
Greek Statistical Institute
Proceedings of the 34th Panhellenic Statistics Conference (2022), pp. 154−166

SYNTHESIS OF TIME-SERIES WITH MISSING
OBSERVATIONS USING GENERATIVE ADVERSARIAL

NETWORKS

Owen D. Jones1, Thomas Poudevigne-Durance1, Yipeng Qin2

1 School of Mathematics, Cardiff University, U.K.
{JonesO18, Poudevigne-DuranceT}@cardiff.ac.uk

2 School of Computer Science and Informatics, Cardiff University, U.K.
QinY16@cardiff.ac.uk

ABSTRACT
We introduce a new method for the data synthesis of time-series using Generative Adversar-
ial Networks (GANs) that can be applied directly to data with missing observations. Unlike
previous GAN-based time-series models which use Recurrent Neural Networks (RNNs), our
approach directly models the conditional distribution of the current observation given past ob-
servations, which it does using an auxiliary GAN trained on the joint distribution of the current
and past observations. A benefit of this approach is that it allows us to use a Masked Wasserstein
GAN (MaWGAN) to train the model, which can directly accommodate missing values, unlike
existing time-series GANs. The veracity of the approach is demonstrated with a simulation
experiment, for which we get good results even with high levels of missing data.

Keywords: time-series; data synthesis; missing data; generative adversarial network.

1. INTRODUCTION
Data synthesis refers to the simulation of data while preserving privacy. Many na-

tional statistics organisations and state-owned enterprises are interested in data synthesis
as a way of distributing the analytic value of data without revealing confidential personal
details (Kaloskampis et al. 2019, Sallier 2020). A promising development for data syn-
thesis has been the advent of Generative Adversarial Networks (GANs: Goodfellow et
al. 2014); see e.g. Hitawala (2018) for a review. GANs use two neural nets, one to gen-
erate synthetic data, and the other to build a critic which is used to train the generator
(also called a discriminator). The generator and critic are trained iteratively, so that as
the generator improves the critic becomes more discerning, allowing further refinement
of the generator. GANs are capable of reproducing complex dependencies in data, and
are amenable to privacy protection approaches such as differential privacy (Campbell
2019, Jordon et al. 2022). In what follows we will focus on using GANs to model
temporal dependencies and will not explicitly consider privacy issues, however we will

154



assess the performance of our generator using distribution based measures, implicitly
judging its ability to reproduce some underlying distribution rather than a specific real-
isation from it (the data).

Traditional time-series models focus on predictive power rather than data synthesis.
Formally they model the signal but not the noise (or texture) around the signal, and
for data synthesis both are required. An advantage of a non-parametric model such as
a GAN in this setting is that it models both noise and signal simultaneously. Mogren
(2016), Esteban et al. (2017) and Yoon et al. (2019) have all previously used GANs for
time-series prediction and synthesis. Their approaches all use recurrent neural network
architectures (RNNs). RNN-GANs effectively model the conditional distribution of the
current observation conditioned on past observations. Information from past observa-
tions is encoded as features in one or more hidden layers that are fed back as inputs into
the generator for the current observation. Unfortunately there is no clear way to translate
missing values into features in these hidden layers, so we take a different approach.

We introduce a two-stage approach to build a model for the conditional distribution
of the current observation given past observations. Firstly we build a GAN model for
the joint distribution of present and past observations, then secondly we leverage the
generator and critic from the joint distribution to build a forecaster that directly models
the target conditional distribution.

Missing data is ubiquitous and is as much of an issue for data synthesis as elsewhere.
Until recently missing data has been a problem for GANs as existing training/fitting
algorithms require complete observations, so users have had to either first impute the
missing data or just discard incomplete observations. However in a recent paper the
authors introduced a novel GAN algorithm that can directly train a synthetic data gen-
erator from datasets with missing values, which we have called MaWGAN for Masked
Wasserstein GAN (Poudevigne-Durance et al. 2022). MaWGAN is based on a modifi-
cation of the Wasserstein distance and is easily implemented by incorporating into the
critic masks generated from the pattern of missing data in the original dataset. Moreover
we will see that this approach also works in our current setting, so that our approach to
modelling the conditional distribution of the present given the past can deal directly
with missing data.

The Wasserstein distance or Kantorovich–Rubinstein metric (also called the Earth-
Mover distance) is a distance function defined between probability distributions. In
the context of a GAN the critic is trained to estimate the Wasserstein distance between
the distribution that the data were sampled from and the distribution represented by
the generator. Kantorovich & Rubinstein (1958) famously showed that the Wasserstein
distance can be written as a Lipschitz metric, which is the form we use (see Section
2.1).

The original GAN effectively used the Kullback-Leibler divergence to measure the
distance between data and generator (Arjovsky et al. 2017), however—unlike the Wasser-
stein distance—this approach is susceptible to the so-called vanishing gradients prob-
lem, whereby the critic rejects all samples from the generator and does not allow it to

155



learn. Other approaches to measuring the distance between data and generator have
been proposed, for example Variational Divergence (Nowozin et al. 2016) and Maxi-
mum Mean Discrepancy (Li et al. 2017), the latter being a special case of scoring rule
minimisation (Pacchiardi et al. 2021).

In what follows we give some background on MaWGAN before describing our two-
stage approach for applying GANs to time series. We then provide pseudo-code show-
ing how to incorporate MaWGAN so that the method is applicable to time-series data
with missing values. We also give some preliminary test results in which we test the
method using data simulated from an auto-regressive AR(3) model. The results are
promising and show that the method can cope with missing data, though there is scope
for further tuning of the parameters and architecture of the GAN nets (generator, critic
and forecaster).

2. METHODOLOGY

2.1 MaWGAN
A basic description of the Masked Wasserstein GAN is needed for what follows. See

Poudevigne-Durance et al. (2022) for more details. In what follows our vectors are all
row vectors by default.

WGAN-GP MaWGAN builds on the WGAN-GP algorithm (Arjovsky et al. 2017,
Gulrajani et al. 2017). Let x1, . . . ,xn ∈ Rd be an i.i.d. sample from some (unknown)
distribution P , and let G : (0, 1)d → Rd be our generator. G takes a vector of i.i.d.
U(0, 1) random variates and returns a vector with distribution Q say. The WGAN-GP
critic calculates an estimate of the Wasserstein distance, so that the generator is trained
to minimise the distance between P and Q as measured by the Wasserstein distance.

The Wasserstein distance can be written as

W (P,Q) = sup
∥f∥L≤1

(
EX∼Pf(X)− EY∼Qf(Y )

)
where ∥f∥L is the Lipschitz constant of f . Let C : Rd → R+ be our critic, let
y1, . . . ,yn be a sample from the generator G, and for ϵi ∼ U(0, 1) put zi = ϵixi+(1−
ϵi)yi, then we train the critic to maximise

1

n

∑
i

C(xi)−
1

n

∑
i

C(yi)− λ
1

n

∑
i

(∥∇C(zi)∥2 − 1)2 .

The key idea here is that the regularisation term will restrict the critic C to be close to a
Lipschitz function with Lipschitz constant 1. λ > 0 controls the degree of regularisation
and can be tuned to improve the convergence of the critic.

156



MaWGAN MaWGAN is based on a variation of the Wasserstein distance that incor-
porates a random mask to capture the effect of missing data. For our purposes a mask
m = (m1, . . . ,md) is an element of {0, 1}d and a random mask is just a measureM
on {0, 1}d. Given a data point x = (x1, . . . , xd) and a mask m, xj is treated as missing
if and only if mj = 0. We define theM-Wasserstein distance as

WM(P,Q) = sup
∥f∥L≤1

EM∼M
(
EX∼Pf(X ⊙M)− EY∼Qf(Y ⊙M)

)
where ⊙ represents pointwise multiplication. It can be shown that if the data is Missing
Completely At Random (MCAR, see Rubin (1976) for classifications of missing data)
then WM and W generate the same topology on the space of measures on Rd, so that
a sequence of measuresQi (representing a sequence of improving generators) will con-
verge to P w.r.t. the Wasserstein distance if and only if they converge to P w.r.t. the
M-Wasserstein distance.

We approximate the M-Wasserstein distance analogously to the WGAN-GP ap-
proach. Let mi be the mask corresponding to data point xi, then using our previous
notation, we train the critic to maximise

1

n

∑
i

C(xi ⊙mi)−
1

n

∑
i

C(yi ⊙mi)− λ
1

n

∑
i

(∥∇C(zi ⊙mi)∥2 − 1)2 .

Here we interpret xi⊙mi as replacing the missing values in xi with zeros, and yi⊙mi

replaces the corresponding values of yi with zeros. It is this modified critic that defines
the MaWGAN methodology.

2.2 Two-stage GAN model for time-series data
Let . . . , X−1, X0, X1, . . . be a real-valued stationary time-series with dependency of

lag k. That is, Xi is conditionally independent of Xi−k−j for j ≥ 1, conditioned on
(Xi−1, . . . , Xi−k). Let Mi = 0 if Xi is missing and 1 if not. We will assume that the
Mi are independent of each other and of the Xi (so the Xi are MCAR). Our target is the
conditional distribution of Xi|(Xi−1, . . . , Xi−k). This is completely determined by the
joint distribution of (Xi, Xi−1, . . . , Xi−k), and so our approach is to use MaWGAN to
fit a generator G and critic C to this joint distribution—which we can do in the presence
of missing values—then use them to train a model for the conditional distribution.

Let x1, . . . , xn and m1, . . . ,mn be observations of X1, . . . , Xn and M1, . . . ,Mn

respectfully, and put ui = (xi, . . . , xi+k) and vi = (mi, . . . ,mi+k) for i = 1, . . . , n−
k. Given the ui and vi we use MaWGAN to train a generator G : (0, 1)k+1 → Rk+1

and critic C : Rk+1 → R+. If z is a vector of independent U(0, 1) random variables,
then the distribution of G(z) will approximate that of (Xi, . . . , Xi+k). Our goal is to
train a forecaster:

F : Rk × (0, 1)→ R.

157



For Z ∼ U(0, 1) we want F (x1, . . . , xk, Z) ∼ Xk+1|(X1 = x1, . . . , Xk = xk). To
train F we generate w = (w1, . . . , wk+1) from G and z from a U(0, 1) then put

y = (w1, . . . , wk, F (w1, . . . , wk, z))

Repeat this m times to get a synthetic sample yi, i = 1, . . . ,m, where m is the batch
size. The yi should look like realisations of (X1, . . . , X1+k), so we can measure the
performance of F by comparing the sample y1, . . . ,ym to a batch of m of the ui, and
we can do this comparison using the critic C.

As is usual for GANs, we iteratively train F and C, but we don’t continue training G.
Continuing to train C should encourage the critic to concentrate on the distribution of
the last element of the sample given the other k elements, because the training of F will
have no effect on the distribution of the first k elements being passed to the critic. Once
F is trained we can use it to forecast using the most recent k observations, or generate
synthetic series (starting with a single sample from G).

2.3 Pseudo-code
We suppose that for i = 1, . . . , n − k we have data ui and masks vi, which are

contiguous subsequences of length k + 1 taken from a time-series with missing values.
We have a generator G : (0, 1)k+1 → Rk+1, critic C : Rk+1 → R+ parameterised
by weights θC , and a forecaster F : Rk × (0, 1) → R parameterised by weights θF .
We assume that G and C have already been trained with data ui and masks vi using
MaWGAN.

For any w = (w(∗), w(k + 1)) ∈ Rk+1 we will write w(∗) for the first k elements
and w(k + 1) for the last element.

Require: forecaster weights θF and critic weights θC , learning rates αF and αC .
Require: num. epochs tF , forecaster batch size mF , critic iterations tC , critic batch size mC ,

critic regularisation λ.
1: for s = 1, . . . , tF do ▷ update the forecaster
2: for t = 1, . . . , tC do ▷ update the critic
3: choose a batch σ of size mC from {1, . . . , n− k}
4: for i = 1, . . . ,mC do ▷ calculate critic loss
5: ūi ← uσ(i) ⊙ vσ(i)

6: wi = (wi(∗), wi(k + 1))← G(a) for a ∼ U(0, 1)k+1

7: wi(k + 1)← F (wi(∗), b) for b ∼ U(0, 1)
8: w̄i ← wi ⊙ vσ(i)

9: zi ← ϵūi + (1− ϵ)w̄i for ϵ ∼ U(0, 1)
10: Li

C ← C(ūi)− C(w̄i)− λ(∥∇C(zi)∥2 − 1)2

11: end for
12: LC ← 1

mC

∑mC

i=1 L
i
C

13: update θC using gradient of LC (increasing LC) and learning rate αC

14: end for
15: for i = 1, . . . ,mF do ▷ calculate forecaster loss

158



16: wi = (wi(∗), wi(k + 1))← G(a) for a ∼ U(0, 1)k+1

17: wi(k + 1)← F (wi(∗), b) for b ∼ U(0, 1)
18: Li

F ← C(wi)
19: end for
20: LF ← 1

mF

∑mF

i=1 L
i
F

21: update θF using negative gradient of LF (decreasing LF ) and learning rate αF

22: end for

3. TEST CASE
To test the method we used sequences of length 100 generated from an AR(3) model

with parameters (0.1,−0.3, 0.9) and error variance 0.12. That is Xn = 0.1Xn−1 −
0.3Xn−2 + 0.9Xn−3 + ϵn where the ϵn are i.i.d. N(0, 0.12). Some typical training
sequences are plotted in Figure 1.

Figure 1: LEFT: Samples of length 100 from an AR(3) with parameters (0.1,−0.3, 0.9) and
error variance 0.12. RIGHT: Samples of length 100 from a GAN forecaster trained using the
sample to the left (with no missing data).

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

In Figure 1 we also plot some synthetic data from the models trained using each sam-
ple (a separate model was trained for each sample). Qualitatively the GAN forecaster

159



performs well, capturing both the high and low frequency oscillations in the data. We
also observe that a sequence of length 100 is not long enough to capture the full variety
of behaviour that the AR(3) process can exhibit. For example in Figure 1 the scale of
the output top left is clearly different to the scale of the output bottom left, even though
both are realisations of the same process. In both cases the GAN forecaster has got
the scale correct, however we only expect the GAN forecaster to synthesise output at
the scale to which it has been trained. That is, while the same AR(3) model produced
both the upper and lower output on the left, we don’t expect the GAN forecaster that
produced the top right output to be able to produce the bottom right output, and vice
versa. To get a single GAN forecaster that could reproduce both we would need to train
it on a sequence long enough that it contained both types of behaviour.

3.1 Performance measures
Quantifying the performance of the GAN forecaster is not straight-forward, as we are

not interested in its performance as a forecaster, but rather how well it captures the (tem-
poral) dependence structure of the data. We used two performance measures. The first
is the Likeness Score L introduced by Guan & Loew (2020). Suppose we have obser-
vations x1, . . . ,xn from some distribution and observations y1, . . . ,ym from a second
distribution, then to calculate L we first generate three auxiliary sets of information

Sx = {∥xi − xj∥2}i̸=j

Sy = {∥yi − yj∥2}i̸=j

Sx,y = {∥xi − yj∥2}i,j

For A,B ⊂ R let κ(A,B) ∈ [0, 1] be the Kolmogorov-Smirnov distance between
A and B, namely the maximum absolute difference between the empirical cumulative
distribution functions of A and B. The Likeness Score for our two sets of observations
is then

L = 1− κ(Sx, Sx,y) ∨ κ(Sy, Sx,y),

where ∨ indicates the maximum. Note that L ∈ [0, 1] and the two sets of observations
have likeness one if and only if they are identical, with lower scores indicating greater
dissimilarity. To have a likeness of zero the two datasets would need to have disjoint
ranges.

In our application the xi will always be the ui defined in Section 2.2, and the yi will
be the analogous subsequences taken from a sample of synthetic data generated by a
GAN forecaster (the same length as the original sample).

Our second performance measure is more ad-hoc. Let θ = (0.1,−0.3, 0.9) be the
coefficients of our AR(3) process and let θ̂ be the usual maximum likelihood estimate of
θ, calculated using a synthetic sample from the GAN forecaster, then our performance
measure is just the mean-squared error M := ∥θ − θ̂∥22/3, which we denote the AR
Coefficient Score. Clearly smaller values are better.

160



To reduce the variation due to sampling from the generator we calculate L and M
100 times using different samples of synthetic data, then take the average. In what
follows we take L and M to be these averaged values. To allow for the variation in per-
formance due to the original sample used and the stochastic nature of the GAN fitting,
we generated 30 different samples from the AR(3) process and fitted a GAN to each
one.

When estimating the performance of the GAN forecaster there are three sources of
variation:

• From the sampling of the data. As this is a simulation experiment we can gauge
this by using multiple independent data samples (30 in our case).

• From the sampling of the generator. We mitigate this by comparing each data
sample with 100 independent synthetic samples and averaging the results.

• From the fitting of the generator. The process of fitting a GAN is stochastic due
to the random selection of observation batches, and for each separate data sample
we re-fit the GAN. We mitigate this by using a very large number of training
iterations, to be reasonably confident that the GAN has converged.

The variation represented by the confidence intervals in Figures 2 and 3 below is mainly
due to the sampling of the data, though is necessarily confounded with the other two
sources of variation. The length n of the data samples will also clearly effect the perfor-
mance of the GAN model, however we do not explore this here and just fix n = 100.

3.2 Results
To assess the effect of missing data, for each original AR(3) sequence we generated

six auxiliary sequences with increasing levels of missing data: 10%, 20%, ..., 60%.
Observations were removed uniformly and independently, so the data is Missing Com-
pletely At Random (MCAR). The auxiliary sequences were nested so that all the points
missing in one are also missing in those with higher levels of missing data.

For our experiments we took k = 3, and the critic and generator both had 1 hidden
layer with 100 nodes. For the initial training of the generator and critic we used learning
rate α = 0.0001; batch size 30; iterations tG = 5000 and tC = 10; and critic regulari-
sation λ = 10 (using the notation of Poudevigne-Durance et al. 2022). For the training
of the forecaster we found that the same parameters worked, namely the learning rates
were αF = 0.0001 and αC = 0.0001; batch sizes were mF = 30 and mC = 30;
iterations were tF = 5000 and tC = 10; and the critic regularisation was λ = 10. Some
optimisation of these parameters is required, as for any WGAN-GP based algorithm,
but this was not done particularly systematically.

The performance of the GAN forecaster is summarised in Figures 2 (Likeness Score)
and 3 (AR Coefficient Score). For both figures we give the average performance of the
GAN forecaster for different levels of missing data (with 95% confidence intervals). For
both measures the performance of the GAN forecaster is not much effected by levels of
missingness up to 40%.

161



Figure 2: Likeness Scores. Each point is the mean of 30 calculations of the Likeness Score
L, comparing a sequence of length 100 from an AR(3) process with synthetic data generated
using a GAN forecaster, trained using the AR(3) sample. The error bars give 95% confidence
intervals. The level of missing data is the proportion of observations removed at random from
the original sample before training the GAN forecaster, though note that the Likeness Score is
always calculated using the original data with no missing observations.

0 10 20 30 40 50 60
% of data missing

0.0

0.2

0.4

0.6

0.8

1.0

Lik
en

es
s S

co
re

162



Figure 3: AR Coefficient Scores. Each point is the mean of 30 calculations of M , the average
squared distance between the true parameters of an AR(3) process and the estimated parameters
from a synthetic sample generated using a GAN forecaster, trained using a sample of size 100
from the AR(3) model. The error bars give 95% confidence intervals. The level of missing data
is the proportion of observations removed at random from the original sample before training
the GAN forecaster.

0 10 20 30 40 50 60
% of data missing

0.0

0.1

0.2

0.3

0.4

0.5

di
ffe

re
nc

e 
of

 A
R 

pa
ra

m
et

er
s

To have a basis for comparison we fitted an AR(3) process to each of the original
samples we generated, and then calculated L and M as above. For the AR Coefficient
Score we got a mean of 0.0027 with 95% CI (0.0012, 0.0042), and for the Likeness
Score we got a mean of 0.809 and 95% CI (0.751, 0.867). That is, according to the AR
Coefficient Score the fitted AR(3) processes gives a better fit, which is to be expected as
we are using a correctly specified model, however according to the Likeness Score the
GAN forecaster gives a better fit. Possibly this is because the GAN forecaster fits to the
sample it is given and the Likeness Score is measuring how well you match that sample,
rather than the parameters of the original process. Formally we can interpret this as
saying the GAN forecaster is doing a good job “locally” but could do better “globally”.
As noted at the start of Section 3., a sample of length 100 is probably too short for the
GAN forecaster to learn all the possible behaviours that this AR(3) process can exhibit,
so better global performance would require a larger data sample. In future work we
will compare the performance of our GAN forecaster with the methods of Esteban et al.
(2017) and Yoon et al. (2019), in the case of no missing data.

163



4. DISCUSSION
Our GAN forecaster has produced some promising results, however more testing is

required, and there is scope for generalising and tuning the method. At the time of writ-
ing our systematic experimentation has been restricted to the case presented in Section
3., however clearly of interest for further investigation is the effect on performance of
the length of the data sequence n and the lag k. Moreover our method easily generalises
to multivariate time-series, and indeed can be used to model any conditional distribu-
tion, so it would also be of interest to see how well it can capture the dependencies of
time-series models such as the Periodic Autoregressive or Spatial Autoregressive (see
e.g. Holan et al. 2010, LeSage & Pace 2009).

In practice securing the convergence of a GAN requires a balance between the speed
at which the generator and critic converge. Our methodology requires the convergence
of the generator, critic and forecaster, so we have three things balance. We simplified
the interplay of the three nets by training the generator and critic first, then switching to
the critic and forecaster, however allowing simultaneous training of all three nets could
improve the overall speed at which they converge, and improve their performance, but
at the expense of more tuning parameters. We also need to be mindful that the initial
training of the critic may mean it is too specialised for the early training of the forecaster,
causing it to focus on details rather than broad features. One way of alleviating this
problem somewhat is to pause training of the critic while the forecaster “catches up”.

It is clear that in practice the choice of lag is important and may not be as straight-
forward as for our case study. The obvious guideline is that the lag should be large
enough to encompass any features in the data, such as seasonal effects or irregular cy-
cles, however the larger the lag the more complicated the forecaster has to be, which
translates into more and larger internal layers for all the GAN nets (generator, critic and
forecaster), making the fitting slower and more temperamental.

Finally we note that the effect of the dependencies between the ui on the convergence
of the GAN nets is something that warrants investigation, as is the question of how we
use the architecture of these nets to exploit the temporal structure of the ui. For example
dimension-reducing feature layers have proved effective in recurrent neural networks,
and may do so here as well (Yoon et al. 2019).

ΠΕΡΙΛΗΨΗ

Στην παρούσα εργασία προτείνεται μια νέα μέθοδος σύνθεσης χρονοσειρών με

τη χρήση των Generative Adversarial Networks (GANs) η οποία μπορεί να αξιοποιη-
θεί και στην περίπτωση ελλειπουσών παρατηρήσεων. Η μέθοδος μοντελοποιεί την

δεσμευμένη κατανομή της τρέχουσας παρατήρησης δοθέντων των παρελθόντων πα-

ρατηρήσεων, κάτι που επιτυγχάνει με ένα βοηθητικό GAN εκπαιδευμένο στην από
κοινού κατανομή της τρέχουσας και των παρελθόντων παρατηρήσεων. ΄Ενα πλεο-

νέκτημα της μεθόδου είναι η χρήση ενόςMasked Wasserstein GAN (MaWGAN) για

164



την εκπαίδευση του μοντέλου το οποίο μπορεί να συνεκτιμήσει και τις ελλείπουσες

παρατηρήσεις. Η αποτελεσματικότητα της μεθόδου ακόμα και για μεγάλα ποσοστά

ελλιπουσών παρατηρήσεων, επιβεβαιώνεται με ένα πείραμα προσομοίωσης.

REFERENCES

Arjovsky, M., Chintala, S. and Bottou, L. (2017). Wasserstein Generative Adversarial
Networks. Proceedings of the 34th International Conference on Machine Learn-
ing, Sydney, Australia, 6–11 August 2017, pp.214–223.

Campbell, M. (2019). Synthetic data: How AI is transitioning from data consumer to
data producer and why that’s important. Computer, 52(10):89–91.

Esteban, C., Hyland, S.L. and Rätsch, G. (2017). Real-valued (medical) time series
generation with recurrent conditional GANs, arXiv:1706.02633.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. (2014). Generative Adversarial Nets. Advances in
Neural Information Processing Systems, 27.

Guan, S. and Loew, M.H. (2020). Measures to evaluate Generative Adversarial Net-
works based on direct analysis of generated images. arXiv: 2002.12345.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A.C. (2017).
Improved training of Wasserstein GANs. Advances in Neural Information Pro-
cessing Systems, 30.

Hitawala, S. (2018). Comparative Study on Generative Adversarial Networks, arXiv:
1801.04271.

Holan, S.H., Lund, R. and Davis, G. (2010). The ARMA alphabet soup: A tour of
ARMA model variants. Statistics Surveys, 4:232–274.

Jordon, J., Szpruch, L., Houssiau, F., Bottarelli, M., Cherubin, G., Maple, C., Cohen,
S.N. and Weller, A. (2022). Synthetic Data–what, why and how?. arXiv:2205.03257.

Kaloskampis, I., Pugh, D., Joshi, C. and Nolan, L. (2019). Synthetic data for public
good. ONS Data Science Campus blog. https://datasciencecampus.ons.gov.uk/
projects/synthetic-data-for-public-good/

Kantorovich, L.V. and Rubinstein, G.Sh. (1958). On a space of completely additive
functions. Ser. Mat. Mekh. i Astron., 13(7):52–59. (In Russian)

LeSage, J. and Pace, R.K. (2009). Introduction to spatial econometrics. Chapman and
Hall/CRC.

Li, C.L., Chang, W.C., Cheng, Y., Yang, Y. and Póczos, B. (2017). MMD GAN:
Towards deeper understanding of moment matching network. Advances in Neural
Information Processing Systems, 30.

Mogren, O. (2016). C-RNN-GAN: Continuous recurrent neural networks with adver-
sarial training, arXiv:1611.09904.

Nowozin, S., Cseke, B. and Tomioka, R. (2016). f-GAN: Training generative neu-
ral samplers using variational divergence minimization. In Proceedings of the

165


