/3
. (27)

At state (C), where V = V2, as light intensity increases so that phase transition to the isotropic state is
induced, the order parameter reduces and capacitance decreases. Then, the total energy function takes the form:

Wi(λ) = μ(1)

2

⎡
⎣(μ(1)/μ(2) + a1/3/a1/3

0

μ(1)/μ(2) + a2/3
0 /a2/3

)1/2

λ−1 +
(

μ(1)/μ(2) + a1/3/a1/3
0

μ(1)/μ(2) + a2/3
0 /a2/3

)−1/2

λ−1 + λ2

⎤
⎦

+ μ(2)

2

a1/3

a1/3
0

⎡
⎣(μ(1)/μ(2) + a1/3/a1/3

0

μ(1)/μ(2) + a2/3
0 /a2/3

)1/2

λ−1a−1a0 +
(

μ(1)/μ(2) + a1/3/a1/3
0

μ(1)/μ(2) + a2/3
0 /a2/3

)−1/2

λ−1 + λ2

⎤
⎦

− μ

2
ε2ε

−1
1 V 2

2 V−2
1 vλ−2.

(28)

Solving for λ = λi and v = vi, the following system of equations:

∂Wi

∂λ
= 0,

∂2Wi

∂λ2
= 0, (29)

then yields:

λi = 1

41/3

(
μ(1)/μ(2) + a2/3

0 /a2/3
)1/6

(
μ(1)/μ(2) + a1/3/a1/3

0

)1/6 (30)

and

vi = 3λ4
i

ε1

ε2

V 2
1

V 2
2

(
μ(1)/μ(2) + a1/3/a1/3

0

)
μ(1)/μ(2) + 1

= 3

44/3

ε1

ε2

V 2
1

V 2
2

(
μ(1)/μ(2) + a1/3/a1/3

0

)1/3 (
μ(1)/μ(2) + a2/3

0 /a2/3
)2/3

μ(1)/μ(2) + 1
.

(31)

From equations (2) and (21), we derive the capacitance ratio:

ξ = Cn

Ci
= ε1λ

2
i

ε2λ2
n

, (32)

and from equations (3), (22), and (25), we obtain:

Wm(ξ ) = CnV 2
1

(ξ − 1)2

4ξ
= μ�

v(ξ − 1)2

4ξλ2
n

, (33)

as the optimal generated output per cycle.
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4.2. The effect of pre-stretching perpendicular to the director

Next, we consider the LCE dielectric to be pre-stretched in the second direction, i.e., perpendicular to the
director, at state (A), with a prescribed stretch ratio λ0 > 1 [8, 37–39]. As pre-stretching increases the area
of the dielectric and reduces the distance between plates, the amount of charge that can be taken from the
battery increases. However, two types of instability may occur in this case, namely, shear striping or wrinkling
[37, 38]. The formation of shear stripes caused by director rotation in elongated nematic LCEs is well understood
[40–47] and has been modelled extensively [17–20, 22, 23, 42, 48–53]. Wrinkling in compressed LCEs was
examined theoretically in the literature [51, 54, 55]. In pre-stretched LCEs, wrinkles can form if the voltage
is too high, due to the so-called electrostrictive effect observed when charging the electrodes. In this case, the
applied Maxwell stress causes contraction in the field direction and elongation in the perpendicular directions.
Here, we assume that the input voltage is below but close to the critical magnitude causing wrinkling, and that
any reorientation of the nematic director that might occur is reverted (see also Appendix 1).

At the state (A), where V = V1 and a = a0, the energy function given by equation (23) becomes:

Wn(λ, λ0) = μ

2

(
λ−2λ−2

0 + λ2
0 + λ2

)− μ

2
vλ−2. (34)

Solving for λ = λn, the equation:
∂Wn

∂λ
= 0, (35)

yields:

λn = (
λ−2

0 − v
)1/4

. (36)

In addition, solving for v = v1, the following system of equations:

∂Wn

∂λ
= 0,

∂Wn

∂λ0
= 0, (37)

produces the wrinkling voltage:

v1 = λ−2
0 − λ−8

0 . (38)

Note that wrinkling occurs when the stress in the second (pre-stretched) direction becomes zero, i.e., P2 =
∂Wn/∂λ0 = 0.

At state (C), where V = V2, the energy function is:

Wi(λ, λ0) = μ(1)

2

(
λ−2λ−2

0 + λ2
0 + λ2

)+ μ(2)

2
a1/3a−1/3

0

(
λ−2λ−2

0 a−1a0 + λ2
0 + λ2

)
− μ

2
ε2ε

−1
1 V 2

2 V−2
1 vλ−2.

(39)

Solving for λ = λi, the equation:
∂Wi

∂λ
= 0, (40)

gives:

λi =
⎡
⎣λ−2

0

(
μ(1)/μ(2) + a2/3

0 /a2/3
)

− (
μ(1)/μ(2) + 1

)
ε2ε

−1
1 V 2

2 V−2
1 v

μ(1)/μ(2) + a1/3/a1/3
0

⎤
⎦

1/4

. (41)

Then solving for v = v2, the system of equations:

∂Wi

∂λ
= 0,

∂Wi

∂λ0
= 0, (42)
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provides the wrinkling voltage:

v2 = ε1

ε2

V 2
1

V 2
2

⎧⎨
⎩ μ(1)/μ(2)

μ(1)/μ(2) + 1

⎡
⎣λ−2

0 − λ−8
0

(
μ(1)/μ(2) + a2/3

0 /a2/3

μ(1)/μ(2) + a1/3/a1/3
0

)2
⎤
⎦

+ a1/3/a1/3
0

μ(1)/μ(2) + 1

⎡
⎣λ−2

0 a0/a − λ−8
0

(
μ(1)/μ(2) + a2/3

0 /a2/3

μ(1)/μ(2) + a1/3/a1/3
0

)2
⎤
⎦
⎫⎬
⎭ .

(43)

Similarly, in this case, wrinkling is attained when the stress in the second direction is equal to zero, i.e., P2 =
∂Wi/∂λ0 = 0.

From equations (2), (32), (36), and (41), we obtain the operating voltage:

v = λ−2
0

ξ 2
(
μ(1)/μ(2) + a1/3/a1/3

0

)
− ε2

1ε
−2
2

(
μ(1)/μ(2) + a2/3

0 /a2/3
)

ξ 2
(
μ(1)/μ(2) + a1/3/a1/3

0

)
− ε1ε

−1
2

(
μ(1)/μ(2) + 1

)
(ξ + 1)2 /4

, (44)

which is a nonlinear function of the pre-stretch ratio λ0 and the capacitance ratio ξ .

4.3. The effect of pre-stretching parallel to the director

We also consider the case when the LCE is pre-stretched parallel to the nematic director at state (A), with a
prescribed stretch ratio λ0 > 1. In this case, at the state (A), where V = V1 and a = a0, the energy function
given by equation (23) becomes:

Wn(λ, λ0) = μ

2

(
λ2

0 + λ−2λ−2
0 + λ2

)− μ

2
vλ−2. (45)

As before, solving for λ = λn, the equation:

∂Wn

∂λ
= 0, (46)

gives:

λn = (
λ−2

0 − v
)1/4

. (47)

Then solving for v = v1, the following system of equations:

∂Wn

∂λ
= 0,

∂Wn

∂λ0
= 0, (48)

yields the same wrinkling voltage as in equation (38).
At state (C), where V = V2, the energy function is equal to:

Wi(λ, λ0) = μ(1)

2

(
λ2

0 + λ−2λ−2
0 + λ2

)+ μ(2)

2
a1/3a−1/3

0

(
λ2

0a−1a0 + λ−2λ−2
0 + λ2

)
− μ

2
ε2ε

−1
1 V 2

2 V−2
1 vλ−2.

(49)

Then solving for λ = λi, the equation:
∂Wi

∂λ
= 0, (50)

gives:

λi =
⎡
⎣λ−2

0

(
μ(1)/μ(2) + a1/3/a1/3

0

)
− (

μ(1)/μ(2) + 1
)
ε2ε

−1
1 V 2

2 V−2
1 v

μ(1)/μ(2) + a1/3/a1/3
0

⎤
⎦

1/4

. (51)
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Since the LCE tends to contract in the pre-stretched direction while expanding in the thickness direction,
there is no wrinkling.

By equations (2), (32), (47), and (51), we obtain:

v = λ−2
0

ξ 2
(
μ(1)/μ(2) + a1/3/a1/3

0

)
− ε2

1ε
−2
2

(
μ(1)/μ(2) + a1/3/a1/3

0

)
ξ 2
(
μ(1)/μ(2) + a1/3/a1/3

0

)
− ε1ε

−1
2

(
μ(1)/μ(2) + 1

)
(ξ + 1)2 /4

, (52)

as a nonlinear function of λ0 and ξ .

5. Numerical results
In this section, we present a set of numerical results to illustrate the performance of the theoretical model for
the LCE-based charge pump. Following Hiscock et al. [8], we choose the shear modulus μ = 106 Pa and initial
thickness d0 = 50 · 10−6 m for the LCE, and the dielectric constants ε0‖ = 10 and ε0⊥ = 20. However, here,
μ = μ(1) + μ(2) and the ratio μ(1)/μ(2) can vary:

• When heat is absorbed, we take the scalar uniaxial order parameters Q0 = 0.5 and Q = 0.02,
corresponding to the nematic and isotropic states, respectively [8].

• When light is absorbed, we set α = π/2, f = 1/6, J̃ = 5, and μ/μ(ms) = 0.05 [13–15]. At the initial state
where there is no light, I = 0 and the optimal order parameter is Q0 = 0.61, while at the isotropic state,
Q = 0 (see Figure 6).

The following parameters can then be calculated directly: ε1 = [
ε0‖ (1 − Q0) + ε0⊥ (2 + Q0)

]
/3 = ε̄ +

Q0 (ε0⊥ − ε̄) and ε2 = ε̄ + Q (ε0⊥ − ε̄) ≈ ε̄, where ε̄ = (
2ε0⊥ + ε0‖

)
/3.

When light is absorbed, the required (solar) input, so that the LCE transitions from the nematic to the
isotropic state, is assumed Hlight ≈ 107 J/m3 [8], while when the LCE absorbs heat, the energy needed is
considered Hheat ≈ 3 · 106 J/m3 [6, section 2.3]. Then, the efficiency of the system is given by the ratio between
the generated output per cycle and the required input. For the three cases where the elastomer is not pre-
stretched and when it is pre-stretched either perpendicular or parallel to the nematic director, this is summarised
in Figure 7.

5.1. Energy efficiency under natural deformation

If the LCE is in its natural configuration at initial state (A), then C = Cn, ε⊥ = ε1, and λ = λn, while at state
(C), C = Ci, ε⊥ = ε2, and λ = λi. The stretch ratio λi and the corresponding operating voltage vi, defined
by equations (30) and (31), respectively, are plotted as functions of the parameter ratio μ(1)/μ(2) in Figure 8.
By varying this ratio, the maximum optimal output per unit volume is shown in Figure 9. For example, if
μ(1)/μ(2) = 1, then:

• When the LCE absorbs heat, the maximum optimal output is equal to Wm/� ≈ 3.5 · 104 J/m3

per cycle. The efficiency is Wm/ (Hheat�) ≈ 0.035/3 ≈ 1.2%. The operating voltages are V1 =[
μvid2

0/ (ε1ε0⊥)
]1/2 ≈ 1.8 kV and V2 = V1 (ξ + 1) /2 ≈ 2.2 kV (see also Appendix 2).

• When the LCE absorbs light, the maximum optimal output is Wm/� ≈ 0.6 · 105 J/m3 per cycle and the
efficiency is Wm/

(
Hlight�

) ≈ 0.6%. The operating voltages are V1 ≈ 1.8 kV and V2 ≈ 2.3 kV.

For these two cases, Figure 7 shows that efficiency decreases as μ(1)/μ(2) increases. Since μ(1)/μ(2) = 0
corresponds to the neoclassical model for ideal LCEs, while μ(1)/μ(2) → ∞ corresponds to the neo-Hookean
model for rubber, this figure suggests that LCEs are more efficient than rubber in generating electricity.

5.2. Energy efficiency when pre-stretching perpendicular to the director

When, at state (A), the LCE dielectric is pre-stretched perpendicular to the director, with initial stretch ratio
λ0 > 1, the input wrinkling voltage, given by equation (38), is independent of μ(1)/μ(2) and attains its maximum
for λ0 = 1.2424, while the output wrinkling voltage, given by equation (43), decreases as the parameter ratio
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Figure 6. The modified Maier–Saupe mean field energy given by equation (13) as a function of the order parameter Q when there
is no light (I = 0) or the light is: (a) polarised or (b) unpolarised, with varying intensity I > 0 and α = π/2, f = 1/6, J̃ = 5. As I
increases, there is a transition from the nematic phase to the isotropic phase. This transition occurs at higher values of I when the
light is polarised than when it is unpolarised. When I = 0, the minimum energy is attained for Q0 = 0.61.

Figure 7. The efficiency bound as a function of the parameter ratio μ(1)/μ(2) > 0 for the LCE dielectric absorbing: (a) heat or (b)
light when there is no initial pre-stretch or when there is a pre-stretch either perpendicular or parallel to the nematic director, with
ratio λ0 = 1.25.

Figure 8. (a) The stretch ratio λi given by equation (30) and (b) the voltage vi satisfying equation (31) as functions of the parameter
ratio μ(1)/μ(2) for the LCE dielectric absorbing heat or light.

μ(1)/μ(2) increases. The input wrinkling voltage is plotted in Figure 10(a). To maximise the operating voltage,
we choose an input close to the corresponding wrinkling voltage. For example, when λ0 = 1.25 and v = 0.4, if
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Figure 9. The scaled optimal generated output Wm/(μ�) for μ(1)/μ(2) ∈ {0, 1, 10, 100, 1000} when the LCE dielectric absorbs:
(a) heat or (b) light.

Figure 10. Wrinkling (a) input voltage v1 given by equation (38) as a function of the pre-stretch ratio λ0 and (b) output voltage v2
given by equation (43) as a function of the parameter ratio μ(1)/μ(2) when the LCE dielectric is pre-stretched perpendicular to the
director with ratio λ0 = 1.25 and absorbs heat or light. The maximum input wrinkling voltage is attained for λ0 = 1.2424.

Figure 11. (a) The stretch ratio λi given by equation (41) and (b) the capacitance ratio ξ satisfying equation (44) as functions of the
parameter ratio μ(1)/μ(2) when the LCE dielectric is pre-stretched perpendicular to the director with ratio λ0 = 1.25 and absorbs
heat or light.

the parameter ratio μ(1)/μ(2) varies, then the output wrinkling voltage v2 given by equation (43) is displayed in
Figure 10(b), and the stretch ratio λi given by equation (41) and capacitance ratio ξ satisfying equation (44) are



1210 Mathematics and Mechanics of Solids 29(6)

Figure 12. (a) The stretch ratio λi given by equation (51) and (b) the capacitance ratio ξ satisfying equation (52) as functions of the
parameter ratio μ(1)/μ(2) when the LCE dielectric is pre-stretched parallel to the director with ratio λ0 = 1.25 and absorbs heat or
light.

plotted in Figure 11. In this case, Figure 7 suggests that efficiency decreases as μ(1)/μ(2) increases. In particular,
if μ(1)/μ(2) = 1, then:

• When the LCE absorbs heat, the maximum optimal output is equal to Wm/�2 · 105 J/m3 per cycle. The
efficiency is Wm/ (Hheat�) = 0.2/3 ≈ 6%. The operating voltages are V1 ≈ 1.8 kV and V2 ≈ 2.4 kV.

• When the LCE absorbs light, the maximum optimal output is Wm/� = 3.4 · 105 J/m3 per cycle. The
efficiency is Wm/

(
Hlight�

) ≈ 3.4%. The operating voltages are V1 ≈ 1.8 kV and V2 ≈ 2.6 kV.

For the numerical values of the given parameters, the auxiliary results presented in Appendix 1 imply that
director rotation can be ignored when the LCE dielectric is pre-stretched perpendicular to the director.

5.3. Energy efficiency when pre-stretching parallel to the director

When the LCE dielectric is pre-stretched parallel to the director, the input wrinkling voltage is the same as
that shown in Figure 10(a). Choosing again λ0 = 1.25 and v = 0.4, when the parameter ratio μ(1)/μ(2) varies,
the stretch ratio λi given by equation (51) and capacitance ratio ξ satisfying equation (52) are represented in
Figure 12. We note that ξ = Cn/Ci > 1 for μ(1)/μ(2) > 1.6 when the LCE is heated and for μ(1)/μ(2) > 1.5
when the LCE is illuminated. In this case, the efficiency shown in Figure 7 increases with μ(1)/μ(2).

6. Conclusion
In this study, a theoretical model is developed for a charge pump with a parallel plate capacitor where the dielec-
tric is made of LCE material that naturally responds to environmental changes such as heat or light. Specifically,
heating or illuminating the LCE induces a transition from a nematic to an isotropic state. In addition, the geom-
etry of the dielectric changes and the contact area with the conducting plates and the distance between them
are altered. In the charge pump electrical circuit, at the beginning of a reversible cycle of heating and cooling
or illumination and absence of light, first the dielectric is assumed to be in a relaxed natural state, then it is
pre-stretched so that the capacitance increases by increasing the contact area with the plates and decreasing
the distance between them. The LCE is described by a composite strain-energy function which, when taking
its constitutive parameters to their limiting values, can be reduced to either the purely elastic neo-Hookean
model or the neoclassical model for ideal nematic elastomers. From the above analysis, we infer that (1) LCE
is more efficient than rubber when used as dielectric in a parallel plate capacitor and (2) when the dielectric is
pre-stretched perpendicular to the director at the initial state of the proposed cycle, the capacitor becomes more
effective in raising the voltage supplied by the source battery.

To make these results analytically tractable, in the proposed model, the coupling between elastic deformation
and photothermal responses was neglected. This coupling can also be included for more accuracy. When light
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is absorbed, a more sophisticated model can further take into account the ratio between photoactive and non-
photoactive mesogens. Other geometries can be considered as well. Extensive experimental testing should be
performed to help establish the best modelling approach.
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Appendix 1

Shear stripes formation when pre-stretching

In this appendix, we determine the stretch interval where shear stripes can form in the nematic LCE described
by the elastic strain-energy function given by equation (12). Setting the nematic director in the relaxed and
stretched configuration, respectively, as follows:

n0 =
[

1
0
0

]
, n =

[
cos θ
sin θ

0

]
, (53)

where θ ∈ [0, π/2] is the angle between n and n0, and the associated natural deformation tensors given by
equation (7) are, respectively:

G0 =
⎡
⎣a1/3 0 0

0 a−1/6 0
0 0 a−1/6

⎤
⎦ (54)
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Figure 13. The stretch ratio interval where shear striping occurs in the LCE dielectric pre-stretched with ratio λ0, perpendicular to
the director, while the uniaxial order parameter is equal to: (a) Q0 = 0.5 or (b) Q0 = 0.61.

and

G =
⎡
⎣a−1/6 + (

a1/3 − a−1/6
)

cos2 θ
(
a1/3 − a−1/6

)
sin θ cos θ 0(

a1/3 − a−1/6
)

sin θ cos θ a−1/6 + (
a1/3 − a−1/6

)
sin2 θ 0

0 0 a−1/6

⎤
⎦ . (55)

To demonstrate shear-striping instability, we consider the following perturbed deformation gradient:

F =
⎡
⎣λ−1/2 0 0

ε λ 0
0 0 λ−1/2

⎤
⎦ , (56)

where λ > 1 is the stretch ratio in the direction of the applied tensile force, and 0 < ε � 1 is a small shear
parameter. The elastic deformation tensor A = G−1FG0 is then equal to:

A =
⎡
⎣λ−1/2

(
a1/2 sin2 θ + cos2 θ

)
λ
(
a−1/2 − 1

)
sin θ cos θ 0

λ−1/2
(
1 − a1/2

)
sin θ cos θ λ

(
a−1/2 sin2 θ + cos2 θ

)
0

0 0 λ−1/2

⎤
⎦

+ ε

⎡
⎣
(
1 − a1/2

)
sin θ cos θ 0 0(

sin2 θ + a1/2 cos2 θ
)

0 0
0 0 0

⎤
⎦ .

(57)

The eigenvalues {λ2
1, λ2

2, λ2
3} of the Cauchy–Green tensor FFT and {α2

1, α2
2 , α2

3} of the tensor AAT satisfy the
following relations, respectively:

λ2
1 + λ2

2 + λ2
3 = λ2 + 2λ−1 + ε2 (58)

and

α2
1 + α2

2 + α2
3 = [

λ−1/2
(
a1/2 sin2 θ + cos2 θ

)+ ε
(
1 − a1/2

)
sin θ cos θ

]2
+ [

λ−1/2
(
1 − a1/2

)
sin θ cos θ + ε

(
sin2 θ + a1/2 cos2 θ

)]2
+ [

λ
(
a−1/2 − 1

)
sin θ cos θ

]2 + [
λ
(
a−1/2 sin2 θ + cos2 θ

)]2 + λ−1.

(59)

We define the following function:

w(λ, ε, θ) = W (el)(λ1, λ2, λ3, θ , a), (60)
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with W (el)(λ1, λ2, λ3, θ , a) = W (el) described by equation (12). Differentiating the above function with respect
to ε and θ , respectively, gives:

∂w(λ, ε, θ)

∂ε
= μ(1)ε

+ μ(2)
{[

λ−1/2
(
a1/2 sin2 θ + cos2 θ

)+ ε
(
1 − a1/2

)
sin θ cos θ

] (
1 − a1/2

)
sin θ cos θ

+ [λ−1/2
(
1 − a1/2

)
sin θ cos θ + ε

(
sin2 θ + a1/2 cos2 θ

)] (
sin2 θ + a1/2 cos2 θ

)} (61)

and

∂w(λ, ε, θ)

∂θ
= μ(2)

{(
a1/2 − 1

) [
2λ−1/2 sin θ cos θ + ε

(
sin2 θ − cos2 θ

)]
· [λ−1/2

(
a1/2 sin2 θ + cos2 θ

)+ ε
(
1 − a1/2

)
sin θ cos θ

]
+ (a1/2 − 1

) [
λ−1/2

(
sin2 θ − cos2 θ

)− 2ε sin θ cos θ
]

· [λ−1/2
(
1 − a1/2

)
sin θ cos θ + ε

(
sin2 θ + a1/2 cos2 θ

)]
+λ2

(
a−1 − 1

)
sin θ cos θ

}
.

(62)

The equilibrium solution minimises the energy and thus satisfies the simultaneous equations:

∂w(λ, ε, θ)

∂ε
= 0 and

∂w(λ, ε, θ)

∂θ
= 0. (63)

At ε = 0 and θ = 0, the partial derivatives defined by equations (61)–(62) are both equal to zero. Hence,
this trivial solution is always an equilibrium state. For sufficiently small values of ε and θ , we can write the
second-order approximation:

w(λ, ε, θ) ≈ w(λ, 0, 0) + 1

2

(
ε2 ∂2w

∂ε2
(λ, 0, 0) + 2εθ

∂2w

∂ε∂θ
(λ, 0, 0) + θ2 ∂2w

∂θ2
(λ, 0, 0)

)
, (64)

where

∂2w

∂ε2
(λ, 0, 0) = μ(1) + μ(2)a, (65)

∂2w

∂ε∂θ
(λ, 0, 0) = μ(2)λ−1/2 (1 − a) , (66)

∂2w

∂θ2
(λ, 0, 0) = μ(2)

(
λ2 − λ−1a

) (
a−1 − 1

)
. (67)

First, we find the equilibrium value θ0 for θ as a function of ε by solving the second equation in equation
(63). By the approximation (64), the respective equation takes the form:

ε
∂2w

∂ε∂θ
(λ, 0, 0) + θ

∂2w

∂θ2
(λ, 0, 0) = 0, (68)

and implies:

θ0(ε) = −ε
∂2w

∂ε∂θ
(λ, 0, 0)/

∂2w

∂θ2
(λ, 0, 0). (69)

Next, substituting θ = θ0(ε) in equation (64) gives the following function of ε:

w(λ, ε, θ0(ε)) − w(λ, 0, 0) ≈ ε2

2

[
∂2w

∂ε2
(λ, 0, 0) −

(
∂2w

∂ε∂θ
(λ, 0, 0)

)2

/
∂2w

∂θ2
(λ, 0, 0)

]
. (70)
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Depending on whether the expression on the right-hand side in equation (70) is positive, zero, or negative, the
respective equilibrium state is stable, neutrally stable, or unstable [22, 23, 53]. We deduce that the equilibrium
state with ε = 0 and θ = 0 is unstable if:

a1/3

(
μ(1)/μ(2) + 1

μ(1)/μ(2) + a

)1/3

< λ < a1/3. (71)

Similarly, at ε = 0 and θ = π/2, both the partial derivatives defined by equations (61)–(62) are equal to
zero, and:

∂2w

∂ε2
(λ, 0, π/2) = μ(1) + μ(2), (72)

∂2w

∂ε∂θ
(λ, 0, π/2) = μ(2)λ−1/2 (a − 1) , (73)

∂2w

∂θ2
(λ, 0, π/2) = μ(2)

(
λ2 − λ−1a

) (
1 − a−1

)
. (74)

Thus, the equilibrium state with ε = 0 and θ = π/2 is unstable if:

a1/3 < λ < a1/3

(
μ(1)/μ(2) + a

μ(1)/μ(2) + 1

)1/3

. (75)

In Figure 13, we plot the bounds given by equations (71) and (75) for the LCE dielectric pre-stretched by
ratio λ = λ0, perpendicular to the director, when a = a0 is given by equation (8) with Q = Q0 and Q0 = 0.5
or Q0 = 0.61. For example, if λ0 = 1.25, then shear striping cannot occur for μ(1)/μ(2) > 1.9 when the LCE is
heated and for μ(1)/μ(2) > 1.5 when the LCE is illuminated.

Appendix 2

Step-length ratios

We remark here that, for μ(1) = 0, the LCE model defined by equation (12) reduces to the neoclassical model
considered originally in Hiscock et al. [8]. Assuming that the step lengths in equation (8) satisfy the incom-
pressibility constraint l‖ (l⊥)2 = 1, and similarly, l0

‖
(
l0
⊥
)2 = 1 for the relaxed state, the step-length ratios are,

respectively:

p‖ = l0
‖

l‖
= (1 + 2Q)1/3(1 − Q)2/3

(1 + 2QA)1/3(1 − QA)2/3
· 1 + 2QA

1 + 2Q
= (1 + 2QA)2/3(1 − Q)2/3

(1 − QA)2/3(1 + 2Q)2/3
,

p⊥ = l0
⊥

l⊥
= (1 + 2Q)1/3(1 − Q)2/3

(1 + 2QA)1/3(1 − QA)2/3
· 1 − QA

1 − Q
= (1 + 2Q)1/3(1 − QA)1/3

(1 − Q)1/3(1 + 2QA)1/3
.

(76)

In our notation, these ratios take the equivalent form:

p‖ = a2/3
0

a2/3
= (1 + 2Q0)2/3(1 − Q)2/3

(1 − Q0)2/3(1 + 2Q)2/3
, p⊥ = a1/3

a1/3
0

= (1 + 2Q)1/3(1 − Q0)1/3

(1 − Q)1/3(1 + 2Q0)1/3
. (77)

Therefore, in the case of natural deformation under temperature changes with in-plane nematic director, an
upper efficiency bound of 2.7% is found in this study when μ(1) = 0 (see Figure 7(a)) compared to 1% reported
in Hiscock et al. [8].


