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Various neural network architectures rely on pooling operators to aggregate information 
coming from different sources. It is often implicitly assumed in such contexts that vectors 
encode epistemic states, i.e. that vectors capture the evidence that has been obtained 
about some properties of interest, and that pooling these vectors yields a vector that 
combines this evidence. We study, for a number of standard pooling operators, under 
what conditions they are compatible with this idea, which we call the epistemic pooling 
principle. While we find that all the considered pooling operators can satisfy the epistemic 
pooling principle, this only holds when embeddings are sufficiently high-dimensional and, 
for most pooling operators, when the embeddings satisfy particular constraints (e.g. having 
non-negative coordinates). We furthermore show that these constraints have important 
implications on how the embeddings can be used in practice. In particular, we find that 
when the epistemic pooling principle is satisfied, in most cases it is impossible to verify the 
satisfaction of propositional formulas using linear scoring functions, with two exceptions: 
(i) max-pooling with embeddings that are upper-bounded and (ii) Hadamard pooling with 
non-negative embeddings. This finding helps to clarify, among others, why Graph Neural 
Networks sometimes under-perform in reasoning tasks. Finally, we also study an extension 
of the epistemic pooling principle to weighted epistemic states, which are important in 
the context of non-monotonic reasoning, where max-pooling emerges as the most suitable 
operator.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

One of the key challenges in many sub-areas of Machine Learning is to learn suitable vector space embeddings of the 
objects of interest (e.g. graphs, images or sentences). A question which is usually left implicit is what the embedding of an 
object represents. We can take at least two different views on this. First, we may consider that embeddings essentially serve 
as a compact representation of a distance metric, which intuitively captures some form of similarity. What matters, then, is 
that objects which are similar, in some sense, are represented by similar vectors, while objects which are dissimilar are not. 
This intuition provides the foundation, for instance, for the use of contrastive pre-training strategies [1,2]. Second, we may 
consider that embeddings are essentially compact encodings of epistemic states. In other words, the embedding of an object 
encodes what we know about that object. Embeddings then essentially play a similar role as formulas in propositional logic. 
This view implicitly underpins most strategies that combine neural network learning with aspects of symbolic reasoning, 
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e.g. when using a semantic loss function to encourage neural network predictions to satisfy certain constraints [3] or when 
using neural network predictions as input to a probabilistic logic program [4]. In this paper, we focus on this second view.

In practice, the embedding of an object is often obtained by combining the embeddings of related objects using some 
kind of pooling operator. For instance, in the context of Computer Vision, convolutional feature extractors such as ResNet 
[5] provide an embedding for each sub-region of the image. An embedding of the overall image is then typically obtained 
by averaging these sub-region embeddings. Along similar lines, a common setting in Natural Language Processing consists 
in using a transformer based language model such as BERT [6] to obtain paragraph embeddings, and to average these 
embeddings to obtain an embedding for a full document. In multi-modal settings, it is common to obtain embeddings 
for the individual modalities first, and to subsequently aggregate these embeddings [7]. Graph Neural Networks [8,9] also 
crucially rely on pooling operators, learning node representations by aggregating embeddings derived from neighbouring 
nodes. Essentially, in all these cases we have an embedding e which is obtained by aggregating embeddings e1, ..., ek using 
some pooling operator �:

e = �(e1, ...,ek) (1)

Under the epistemic1 view, this pooling operator is implicitly assumed to aggregate the knowledge that is captured by 
the embeddings e1, ..., ek . For instance, the embeddings e1, ..., ek may encode which objects are present in different parts 
of the image. After pooling these embeddings, we should end up with an embedding e that captures which objects are 
present throughout the entire image. Let us write �(ei) for the knowledge that is captured by the embedding ei . More 
precisely, we will think of �(ei) as a set of properties that are known to be satisfied. If we view pooling as the process of 
accumulating knowledge from different sources (e.g. from different regions of the image, or different neighbours in a graph 
neural network), then we would expect the following to be true: �(e) = �(e1) ∪ ... ∪ �(en). We will refer to this principle 
as the epistemic pooling principle. As an important special case, we will consider the case where the properties of interest 
correspond to possible worlds (i.e. propositional interpretations). The set �(ei) then contains the set of possible worlds that 
can be excluded based on the knowledge encoded in the embedding ei . In other words, �(ei) can then be characterised as 
a propositional formula. The epistemic pooling principle then states that the formula corresponding to �(e1, ..., ek) should 
be equivalent to the conjunction of the formulas corresponding to e1, ..., ek .

The main aim of this paper is to study under which conditions the epistemic pooling principle can be satisfied. Analysing 
a number of standard pooling operators, we find that the epistemic pooling principle can be satisfied for all of them, but 
with several important caveats:

• We need at least as many dimensions as there are properties. In settings where we want to model propositional 
formulas, the properties of interest correspond to possible worlds. Without further restrictions, this means that we 
need embeddings with as many dimensions as there are possible worlds.

• For most of the pooling operators, we find that embeddings need to be constrained in a particular way, e.g. by only 
allowing vectors with non-negative coordinates.

• We also identify important restrictions on how embeddings can be linked to the formulas they capture. In particular, 
when summation or averaging is used for pooling, we find that the satisfaction of propositional formulas can, in general, 
not be predicted by a linear classifier when the epistemic pooling principle is satisfied.

The fundamental question which we want to answer is whether a vector-based representation can act as a formal knowledge 
representation framework, or whether reasoning with neural networks is inevitably approximate in nature. While we focus 
on a theoretical analysis of pooling operators in this paper, our results provide a number of important insights for the 
design of neural network models for tasks that require reasoning. For instance, two operators emerge from our analysis as 
being particularly suitable for applications where we need to reason about propositional formulas: max-pooling, with the 
constraint that the coordinates of all embeddings are upper-bounded by some constant z, and the Hadamard operator (i.e. 
the component-wise product), with the constraint that all coordinates are non-negative.

Our results also help to explain the outperformance of neuro-symbolic methods [10] over Graph Neural Networks (GNN) 
in certain applications. GNNs are, in theory, capable of reasoning in the two-variable fragment of first-order logic with 
counting quantifiers (FOC2) [11]. Nonetheless, in practice, GNNs often perform relatively poorly in tasks that require rea-
soning, even when staying within FOC2. Crucially, GNNs typically use averaging (or summation) for pooling the messages 
coming from adjacent nodes. As we will see in Section 5.4, in such cases, GNNs can only capture logical reasoning if the 
node embeddings are essentially binary. The discrete nature of the required embeddings makes them difficult to learn, 
which helps to explain why GNNs are often outperformed by models that are more specifically tailored towards reasoning 
[12,13].

Furthermore, our lower bounds on the required dimensionality of epistemic embeddings suggest that, beyond toy prob-
lems, using neural networks for reasoning inevitably requires some kind of modularity. For instance, an important challenge 

1 The word epistemic, in this paper, merely refers to the idea that vectors capture what we know about some properties of interest. In particular, note 
that our setting is not directly related to epistemic logics.
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Fig. 1. A graph containing four types of nodes. The nodes c1, c2 represent committees, r1, r2, r3 represent researchers, a1, a2, a3 represent articles, and 
t1, t2, t3, t4, t5 represent research topics. Topic nodes are connected to the articles that discuss them. Article nodes are connected to their authors. Re-
searchers are connected to the committees they belong to.

in Natural Language Processing is to design models that can reason about information that comes from different sources 
(e.g. different news sources). Combining different text fragments by pooling their embeddings would require a prohibitively 
high dimensionality, if we want these embeddings to capture epistemic states in a faithful way. Instead, it is more common 
to use vectors to encode what we know about a given entity, or about the relationship between two entities. Reasoning 
about the overall story then requires us to combine these different entity and relation vectors, by using the structure of the 
problem domain in some way, e.g. by using GNNs or neuro-symbolic approaches. By exploiting this structure, embeddings 
can be used to capture more focused knowledge, which means that the prohibitively high dimensionality that is otherwise 
needed can be avoided.

The remainder of this paper is structured as follows. In the next section, we first discuss a number of simple examples 
to illustrate the considered setting. Subsequently, in Section 3, we formalise the problem setting and introduce the notations 
that will be used throughout the paper. In Section 4, we then analyse under which conditions the epistemic pooling principle 
can be satisfied. One of the main findings from this section is that the requirement to satisfy the epistemic pooling principle 
fundamentally constrains which embeddings can be allowed, and how these embeddings encode knowledge. In Section 5, 
we then investigate how this impacts our ability to use vector embeddings for propositional reasoning. In particular, we 
focus on the problem of verifying whether a given propositional formula is satisfied in the epistemic state encoded by a 
given vector. Subsequently, in Section 6, we look at a generalisation of the epistemic pooling principle for dealing with 
weighted epistemic states. In this case, vectors encode the strength with which we believe a given property to be satisfied. 
Section 7 presents a discussion of our results in the context of related work, after which we summarise our conclusions.

2. Illustrative examples

In this section, we consider a number of toy examples to illustrate our problem setting. These examples involve message-
passing GNNs, where pooling arises because we need to aggregate the messages coming from adjacent nodes. In Section 2.1, 
we discuss a simple example to illustrate the basic principles. This example involves aggregating sets of properties, without 
any further reasoning. We then build on this example in Section 2.2 to illustrate how propositional reasoning can be carried 
out in this framework. Section 2.3 illustrates a setting where we need to reason in the presence of background knowl-
edge. Finally, Section 2.4 shows how this can be extended to situations involving non-monotonic reasoning with defeasible 
knowledge.

2.1. Basic setting

Fig. 1 displays a graph with four types of nodes, referring to research topics (t1, t2, t3, t4, t5), scientific articles (a1, a2, a3), 
researchers (r1, r2, r3) and committees (c1, c2), respectively. In this graph, research topics are connected to the articles that 
discuss them, articles are connected to their authors and researchers are connected to the committees they belong to. We 
say that a researcher is an expert on a topic if they have published at least one article which discusses this topic. We say 
that a committee is complete if it contains an expert on each of the five topics. For instance, in the case of Fig. 1, we can 
see that researcher r1 is an expert on topics t1, t2; researcher r2 is an expert on topics t1, t2, t3, t4; and researcher r3 is an 
expert on topics t4, t5. It follows that committee c2 is complete, as each of the five topics are covered by its two members, 
but committee c1 is not. We are now interested in designing a message-passing GNN which can predict whether a given 
committee is complete or not. A message-passing GNN learns embeddings of the nodes of a given graph, by iteratively 
updating each node’s embedding based on the embeddings of its neighbouring nodes. To specify a message-passing GNN, 
we thus need to specify (i) the initial embedding of each node and (ii) the update mechanism which is used.

A straightforward solution is as follows. Let us write x(l) ∈R5 for the representation of a node x in layer l of the GNN. 
In particular, x(0) represents the input embedding of node x, which we define as follows:
3
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t(0)
1 = (1,0,0,0,0) t(0)

2 = (0,1,0,0,0) t(0)
3 = (0,0,1,0,0) t(0)

4 = (0,0,0,1,0) t(0)
5 = (0,0,0,0,1)

In other words, we use a one-hot encoding for representing the different topics. The input embeddings for all the other 
nodes are set to x(0) = (0, 0, 0, 0, 0). In the subsequent layers, the node representations are updated as follows:

x(l+1) = max({x(l)} ∪ {y(l) | (y, x) ∈ E}) (2)

where E represents the set of edges, i.e. (y, x) ∈ E if there is an edge from node y to node x, and the maximum is applied 
component-wise. It is easy to verify that an article ai covers topic t j if the jth coordinate of a(l)

i is 1, for l ≥ 1. Similarly, a 
researcher ri is an expert on topic j if the jth coordinate of r(l)

i is 1, for l ≥ 2; and a committee ci contains expertise on 
topic j if the jth coordinate of c(l)

i is 1, for l ≥ 3. We thus have that the committee ci is complete iff c(3)

i = (1, 1, 1, 1, 1). 
Note that the latter condition can be checked using a linear scoring function, since it is equivalent with ci

(3) · 1 ≥ 5, where 
1 = (1, 1, 1, 1, 1).

In the proposed construction, a number of particular design decisions were made. For instance, we used 5-dimensional 
embeddings for representing nodes and we used the maximum for aggregating the evidence from neighbouring nodes. Our 
analysis in this paper is aimed at studying the importance of such decisions. For instance, we may wonder whether it is 
possible to devise an encoding that relies on four-dimensional embeddings. If we are allowed to replace the maximum with 
an arbitrarily complex function (and we allow non-linear scoring functions), then the answer is clearly positive.2 However, 
as we will see in Section 4, when we restrict ourselves to standard pooling operators, such as max-pooling, summation or 
averaging, the answer is negative. Another question is whether a variant of the construction above can be found which relies 
on summation or averaging, rather than max-pooling. Here, the answer depends on what assumptions we make on the final 
node classifier, i.e. the function that maps the embedding c(l) of a committee onto a decision. The most common approach 
is to rely on a linear classifier to make such predictions. In that case, we can show that no encoding of the problem can be 
found that relies on summation or averaging, as we will see in Section 5.

2.2. Propositional reasoning

The aforementioned example simply required us to aggregate sets of features, which corresponded to research topics in 
that example. Throughout this paper, we will refer to such features as properties. At first glance, it may seem like this setting 
only involves rather basic forms of reasoning. However, by identifying the considered properties with possible worlds, we 
can in fact design GNNs which perform propositional reasoning. We illustrate this with an example. Let us consider the 
same setting as before, but now we only focus on research topics, articles and researchers. We say that a researcher is a 
generalist if they have worked on at least two sufficiently distinct topics. Let us write ti to denote that some researcher has 
worked on topic ti . Then we define:

generalist ≡ (t1 ∧ t4) ∨ (t1 ∧ t5) ∨ (t2 ∧ t5)

where the idea is that the other topic combinations are too similar to each other (e.g. working on t1 and t2 would not 
make someone a generalist because these are related research topics). We want to predict whether a given researcher 
is a generalist by applying a linear classifier to the corresponding node embedding. As before, we assume that available 
knowledge about researchers is encoded as a graph with topic, article and researcher nodes (although we no longer consider 
committees). Let ω1, ..., ω32 be an enumeration of all the possible worlds of the propositional logic over the set of atoms 
{t1, ..., t5}. The input embedding t(0)

i of the node ti is now defined as a 32-dimensional vector, where the jth component is 
0 if ω j |= ¬ti and -1 otherwise. Note how each component now corresponds to a possible world. The jth coordinate in the 
embedding of node n is 0 if that node captures the knowledge that the world ω j can be excluded. The input embeddings 
of the article and research nodes are initialised as (−1, ..., −1). The embeddings of the nodes in the subsequent layers are 
again computed using (2). For l ≥ 1 we then have that a(l)

i = (x1, ..., x32) where x j = 0 iff article ai has some topic tk such 
that ω j |= ¬tk , and x j = −1 otherwise. For l ≥ 2, we have that r(l)

i = (x1, ..., x32) where x j = 0 iff researcher ri has written 
an article that has some topic tk such that ω j |= ¬tk . In other words, we have that x j = 0 if we can exclude ω j as a possible 
representation of the expertise of ri based on the knowledge encoded in the graph. To test whether we can entail that ri is 
a generalist, it suffices to check whether every countermodel of (t1 ∧ t4) ∨ (t1 ∧ t5) ∨ (t2 ∧ t5) can be excluded. Let c ∈R32

be the vector whose jth component is 0 if ωi is a model of (t1 ∧ t4) ∨ (t1 ∧ t5) ∨ (t2 ∧ t5) and 1 otherwise. Then we have 
that researcher ri is a generalist iff

r(2)

i · c ≥ 0

2 In fact, we can even use one-dimensional embeddings. Let n be a number which is larger than the number of topics k. Then we can initialise topic i
as ni−1. To aggregate two node representations x and y, we first decompose them as x = x0 + x1n + x2n2 + ... + xk−1nk−1 and y = y0 + y1n + y2n2 + ... +
yk−1nk−1, with x0, ..., xk−1, y0, ...yk−1 ∈ {0, 1}. Then the aggregated embedding can be defined as max(x0, y0) + max(x1, y1)n + ... + max(xk−1, yk−1)nk−1.
4
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By associating properties with possible worlds, we can thus study settings in which GNNs need to aggregate knowledge 
encoded using propositional formulas. While the kind of knowledge that we had to consider in this example was rather 
simple, in general the formulas that need to be aggregated can be arbitrarily complex propositional formulas (including e.g. 
formulas with negation). The topic of propositional reasoning by pooling embeddings, as illustrated in the aforementioned 
example, will be studied in Section 5. Among others, we will see that the choice of the pooling operator plays an important 
role, where faithful reasoning is, in general, not possible with averaging and summation, when linear scoring functions are 
used.

2.3. Background knowledge

Background knowledge can straightforwardly be taken into account by restricting the set of possible worlds to the models 
of a given knowledge base. Embeddings then capture which models of the knowledge base are still possible. To illustrate 
this, let us consider a similar setting as before, but with four topics: Artificial Intelligence, Machine Learning, Knowledge 
Representation and Databases. Let us denote these topics as tAI, tML, tKR and tDB and suppose we have a knowledge base K
containing the following two rules:

tML → tAI (3)

tKR → tAI (4)

In other words, if an article is about Machine Learning, then it is also about Artificial Intelligence, and the same holds for 
Knowledge Representation. This knowledge base has the following models (where we denote an interpretation by the set of 
atoms it makes true):

ω1 = {} ω2 = {tAI} ω3 = {tAI, tML} ω4 = {tAI, tKR} ω5 = {tAI, tML, tKR}
ω6 = {tDB} ω7 = {tAI, tDB} ω8 = {tAI, tML, tDB} ω9 = {tAI, tKR, tDB} ω10 = {tAI, tML, tKR, tDB}

Accordingly, we can represent nodes using 10-dimensional embeddings. The input embeddings of the topic nodes would 
then be given as:

t(0)
AI = (0,−1,−1,−1,−1,0,−1,−1,−1,−1)

t(0)
ML = (0,0,−1,0,−1,0,0,−1,0,−1)

t(0)
KR = (0,0,0,−1,−1,0,0,0,−1,−1)

t(0)
DB = (0,0,0,0,0,−1,−1,−1,−1,−1)

Note, for instance, how max(t(0)
AI , t(0)

ML) = t(0)
ML. As a result, an article node that is connected to both tAI and tML would have 

the same embedding as an article node that is only connected to tML, which reflects the fact that the rule tML → tAI has 
been taken into account as background knowledge.

2.4. Non-monotonic reasoning

Our focus on accumulating knowledge, and the use of the union in the formulation of the epistemic pooling principle, 
may suggest that the problem setting we consider in this paper is only suitable for monotonic reasoning. In contrast, many 
applications require some kind of non-monotonic inference, where we can defeasibly infer something to be true based on 
the absence of evidence to the contrary. To illustrate this idea, let us again consider the topics tAI, tML, tKR and tDB and 
the background knowledge expressed in (3)–(4). Let us now additionally assume that we want to implement the following 
behaviour:

• If we know that the topic of an article is AI, and we have no evidence that the article is about KR, then we will assume 
that the topic is ML (i.e. “AI articles are typically about ML”).

• However, if we know that the article is about AI and KR, then this inference should not be made.

This intuition cannot be implemented using standard propositional entailment, given the non-monotonic nature of the 
desired inferences: we cannot at the same time have K ∪ {tAI} |= tML and K ∪ {tAI, tKR} 
|= tML for any knowledge base K . The 
standard solution is to assume that each possible world ω has some plausibility degree π(ω) and to interpret “if α then 
typically β” as the constraint that max{π(ω) | ω |= α∧β} > max{π(ω) | ω |= α∧¬β} [14–17]. In other words, such a default 
rule is satisfied if β is true in the most plausible models of α. Using possibilistic logic, we can conveniently encode default 
knowledge using weighted logical formulas [16]. In particular, the available knowledge can be encoded as follows:
5



JID:IJA AID:108981 /FLA [m3G; v1.340] P.6 (1-30)

S. Schockaert International Journal of Approximate Reasoning ••• (••••) ••••••
1 : tML → tAI

1 : tKR → tAI

0.5 : tKR →⊥
0.5 : tAI → tML

Let Kλ be the set of formulas whose weight is at least λ. To perform defeasible reasoning in possibilistic logic, we proceed 
as follows. Let the available evidence be encoded as a propositional formula α. We first find the lowest λ ≥ 0 for which 
Kλ∪{α} is logically consistent. Then we say that β is defeasibly entailed from the evidence α if it is classically entailed from 
Kλ ∪ {α}. It can be straightforwardly verified that the weighted formulas above capture the intended default knowledge. For 
instance, if α = tAI, we have λ = 0. Since K0 contains the rule tAI → tML we can defeasibly infer tML. However, if the available 
evidence is tAI ∧ tKR, then we find λ = 1 and we can no longer infer tML. Note how the rule tKR →⊥ intuitively serves the 
purpose of blocking the rule tAI → tML in situations where tKR is known to be true.

Let ω1, ..., ω10 be defined as before and let us consider, for this example, three plausibility levels. The main intuition is as 
follows: the higher the value of a given coordinate in the embeddings, the more strongly we can exclude the corresponding 
possible world. In particular, if the available evidence is violated in a possible world, then its corresponding coordinate is 
set to 1. Otherwise, if a formula with a weight of 0.5 is violated, the corresponding coordinate is set to 0.5. Note that the 
formulas of weight 1 are taken into account implicitly, as we only consider the models of these formulas as our 10 possible 
worlds. The remaining coordinates are set to 0. The initial embeddings of the topic nodes are then defined as follows:

t(0)
AI = (1,0.5,0,0.5,0.5,1,0.5,0,0.5,0.5)

t(0)
ML = (1,1,0,1,0.5,1,1,0,1,0.5)

t(0)
KR = (1,1,1,0.5,0.5,1,1,1,0.5,0.5)

t(0)
DB = (1,1,1,1,1,0,0.5,0,0.5,0.5)

To test whether a propositional formula α can be defeasibly inferred in the epistemic state encoded by a vector 
x = (x1, ..., xn), we need to check whether min{xi | ωi |= α} < min{xi | ωi |= ¬α}. Indeed, if this inequality holds, there is 
a model of α which is strictly more plausible than any of the models of ¬α. For instance, going back to the example, 
let a1 be an article node which is only connected to the topic node tAI. The embedding of this article a(1)

1 is given by 
(1, 0.5, 0, 0.5, 0.5, 1, 0.5, 0, 0.5, 0.5). Note that tML is satisfied in worlds ω3, ω5, ω8, ω10. We find that:

min{xi |ωi |= tML} = min(x3, x5, x8, x10) = 0

min{xi |ωi |= ¬tML} = min(x1, x2, x4, x6, x7, x9) = 0.5

Hence we can indeed defeasibly infer that the article is about Machine Learning. Let a2 be an article which connected to 
both tAI and tKR. The embedding a(1)

2 is then given by

a(1)
2 = max((1,0.5,0,0.5,0.5,1,0.5,0,0.5,0.5), (1,1,1,0.5,0.5,1,1,1,0.5,0.5))

= (1,1,1,0.5,0.5,1,1,1,0.5,0.5)

We then find:

min{xi |ωi |= tML} = min(x3, x5, x8, x10) = 0.5

min{xi |ωi |= ¬tML} = min(x1, x2, x4, x6, x7, x9) = 0.5

It is thus not possible to defeasibly infer that a2 is about Machine Learning. As this example illustrates, non-monotonic 
reasoning essentially requires that we can model weighted epistemic states. This will be studied in Section 6, where we will 
see that max-pooling is uniquely suitable for this setting.

3. Problem setting

In this section, we introduce our considered problem setting more formally. We assume that epistemic states are rep-
resented using sets of elementary properties. Let us write P for the set of all these properties. An epistemic state Q then 
simply corresponds to a subset of P . Intuitively, we think of these elementary properties as atomic pieces of evidence. 
The properties in an epistemic state Q then correspond to the evidence that is available, whereas the properties in P \Q
correspond to evidence that has not been encountered. For instance, in the context of image processing, we can think of the 
properties from P as elementary visual features, whose presence may be detected in an image. In applications where more 
intricate forms of reasoning are needed than simply aggregating sets of detected features, we can relate the properties in 
6
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P to possible worlds, as we have seen in Section 2.2. For each possible world ω, we then consider a property pω , corre-
sponding to the knowledge that ω can be excluded, i.e. that ω is not a model of the world. In this way, subsets of P can be 
used to represent arbitrary propositional knowledge bases. This link with logical reasoning will be developed in Section 5. 
For now, however, it will suffice to simply think of epistemic states as subsets of P .

Taking the view that embeddings encode epistemic states, each e ∈Rn will be associated with a set of properties from 
P . Formally, we assume that a scoring function γp :Rn →R is available for each property p ∈P . We consider two variants 
of our setting, which differ in whether strict or weak inequalities are used to determine which properties are satisfied. As 
we will see, this choice has a material impact on the theoretical properties of the resulting framework.

Strict semantics Under the strict semantics, we say that an embedding e ∈Rn satisfies the property p ∈P if γp(e) > 0. Let 
us write �(e) for the epistemic state encoded by e, i.e. the set of properties satisfied by e:

�(e) = {p ∈ P | γp(e) > 0} (5)

Let � :Rn ×Rn →Rn represent a pooling operator. The epistemic pooling principle can then be formalised as follows:

�(e � f) = �(e) ∪ �(f) (6)

If we want to specify that the strict semantics is used, we will also refer to (6) as the strict epistemic pooling principle. 
Intuitively, the embeddings e and f capture information coming from two different sources, e.g. two different regions of an 
image or two different modalities. The principle captured by (6) is that the pooling operator � should merely combine this 
information: the total evidence that is available is the union of the evidence provided by the two sources. Note that (6) is 
equivalent to:

∀p ∈ P.(γp(e) > 0) ∨ (γp(f) > 0) ⇔ γp(e � f) > 0 (7)

In the following, we will assume that all embeddings are taken from some set X ⊆Rn . One possibility would be to choose 
X = Rn , but as we will see, it is sometimes necessary to make a more restrictive choice. For instance, we may have 
X = [0, +∞[n if we want to restrict the discussion to vectors with non-negative coordinates. Regardless of how X is chosen, 
an important consideration is that the embeddings in X should allow us to capture every possible epistemic state, in the 
following sense:

∀Q⊆ P.∃e ∈ X .�(e) =Q (8)

If (8) is satisfied, we say that X satisfies exhaustiveness. Finally, for the ease of presentation, we introduce the following 
notations:

Posp = {e ∈ X | γp(e) > 0}
Negp = {e ∈ X | γp(e) ≤ 0} = X \ Posp

We will refer to Posp and Negp as the positive and negative regions for property p. Indeed, we have that e ∈ Posp iff 
p ∈ �(e), and e ∈ Negp otherwise.

Weak epistemic pooling principle Under the weak semantics, we say that an embedding e ∈Rn satisfies the property p ∈ P
if γp(e) ≥ 0. Epistemic states are then determined as follows:

�′(e) = {p ∈ P | γp(e) ≥ 0} (9)

This definition gives rise to the following counterpart of (6), which we will refer to as the weak epistemic pooling principle:

�′(e � f) = �′(e) ∪ �′(f) (10)

We will furthermore require that exhaustiveness is satisfied:

∀Q⊆ P.∃e ∈ X .�′(e) =Q (11)

Finally, the positive and negative regions are also defined analogously as before:

Pos′p = {e ∈ X | γp(e) ≥ 0}
Neg′

p = {e ∈ X | γp(e) < 0} = X \ Pos′p
7
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Pooling operators Whether the (strict or weak) epistemic pooling principle can be satisfied for every e, f ∈ X depends on 
the choice of the scoring functions γp , the set X ⊆Rn and the pooling operator �. In our analysis, we will focus on the 
following standard pooling operators:

Average: (e1, ..., en) �avg ( f1, ..., fn) = e + f

2

Summation: (e1, ..., en) �sum ( f1, ..., fn) = e + f

Max-pooling: (e1, ..., en) �max ( f1, ..., fn) = (max(e1, f1), ...,max(en, fn))

Hadamard: (e1, ..., en) �had ( f1, ..., fn) = (e1 · f1, ..., en · fn)

Note that the epistemic pooling principles in (6) and (10) are defined w.r.t. two arguments. This focus on binary pooling op-
erators simplifies the formulation, while any negative results we obtain naturally carry over to pooling operators with more 
arguments. Moreover, most of the considered pooling operators are associative, with the exception of �avg . Furthermore, 
even though �avg itself is not associative, if it satisfies (6) or (10), its effect on the epistemic states encoded by the embed-
dings will nonetheless be associative, given that we have e.g. �(e1 � (e2 � e3)) = �((e1 � e2) � e3) = �(e1) ∪ �(e2) ∪ �(e3), 
due to the associativity of the union. We now illustrate the key concepts with a simple example.

Example 1. Let P = {a, b} and suppose embedding are taken from R2. Let the scoring functions γa and γb be defined as 
follows:

γa(x1, x2) = 1 − d((x1, x2), (0,0)) = 1 −
√

x2
1 + x2

2

γb(x1, x2) = 1 − d((x1, x2), (1,1)) = 1 −
√

(1 − x1)2 + (1 − x2)2

Now let e = ( 1
4 , 0) and f = ( 3

4 , 1). Then we have e �avg f = ( 1
2 , 12 ). We find:

γa(e) = 3

4
γa(f) =−1

4
γa(e �avg f) = 1 − 1√

2

γb(e) =−1

4
γb(f) = 3

4
γb(e �avg f) = 1 − 1√

2

and thus

�(e) = {a} �(f) = {b} �(e �avg f) = {a,b}
This means that the epistemic pooling principle (6) is satisfied for e and f. On the other hand, for g = (10, 10), we have 
�(g) = �(e �avg g) = ∅, hence the epistemic pooling principle is not satisfied for e and g.

Notations Throughout this paper, we write δ(A) for the boundary of a set A ⊆Rn . Similarly, we will write int(A) and cl(A)

for the interior and closure:

int(A) = {e ∈ A | ∃ε > 0 .∀f ∈Rn .d(e, f) < ε ⇒ f ∈ A}
cl(A) = {e ∈Rn | ∀ε > 0 .∃f ∈ A .d(e, f) < ε}
δ(A) = cl(A) \ int(A)

4. Realizability of the epistemic pooling principle

In this section we study, for each of the considered pooling operators, whether they can satisfy the strict and weak 
epistemic pooling principles, and if so, under which conditions this is the case. In all cases, we find that the epistemic 
pooling principles can only be satisfied if n ≥ |P|, with n the dimensionality of the embeddings. For �avg and �sum , we 
also have to make assumptions on the set X , i.e. the epistemic pooling principles cannot be satisfied for X = Rn with 
these pooling operators. We furthermore find that the epistemic pooling principles can only be satisfied if γp satisfies some 
particular conditions. Most significantly, we find that �avg and �sum cannot satisfy the weak epistemic pooling principle with 
continuous scoring functions γp , and that �had cannot satisfy the strict epistemic pooling principle with continuous scoring 
functions. These results are summarised in Table 1.
8
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Table 1
Summary of results about the realizability of the epistemic pooling principles.

Pooling Operator Semantics X =Rn possible? Continuous γp possible?

Average
Strict ✗ ✓

Weak ✗ ✗

Summation
Strict ✗ ✓

Weak ✗ ✗

Max-pooling
Strict ✓ ✓

Weak ✓ ✓

Hadamard
Strict ✓ ✗

Weak ✓ ✓

4.1. Average

Strict semantics The first question we look at is whether the strict epistemic pooling principle (6) can be satisfied for all 
e, f ∈Rn . The following result shows that this is only possible in the trivial case where every embedding encodes the same 
epistemic state.

Proposition 1. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈Rn, with � = �avg . For any given p ∈P
we have

(∀e ∈Rn . p ∈ �(e)) ∨ (∀e ∈Rn . p /∈ �(e))

Proof. Suppose there exists some e ∈Rn such that p ∈ �(e). We show that we then have p ∈ �(f) for every f ∈Rn . Noting 
that f = e �avg (2f − e), we know from (6) that �(f) = �(e) ∪ �(2f − e), and thus in particular that p ∈ �(f). �

We will thus have to assume that embeddings are restricted to some subset X ⊂Rn . To ensure that X is closed under 
the pooling operator �avg , we will assume that X is convex. The following three lemmas explain how (6) constrains the 
scoring functions γp .

Lemma 1. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with � = �avg and X convex. Suppose 
there exists some e ∈ X such that p ∈ �(e). It holds that Negp ⊆ δ(X).

Proof. Suppose f ∈ int(X). We show that f ∈ Posp . Let us define (λ ∈R):

xλ = λe + (1 − λ)f

Note that because we assumed that X is convex, it holds that xλ ∈ X for all λ ∈ [0, 1]. We have p ∈ �(x1), as x1 = e. By 
repeatedly applying (6) we find that p belongs to �(x 1

2
), �(x 1

4
), �(x 1

8
), etc. In the limit, we find that for every λ ∈]0, 1] it 

holds that p ∈ �(xλ). Since f ∈ int(X), there exists some 0 < ε ≤ 1 such that x−ε ∈ X . Using (6), we find �(f) = �(x−ε) ∪
�(xε). Since we established p ∈ �(xε) we thus find p ∈ �(f), which means f ∈ Posp . �
Corollary 1. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with � = �avg and X convex. Let p ∈P . 
It holds that dim(Negp) ≤ n − 1

Lemma 2. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with � = �avg and X convex. Let p ∈P . 
It holds that Posp is convex.

Proof. Suppose e, f ∈ Posp and define (λ ∈ [0, 1]):
xλ = λe + (1 − λ)f

We show that xλ ∈ Posp for every λ ∈]0, 1[. By applying (6) to f = x0 and e = x1 we find that x 1
2
∈ Posp . By applying (6) to 

x0 and x 1
2

, we find x 1
4
∈ Posp . Similarly, by applying (6) to x 1

2
and x1, we find x 3

4
∈ Posp . Continuing in this way, we find 

xλ ∈ Posp for every λ of the form j
2i with i ∈N and j ∈ {0, 1, ..., 2i}. Now let λ ∈]0, 1[. We can approximate λ arbitrary 

well using a value of the form j
2i . In particular, we can always find some i ∈N and j ∈ {0, ..., 2i} such that 0 < j

2i < λ and 
λ < 2λ − j

2i < 1. By (6), we have:

�(xλ) = �

(
x j

)
∪ �

(
x2λ− j

)

2i 2i

9



JID:IJA AID:108981 /FLA [m3G; v1.340] P.10 (1-30)

S. Schockaert International Journal of Approximate Reasoning ••• (••••) ••••••
Since we already know that x j
2i

∈ Posp we thus also find xλ ∈ Posp . �
Lemma 3. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with � = �avg and X convex. Let p ∈P . 
It holds that Negp is convex.

Proof. Suppose e, f ∈ Negp and define (λ ∈ [0, 1]):
xλ = λe + (1 − λ)f

Entirely analogously as in the proof of Lemma 2, we find that xλ ∈ Negp for every λ of the form j
2i , with i ∈N and j ∈

{0, ..., 2i}. Let λ ∈]0, 1[. Let us consider values ε1, ε2 satisfying 0 < ε1 < ε2 < λ < 2λ − ε2 < 2λ − ε1 < 1. Suppose xλ /∈ Negp . 
Then from (6) we know that:

• xε1 ∈ Posp or x2λ−ε1 ∈ Posp needs to hold; and
• xε2 ∈ Posp or x2λ−ε2 ∈ Posp needs to hold.

This means that there are at least two distinct values λ1, λ2 ∈ {ε1, ε2, 2λ − ε1, 2λ − ε2} such that xλ1 ∈ Posp and xλ2 ∈ Posp . 
Let us assume w.l.o.g. that λ1 < λ2. We can always find some i ∈ N and j ∈ {0, ..., 2i} such that λ1 <

j
2i < λ2. From the 

preceding discussion we already know that x j
2i

∈ Negp . However, from xλ1 ∈ Posp and xλ2 ∈ Posp , using Lemma 2 we find 

x j
2i

∈ Posp , a contradiction. It follows that xλ ∈ Negp �
From Lemmas 1, 2 and 3, we obtain the following corollary using the hyperplane separation theorem.

Corollary 2. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with � = �avg and X convex. For any 
p ∈P , there exists a hyperplane H p such that Negp ⊆ δ(X) ∩ H p.

The next proposition reveals that the dimensionality of the embeddings needs to be at least |P| if we want the epistemic 
pooling principle to be satisfied and at the same time ensure that every epistemic state is modelled by some vector.

Proposition 2. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with � = �avg and X ⊆Rn convex. 
Suppose furthermore that exhaustiveness (8) is satisfied. It holds that n ≥ |P|.

Proof. Let p1, ..., p|P| be an enumeration of the properties in P . Note that because of (8), we have that Negp1

= ∅ and 

Posp1 
= ∅. Moreover, from Lemmas 2 and 3 we know that these regions are both convex. It follows from the hyperplane 
separation theorem that there exists a hyperplane H1 which separates Negp1

and Posp1 . From Lemma 1, we furthermore 
know that Negp1

⊆ cl(Posp1 ), which implies that Negp1
⊆ H1.

Note that H1 ∩Negp2
and H1 ∩Posp2 are convex regions. Moreover, since Negp1

⊆ H1, we find from (8) that H1 ∩Negp2

=

∅ and H1 ∩ Posp2 
= ∅. It follows from the hyperplane separation theorem that there exists some hyperplane H2 separating 
H1 ∩Negp2

and H1 ∩Posp2 . Moreover, it holds that H1 ∩Negp2
⊆ H2. Indeed, suppose there was some e ∈ (H1 ∩Negp2

) \ H2
and let f ∈ H1∩Posp2 . For i ∈N \{0} we define fi = e �avg fi−1, with f0 = f. Then there must be some i ∈N \{0} such that fi is 
on the same side of hyperplane H2 as e, which implies fi ∈ Negp2

since H2 was chosen as a separating hyperplane. However, 
using (6) we also find that p2 ∈ �(fi) and thus fi ∈ Posp2 , which is a contradiction. This means that H1 ∩ Negp2

⊆ H2 and 
thus in particular also that Negp1

∩ Negp2
⊆ H2.

We can repeat this argument as follows. For each j ∈ {1, ..., |P|}, we let H j be a hyperplane separating Posp j and Negp j
. 

Let i ∈ {2, ..., |P| −1} and suppose we have already shown for every j ≤ i that H1 ∩ ... ∩ H j−1 ∩Negp j
⊆ H j . Note that this in 

particular implies Negp1
∩ ... ∩Negpi

⊆ Hi . We know from (8) that Negp1
∩ ... ∩Negpi

∩Negpi+1

= ∅ and Negp1

∩ ... ∩Negpi
∩

Pospi+1 
= ∅. It follows that H1 ∩ ... ∩ Hi ∩ Negpi+1

= ∅ and H1 ∩ ... ∩ Hi ∩ Pospi+1 
= ∅. This implies that H1 ∩ ... ∩ Hi � Hi+1

and thus that dim(H1 ∩ ... ∩ Hi+1) = dim(H1 ∩ ... ∩ Hi) − 1. Similar as for the base case above, we furthermore find that 
H1 ∩ ... ∩ Hi ∩ Negpi+1

⊆ Hi+1.
It follows that dim(H1 ∩ ... ∩ H |P|) = n − |P|, which is only possible if n ≥ |P|. �
It is easy to see that the bound from this proposition cannot be strengthened, i.e. that it is possible to satisfy (6) and (8)

while n = |P|. One possible construction is as follows. Let p1, ..., pn be an enumeration of the properties in P . We define:

X = {(x1, ..., xn) | x1, ..., xn ≥ 0}
and for i ∈ {1, ..., n} we define:

γp (e1, ..., en) = ei
i

10
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Fig. 2. Construction satisfying (6) and (8) for �avg .

To see why this choice satisfies (8), let Q ⊆P and define e = (e1, ..., en) as follows:

ei =
{

1 if pi ∈Q
0 otherwise

Then it is straightforward to verify that �(e) =Q. Moreover, it is also clear that (6) is satisfied. Indeed, the ith coordinate 
of (e1, ..., en) �avg ( f1, ..., fn) is ei+ f i

2 . Hence we have ei+ f i
2 > 0 as soon as ei > 0 or f i > 0 (noting that ei, f i ≥ 0), meaning 

pi ∈ �((e1, ..., en) �avg ( f1, ..., fn)) iff pi ∈ �(e1, ..., en) ∪ �( f1, ..., fn). A visualisation of this construction is shown in Fig. 2. 
Note how the construction aligns with the common practice of learning sparse high-dimensional embeddings with non-
negative coordinates.

Weak semantics Let us now consider whether the weak epistemic pooling principle can also be satisfied for �avg . Without 
any restrictions on the scoring functions γp , this is clearly the case. In particular, suppose for each p ∈ P , a function γp is 
defined such that the strict epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X , for some convex set X , 
and suppose furthermore that exhaustiveness (8) is satisfied. Then we can define modified scoring functions as follows:

γ ′
p(e) =

{
1 if γp(e) > 0

−1 otherwise
(12)

In particular, we have γp(e) > 0 iff γ ′
p(e) ≥ 0. The fact that the strict epistemic pooling principle is satisfied for the scoring 

functions γp thus implies that the weak epistemic pooling principle is satisfied for the modified scoring functions γ ′
p , while 

we can still model every epistemic state, i.e. exhaustiveness (11) is also satisfied.
The discontinuous nature of the scoring function γ ′

p defined in (12) is clearly undesirable in practice. Hence the question 
arises whether it is possible to satisfy the weak epistemic pooling principle when only continuous scoring functions can 
be used. The answer to this question is negative. In particular, as the following result shows, if the weak epistemic pooling 
principle is satisfied with continuous scoring functions, all embeddings encode the same epistemic state.

Proposition 3. Suppose the epistemic pooling principle (10) is satisfied for all embeddings e, f ∈ X, for � = �avg and X convex. Suppose 
γp is continuous. It holds that either Neg′

p = ∅ or Pos′p = ∅.

Proof. Suppose there exists some e ∈ Neg′
p and f ∈ Pos′p . We then have γp(e) < 0 and γp(f) ≥ 0. For λ ∈ [0, 1] we define:

xλ = λf + (1 − λ)e

By repeatedly applying (10), we find that γp(x 1
2i

) ≥ 0 for every i ∈N . In particular, this means that for every ε > 0 there 
exists some x ∈ X such that d(e, x) < ε and γp(x) ≥ 0. If γp is continuous this implies γp(e) = 0, which is a contradiction 
since we assumed e ∈ Neg′

p . �
4.2. Summation

Strict semantics We first show that the epistemic pooling principle (6) cannot be satisfied (in a non-trivial way) for all 
e, f ∈Rn when using �sum , as we also found for �avg in Proposition 1.

Proposition 4. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ Rn, with � = �sum . For any given 
p ∈P we have
11
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(∀e ∈Rn . p ∈ �(e)) ∨ (∀e ∈Rn . p /∈ �(e))

Proof. Suppose p ∈ �(e) and let f ∈Rn . Using (6), we find

�(f) = �(e �sum (f − e)) = �(e) ∪ �(f − e)

and thus p ∈ �(f). �
We thus again need to define a suitable subset X ⊆Rn . To ensure that X is closed under �sum it is not sufficient that X

is convex. For this reason, we will assume that X is conically closed, in particular:

∀e, f ∈ X .∀α,β ≥ 0 . α e + β f ∈ X (13)

We now show that whenever (6) is satisfied for �sum , for all e, f ∈ X , it also holds that (6) is satisfied for �avg , meaning that 
the results we have established for �avg carry over to �sum . We first show the following lemma.

Lemma 4. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with � = �sum and X satisfying (13). Let 
p ∈P and e ∈ X. If γp(e) > 0 then it holds that γp(λ e) > 0 for every λ > 0.

Proof. First note that γp( e
2 ) > 0. Indeed, γp( e

2 ) ≤ 0 would imply γp(e) ≤ 0, given that (6) implies �(e) = �( e
2 ) ∪ �( e

2 ) =
�( e

2 ). Repeating the same argument, we find γp( e
2i ) > 0 for any i ∈N . Hence, for every λ > 0, there exists some λ′ ∈]0, λ[

such that γp(λ′e) > 0. Since (λ − λ′)e ∈ X , from (6) we then also find that γp(λe) > 0. �
Proposition 5. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X with � = �sum and X satisfying (13). 
Then it also holds that (6) is satisfied for all embeddings e, f ∈ X with � = �avg .

Proof. Suppose (6) is satisfied for all embeddings e, f ∈ X with � = �sum . Let e, f ∈ X be such that p ∈ �(e �avg f). In other 
words γp( 1

2 (e + f)) > 0. Using Lemma 4 we then find γp(e + f) > 0, and thus p ∈ �(e + f). Since (6) is satisfied for �sum we 
find p ∈ �(e) ∪ �(f). Conversely, assume that p ∈ �(e) ∪ �(f). Since (6) is satisfied for �sum , this implies p ∈ �(e + f), and 
using Lemma 4 we find p ∈ �( 1

2 (e + f)). �
Among others, it follows from Proposition 5 that whenever (6) is satisfied for all embeddings e, f ∈ X with � = �sum , we 

have that Posp and Negp are convex for every p ∈P , and Negp ⊆ δ(X). In particular, we also have the following corollary.

Corollary 3. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with � = �sum and X ⊆Rn satisfying 
(13). Suppose that exhaustiveness (8) is satisfied. It holds that n ≥ |P|.

Weak semantics In entirely the same way as Proposition 5, we can show the following result.

Proposition 6. Suppose the epistemic pooling principle (10) is satisfied for all embeddings e, f ∈ X with � = �sum and X satisfying 
(13). Then it also holds that (10) is satisfied for all embeddings e, f ∈ X with � = �avg .

This means that we have the same negative result as we found for �avg . In particular, from Propositions 3 and 6, we 
immediately obtain the following corollary.

Corollary 4. Suppose the epistemic pooling principle (10) is satisfied for all embeddings e, f ∈ X, for � = �sum and X satisfying (13). 
Suppose γp is continuous. It holds that either Neg′

p = ∅ or Pos′p = ∅.

4.3. Max-pooling

Strict semantics In contrast to what we found for �avg and �sum , when using �max it is possible to satisfy the epistemic 
pooling principle (6) for all e, f ∈Rn in a non-trivial way. The main idea is illustrated in Fig. 3. For reasons that will become 
clear in Section 5, in addition to the case where X =Rn , we also consider the case where X =] −∞, z]n for some z ∈R. 
We now first show the following characterisation: whenever (6) is satisfied in a non-trivial way, we always have that Negp
is of the form X ∩ (Y1 × ... × Yn), where each Yi is of the form ] −∞, bi[, ] −∞, bi] or ] −∞, +∞[. Before we show this 
result, we show a number of lemmas.

Lemma 5. Let X =Rn or X =] −∞, z]n. Suppose that the epistemic pooling principle (6) is satisfied for every e, f ∈ X, with � = �max . 
Let x = (x1, ..., xn) ∈ X and y = (y1, ..., yn) ∈ X be such that ∀i ∈ {1, ..., n} . xi ≤ yi . Then the following implication holds for every 
p ∈P :
12
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Fig. 3. Construction satisfying (6) and (8) for �max .

y ∈ Negp ⇒ x ∈ Negp (14)

Proof. Given that x �max y = y, it follows from (6) that �(x) ⊆ �(y), from which we immediately find (14). �
Lemma 6. Let X =Rn or X =] −∞, z]n. Suppose that the epistemic pooling principle (6) is satisfied for every e, f ∈ X, with � = �max . 
Let x = (x1, ..., xn) ∈ X and y = (y1, ..., yn) ∈ X be such that ∀i ∈ {1, ..., n} . xi ≤ yi . Then the following implication holds for every 
p ∈P :

y ∈ cl(Negp) ⇒ x ∈ cl(Negp)

Proof. Suppose y ∈ cl(Negp). We need to show that for every ε > 0 there exists some x′ ∈ Negp such that d(x, x′) < ε. 
Let ε > 0. Since y ∈ cl(Negp), there exists some y′ = (y′

1, ..., y
′
n) ∈ Negp such that d(y, y′) < ε. Due to the assumption that 

∀i ∈ {1, ..., n} . xi ≤ yi , we also have ∀i ∈ {1, ..., n} . y′
i − yi + xi ≤ y′

i . Using Lemma 5, this implies y′ − y + x ∈ Negp . Moreover, 
we have d(x, y′ − y + x) = d(y′, y) < ε. It thus follows that x ∈ cl(Negp). �
Lemma 7. Let X =Rn or X =] −∞, z]n. Suppose that the epistemic pooling principle (6) is satisfied for every e, f ∈ X, with � = �max . 
If x, y ∈ cl(Negp) then we also have x �max y ∈ cl(Negp).

Proof. Let x, y ∈ cl(Negp). We show that for every ε > 0, there is some e ∈ Negp such that d(x �max y, e) < ε. Since x, y ∈
cl(Negp), there exist ex, ey ∈ Negp such that d(ex, x) < ε√

n
and d(ey, y) < ε√

n
. Since ex, ey ∈ Negp , by (6) we also have 

ex �max ey ∈ Negp . Moreover, we have, for ex = (ex,1, ..., ex,n), ey = (e y,1, ..., e y,n), x = (x1, ..., xn) and y = (y1, ..., yn):

d2(ex �max ey,x �max y) =
n∑

i=1

(max(ex,i, e y,i) − max(xi, yi))
2 <

n∑
i=1

(
ε√
n

)2

= ε2

and thus d(ex �max ey, x �max y) < ε. �
Proposition 7. Let X = Rn or X =] − ∞, z]n. Suppose that the epistemic pooling principle (6) is satisfied for every e, f ∈ X, with 
� = �max . Let p ∈ P . It holds that cl(Negp) = X ∩ (Y 1

p × ... × Y n
p) where for every i ∈ {1, ..., n}, we have Y i

p =] − ∞, bi] for some 
bi ∈R or Y i

p =] −∞, +∞[.

Proof. For each i ∈ {1, ..., n}, we can consider two cases:

• Assume that the ith coordinate of the elements from cl(Negp) is bounded, i.e. there exists some bi ∈R such that for each 
(x1, ..., xn) ∈ cl(Negp) it holds that xi ≤ bi . Suppose (x1, ..., xn) and (y1, ..., yn) are elements from cl(Negp) which are 
maximal in the ith coordinate, i.e. for any ε > 0 we have (x1, ..., xi−1, xi +ε, xi+1, ..., xn) /∈ cl(Negp) and (y1, ..., yi−1, yi +
ε, yi+1, ..., yn) /∈ cl(Negp). Assume furthermore that xi < yi . We have that (max(x1, y1), ..., max(xn, yn)) ∈ cl(Negp) by 
Lemma 7, which implies (x1, ..., xi−1, y, xi+1, ...xn) ∈ cl(Negp) by Lemma 6. However, this is in contradiction with the 
assumption we made about the ith coordinate of (x1, ..., xn). It follows that there is a constant bi ∈ R such that for 
every (x1, ..., xn) ∈ cl(Negp), we have

bi = max{y | (x1, ..., xi−1, y, xi+1, ..., xn) ∈ cl(Negp)}
Moreover, from Lemma 6 we find that (x1, ..., xi−1, y, xi+1, ..., xn) ∈ cl(Negp) for every y ∈] −∞, bi].
13
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• Now we consider the case where the ith coordinate of the elements from cl(Negp) is unbounded. Let (y1, ..., yn) ∈
cl(Negp). We show that for any z ∈ R it holds that (y1, ..., yi−1, z, yi+1, ..., yn) ∈ cl(Negp). Since we assumed the 
ith coordinate of the elements from cl(Negp) is unbounded, there exists some (x1, ..., xn) ∈ cl(Negp) such that xi ≥ z. 
From (x1, ..., xn) ∈ cl(Negp) and (y1, ..., yn) ∈ cl(Negp) we find (max(x1, y1), ..., max(xn, yn)) ∈ cl(Negp), using Lemma 7, 
which in turn implies (y1, ..., yi−1, z, yi+1, ..., yn) ∈ cl(Negp), using Lemma 6.

Putting these two cases together, find that cl(Negp) is of the form X ∩ (Y 1
p × ...Y n

p). �
Using the characterisation from Proposition 7, we now show that embeddings with a minimum of |P| dimensions are 

needed to satisfy the epistemic pooling principle.

Proposition 8. Let X =Rn or X =] −∞, z]n. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with 
� = �max . Suppose that exhaustiveness (8) is satisfied. It holds that n ≥ |P|.

Proof. From Proposition 7 we know that for each property p ∈P , it holds that cl(Negp) is of the form X ∩ (Y 1
p × ... × Y n

p), 
where Y i

p =] −∞, bi] or Y i
p =] −∞, +∞[. Let us write p <i q for p, q ∈P to denote that one of the following cases holds:

• Y i
p =] −∞, bp

i ] and Y i
q =] −∞, bq

i ] with bp
i < bq

i ; or

• Y i
p =] − ∞, bp

i ] and Y i
q =] − ∞, bq

i ] with bp
i = bq

i = b and there exists an element (x1, ..., xn) ∈ Negq such that xi = b

while no such element exists in Negp . In other words, the upper bound b for the ith coordinate is strict for Negp but 
not for Negq .

• Y i
p =] −∞, bp

i ] and Y i
q =] −∞, +∞[.

For each i ∈ {1, ...., n}, we can choose a property pi from P which is minimal w.r.t. the relation <i . Suppose there was some 
property q ∈P \ {p1, ..., pn}. Let x = (x1, ..., xn) ∈ Posq . Then for some coordinate i, it must be the case that Y i

q =] −∞, bq
i ]

and either (i) xi > bq
i or (ii) xi = bq

i but bq
i represents a strict upper bound for the ith coordinate. Because pi was chosen 

as a minimal element w.r.t. <i it follows that (x1, ..., xn) /∈ Negpi
. We thus find that for every x ∈ Posq it holds that x ∈

Posp1 ∪ ... ∪ Pospn . It follows that there is no x ∈Rn such that �(x) = {q}, meaning that (8) is not satisfied. �
To show that the epistemic pooling principle (6) and exhaustiveness (8) can indeed be satisfied with |P| dimensions, let 

P = {p1, ..., pn} and define:

γpi (e1, ..., en) = ei (15)

Then we have that the ith coordinate of (e1, ..., en) �max ( f1, ..., fn) is strictly positive iff ei > 0 or f i > 0, hence we indeed 
have �(e �max f) = �(e) ∪ �(f), meaning that the epistemic pooling principle (6) is satisfied for every e, f ∈Rn . To see why 
exhaustiveness (8) is satisfied, let Q ⊆P . We define q = (q1, ..., qn) as follows:

qi =
{

1 if pi ∈Q
−1 otherwise

Weak semantics As before, the main question is whether it is possible to satisfy the weak epistemic pooling principle (10)
in a non-trivial way using continuous scoring functions γp , since the results from the strict semantics trivially carry over 
to the weak semantics if non-continuous scoring functions are allowed. This is indeed the case. In fact, with the scoring 
functions defined in (15), the weak epistemic pooling principle is also satisfied. Moreover, in the same way as for the strict 
semantics, we find that exhaustiveness (8) is satisfied for this choice. Finally, note that the lower bound n ≥ |P| still applies 
for the weak semantics, which can be shown in exactly the same way as Proposition 8.

4.4. Hadamard product

Strict semantics Similar as we found for max-pooling, with the Hadamard product �had , it is possible to satisfy the epistemic 
pooling principle (6) for every e, f ∈Rn , while also satisfying exhaustiveness (8). In addition to the choice X =Rn , we also 
consider the case where X = [0, +∞[n . As we will see, the results we establish in this section are valid regardless of whether 
X =Rn or X = [0, +∞[n . The reason why we specifically include the case X = [0, +∞[n will become clear in Section 5. 
Fig. 4 illustrates how the epistemic pooling principle (6) can be satisfied for the case where X = [0, +∞[n . Note the dual 
nature of this construction and the construction for �avg from Fig. 2, where the positive regions in Fig. 4 correspond to the 
negative regions in Fig. 2. Let us write Hi for the following hyperplane:

Hi = {(x1, ..., xn) ∈Rn | xi = 0}

14
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Fig. 4. Construction satisfying (6) and (8) for �had with X = [0,+∞[n .

These hyperplanes play a particular role in the characterisation of the positive regions Posp , as was already illustrated in 
Fig. 4. The following results make this role explicit.

Lemma 8. Let X = Rn or X = [0, +∞[n. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with 
� = �had . Let p ∈P and e = (e1, ..., en) ∈ Posp . Let I = {i ∈ {1, ..., n} | ei = 0}. It holds that

X ∩
⋂
i∈I

Hi ⊆ Posp

Proof. Let f = ( f1, ..., fn) ∈ X ∩ ⋂
i∈I Hi . We show that f ∈ Posp . Let x = (x1, ..., xn) be defined as follows:

xi =
{

f i
ei

if ei 
= 0

0 otherwise

Since ( f1, ..., fn) ∈ ⋂
i∈I Hi it holds that f i = 0 whenever ei = 0. We thus have f = e �had x. Using (6), it then follows from 

e ∈ Posp that f ∈ Posp . �
It follows that Posp is a finite union of regions of the form X ∩⋂

i∈I Hi . In particular, it also follows that dim(Posp) ≤ n −1
if the epistemic pooling principle (6) is satisfied in a non-trivial way. For a given index set I ⊆ {1, ..., n}, let us define:

PI = {p ∈ P | X ∩
⋂
i∈I

Hi ⊆ Posp}

Lemma 9. Let X = Rn or X = [0, +∞[n. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with 
� = �had . Let I, J ⊆ {1, ..., n}. It holds that:

PI∪ J = PI ∪P J

Proof. We clearly have PI ⊆ PI∪ J , since X ∩ ⋂
i∈I Hi ⊆ Posp implies X ∩ ⋂

i∈I∪ J Hi ⊆ Posp . Similarly, we have P J ⊆ PI∪ J
and thus we find PI ∪P J ⊆ PI∪ J . We now show the other direction. Suppose p ∈ PI∪ J . Let e = (e1, ..., en) where ei = 0 if 
i ∈ I ∪ J and ei = 1 otherwise. Since p ∈ PI∪ J we have e ∈ Posp . Now let f = ( f1, ..., fn) where f i = 1 if i ∈ I and f i = 0
otherwise. Similarly, let g = (g1, ..., gn) where gi = 1 if i ∈ J and gi = 0 otherwise. Then e = f � g. From (6) it follows that 
f ∈ Posp or g ∈ Posp . Thus, using Lemma 8 we find that p ∈PI or p ∈P J . �

We can now show that at least |P| dimensions are again needed to satisfy (6) in a nontrivial way.

Proposition 9. Let X =Rn or X = [0, +∞[n. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, with 
� = �had . Suppose that exhaustiveness (8) is satisfied. It holds that n ≥ |P|.

Proof. Given (8), for each p ∈P , there must exist some (ep
1 , ..., ep

n ) ∈ X such that �(ep
1 , ..., ep

n ) = {p}. Let us fix such vectors 
(ep

1 , ..., ep
n ) for each p ∈ P and define I p = {i ∈ {1, ..., n} | ep

i = 0}. Note that by Lemma 8, we have X ∩ ⋂
i∈I p

Hi ⊆ Posp . 
Moreover, since �(ep

1 , ..., ep
n ) = {p}, we have X ∩⋂

i∈I p
Hi � Posq for any q 
= p. In other words, we have PI p = {p}.

For p 
= q we clearly have I p � Iq , since I p ⊆ Iq would imply PIq = {p, q}. This implies in particular that I p 
= ∅ for 
every p ∈P . Now let us consider k distinct properties p1, p2, ..., pk . Then we cannot have I p ⊆ I p1 ∪ I p2 ∪ ... ∪ I p . Indeed 
k k−1

15
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I pk ⊆ I p1 ∪ ... ∪ I pk−1 would imply pk ∈PI p1∪...∪I pk−1
whereas from Lemma 9 we know that PI p1∪...∪I pk−1

=PI p1
∪ ... ∪PI pk−1

and we know that the latter is equal to {p1, ..., pk−1}. In other words, there is at least one element in I pk which does not 
occur in I p1 , ..., I pk−1 , a contradiction. Since this needs to hold for every k ∈ {2, ..., |P|}, there need to be at least |P| distinct 
elements in I p1 ∪ ... ∪ I p|P| . This means that n ≥ |P|. �

To show that the epistemic pooling principle (6) and exhaustiveness (8) can indeed be satisfied with |P| dimensions, let 
P = {p1, ..., pn} and define:

γpi (e1, ..., en) =
{

1 if ei = 0

0 otherwise
(16)

Clearly, the ith coordinate of (e1, ..., en) �had ( f1, ..., fn) is 0 iff ei = 0 or f i = 0, hence we indeed have �(e �had f) = �(e) ∪�(f), 
meaning that (6) is satisfied for every e, f ∈ Rn . It is also straightforward to verify that exhaustiveness (8) is satisfied. 
Note, however, that the scoring function γpi defined in (16) is not continuous. As the following result shows, this is not a 
coincidence.

Proposition 10. Let X =Rn or X = [0, +∞[n. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, for 
� = �had . Suppose γp is continuous. It holds that either Negp = ∅ or Posp = ∅.

Proof. Suppose Posp 
= ∅. Then from Lemma 8, we know that there is some I ⊆ {1, ..., n} such that X ∩ ⋂
i∈I Hi ⊆ Posp . Let 

us assume that I is minimal, i.e. for any I ′ ⊂ I we have X ∩⋂
i∈I ′ Hi � Posp . Now suppose we also have Negp 
= ∅. Then we 

have I 
= ∅. Let i ∈ I and e0 ∈ X ∩ ⋂
i∈I Hi . For ε > 0, let eε be the vector obtained from e0 by replacing the ith coordinate 

by ε. Since we assumed I was minimal, for any ε > 0 we have that eε ∈ Negp , or equivalently γp(eε) ≤ 0. However, if γp is 
continuous, this would imply γp(e0) ≤ 0 and thus e0 ∈ Negp , a contradiction. �

The fact that only discontinuous scoring functions can be used is an important limitation in practice. One solution is 
to make a different choice for the set X . For instance, if we choose X = [1, +∞[, we end up with embeddings where the 
bounding hyperplanes, of the form H = {(e1, ..., en) ∈Rn | ei = 1}, correspond to negative regions. The resulting embeddings 
thus have similar characteristics as the ones we obtained with �avg . For this reason, we will not consider this option in 
further detail.

Weak semantics Under the weak semantics, it is possible to satisfy the epistemic pooling principle using continuous scoring 
functions. For instance, if P = {p1, ..., pn} we can define:

γpi (e1, ..., en) =−e2
i (17)

It is straightforward to verify that, with this choice of scoring function, the epistemic pooling principle (10) is satisfied for 
all e, f ∈Rn , while exhaustiveness (11) is also satisfied. Moreover, the same argument as in the proof of Proposition 9 can 
be used for the weak semantics as well, meaning that we still need at least |P| dimensions to satisfy (10) with � = �had in 
a non-trivial way.

5. Propositional reasoning with epistemic embeddings

Throughout this paper, we model epistemic states as subsets of P . In general, we can simply think of the elements of 
P as atomic pieces of evidence. Crucially, however, this setting is expressive enough to capture propositional reasoning. In 
particular, suppose each embedding e is associated with a set �(e) of propositional formulas. Now suppose the embedding 
g is obtained by pooling the embeddings e and f, e.g. representing the information we have obtained from two different 
sources:

g = e � f

Then we want g to combine the knowledge captured by e and f. In other words, we want �(g) to be logically equivalent 
to �(e) ∪ �(f). This gives rise to the following variant of the epistemic pooling principle:

�(e � f) ≡ �(e) ∪�(e) (18)

where we write ≡ to denote logical equivalence between sets of propositional formulas. In other words, in this setting, we 
want to be able to do propositional reasoning by pooling embeddings. This can be achieved using our considered setting as 
follows. Let W be the set of all possible worlds, i.e. the set of all propositional interpretations over some set of atoms At. 
We associate one property with each possible world:
16
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P = {pω | ω ∈W} (19)

Intuitively, pω means that ω can be excluded, i.e. that we have evidence that ω is not the true world. Let Clauses be the set 
of all clauses over the considered set of propositional atoms At. We can define �(e) in terms of the scoring functions γp as 
follows:

�(e) = {α ∈ Clauses | ∀ω ∈W . (γpω (e) ≤ 0) ⇒ (ω |= α)} (20)

In other words, we have that α ∈ �(e) if α is true in all the worlds ω that cannot be excluded based on the evidence 
encoded by e. Note that �(e) is deductively closed, in the sense that α ∈ �(e) iff �(e) |= α. We can also straightforwardly 
show the following characterisation:

Lemma 10. Suppose P is defined by (19) and � is defined by (20). Let pω ∈P . It holds that γpω (e) ≤ 0 iff ω |= �(e).

Proof. Suppose γpω (e) ≤ 0, then by definition of �, for each α ∈ �(e) we must have ω |= α. In particular, we must 
thus have ω |= �(e). Conversely, suppose γpω (e) > 0. Let {α1, ..., αk} be a set of clauses whose set of models is given 
by {ω′ | γpω′ (e) ≤ 0}. Note that such a set of clauses always exists. Moreover, we then have {α1, ..., αk} ⊆ �(e), by definition 
of �, while by construction we have ω 
|= {α1, ..., αn}. It follows that ω 
|= �(e). �

We can now prove the following result, which shows that (18) arises as a special case of the (strict) epistemic pooling 
principle (6).

Proposition 11. Suppose the epistemic pooling principle (6) is satisfied for all embeddings e, f ∈ X, for some X ⊆Rn and some pooling 
operator � such that X is closed under �. Suppose P is defined by (19) and � is defined by (20). It holds that (18) is satisfied for all 
e, f ∈ X.

Proof. Let e, f ∈ X . By (6) we have that �(e � f) ⊇ e, hence for every ω we have:

(γpω(e � f) ≤ 0) ⇒ (γpω(e) ≤ 0)

From the definition of �, it follows that �(e � f) ⊇ �(e). Since we similarly have �(e � f) ⊇ �(f), we find �(e � f) ⊇
�(e) ∪ �(f) and in particular:

�(e � f) |= �(e) ∪�(f)

Conversely, suppose α ∈ �(e � f). Then we have ∀ω ∈W . (γpω (e � f) ≤ 0) ⇒ (ω |= α). From (6) we know that γpω (e � f) ≤ 0
iff γpω (e) ≤ 0 and γpω (f) ≤ 0, hence we obtain:

∀ω ∈W . (γpω(e) ≤ 0)∧ (γpω(f) ≤ 0) ⇒ (ω |= α)

Using Lemma 10 we find:

∀ω ∈W . (ω |= �(e)) ∧ (ω |= �(f)) ⇒ (ω |= α)

or, equivalently, ∀ω ∈ W . (ω |= �(e) ∪ �(f)) ⇒ (ω |= α). We thus find �(e) ∪ �(f) |= α. Since this holds for every α ∈
�(e � f), we find

�(e) ∪�(f) |= �(e � f) �
We can similarly model propositional reasoning using the weak semantics, by defining the set of formulas associated 

with an embedding e as follows

�′(e) = {α ∈ Clauses | ∀ω ∈W . (γpω(e) < 0) ⇒ (ω |= α)} (21)

The counterpart to Proposition 11 for the weak semantics is shown in entirely the same way. We can thus use the frame-
work that was studied in Section 4 to combine, and reason about propositional knowledge. However, when we focus on 
knowledge that is encoded using propositional formulas, we also need an effective way to check whether a given formula 
α is entailed by the knowledge base �(e), i.e. whether the knowledge encoded by e is sufficient to conclude that α holds. 
To this end, for each propositional formula, we need a scoring function φα : Rn →R such that ψα(e) indicates whether 
�(e) |= α. We now study such scoring functions.
17
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5.1. Checking the satisfaction of propositional formulas

Let us consider scoring functions ψα :Rn →R, for arbitrary propositional formulas α, which satisfy the following con-
dition:

(ψα(e) > 0) ⇔ (�(e) |= α) (22)

where we assume that � is defined as in (20). In other words, ψα(e) > 0 holds if α is (known to be) true in the epistemic 
state encoded by e. Let us write M(α) for the models of a formula α, where M(α) ⊆W . We find from the definition of �
that �(e) |= α is equivalent with

∀ω ∈M(¬α) .γpω (e) > 0

In other words, to check the satisfaction of a propositional formula α, we need a scoring function that allows us to check 
whether γp(e) > 0 for every p in some subset of properties Q ⊆ P . In particular let us define a scoring function γQ for 
every Q ⊆P such that

(γQ(e) > 0) ≡ (∀p ∈Q.γp(e) > 0) (23)

If this equivalence is satisfied, we will say that the scoring functions are faithful. Then we have:

(ψα(e) > 0) ⇔ (γM(¬α)(e) > 0)

The scoring functions of the form ψα are thus a special case of scoring functions of the form γQ . For generality, we will 
study the latter type of scoring functions in the remainder of this section. This also has the advantage that we can stay 
closer to the setting from Section 4. Analogously to Posp and Negp , we now define the following regions:

PosQ = {e ∈ X | γQ(e) > 0}
NegQ = {e ∈ X | γQ(e) ≤ 0}

Similarly, under the weak semantics, we can consider scoring functions of the form γ ′
Q , with Q ⊆ P , which are faithfully 

linked to the scoring functions γp as follows:

(γ ′
Q(e) ≥ 0) ≡ (∀p ∈Q.γp(e) ≥ 0) (24)

The corresponding positive and negative regions are defined as follows

Pos′Q = {e ∈ X | γ ′
Q(e) ≥ 0}

Neg′
Q = {e ∈ X | γ ′

Q(e) < 0}
Clearly, if the scoring functions γp are continuous, then continuous scoring functions of the form γQ must also exist, as 
we can simply define γQ(e) = minq∈Q γq(e), and similar for the weak semantics. Our main focus in the remainder of this 
section is on the following question: is it possible for the scoring functions γQ and γ ′

Q to be linear? In other words, can we 
use linear scoring functions to check the satisfaction of a propositional formula in the epistemic state encoded by a vector 
e? This question is important because of the prevalence of linear scoring functions in the classification layer of neural 
networks. Our results are summarised in Table 2. One important finding is that linear scoring functions of the form γQ
are not compatible with the strict semantics, regardless of how the embeddings were obtained (and thus also regardless of 
which pooling operator is considered). For the weak semantics, we find that linear scoring functions are possible with �max

and �had , but crucially, this is only the case if the set of embeddings X is bounded in a suitable way.

5.2. Linear scoring functions under the strict semantics

In the following, we assume that embeddings belong to some region X ⊆Rn , which we assume to be convex. We make 
no assumptions about how the embeddings are obtained, requiring only that exhaustiveness (8) is satisfied, i.e. for every 
epistemic state, there exists some embedding e ∈ X which encodes it. We show that scoring functions of the form γQ can 
then not be linear. Before showing the main result, we first prove three lemmas.

Lemma 11. Suppose exhaustiveness (8) is satisfied. Let Q = {p1, ..., pk} be a subset of P . Assume that γQ is linear and suppose e ∈ X
is such that γQ(e) = 0. For every ε > 0 there exists some f ∈ X such that d(e, f) < ε while γQ(f) > 0.
18
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Table 2
Summary of results about the possibility of checking entailment of propositional for-
mulas using linear scoring functions.

Pooling Operator Semantics Linear γQ possible?

Average
Strict ✗

Weak ✗

Summation
Strict ✗

Weak ✗

Max-pooling
X =Rn Strict ✗

Weak ✗

X =]−∞, z]n Strict ✗

Weak ✓

Hadamard
X =Rn Strict ✗

Weak ✗

X = [0,+∞[n Strict ✗

Weak ✓

Proof. Note that the linearity of γQ means that there exists some hyperplane H which separates the regions PosQ and 
NegQ , where γQ(e) = 0 means that e ∈ H . If e ∈ int(X) then the claim is trivially satisfied, as there exist vectors f on either 
side of the hyperplane which are arbitrarily close to e. Now assume e ∈ δ(X). Suppose there were an ε > 0 such that for 
every f ∈ X satisfying d(e, f) < ε, it holds that γQ(f) ≤ 0. It then follows, given the convexity of X , that H is a bounding 
hyperplane of X , and in particular that X ⊆ NegQ . This is a contradiction, given that we assumed that (8) is satisfied. �
Lemma 12. Suppose exhaustiveness (8) is satisfied. Let Q = {p1, ..., pk} be a subset of P . Assume that γQ is linear and that 
γp1 , ..., γpk are all continuous. For every e ∈ X we have:

(γQ(e) = 0) ⇒ (∀i ∈ {1, ...,k} | γpi (e) ≥ 0)

Proof. Suppose γQ(e) = 0 and suppose γpi (e) < 0 for some i ∈ {1, ..., k}. Because γpi is continuous, there must be some 
ε > 0 such that γpi (f) < 0 for every f satisfying d(e, f) < ε. However, by Lemma 11 we know that there must be such an f
for which γQ(f) > 0, which implies γpi (f) > 0, a contradiction. �
Lemma 13. Suppose exhaustiveness (8) is satisfied. Let Q = {p1, ..., pk} be a subset of P . Assume that γQ is linear and that 
γp1 , ..., γpk are all continuous. For every e ∈ X we have:

(γQ(e) = 0) ⇒ (∃i ∈ {1, ...,k} . γpi (e) = 0)

Proof. Suppose γQ(e) = 0. Then there must be some i ∈ {1, ..., k} such that γpi (e) ≤ 0, by definition of γQ . From Lemma 12
we furthermore find γpi (e) ≥ 0. It follows that γpi (e) = 0. �
Proposition 12. Suppose exhaustiveness (8) is satisfied. Let Q = {p1, ..., pk} be a subset of P . Suppose γp1 , ..., γpk and γQ are all 
linear. Then we have |Q| = 1.

Proof. Fig. 5 illustrates the argument provided in this proof. Suppose k > 1. Let HQ be the hyperplane defined by HQ =
{e | γQ(e) = 0}. Let Hi similarly be the hyperplane corresponding to γpi . Because of (8) there exists some e ∈ X such that 
�(e) = {p1, ..., pk}. Moreover, for each i ∈ {1, ..., k} there exists some fi ∈ X such that �(fi) = {p1, ..., pi−1, pi+1, ..., pk}. Then 
we have γQ(e) > 0 and γQ(fi) ≤ 0 for every i ∈ {1, ..., k}. For each i, we let gi be the point on the intersection between 
HQ and the line defined by e and fi . Note that gi must exist, since γQ(e) > 0 and γQ(fi) ≤ 0. Moreover, we have that 
gi ∈ X since X is convex. Since γp1 , ..., γpk are linear, the fact that γp j (e) > 0 and γp j (fi) > 0, for j 
= i, implies that 
γp j (gi) > 0. Since this holds for every j 
= i while γQ(gi) = 0 it follows from Lemma 13 that γpi (gi) = 0. Now consider 
g∗ = 1

k (g1 + ... + gk). By the convexity of X , we have g∗ ∈ X . Moreover, since γpi (gj) > 0 if i 
= j and γpi (gj) = 0 otherwise, 
if k > 1 we have that γpi (g∗) > 0 for every i ∈ {1, ..., k}. This would mean that �(g∗) = {p1, ..., pk} and thus that we should 
have γQ(g∗) > 0. However, since g1, ..., gk ∈ HQ , we also have g∗ ∈ HQ and thus γQ(g∗) = 0, a contradiction. It follows 
that k = 1. �
5.3. Linear scoring functions under the weak semantics

In Section 5.2, we found that the strict semantics is not compatible with the use of linear scoring functions of the 
form γQ . We now explore whether linear scoring functions can be more successful under the weak semantics. We already 
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Fig. 5. Illustration of the construction from the proof of Proposition 12.

know from Section 4 that �avg and �sum are not compatible with the use of continuous scoring functions under the weak 
semantics. We therefore focus on the remaining pooling operators, although we will return to �avg in Section 5.4.

5.3.1. Max-pooling
For the max-pooling operator �max , it is possible to satisfy faithfulness (24) using linear scoring functions when choosing 

X =] −∞, z]n . For instance, let us fix X =] −∞, 0]n . Let P = {p1, ..., pn}. For pi ∈P we define:

γpi (e1, ..., en) = ei

Note that, because we assumed X =] −∞, 0]n , it holds that γpi (e1, ..., en) ≥ 0 iff ei = 0. As in Section 4.3, with this choice 
we find that the epistemic pooling principle (10) is satisfied for all e, f ∈Rn while exhaustiveness (11) is also satisfied. For 
Q = {pi1 , ..., pik } we now define:

γQ(e1, ..., en) = ei1 + ... + eik

Then we have γQ(e1, ..., en) ≥ 0 iff ei1 = ... = eik = 0, which is equivalent to requiring γpi1
(e1, ..., en) ≥ 0, ..., γpik

(e1, ..., en) ≥
0. We thus find that faithfulness (24) is indeed satisfied.

We now show that faithfulness (24) cannot be satisfied with linear scoring functions if we choose X =Rn . In Proposi-
tion 7 we found that cl(Negp) is of the form Y 1

p × ... × Y n
p (for X =Rn), where for every i ∈ {1, ...n} we have Y i

p =] −∞, bi]
for some bi ∈ R or Y i

p =] − ∞, +∞[. While this result was shown for the strict semantics, the same argument can be 
made for the weak semantics, i.e. if the epistemic pooling principle (10) is satisfied for every e, f ∈Rn , then we have that 
cl(Neg′

p) is of the form Y 1
p × ... × Y n

p . Clearly, a region Neg′
p of this form can only arise from a linear scoring function γp if 

Y i
p =] −∞, +∞[ for all but one i from {1, ...n}. Note that there must exist some i ∈ {1, ..., n} such that Y i

p is of the form 
] −∞, bi] to avoid the trivial case where Neg′

p =Rn , which would imply that epistemic states in which p is known cannot 
be modelled. If γp is linear, for p ∈P , we thus find that there must exist some i ∈ {1, ..., n} and some bi ∈R such that

Neg′
p = {(e1, ..., en) | ei < bi} (25)

Note that we have a strict inequality in (25) since we know that Neg′
p is an open set if γp is continuous. Given this 

characterisation of the regions Neg′
p , we now easily find that scoring functions of the form Neg′

Q can only be linear in the 
trivial case where |Q| = 1.

Proposition 13. Suppose that the epistemic pooling principle (10) is satisfied for every e, f ∈Rn, with � = �max . Suppose exhaustive-
ness (11) is satisfied. Let Q = {p1, ..., pk} be a subset of P . Suppose γp1 , ..., γpk and γQ are all linear. Then we have |Q| = 1.

Proof. We know that for each property pi , there exists an index �i ∈ {1, ..., n} and a corresponding threshold bi ∈R such 
that:

Neg′
pi

= {(e1, ..., en) | e�i < bi}
and thus we also have:

Pos′pi
= {(e1, ..., en) | e�i ≥ bi}

Note that Pos′Q = Pos′p1
∩ ... ∩ Pos′pn

. This means:

Pos′Q = {(e1, ..., en) | e�1 ≥ b1, ..., e�k ≥ bk}
Clearly, Pos′ can only be linearly separated from Neg′ if �1 = ... = �k . Given (11), this is only possible if p1 = ... = pk . �
Q Q
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Going beyond linear scoring functions, it is possible to satisfy faithfulness (24) even with X =Rn . To see this, let P =
{p1, ..., pn} and let us define:

γpi (e1, ..., en) =−ReLU(−ei)

with ReLU(a) = max(0, a) the rectified linear unit. Note that γpi (e1, ..., en) ≥ 0 iff ReLU(−ei) = 0 iff ei ≥ 0. With this choice, 
we thus have that Neg′

pi
is of the form (25). It is easy to verify that (10) is satisfied for every e, f ∈Rn , and that (11) is also 

satisfied. For Q = {pi1 , ..., pik } we define:

γQ(e1, ..., en) =−ReLU(−ei1) − ... − ReLU(−eik )

Then we have γQ(e1, ..., en) ≥ 0 iff ReLU(−ei1 ) = ... = ReLU(−eik ) = 0, which is the case if and only if ei1 ≥ 0, ..., eik ≥ 0, 
which is equivalent with γpi1

(e1, ..., en) ≥ 0, ..., γpik
(e1, ..., en) ≥ 0. We thus find that faithfulness (24) is indeed satisfied. 

Note that through the use of the ReLU activation function, we essentially end up in the setting where X =] −∞, 0]n , where 
linear scoring functions are possible.

5.3.2. Hadamard product
For the Hadamard product �had we find that linear scoring functions can be used under the weak semantics, provided 

that we choose X = [0, +∞[n . To see this, let P = {p1, ..., pn} and let the scoring functions γpi be defined as follows:

γpi (e1, ..., en) =−ei

It is straightforward to verify that the epistemic pooling principle (10) is then satisfied for every e, f ∈ [0, +∞[n , while 
exhaustiveness (11) is also satisfied. For Q = {pi1 , ..., pik } we define:

γQ(e1, ..., en) =−ei1 − ... − eik

Then, for (e1, ..., en) ∈ [0, +∞[n , we have γQ(e1, ..., en) ≥ 0 iff ei1 = ... = eik = 0 iff γpi�
≥ 0 for every � ∈ {1, ..., k}. Thus we 

find that faithfulness (24) is indeed satisfied.
In Section 4.4, we also considered the case where X =Rn . Unfortunately, for this choice of X , scoring functions of the 

form γQ can only be linear in the trivial case where |Q| = 1.

Proposition 14. Suppose that the epistemic pooling principle (10) is satisfied for every e, f ∈Rn, with � = �had . Suppose exhaustive-
ness (11) is satisfied. Let Q = {pi1 , ..., pik } be a subset of P . Suppose γpi1

, ..., γpik
and γQ are all linear. Then we have |Q| = 1.

Proof. Let HQ be the hyperplane associated with γQ , i.e. HQ = {e | γQ(e) = 0}, and let H1, ..., Hk similarly be the hy-
perplanes associated with γpi1

, ..., γpik
. Clearly, for each e ∈ HQ we have γpi1

(e) ≥ 0, ..., γpik
(e) ≥ 0. This is only possible 

if the hyperplanes HQ, H1, ..., Hk are all parallel. Given that we assumed that (11) is satisfied, this is only possible if 
pi1 = ... = pik . �

Similar as we found for max-pooling, it is possible to satisfy faithfulness (24) for X =Rn by using a non-linear activation 
function. In this case, the aim of this activation function is to map all vectors e ∈Rn to some vector in [0, +∞[n , where we 
know that linear scoring functions are possible. In particular, we can use the following:

γpi (e1, ..., en) =−e2
i

γQ(e1, ..., en) =−e2
i1
− ... − e2

ik

It is easy to verify that faithfulness (24) is indeed satisfied for this choice, while the epistemic pooling principle (10) is 
satisfied for every e, f ∈Rn and exhaustiveness (11) is also satisfied.

5.4. Reasoning with average pooling

The results we have established so far suggest that neural networks are inherently limited in their reasoning abilities 
when averaging (or summation) is used. Graph Neural Networks often rely on this pooling operator, even when they are 
used in applications where they are expected to learn to carry out reasoning tasks. In this section, we analyse whether the 
empirical success of GNNs in such settings can be explained by weakening the epistemic pooling principle.

In Section 5.2 we found that linear scoring functions cannot be used under the strict semantics. Note that this limitation 
holds regardless of how the embeddings were obtained. Moreover, the limitation arises as soon as we have two properties 
p1 and p2, such that we need to be able to check whether p1 holds, whether p2 holds, and whether p1 and p2 both hold. 
In Section 4.1 we found that continuous scoring functions cannot be used under the weak semantics for �avg . Since the 
limitation holds for arbitrary continuous scoring functions, adding a (continuous) non-linearity after pooling cannot resolve 
21



JID:IJA AID:108981 /FLA [m3G; v1.340] P.22 (1-30)

S. Schockaert International Journal of Approximate Reasoning ••• (••••) ••••••
the issue. Hence, there does not appear to exist a straightforward mechanism to use average pooling while also satisfying 
the epistemic pooling principle, which seems to be at odds with the prevalence and empirical success of models that rely 
on average pooling. One possible argument is that the epistemic pooling principle is perhaps too restrictive. While it should 
not be the case that e �avg f captures properties that are not captured by e or f, we only need this principle to hold for 
the embeddings e, f that we are likely to encounter in practice. In particular, due to the way neural networks are trained, 
embeddings satisfying some property p are typically separated by some margin from embeddings which do not. Formally, 
let � > 0 represent a given margin. Then we can expect that embeddings e will either satisfy γp(e) ≤ 0 or γp(e) ≥ �. 
If this is the case for every property p, we can think of e as representing a clear-cut epistemic state. In contrast, when 
0 < γp(e) < �, we can think of e as being ambiguous regarding the satisfaction of p. Let us write X∗ ⊆ X for the clear-cut 
epistemic states, i.e.

X∗ = {e ∈ X | ∀p ∈ P . γp(e) ≤ 0 ∨ γp(e) ≥ �} (26)

We show that it is possible to satisfy the epistemic pooling principle for all embeddings from X , while using scoring 
functions that are linear after the application of a ReLU activation, provided that we only require the scoring functions to 
satisfy faithfulness (23) for embeddings e in X∗ .

Let X = [0, +∞[n , � > 0 and P = {p1, ..., pn}. Let us define the scoring functions γp as follows.

γpi (e1, ..., en) = ei

As in Section 4.1, we find that with this choice, the epistemic pooling principle (6) is satisfied for all e, f ∈ X while exhaus-
tiveness (8) is also satisfied. Note furthermore that X∗ = ({0} ∪ [�, +∞[)n . For Q = {pi1 , ..., pik } we define:

γQ(e1, ..., en) = �−
k∑

�=1

ReLU(�− ei� )

Then (23) is satisfied for any (e1, ..., en) ∈ X∗ . Indeed, for (e1, ..., en) ∈ X∗ we find:

γQ(e1, ..., en) > 0 ⇔
k∑

�=1

ReLU(�− ei� ) < �

⇔∀� ∈ {1, ...,k} . ei� ≥ �

⇔∀� ∈ {1, ...,k} . γpi�
(e1, ..., en) > 0

where we used the fact that either ReLU(� − ei� ) = 0 or ReLU(� − ei� ) = �, given that (e1, ..., en) ∈ X∗ . Note that the ReLU
transformation converts (e1, ..., en) into a vector that is binary, in the sense that each coordinate is either 0 or �. Using 
the sigmoid function σ we can similarly ensure that faithfulness (23) is satisfied for any (e1, ..., en) ∈ X∗ , by constructing 
vectors that are approximately binary in the aforementioned sense. For instance, we could define:

γQ(e1, ..., en) = μ−
k∑

�=1

σ

(
λ

(
�

2
− ei�

))

where μ is an arbitrary constant satisfying 0 < μ < 1 and λ > 0 is chosen in function of μ. In particular, by choosing a 
sufficiently large value for λ, we can always ensure that

σ

(
λ · �

2

)
≥ μ

and

σ

(
−λ · �

2

)
<

μ

k

We have γQ(e1, ..., en) > 0 iff

k∑
�=1

σ

(
λ

(
�

2
− ei�

))
< μ

Given the assumption that λ is sufficiently large, and given that (e1, ..., en) ∈ X∗ , this inequality is satisfied iff ei� ≥ � for 
every � ∈ {1, ..., k}. The rest of the argument then follows as before.

We can also use linear scoring functions, by defining X∗ such that embeddings are approximately binary. In particular, 
let X = [0, 1]n with � = 1 − ε for some ε ∈]0, 1 [. Let γp j (e1, ..., en) = e j as before. For Q = {pi1 , ..., pi }, we define:
k k

22



JID:IJA AID:108981 /FLA [m3G; v1.340] P.23 (1-30)

S. Schockaert International Journal of Approximate Reasoning ••• (••••) ••••••
γQ(e1, ..., en) =
(

k∑
�=1

ei�

)
− k + 1

We then have γQ(e1, ..., en) > 0 iff

k∑
�=1

ei� > k − 1

Given our assumption that ε < 1
k , this inequality is satisfied iff ei� ≥ � = 1 − ε for every � ∈ {1, ..., k}. The rest of the 

argument then follows as before.
Note that in each case, we either restrict the setting to embeddings that are approximately binary, or we apply a non-

linear transformation to convert the initial embeddings into approximately binary ones. In this way, we replaced the need 
for discontinuous scoring functions by the assumption that embeddings essentially encode discrete states. It remains unclear 
whether models that are trained using gradient descent based optimisation can learn to reason under such conditions.

6. Modelling weighted epistemic states

We now consider a setting in which each property p from P is associated with a certainty level from � = {0, 1, ..., K }. 
Intuitively, a certainty level of 0 means that we know nothing about p, whereas a level of K means that we are fully certain 
that p is true. When aggregating evidence from different sources, we assume that the certainty level of p is given by the 
certainty level of the most confident source, in accordance with possibility theory [18]. This setting has the advantage that 
we can continue to view pooling operators in terms of accumulating knowledge.

Reduction to the standard setting It is possible to model weighted epistemic states within the standard framework we have 
considered so far, using scoring functions of the form γQ . We consider the strict semantics here, but an entirely similar 
argument can be made for the weak semantics. Let us define the set of extended properties as follows:

P� = {p�i | p ∈ P, i ∈ �}
For each p�i ∈ P� , we let γp�i be a scoring function satisfying (6) for all embeddings e, f ∈ X . We can interpret p�i as 
encoding that the certainty level of p is not equal to i. For p ∈P and i ∈ � \ {0} we define:

Q(p,i) = {p� j | p ∈ P, j ∈ �, j < i}
Let γQ(p,i) be a scoring function satisfying (23). Then γQ(p,i) (e) > 0 means that all certainty levels below i can be excluded 
for p, i.e. that p is certain at least to degree i.

Weighted epistemic pooling principle The construction from the previous paragraph has an important drawback: the number 
of properties is increased (K + 1)-fold. From Section 4, we know that this implies that the number of dimensions also has 
to increase (K + 1)-fold. If for every p and i, we need the ability to model that the certainty of p is not i, this increase 
in dimensionality is inevitable. However, in practice, we are typically not interested in excluding arbitrary sets of certainty 
degrees, only in establishing lower bounds on certainty degrees. To study this setting, we introduce a generalisation of the 
epistemic pooling principle to weighted epistemic states. Let us write 〈p, i〉 for the fact that the certainty level of p is at 
least i, where 〈p, 0〉 means that nothing is known about p whereas 〈p, K 〉 means that p is known with full certainty. We 
write �0 = {1, 2, ..., K } for the set of non-trivial lower bounds. We furthermore assume that the certainty level of p is 
determined by the scoring function γp :Rn →R. In particular, under the strict semantics, we assume that p is known with 
certainty at least i, for i ∈ �0, if γp > i −1. We then consider the following generalisation of the epistemic pooling principle:

∀p ∈ P.∀i ∈ �0.(γp(e) > i − 1)∨ (γp(f) > i − 1) ⇔ γp(e � f) > i − 1 (27)

We define �� as a set of weighted properties, encoding for each property what is the highest certainty degree with which 
this property is believed:

��(e) = {〈p,max(0,min(K , �γp(e)�))〉 | p ∈ P} (28)

Exhaustiveness, i.e. the condition that every weighted epistemic state is modelled by some vector e ∈ X can then be for-
malised as follows:

∀μ : P → �.∃e ∈ X . ��(e) = {〈p,μ(p)〉 | p ∈ P} (29)

In other words, for every assignment of certainty degrees to the properties in P , there exists an embedding e ∈ X that 
encodes the corresponding epistemic state. We also introduce the following notations for i ∈ �0:
23
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Table 3
Summary of results about the realizability of the weighted epis-
temic pooling principles for embeddings of dimensionality n =
|P|.

Pooling Operator Semantics n = |P| possible?

Average
Strict ✗

Weak ✗

Summation
Strict ✗

Weak ✗

Max-pooling
Strict ✓

Weak ✓

Hadamard
Strict ✗

Weak ✗

Posp,i = {e ∈ X | γp(e) > i − 1}
Negp,i = {e ∈ X | γp(e) ≤ i − 1} = X \ Posp,i

Similarly, we can also consider a weighted version of the weak epistemic pooling principle:

∀p ∈ P.∀i ∈ �0.(γp(e) ≥ i − 1) ∨ (γp(f) ≥ i − 1) ⇔ γp(e � f) ≥ i − 1 (30)

The weighted epistemic state associated with an embedding e ∈ X is now defined as follows:

�′
�(e) = {〈p,max(0,min(K ,1 + �γp(e) ))〉 | p ∈ P} (31)

while the counterpart of exhaustiveness (29) becomes

∀μ : P → �.∃e ∈ X . �′
�(e) = {〈p,μ(p)〉 | p ∈ P} (32)

We now analyse whether the weighted epistemic pooling principles (27) and (30) can be satisfied in a non-trivial way for 
embeddings with |P| dimensions. We find that this is only the case for �max , as shown in Table 3.

6.1. Realizability of the weighted epistemic pooling principle

Average In entirely the same way as in Section 4.1, we then find that Posp,i and Negp,i are convex, for every p ∈ P and 
i ∈ �0. Similarly, we also find that Negp,i ⊆ δ(X) for every p ∈ P and i ∈ �0. Since Posp,i \ Posp,K ⊆ Negp,K , we thus 
also have that Posp,i \ Posp,K ⊆ δ(X). We can now show the following result using a similar strategy as in the proof of 
Proposition 2.

Proposition 15. Suppose the weighted epistemic pooling principle (27) is satisfied for all embeddings e, f ∈ X, with � = �avg and 
X ⊆Rn. Suppose that exhaustiveness (29) is satisfied. It holds that n ≥ |P| · K .

Proof. Let p1, ..., p|P| be an enumeration of the properties in P . Note that because of (29), we have that Negp1,K 
= ∅ and 
Posp1,K 
= ∅. Since both of these regions are convex, it follows from the hyperplane separation theorem that there exists 
a hyperplane H1,K which separates Negp1,K and Posp1,K . Since Negp1,K ⊆ δ(X) = cl(Posp1,K ), we furthermore know that 
Negp1,K ⊆ H1,K .

Note that H1,K ∩ Negp1,K−1 and H1,K ∩ Posp1,K−1 are convex regions. Moreover, since Negp1,K ⊆ H1,K , Negp1,K ∩
Negp1,K−1 
= ∅, and Negp1,K ∩ Posp1,K−1 
= ∅, we find that H1,K ∩ Negp1,K−1 
= ∅ and H1,K ∩ Posp1,K−1 
= ∅. It follows 
from the hyperplane separation theorem that there exists some hyperplane H1,K−1 separating H1,K ∩ Negp1,K−1 and 
H1,K ∩ Posp1,K−1. Moreover, it holds that H1,K ∩ Negp1,K−1 ⊆ H1,K−1 (which follows in the same way as H1 ∩ Negp2

⊆ H2
in the proof of Proposition 2). In particular, we then also have that Negp1,K ∩Negp1,K−1 ⊆ H1,K−1. We can repeat this argu-
ment to show that for each i ∈ {0, ..., K − 1} there is a hyperplane H1,K−i separating H1,K ∩ ... ∩ H1,K−i+1 ∩ Negp1,K−i and 
H1,K ∩ ... ∩H1,K−i+1∩Posp1,K−i , such that H1,K ∩ ... ∩H1,K−i+1∩Negp1,K−i ⊆ H1,K−i . This implies that H1,K ∩ ... ∩H1,K−i+1 �
Hi,K−i and thus dim(H1,K ∩ ... ∩ H1,K−i) = n − i − 1. In particular, we have dim(H1,K ∩ ... ∩ H1,1) = n − K .

Due to (29), we have that H1,K ∩ ... ∩ H1,1 ∩ Negp2,K 
= ∅ and H1,K ∩ ... ∩ H1,1 ∩ Posp2,K 
= ∅. It follows that there 
exists a hyperplane H2,K separating H1,K ∩ ... ∩ H1,1 ∩ Negp2,K and H1,K ∩ ... ∩ H1,1 ∩ Posp2,K , such that H1,K ∩ ... ∩
H1,1 ∩ Negp2,K ⊆ H2,K , from which it follows that dim(H1,K ∩ ... ∩ H1,1 ∩ H2,K ) = n − K − 1. Continuing as before, we 
find dim(H1,K ∩ ... ∩ H1,1 ∩ H2,K ... ∩ H2,1) = n − 2K . Repeating this argument for every property in P , we find:

dim

⎛
⎝ |P|⋂

j=1

k⋂
i=1

H j,i

⎞
⎠ = n − |P| · K .

Since this is only possible if n − |P| · K ≥ 0 it follows that n ≥ |P| · K . �
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In Section 4.1, we found that the epistemic pooling principle cannot be satisfied in a non-trivial way under the weak 
semantics, if continuous scoring functions are used. This result carries over to the weighted setting.

Summation Entirely similar as in Section 4.2, we find that when the weighted epistemic pooling principle is satisfied for 
all e, f ∈ X and � = �sum , then it is also satisfied for � = �avg . It thus follows from Proposition 15 that |P| · K dimensions 
are needed to satisfy the weighted epistemic pooling principle (27) in a non-trivial way. Moreover, we also have that the 
weighted epistemic pooling principle under the weak semantics, i.e. the weak weighted epistemic pooling principle (30), 
cannot be satisfied when continuous scoring functions are used.

Max-pooling For �max , we can satisfy the weighted epistemic pooling principles (27) and (30) for every e, f ∈Rn , while 
ensuring that every weighted epistemic state is encoded by some vector. Let P = {p1, ..., pn} and let γpi be defined as 
follows:

γpi (e1, ..., en) = ei

It holds that the strict weighted epistemic pooling principle (27) is satisfied for each e, f ∈Rn . Indeed, for every j ∈ �0 we 
have:

(γpi (e1, ..., en) > j − 1)∨ (γpi ( f1, ..., fn) > j − 1)

⇔ (ei > j − 1)∨ ( f i > j − 1)

⇔ max(ei, f i) > j − 1

⇔ γpi ((e1, ..., en) �max ( f1, ..., fn)) > j − 1

In entirely the same way, we find that the weak weighted epistemic pooling principle (30) is satisfied. We now show that 
exhaustiveness is satisfied, i.e. (29) and (32). Let μ :P → �. Then we can define e = (e1, ..., en) as follows:

ei = μ(pi) − 1

2

It is trivial to verify that ��(e) = �′
�(e) = {〈p, μ(p)〉 | p ∈P}.

Hadamard product As in Section 4.4, we find that Posp,� is a finite union of regions of the form X ∩ ⋂
i∈I Hi , with Hi =

{(x1, ..., xn) ∈Rn | xi = 0}. For a given index set I ⊆ {1, ..., n}, we define:

P�
I = {(p, �) ∈ P × �0 | X ∩

⋂
i∈I

Hi ⊆ Posp,�}

In entirely the same way as in Lemma 9, we find for every I, J ⊆ {1, ..., n} that:

P�
I∪ J = P�

I ∪P�
J (33)

The following lemma is also shown in entirely the same way as Lemma 8.

Lemma 14. Let X = Rn or X = [0, +∞[n. Suppose the weighted epistemic pooling principle (27) is satisfied for all embeddings 
e, f ∈ X, with � = �had . Let p ∈P and � ∈ �0 such that e = (e1, ..., en) ∈ Posp,� . Let I = {i ∈ {1, ..., n} | ei = 0}. It holds that

X ∩
⋂
i∈I

Hi ⊆ Posp,�

We can then generalise Proposition 9 as follows.

Proposition 16. Let X =Rn or X = [0, +∞[n. Suppose the weighted epistemic pooling principle (27) is satisfied for all embeddings 
e, f ∈ X, with � = �had . Suppose that exhaustiveness (29) is satisfied. It holds that n ≥ |P| · K .

Proof. Given (29), for each p ∈P and � ∈ �0, there must exist some (ep,�
1 , ..., ep,�

n ) ∈ X such that �(ep,�
1 , ..., ep,�

n ) = {〈p, �〉} ∪
{〈q, 0〉 | q ∈ P \ {p}}. Let us fix such vectors (ep,�

1 , ..., ep,�
n ) for each p ∈ P and � ∈ �0. Define I p,� = {i ∈ {1, ..., n} | ep,�

i = 0}. 
Note that by Lemma 14, we have X ∩⋂

i∈I p,�
Hi ⊆ Posp,� . Moreover, by construction, we have X ∩⋂

i∈I p,�
Hi � Posq,�′ for any 

q 
= p and �′ ∈ �0, and similarly, we have X ∩ ⋂
i∈I p,�

Hi � Posp,�′ for any �′ > �. In other words, we have that all elements 
in P�

I p,�
are of the form (p, �′) with �′ ≤ �. For p 
= q and �, �′ ∈ �0, we clearly have I p,� � Iq,�′ , since I p,� ⊆ Iq,�′ would 

imply 〈p, �〉 ∈PI ′ . This means in particular that I p,� 
= ∅ for every p ∈P and � ∈ �0.

q,�
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Let (q1, �1), ..., (qs, �s), with s = |P| · K , be an enumeration of the elements from P × �0, such that whenever � < �′ , it 
holds that (p, �) is listed before (p, �′), for any p ∈P . Note that we have already established that Iq1,�1 
= ∅. Now we show 
that for any given k ∈ {2, ..., s}, it holds that Iqk,�k � Iq1,�1 ∪ Iq2,�2 ∪ ... ∪ Iqk−1,�k−1 . Indeed Iqk,�k ⊆ Iq1,�1 ∪ Iq2,�2 ∪ ... ∪ Iqk−1,�k−1

would imply (qk, �k) ∈ P�
Iq1,�1∪...∪Iqk−1,�k−1

. From (33), we know that P�
Iq1,�1∪...∪Iqk−1,�k−1

= P�
Iq1,�1

∪ ... ∪ P�
Iqk−1,�k−1

and we 
know that the latter can only contain elements of the form (q1, �′1), ..., (qk−1, �′k−1) with �′1 ≤ �1, ..., �′k−1 ≤ �k−1. Due to 
the assumption we made that (p, �) is listed before (p, �′) whenever � < �′ , we thus find (qk, �k) /∈ P�

Iq1,�1∪...∪Iqk−1,�k−1
, a 

contradiction. Hence, we have Iqk,�k � Iq1,�1 ∪ Iq2,�2 ∪ ... ∪ Iqk−1,�k−1 . This means there is at least one element in I(qk,�k) which 
does not occur in Iq1,�1 , ..., Iqk−1,�k−1 . Since this needs to hold for every k ∈ {2, ..., s}, there need to be at least s distinct 
elements in Iq1,�1 ∪ ... ∪ Iq1,�s . In particular, we thus have that n ≥ s = |P| · K . �

The above limitation also applies to the weak semantics. However, if we choose X = [0, 1]n it is possible to satisfy the 
weighted epistemic pooling principle (27) for n properties if K = 2 (i.e. if we have three certainty degrees). Indeed, let 
P = {p1, ..., pn}. Then we can define:

γpi (e1, ..., en) =

⎧⎪⎨
⎪⎩

3
2 if ei = 0

− 1
2 if ei = 1

1
2 otherwise

(34)

Then it is straightforward to verify that the weighted epistemic pooling principle (27) is indeed satisfied for every e, f ∈
[0, 1]n and that (29) also holds. The above construction also provides an example of how the weighted epistemic pooling 
principle can be satisfied for the weak semantics. Indeed, with the above definition of γpi we have that the weak weighted 
epistemic pooling principle (30) is satisfied for every e, f ∈ [0, 1]n , while exhaustiveness (32) also holds. In Section 4.4, 
we found that the weak epistemic pooling principle could be satisfied with continuous scoring functions when � = �had . 
Unfortunately, this strategy does not allow us to obtain a continuous alternative to the scoring functions defined in (34).

7. Discussion and related work

7.1. Logical reasoning with neural networks

The use of neural networks for simulating symbolic reasoning has been extensively studied under the umbrella of neuro-
symbolic reasoning [10]. The seminal KBANN method [19], for instance, uses feedforward networks with carefully chosen 
weights to simulate the process of reasoning with a given rule base. In this case, the neural network simulates a fixed rule 
base, which is manually specified. More recent work has investigated how a neural network can be trained to simulate 
the deductive closure of a given logical theory, e.g. a description logic ontology [20]. The idea that rule-based reasoning 
can be simulated using neural networks also lies at the basis of various strategies for learning rules from data [21–23]. 
Another recent research line has focused on whether standard neural network architectures, such as LSTMs or transformer 
based language models [6], can be trained to recognise logical entailment [24,25]. In these works, the input consists of a 
premise (or a set of premises) and a hypothesis, and the aim is to predict whether the hypothesis can be inferred from 
the premise(s). The aforementioned works differ from this paper, as our focus is not on whether neural networks can 
simulate logical reasoning, but on whether vectors can be used for encoding epistemic states. Simulating logical reasoning 
does not necessarily require that vectors can encode epistemic states, since we can treat reasoning as an abstract symbol 
manipulation problem. Moreover, the scope of what we address in this paper goes beyond logical reasoning, as the epistemic 
pooling principle also matters whenever we need to combine evidence from different sources (e.g. features being detected 
in different regions of an image).

This paper builds on our earlier work [26], where the focus was on the following question: given a set of attributes A, 
a pooling function � and a propositional knowledge base K , can we always find an embedding a and a scoring function γa

for every a ∈A such that:

γb(a1 � ... � ak) ≥ 0 ⇔ K ∪ {a1, ...,ak} |= b

for any a1, ..., ak, b ∈A. This analysis fundamentally differs from the results in this paper, because in the case of [26], we 
only care about the behaviour of the pooling operator and scoring function for a finite set of vectors, i.e. the attribute 
embeddings. In the notations of this paper, this amounts to limiting X to a finite set of carefully chosen embeddings. As a 
result, for instance, in [26] it was possible to use average pooling in combination with continuous scoring functions, under 
the weak semantics, something which we found to be impossible in the more general setting considered in this paper.

One may wonder whether the approach we take in this paper is too strict, e.g. whether it is really necessary to insist 
that the epistemic pooling principle is satisfied for all embeddings. Note, however, that during training, the embeddings will 
change after each update step of the (gradient-descent based) optimizer. If we want the model to learn to reason, then it 
is important that all of these embeddings can be viewed as epistemic states. In other words, if pooling is only meaningful 
for a particular discrete set of vectors, then we may end up with an architecture that is capable of reasoning in theory, but 
where those parameters that would lead to meaningful behaviour cannot be learned in practice.
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7.2. Reasoning with graph neural networks

In Section 5, we have specifically focused on reasoning in the context of propositional logic. However, our analysis is 
relevant for reasoning in relational domains as well. A standard approach for relational reasoning with neural networks is 
to rely on Graph Neural Networks (GNNs) [8,27]. Given a graph G = (V , E), with V a set of nodes and E ⊆ V × V a set 
of edges, a GNN aims to learn a vector representation of every node in V . This is achieved by incrementally updating the 
current representation of each node based on the representations of their neighbours. In particular, let us write v(i) for the 
representation of node v ∈ V in layer i of the GNN. Let {u1, ...,k } be the set of neighbours of v in G . Then the representation 
of v in layer i + 1 is typically computed as follows:

v(i+1) = f2(v(i) �1 f2( f3(u(i)
1 ) �2 ... �2 f3(u(i)

k ))) (35)

The functions f1, f2, f3, �1 and �2 can be defined in various ways. However, regardless of the specifics, we can think of 
�1 and �2 as pooling operators, whereas f1, f2 and f3 correspond to (possibly non-linear) transformations. Note that we 
used a non-standard notation in (35) to highlight the connection to this paper. Intuitively, we can think of f3(u(i)

j ) as a 
vector that captures what we can infer about the entity represented by node v from the fact that it is connected to u j . In 
multi-relational settings (e.g. knowledge graphs), where different types of edges occur, f3 can be replaced by a function that 
depends on the edge type. The pooling operator �2 is used to aggregate the evidence coming from the different neighbours 
of v , whereas �1 is used to combine the evidence we already have about v with the evidence we can obtain from its 
neighbours.

The ability of GNNs to simulate logical reasoning has been studied in [11]. The idea is that each node is associated with 
a set of properties, which are referred to as colours. We can then consider first-order formulas involving unary predicates, 
referring to these colours, and the binary predicate E , which captures whether two nodes are connected. For instance, 
consider the following formula:

φ1(x) ≡ Green(x) ∧ (∃y . E(x, y) ∧ Blue(y)) ∧¬(∃y . E(x, y) ∧ Red(y))

This formula is true for a given node if it is green and it is connected in the graph to a blue node but not to a red node. 
We can also consider counting quantifiers, as in the following example:

φ2(x) ≡ (∃≥5 y . E(x, y)∧ Blue(y))

This formula is true for a given node if it is connected to at least 5 blue nodes. The question studied in [11] is which 
formulas can be recognised by a GNN, i.e. for which class of formulas φ can we design a GNN such that we can predict 
whether φ holds for a node n from the final-layer embedding of that node, using some scoring function. In particular, it 
was shown that the set of formulas that can be recognised (without global read-out) are exactly those that are expressible 
in graded modal logic [28], which is characterised as follows:

1. for each colour C , the formula C(x) is a graded modal logic formula;
2. if φ(x) and ψ(x) are graded modal logic formulas and n ∈N , then the following formulas are also graded modal logic 

formulas: ¬φ(x), φ(x) ∧ψ(x) and ∃≥n y . E(x, y) ∧ φ(y).

The proof that was provided for the characterisation in [11] is constructive. It relies on the particular choice of �2 as 
summation, which appears to be at odds with the limitations that were identified for �sum in this paper. However, the 
GNN in their construction only uses binary coordinates. As we have seen in Section 5.4, in that case, �avg can be used 
for propositional reasoning, a result which straightforwardly carries over to �sum . This observation may help to explain the 
discrepancy between the theoretical ability of GNNs to capture arbitrary formulas from graded logic, and the challenges 
that have empirically been observed when using GNNs for learning to reason. For instance, GNNs have generally failed to 
outperform simpler embedding based methods for the task of knowledge graph completion [29], while [30] found that 
GNNs were limited in their ability to generalise in a systematic way from examples that were more complex than the ones 
seen during training.

Interestingly, [31] recently proposed a GNN for knowledge graph completion in which �2 corresponds to max-pooling. 
Together with a number of other design choices (e.g. avoiding negative weights and using a particular encoding of the 
knowledge graph), this leads to GNNs that are in some sense equivalent to a set of rules. The suitability of max-pooling, in 
this context, is not a surprise, given our results from Section 5. Note, however, that our results also suggest that coordinates 
have to be upper-bounded if we want to identify cases where sets of atomic properties are jointly satisfied. In the approach 
from [31], this issue is avoided by using high-dimensional embeddings in which each candidate inference corresponds to a 
separate coordinate, which amounts to treating the formulas of interest as atomic properties in our framework.

7.3. Modelling relations as regions

A popular strategy for making predictions in relational domains consists in learning (i) an embedding e ∈ Rn for each 
entity of interest e and (ii) scoring function fr :Rn ×Rn →R for each relation r such that fr(e, f) indicates the probability 
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that the fact r(e, f ) holds. Despite the fact that such methods intuitively carry out some form of logical inference, and 
despite their strong empirical performance [29], for most approaches, there is no clear link between the parameters of the 
model (i.e. the embeddings and the parameters of the scoring functions), on the one hand, and the kinds of inferences that 
are captured, on the other hand. Region-based methods, however, are a notable exception [32–36]. The central idea of such 
methods is to represent predicates as regions. For instance, if s is a unary predicate, then the corresponding region Rs is 
such that e ∈ Rs iff s(e) is true. For a binary predicate r, one option is to use a region Rr in R2n such that e ⊕ f ∈ Rr iff 
r(e, f ) is true. In other words, we view the concatenation of e and f as the embedding of the tuple (e, f ) and model binary 
predicates as regions over such concatenations. The key advantage of region-based models is that logical relationships can 
be directly encoded, in terms of spatial relationships between the region-based representations of the predicates involved. 
As a simple example, the rule r1(x, y) → r2(x, y) is satisfied if Rr1 ⊆ Rr2 . We refer to [32] for details on how more complex 
rules can be similarly captured. This correspondence between logical dependencies and spatial relationships can be used to 
ensure that the predictions of the model are in accordance with a given knowledge base, or to explain the behaviour of a 
model in terms of the logical rules it captures. Moreover, region based embeddings make it possible to query embeddings 
of knowledge bases in a principled way [34,35]. Essentially, a given query (e.g. “retrieve all companies whose headquarter 
is in a European capital city”) is then mapped onto a region, such that the entities that satisfy the query are those whose 
embedding belongs to the region.

However, it should be noted that the aforementioned region-based embeddings encode a specific possible world, rather 
than an epistemic state. In other words, they encode which facts are assumed to be true and false, but they cannot encode 
incomplete knowledge (e.g. that either r(a, b) or s(a, b) holds). In [37] a geometric model based on cones was presented, 
which has the ability to encode incomplete knowledge to some extent. For instance, these geometric models can capture 
the fact that it is unknown whether some entity e belongs to some concept A. Essentially, each concept is represented 
by two cones. Entities whose representation belongs to the first cone are those which are known to instances of the con-
cept; entities whose representation belongs to the second cone are those which are known not to be instances of the 
concept; and the remaining instances are those whose membership is unknown. Note, however, that not all epistemic 
states can be captured in this way; e.g. we cannot represent the fact that either e belongs to A or f belongs to B . 
Along similar lines, the box embeddings proposed in [38,39] can be used to model some epistemic states. For instance, 
an approach for capturing uncertain knowledge graph embeddings based on box embeddings was proposed in [40]. In 
this case, the idea is to represent the entities themselves as regions, and as axis-aligned hyperboxes in particular. The 
problem of pooling such hyperbox representations has not yet been considered, to the best of our knowledge. The most 
intuitive approach would be to simply take the intersection of the boxes, i.e. if entity e is represented by a hyperbox 
B1, according to one source, and by a hyperbox B2, according to another source, we may want to use B1 ∩ B2 as an 
aggregate representation of entity e, reflecting the information provided by both sources. However, this leads to a num-
ber of practical challenges. For instance, if box embeddings are used to parameterise a probabilistic model, as in [40], 
then it is unclear whether a sound justification can be provided for a pooling operation that relies on intersecting the 
entity-level box representations. Such probabilistic models also serve a rather different purpose to the framework that we 
studied in this paper, which is about accumulating knowledge rather than about quantifying uncertainty. Even in settings 
where the box embeddings are used as a purely qualitative representation, a problem arises when the region B1 ∩ B2 is 
empty. Intuitively, box embeddings act as constraints on possible worlds, and such constraints can be inconsistent. This 
is different from the settings we studied in this paper, which were about accumulating knowledge, formalised as sets of 
properties.

8. Conclusions

Neural networks are often implicitly assumed to perform some kind of reasoning. In this paper, we have particularly 
focused on the common situation where evidence is obtained from different sources, which then needs to be combined. The 
core question we addressed is whether it is possible to represent the evidence obtained from each source as a vector, such 
that pooling these vectors amounts to combining the corresponding evidence, a requirement we refer to as the epistemic 
pooling principle. This question is important for understanding whether, or under which conditions, neural networks that 
rely on pooling are able to perform reasoning in a principled way. Our analysis shows that standard pooling operators can 
indeed be used for accumulating evidence, but only under particular conditions. Broadly speaking, the requirement that 
the epistemic pooling principle is satisfied substantially limits how knowledge can be encoded. For instance, when average 
pooling is used, we find that embeddings have to be limited to a strict subset X of Rn , and that vectors which encode 
that some property p is not satisfied have to be located on a bounding hyperplane of X . We also highlighted how such 
conditions limit the way in which embeddings can be used. For instance, when average pooling is used, it is not possible to 
use linear scoring functions for checking whether a given propositional formula is satisfied in the epistemic state encoded 
by a given vector. In general, our results provide valuable insights for the design of neural networks that are required to 
implement some form of systematic reasoning.
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[37] M. Leemhuis, Ö.L. Özçep, D. Wolter, Learning with cone-based geometric models and orthologics, Ann. Math. Artif. Intell. 90 (11–12) (2022) 1159–1195, 
https://doi .org /10 .1007 /s10472 -022 -09806 -1.

[38] L. Vilnis, X. Li, S. Murty, A. McCallum, Probabilistic embedding of knowledge graphs with box lattice measures, in: Proceedings ACL, 2018, pp. 263–272.
[39] X. Li, L. Vilnis, D. Zhang, M. Boratko, A. McCallum, Smoothing the geometry of probabilistic box embeddings, in: Proceedings ICLR, 2019.
[40] X. Chen, M. Boratko, M. Chen, S.S. Dasgupta, X.L. Li, A. McCallum, Probabilistic box embeddings for uncertain knowledge graph reasoning, in: Proceed-

ings NAACL-HLT, 2021, pp. 882–893.
30

https://doi.org/10.48550/arXiv.2206.04192
https://doi.org/10.48550/arXiv.2206.04192
https://doi.org/10.1007/s10472-022-09806-1
http://refhub.elsevier.com/S0888-613X(23)00112-3/bibF1C62792442012988E7BBA9F9DD16432s1
http://refhub.elsevier.com/S0888-613X(23)00112-3/bib86B8564437846153ABE919F6ADAA16F3s1
http://refhub.elsevier.com/S0888-613X(23)00112-3/bibA98A0F5E66770E2303E7E802BA168920s1
http://refhub.elsevier.com/S0888-613X(23)00112-3/bibA98A0F5E66770E2303E7E802BA168920s1

	Embeddings as epistemic states: Limitations on the use of pooling operators for accumulating knowledge
	1 Introduction
	2 Illustrative examples
	2.1 Basic setting
	2.2 Propositional reasoning
	2.3 Background knowledge
	2.4 Non-monotonic reasoning

	3 Problem setting
	4 Realizability of the epistemic pooling principle
	4.1 Average
	4.2 Summation
	4.3 Max-pooling
	4.4 Hadamard product

	5 Propositional reasoning with epistemic embeddings
	5.1 Checking the satisfaction of propositional formulas
	5.2 Linear scoring functions under the strict semantics
	5.3 Linear scoring functions under the weak semantics
	5.3.1 Max-pooling
	5.3.2 Hadamard product

	5.4 Reasoning with average pooling

	6 Modelling weighted epistemic states
	6.1 Realizability of the weighted epistemic pooling principle

	7 Discussion and related work
	7.1 Logical reasoning with neural networks
	7.2 Reasoning with graph neural networks
	7.3 Modelling relations as regions

	8 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


