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Summary

Most massive stars are found in hierarchical triples or higher multiplicity systems, in which a
close inner binary is orbited by one or more distant companions. Here, we present a new triple
stellar evolution code, TSE, which simultaneously takes into account the physics of the stars and
their gravitational interaction. TSE is used to simulate the evolution of massive stellar triples
in the galactic field from the zero-age-main-sequence until they form compact objects. To this
end, we implement initial conditions that incorporate the observed high correlation between the
orbital parameters of early-type stars. We show that the interaction with a tertiary companion
can significantly impact the evolution of the inner binary. For instance, high eccentricities can be
induced by the third-body dynamical effects, leading to a Roche-lobe overflow or even to a stellar
merger from initial inner binary separations 103 – 105R⊙.
Focusing on the evolution subsequent to a stellar merger, we find that binaries composed of the
merger product star and the tertiary companion provide a new source to form binary black hole
mergers in the Galactic field. By means of a population synthesis, we estimate their contribution
to the total black hole merger rate to be R(z = 0) = 0.3 – 25.2Gpc−3 yr−1. Merging binary
black holes that form from stellar post-merger binaries have exceptionally low mass ratios. We
identify a critical mass ratio q ≃ 0.5 below which they could dominate the total black hole merger
rate in the field.
Lastly, we study the dynamical evolution of the spin vector of a massive donor star that stably
transfers mass to a binary companion. Assuming that the donor star loses its mass along the
instantaneous interstellar axis, we find that the ejection of ≳ 30 per cent of the donor’s initial
mass causes its spin to nearly flip onto the orbital plane of the binary, independently of the initial
spin-orbit alignment.
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Chapter 1

Introduction

Stars are the fundamental building block of our Universe. Whereas our own sun evolves in isolation,
many stars in the Galactic field are born gravitationally bound to each other in so-called multiple
systems, e.g., in binaries, triples, or higher-order configurations. Perhaps the most famous example
of a stellar triple can be found in our own astronomical backyard. α Centauri which at a distance
d ≈ 1.3 pc is the closest stellar system to our own Solar System consists of three stars that are
bound to each other: The primary and secondary stars, α Cen A and B, are solar-like stars that
form an inner binary system with an orbital period of about Pin = 80 yr. The third star, Proxima
Centauri, is a smaller and fainter red dwarf that orbits the binary system at a much longer period
of approximately Pout = 5.5× 105 yr (Kervella et al., 2017).

From a statistical point of view, multiple systems and particularly triples are most common
among stars that are more massive than those of α Centauri. Observational campaigns of massive
stars exhibit a large fraction of binaries, triples, and higher-order multiples (Mason et al., 1998;
Preibisch et al., 1999; Mason et al., 2009; Duchêne & Kraus, 2013; Sana et al., 2014). For
instance, Preibisch et al. (1999); Mason et al. (2009); GRAVITY Collaboration et al. (2018) find
that each massive O and B-type member of the Orion Nebula cluster has at least 1.5 companions
on average (see Fig. 1.1). Likewise, more than 200 O-type stars of the "Southern Massive Stars
at High Angular Resolution Survey" (SMASH+) exhibit an average companion frequency of
2.2 ± 0.3 (Sana et al., 2014). This demonstrates that most massive stars are formed in multiple
systems (Moe & Di Stefano, 2017).

It is a well-established fact that stellar multiplicity affects the way how massive stars evolve.
For example, if two massive stars are placed in a binary they are prone to interact with each
other (Sana et al., 2012), e.g., by torquing each other’s rotational angular momentum through
tidal forces (Hut, 1981; Zahn, 1989; Eggleton et al., 1998; Hurley et al., 2002), transferring
mass from one to another (Paczyński, 1971; Eggleton, 1983; Eldridge et al., 2008; Sana et al.,
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Introduction

Figure 1.1. Orion’s Trapezium Cluster in which 11 of 16 observed systems are confirmed
multiples, with a total number of 22 companion stars. Credit: GRAVITY Collaboration et al.
(2018).

2012; Schneider et al., 2021), engulfing each other in a common-envelope (CE) (Paczynski,
1976; Ivanova et al., 2013), or forming a bigger star through a stellar merger (Bonnell & Bate,
2005; Schneider et al., 2019). Moreover, the evolution of massive binary stars could lead to the
formation of merging binary black holes (BBHs) and neutron stars (BNSs) (Belczynski et al.,
2016a, 2020) whose gravitational-wave (GW) emission was recently directly detected for the first
time (Abbott et al., 2016, 2017; The LIGO Scientific Collaboration et al., 2021).

What makes triples special is their dynamical evolution which can significantly differ from that
of isolated binaries. In certain regions of parameters space the secular gravitational perturbation
from the tertiary companion leads to large-amplitude oscillations of the inner binary eccentricity
and orbital direction which are often referred to as Lidov-Kozai (LK) (Kozai, 1962; Lidov, 1962)
or von Zeipel-Lidov-Kozai oscillations (Ito & Ohtsuka, 2019). This phenomenon has been studied
in a wide range of astrophysical contexts from planetary and stellar systems to super-massive
black holes (BHs) at the centres of galaxies (Naoz, 2016). For instance, LK oscillations have been
attributed to the formation of Hot Jupiters which are giant planets observed on very close orbits
around their host star (Naoz et al., 2011, 2012; Dong et al., 2014; Storch et al., 2014; Antonini
et al., 2016a; Muñoz et al., 2016; Hamers & Lai, 2017; Storch et al., 2017; Stephan et al., 2018;
Grishin et al., 2018; Vick et al., 2019). In this situation the Jovian planet is presumably formed

2 On the Evolution of Massive Stellar Triples



from a protoplanetary disk at much wider distance. The gravitational perturbation from a tertiary
companion, e.g., an additional planet, could cause an inward-migration of the Jovian planet. By
promoting a close pericentre passage during an LK cycle tidal dissipation of the planetary orbit
becomes efficient and effectively captures the planet on a close circularising orbit (Naoz et al.,
2011).

Applied to massive stars, one can expect a tertiary companion to enrich the variety of evolutionary
pathways of the stellar system. A tertiary companion could facilitate the stellar interactions
between the inner binary stars via the LK mechanism by effectively reducing the minimum periapsis.
Previous studies of stellar triples have shown that these may give rise to X-ray binaries (Naoz
et al., 2016) or even trigger a stellar merger (Perets & Kratter, 2012; Stegmann et al., 2022a;
Vigna-Gómez et al., 2022) leading to the formation of Blue stragglers (Perets & Fabrycky, 2009;
Naoz & Fabrycky, 2014; Antonini et al., 2016b) and type Ia SN (Iben & Tutukov, 1999; Thompson,
2011). A merger taking place in a triple or a higher-order configuration also opens up the possibility
for sequential mergers (Hamers & Safarzadeh, 2020; Vigna-Gómez et al., 2021; Stegmann et al.,
2022a). Moreover, an expanded tertiary star could itself overflow its Roche-lobe (RLO) and
initiate a mass transfer phase onto the inner binary (de Vries et al., 2014; Portegies Zwart &
Leigh, 2019; Di Stefano, 2020a,b; Hamers et al., 2021).

Modelling massive stellar triples will also help to understand the astrophysical origin of the
binary mergers detected by the GW detectors LIGO and Virgo (Abbott et al., 2019, 2021a,b; The
LIGO Scientific Collaboration et al., 2021). It is unknown whether they resulted from isolated
binary stellar evolution in which the binary stars harden during a CE or stable mass transfer phase
(Dominik et al., 2012; Belczynski et al., 2016a; Hoang et al., 2018; Giacobbo & Mapelli, 2018;
Olejak et al., 2021; van Son et al., 2022) or via three-body interaction with a bound hierarchical
companion (Silsbee & Tremaine, 2017; Antonini et al., 2017, 2018; Liu & Lai, 2018; Rodriguez &
Antonini, 2018; Fragione & Kocsis, 2020; Martinez et al., 2022), or if they were driven by some
dynamical interaction within a dense stellar environment, e.g., the dense cores of globular clusters
(Rodriguez et al., 2016a; Park et al., 2017; Rodriguez & Loeb, 2018; Antonini & Gieles, 2020),
massive young clusters (Banerjee et al., 2010; Ziosi et al., 2014; Di Carlo et al., 2019; Fragione
& Banerjee, 2021), and galactic nuclei (Antonini & Perets, 2012; Prodan et al., 2015; Antonini
& Rasio, 2016; Petrovich & Antonini, 2017; Hamilton & Rafikov, 2019; Bub & Petrovich, 2020;
Wang et al., 2021), or if the merger population formed in a combination of these channels (Zevin
et al., 2021).

The main scientific goal of this thesis is to study the evolution of massive triples in order to
address some of these problems. In this chapter, we begin to introduce the dynamics of hierarchical
three-body systems and outline the key topics which are addressed in this thesis.

J. Stegmann 3



Introduction

Figure 1.2. Schematic representation of a hierarchical triple of point masses. The inner orbit
consists of the two masses m1 and m2 whose centre of mass is orbited by another much more
distant tertiary companion (outer orbit). Both orbital planes are inclined w.r.t. each other by
some relative inclination angle itot and ϑ is the angle between the instantaneous position vectors
rin and rout.

1.1 Secular dynamics of three-body systems

Determining the motion of three point masses (or celestial bodies) that interact with each
other through Newtonian gravity has been a long-standing challenge in physics known as the
three-body problem. It can be dated back to work by, e.g., Newton, Euler, Laplace, Lagrange,
and Poincairé. Despite its apparent simplicity and similarity to the two-body (Kepler) problem the
general three-body problem has no closed-form solution. Yet, in the early 20-th century Finnish
mathematician Karl Sundman proved the existence of a convergent infinite series that solves the
general problem, but due to its slow convergence it is of no practical use (Gowers et al., 2008).

The three-body problem simplifies in certain special configurations that are relevant to celestical
mechanics. For instance, the restricted three-body problem applies if one of the celestial bodies
has a negligible mass, e.g., in the case of moons, planetoids, or satellites, while the other bodies
with non-negligible mass essentially move around each other on a Keplerian orbit. Thus, the orbit
of the massless component can be found using perturbation theory (Gowers et al., 2008).

In addition, most of the triples in our Universe are stable over a long timescale due to some
hierarchy (Hayashi et al., 2023), in which the centre of mass of a close inner binary is orbited by

4 On the Evolution of Massive Stellar Triples



Secular dynamics of three-body systems

another distant tertiary companion (see Fig. 1.2). Hierarchical triples are the primary subject
of this work. Their dynamical evolution can be written in terms of two Keplerian orbits: the
inner orbit (denoted by the subscript in) described by the relative position vector rin between
the inner binary masses m1 and m2, and the outer orbit (subscript out) described by the relative
position vector rout between the inner binary centre of mass and m3. Both orbits carry some
orbital angular momentum

Gin(out) = µin(out)rin(out) ×
drin(out)

dt
= Lin(out)jin(out), (1.1)

where
Lin(out) = µin(out)

√
Gmin(out)ain(out) (1.2)

denote the circular angular momenta. Furthermore, min = m1 +m2 and mout = m1 +m2 +m3

are the total masses of the inner and outer binary, µin = m1m2/min and µout = minm3/mout their
reduced masses, and ain(out) their semi-major axes. The directions of Gin(out) are specified by the
dimensionless angular momentum vectors jin(out) = [1 − e2in(out)]

1/2̂jin(out) which point along the
orbit axes with ein(out) denoting the eccentricities of the orbits. A summary of common variables
which are used throughout this work is given in Table 1.1.

As we will see, in this hierarchical configuration, the inner and outer binary can torque each
other by exchanging angular momentum which changes the shape of each orbit over long-term
secular timescales. Meanwhile, the total angular momentum vector must be a constant defined as

Gtot = Gin +Gout = const. (1.3)

We may denote the inclination angle between the total angular momentum vector and the orbital
axes as iin(out) and their relative inclination itot = iin + iout is given by the geometry of the system
as

cos(itot) =
G2

tot −G2
in −G2

out

2GinGin

. (1.4)

One of the most important dynamical relations can be qualitatively understood by considering
the construction of the constant total angular momentum vector from Eq. (1.3). If we allow both
orbits to torque each other by changing either one of the eccentricities ein(out), the lengths of
the orbital angular momenta Gin(out) ∝ [1 − e2in(out)]

1/2 get rescaled. Consequently, it must also
affect the relative inclination itot of the two orbits in order to conserve the total orbital angular
momentum vector (cf., Fig. 1.3). Thus, the simultaneous change of the orbital eccentricities and
relative inclination follows from simple geometric considerations, and, as we will see below, are
described by the LK oscillations.

J. Stegmann 5



Introduction

Figure 1.3. Schematic representation of the invariable plane which is perpendicular to the
conserved total angular momentum vector Gtot = Gin +Gout. The inclinations iin(out) are defined
as the angles between Gin(out) and Gtot, and Hin(out) are the projections (i.e., z-components) of
Gin(out) onto the latter.

In the remainder of this section, we will derive the general equations of motion for the long-
term evolution of hierarchical triples from their Hamiltonian (following Tremaine et al., 2009;
Naoz et al., 2013a; Tremaine & Yavetz, 2014; Liu et al., 2015; Naoz, 2016) and discuss key
aspects of their dynamics. For this purpose, it is instructive to make use of the conservation of
Gtot by introducing some fixed inertial frame in which the z axis is parallel to the latter. The
x – y plane which is perpendicular to the total angular momentum vector is often referred to as
invariable plane.

In this frame, it is convenient to describe the orbital dynamics of the inner and outer orbit in
terms of action-angle variables, the Delaunay elements (e.g., Merritt, 2013). Thus, we associate
with each of the inner and outer orbits three actions: the magnitudes of the orbital angular
momenta Gin(out), their z-components Hin(out) = Gin(out) cos(iin(out)), and the circular angular
momenta Lin(out). The corresponding angles, i.e., conjugate momenta, are the arguments of the
periapses gin(out), the longitudes of the ascending nodes hin(out), and the mean anomalies lin(out),
respectively, which are commonly used in celestial mechanics to parameterise the orbital motion.

The Delaunay elements relate to the components of the instantaneous position vectors of the

6 On the Evolution of Massive Stellar Triples



Secular dynamics of three-body systems

inner and outer orbit as (e.g., Merritt, 2013)

rin(out) = rin(out)

×

cos(hin(out)) cos(fin(out) + gin(out))− cos(iin(out)) sin(hin(out)) sin(fin(out) + gin(out))

sin(hin(out)) cos(fin(out) + gin(out)) + cos(iin(out)) cos(hin(out)) sin(fin(out) + gin(out))

sin(iin(out)) sin(fin(out) + gin(out))

 ,

(1.5)

where the true anomalies fin(out) are connected to the mean anomalies by the Kepler relation

dlin(out)
dfin(out)

=
1√

1− e2in(out)

[
rin(out)
ain(out)

]2
, (1.6)

and where the instantaneous separations are given by

rin(out) =
ain(out)(1− e2in(out))

1 + ein(out) cos(fin(out))
. (1.7)

J. Stegmann 7



Table 1.1. Common variables which are used throughout this work. Variables associated with the inner and outer orbit are denoted
by subscripts in and out, respectively.

Symbol Description Formula
m1 Primary mass of the inner binary
m2 Secondary mass of the inner binary
m3 Mass of the tertiary companion
min Total mass of the inner binary min = m1 +m2

mout Total mass of the outer binary mout = min +m3

µin Reduced mass of the inner binary µin = m1m2/min

µout Reduced mass of the outer binary µout = minm3/mout

ain(out) Semi-major axis of the inner (outer) orbit
ein(out) Eccentricity of the inner (outer) orbit
Pin(out) Inner (outer) orbital period Pin(out) = 2π[a3in(out)/(Gmin(out))]

1/2

rin Relative position vector between the inner binary masses
rout Relative position vector between the inner binary centre of mass and tertiary companion
ein(out) Eccentricity vector of the inner (outer) orbit ein(out) = ein(out)êin(out)

jin(out) Dimensionless angular momentum vector of the inner (outer) orbit jin(out) = [1− e2in(out)]
1/2ĵin(out)

Lin(out) Circular angular momentum of the inner (outer) orbit Lin(out) = µin(out)[Gmin(out)ain(out)]
1/2

Gin(out) Angular momentum vector of the inner (outer) orbit Gin(out) = µin(out)r× ṙ = Lin(out)jin(out)

Hin(out) z-component of the inner (outer) orbital angular momentum in the invariable frame Hin(out) = Gin(out) cos(iin(out))



Secular dynamics of three-body systems

1.1.1 Hamiltonian model

Writing the orbital configuration of the inner and outer orbit in terms of the Delaunay variables
w.r.t. the invariable plane, we can simply derive the equations of motion from the Hamiltonian H
of the triple using the canonical relations

dGin(out)

dt
= − ∂H

∂gin(out)
,

dgin(out)
dt

=
∂H

∂Gin(out)

, (1.8)

dLin(out)

dt
= − ∂H

∂lin(out)
,

dlin(out)
dt

=
∂H

∂Lin(out)

, (1.9)

dHin(out)

dt
= − ∂H

∂hin(out)
,

dhin(out)
dt

=
∂H

∂Hin(out)

(1.10)

For a hierarchical triple with a small semi-major axis ratio α ≡ ain/aout ≪ 1, the complete
Hamiltonian of the three-body system can be expanded as a power series in α (Harrington, 1968)

H =Hin +Hout + Φ

=− Gm1m2

2ain
− Gm3min

2aout
− G

aout

∞∑
l=2

(
ain
aout

)l
Ml

(
rin
ain

)l(
aout
rout

)l+1

Pl[cos(ϑ)], (1.11)

where Hin and Hout are the Kelperian Hamiltonians of the inner and outer orbit, respectively, and
Φ describes the interaction between them. Pl(cosϑ) are Legendre polynomials with ϑ being the
angle between rin and rout, and

Ml = m1m2m3
ml−1

1 − (−m2)
l−1

ml
in

. (1.12)

For a small α ≪ 1, the sum over l will be dominated by its lowest orders. In previous work, the
three-body dynamics has been extensively studied to the quadrupole (l = 2) (e.g., Kozai, 1962;
Lidov, 1962), octupole (l = 3) (e.g., Ford et al., 2000; Blaes et al., 2002; Naoz et al., 2013a; Liu
et al., 2015; Antognini, 2015), and hexadecapole order (l = 4) (Will, 2017). Here, we consider
only the lowest two orders by truncating the interaction term at l = 3, i.e., by writing Φ ≈
Φquad + Φoct where (Liu et al., 2015)

Φquad = −Gm1m2m3

minrout

[
3

2

(rin · rout)2

r4out
− r2in

2r2out

]
, (1.13)

and
Φoct = −Gm1m2m3(m1 −m2)

m2
inrout

[
5

2

(rin · rout)3

r6out
− 3

2

r2in(rin · rout)
r4out

]
. (1.14)

J. Stegmann 9
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Furthermore, a small α ≪ 1 generally implies that the interaction term is weak so that the
inner and outer orbits only change over long secular timescales (i.e., timescales which are much
longer than the orbital periods). To determine the long-term evolution of the triple it is therefore,
sufficient to consider the so-called double-averaged Hamiltonian for which we eliminate the short-
timescale dependencies on lin(out) by averaging Eq. 1.11 over the inner and outer orbital period.

The quadrupole contribution to the double-averaged Hamiltonian is given by (Naoz et al.,
2013a)

⟨Φquad⟩ =− C2

8

{
[1 + 3 cos(2iout)]

[
(2 + 3e2in)(1 + 3 cos(2iin)) + 30e2in cos(2gin) sin

2(iin)
]

+ 3 cos(2∆h)
[
10e2in cos(2gin)(3 + cos(2iin)) + 4(2 + 3e2in) sin

2(iin)
]
sin2(iout)

+ 12(2 + 3e2in − 5e2in cos(2gin)) cos(2∆h) sin(2iin) sin(2iout)

+ 120e2in sin(iin) sin(2iout) sin(2gin) sin(∆h)

− 120e2in cos(iin) sin
2(iout) sin(2gin) sin(2∆h)

}
, (1.15)

where the longitudes of the ascending nodes of the inner and outer orbit only enter the equation
in terms of their difference ∆h = h1 − h2 and the prefactor C2 is given by

C2 =
G2

16

m7
in

m3
out

m7
3

(m1m2)3
L4
in

L3
outG

3
out

. (1.16)

Using the canonical relations Eqs. (1.8) – (1.10) we get for the quadrupole equations of motion
(Naoz et al., 2013a)

dGin

dt

∣∣∣∣
quad

= −∂⟨Φquad⟩
∂gin

= −30C2e
2
in sin

2(itot) sin(2gin), (1.17)

dHin

dt

∣∣∣∣
quad

= −∂⟨Φquad⟩
∂hin

= −30C2e
2
in sin(itot) sin(iout) sin(2gin). (1.18)

From Eq. (1.3) we have Hin +Hout = Gtot = const. For the outer orbit it follows that

dHout

dt

∣∣∣∣
quad

= − dHin

dt

∣∣∣∣
quad

. (1.19)

Moreover, Gout and Lin(out) remain constant in the secular approximation because ⟨Φquad⟩ is
independent of gout and lin(out), respectively. As a consequence of the conservation of Lin(out),
the semi-major axes do not change and hence, the orbital energies of the inner and outer orbit are
separately conserved.
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The time evolution of the orbital angles of the inner orbit is given by (Naoz et al., 2013a)

dgin
dt

∣∣∣∣
quad

=
∂⟨Φquad⟩
∂Gin

=6C2

{
1

Gin

[
4 cos2(itot) + (5 cos(2gin)− 1)(1− e2in − cos2(itot))

]
+

cos(itot)

Gout

[
2 + e2in(3− 5 cos(2gin))

]}
, (1.20)

dhin
dt

∣∣∣∣
quad

=
∂⟨Φquad⟩
∂Hin

=− 3C2

Gin sin(iin)

[
2 + 3e2in − 5e2in cos(2gin)

]
sin(2itot). (1.21)

Considering the outer orbit, the construction of the total angular momentum vector by Eq. (1.3)
implies that ∆h = h1 − h2 = π and its conservation preserves this relation at all times, which
is oftentimes referred to as "elimination of the nodes". Hence, we have for the longitude of the
ascending node of the outer orbit

dhout
dt

∣∣∣∣
quad

=
dhin
dt

∣∣∣∣
quad

, (1.22)

while Eq. (1.8) yields for the argument of its periapsis (Naoz et al., 2013a)

dgout
dt

∣∣∣∣
quad

=
∂⟨Φquad⟩
∂Gin

=3C2

{
2 cos(itot)

Gin

[
2 + e2in(3− 5 cos(2gin))

]
+

1

Gout

[
4 + 6e2in + (5 cos2(itot)− 3)(2 + e2in[3− 5 cos(2gin)])

]}
.

(1.23)

In order to include the next-order octupole terms it is useful to simplify the double-averaged
Hamiltonian by eliminating the nodes (given above) by explicitly substituting ∆h→ π, i.e.,

⟨Φ⟩(∆h→ π) =⟨Φquad⟩(∆h→ π) + ⟨Φoct⟩(∆h→ π), (1.24)

where the node eliminated contributions to the Hamiltonian are (Naoz et al., 2013a)

⟨Φquad⟩(∆h→ π) = −C2

{(
2 + 3e2in

) (
3 cos2(itot)− 1

)
+ 15e2in sin

2(itot) cos(2gin)
}
, (1.25)

⟨Φoct⟩(∆h→ π) = −C3eineout
{
A cos(ϕ) + 10 cos(itot) sin

2(itot)(1− e2in) sin(gin) sin(gout)
}
,

(1.26)
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with

C3 = −15

16

G2

4

m9
in

m4
out

m9
3(m1 −m2)

(m1m2)5
L6
in

L3
outG

5
out

, (1.27)

A = 4 + 3e2in −
5

2
B sin2(itot), (1.28)

B = 2 + 5e2in − 7e2in cos(2gin), (1.29)

cos(ϕ) = − cos(gin) cos(gout)− cos(gtot) sin(gin) sin(gout). (1.30)

Using the canonical relations we thus get for the evolution of orbital angular momenta (Naoz
et al., 2013a)

dGin

dt
= −30C2e

2
in sin(2gin) sin

2(itot) + C3eineout

{
−35e2in sin

2(itot) sin(gtot) cos(ϕ)

+ A [sin(gin) cos(gout)− cos(itot) cos(gin) sin(gout)]

+ 10 cos(itot) sin
2(itot)(1− e2in) cos(gin) sin(gout)

}
, (1.31)

dGout

dt
= C3eineout

{
A [cos(gin) sin(gout)− cos(itot) sin(gin) cos(gout)]

+ 10 cos(itot) sin
2(itot)(1− e2in) sin(gin) cos(gout)

}
, (1.32)

while the evolution of their z-components follow from

dHin

dt
=

Gin

Gtot

dGin

dt
− Gout

Gtot

dGout

dt
, (1.33)

dHout

dt
= −dHin

dt
=
Gout

Gtot

dGout

dt
− Gin

Gtot

dGin

dt
. (1.34)

Meanwhile, the arguments of periapse of the inner and outer orbits evolve as (Naoz et al., 2013a;
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Liu et al., 2015)

dgin
dt

= 6C2

{
1

Gin

[
4 cos2(itot) + (5 cos(2gin)− 1)(1− e2in − cos2(itot))

]
+

cos(itot)

Gout

[
2 + e2in(3− 5 cos(2gin))

]}

− C3eout

{
ein

(
1

Gout

+
cos(itot)

Gin

)
×
[
sin(gin) sin(gout)

[
10(3 cos2(itot)− 1)(1− e2in) + A

]
− 5B cos(itot) cos(ϕ)

]
− 1− e2in
einGin

[
10 sin(gin) sin(gout) cos(itot) sin

2(itot)(1− 3e2in)

+ cos(ϕ)(3A− 10 cos2(itot) + 2)
]}

, (1.35)

dgout
dt

= 3C2

{
2 cos(itot)

Gin

[
2 + ein(3− 5 cos 2gin)

]
+

1

Gout

[
4 + 6e2in + (5 cos2(itot)− 3)

[
2 + e2in(3− 5 cos 2gin)

]]}

+ C3ein

{
sin(gin) sin(gout)

[
4e2out + 1

eoutGout

10 cos(itot) sin
2(itot)(1− e2in)

− eout

(
1

Gin

+
cos(itot)

Gout

)[
A+ 10(3 cos2(itot)− 1)(1− e2in)

]]
+ cos(ϕ)

[
5B cos(itot)eout

(
1

Gin

+
cos(itot)

Gout

)
+

4e2out + 1

eoutGout

A

]}
(1.36)

The evolution of the longitude of the ascending node of the inner orbit is given by (Naoz et al.,
2013a; Liu et al., 2015)

dhin
dt

= − 3C2

Gin sin(iin)

[
2 + 3e2in − 5e2in cos(2gin)

]
sin(2itot)

− C3eineout

[
5B cos(itot) cos(ϕ)− A sin(gin) sin(gout)

+ 10(1− 3 cos2(itot))(1− e2in) sin(gin) sin(gout)

]
sin(itot)

Gin sin(iin)
, (1.37)

and the longitude of the ascending node of the outer orbit evolves equally dhout/dt = dhin/dt due
to the conservation of the total angular momentum vector (as discussed above).
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Finally, it is instructive also to consider the evolution of the orbital eccentricities and inclinations
of the orbital axes w.r.t. to the total angular momentum vector which can be calculated from the
Delaunay elements as (Naoz et al., 2013a)

dein(out)
dt

= −
∂ein(out)
∂Gin(out)

∂H
∂gin(out)

, (1.38)

diin(out)
dt

=
1

Gin(out)

[
1

tan(iin(out))

dGin(out)

dt
− 1

sin(iin(out))

dHin(out)

dt

]
, (1.39)

so that the evolution of the relative inclination is given by ditot/dt = diin/dt+ diout/dt.

1.1.2 Quadrupole dynamics

The secular dynamics of a hierarchical triple simplifies if the octupole terms are negligible.
By inspection of Eqs. (1.26) and (1.27) we see that this is the case when the two inner binary
components have comparable masses (m1 ≈ m2) or when the outer orbit is circular (eout ≈ 0),
i.e., when the potential of the outer orbit is axisymmetric.

Neglecting the octupole contribution the magnitude of the outer orbital angular momentum is
constant (Gout = const.) because then ∂H/∂gout = 0. By Eq. (1.38) this also implies that the
eccentricity of the outer orbit remains constant as deout/dt = 0. However, the eccentricity of the
inner orbit and the relative inclination by Eqs. (1.38) and (1.39) evolve as (Naoz et al., 2013a; Liu
et al., 2015)

dein
dt

=30C2
1− e2in
Gin

ein sin
2(itot) sin(2gin), (1.40)

ditot
dt

=
diin
dt

+
diout
dt

, (1.41)

where

diin
dt

=− 15e2in

16tLK
√
1− e2in

sin(2itot) sin(2gin), (1.42)

diout
dt

=− 15e2inLin

8tLK
√
1− e2outLout

sin(2itot) sin(2gin), (1.43)

and

tLK =

(
a3in
Gmin

)1/2(
min

m3

)(
aout
ain

)3 (
1− e2out

)3/2
. (1.44)

Thus, the evolution of ein and itot admit well-defined extrema which occur at gin = nπ/2 (n ∈ Z).
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As an example, we show in Fig. 1.4 the numerical integration of fiducial systems with a circular
outer orbit. It can be seen that the eccentricity of the inner orbit and the relative inclination
can undergo large-amplitude oscillations. The oscillations are particularly large if the orbits are
initialised highly inclined to one another, i.e., close to cos2(itot) = 0. The trajectories shown in
Fig. 1.4 are initialised at gin = 0 and are so-called circulating modes, i.e., the angle argument
of the inner periapse moves over the entire circle where ein and cos2(itot) attain their maxima at
gin = π/2 and 3π/2 and minima at gin = 0 and π.

Fig. 1.5 and 1.6 show that different classes of trajectories are possible if they are initialialised
at a non-zero gin. In that case, librating modes are possible which oscillate around π/2 (or integer-
multiples thereof) where ein and cos2(itot) attain their extrema.

Whether a given system is circulating or librating can be found by checking if Eq. (1.25) admits
a physical solution at gin = 0. If this is not the case, i.e., if Eq. (1.25) can only be solved for
a negative, unphysical eccentricity of the inner binary, then the trajectory must be librating as
it could never reach gin = 0. In turn, the trajectory is circulating if the solution is physical.
In order to identify the limiting trajectory which separates both types of modes and which has
ein(gin = 0) = 0 we rewrite Eq. (1.4) in terms of the initial variables with subscript 0 as (Hamers,
2021)

cos(itot) =
Θ√

1− e2in
− γ
√

1− e2in, (1.45)

where

γ =
Lin

2Gout

, Θ =
√

1− e2in,0 cos(itot,0) + γ(1− e2in,0). (1.46)

Then we observe that Eq. (1.25) simplifies to

⟨Φquad⟩
C2

= 6(Θ− γ)2 − 2. (1.47)

Thus, it is instructive to introduce the quantity

ε =
1

12

[
⟨Φquad⟩
C2

− 6(Θ− γ)2 + 2

]
, (1.48)

which is positive (ε > 0) if the trajectory circulates, and negative (ε < 0) if the trajectory librates.
The prefactor 1/12 is chosen to agree with the original derivation of Lidov (1962).

The maximum and minimum eccentricity of the inner orbit can be found by substituting the
appropriate gin and cos(itot) described by Eq. (1.45) to Eq. (1.25) and solving for ein. This way
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Hamers (2021) finds for the maximum eccentricity on librating as well as circulating modes

j2in,min =
1

12γ2
×


3 + 5γ2 + 8γΘ− 2

√
A sin

(
ϕ
3
+ π

6

)
, if A3 +K2

2 ≥ 0;

3 + 5γ2 + 8γΘ− A
k1

− k1, if A3 +K2
2 < 0 and K2 +

√
K2

2 − A3 < 0;

3 + 5γ2 + 8γΘ− A
k2

+ k2, if A3 +K2
2 < 0 and K2 +

√
K2

2 − A3 > 0;

(1.49)
where

K1 =13γ4 − 16γ3Θ+ 48γΘ+ γ2
(
−23ε+ 4Θ2 − 6

)
+ 9, (1.50)

K2 =35γ6 − 264γ5Θ+ 216γΘ− 3γ4
(
60ε− 146Θ2 + 33

)
− 16γ3Θ

(
18ε+ 13Θ2 + 9

)
− 9γ2

(
12ε− 34Θ2 + 3

)
+ 27, (1.51)

k1 =

(
−K2 −

√
K2

2 −K3
1

)1/3

, (1.52)

k2 =

(
K2 +

√
K2

2 −K3
1

)1/3

, (1.53)

and with the 2-argument acrtangent function ϕ = arctan2(
√
K3

1 −K2
2 , K2). The minimum

eccentricity on librating orbits (ε < 0) is given by (Hamers, 2021)

j2in,max =
1

12γ2

[
3 + 5γ2 + 8γΘ+ 2

√
K1 sin

(
ϕ

3
− π

6

)]
, (1.54)

while for circulating modes (ε > 0) we have

j2in,max =
1

γ2

[
1 + γΘ−

√
1 + 2γΘ− 2γ2 + 2γ2ε+ γ2(Θ− γ)2

]
. (1.55)

A special case of the equations above applies to the so-called (restricted) test particle limit in
which the secondary mass m2 is set to zero. This case has been originally studied by Kozai (1962)
and Lidov (1962) and provides an adequate prescription of, e.g., planets orbiting either one of
the stars of a stellar binary. In that case, γ = 0 and all the angular momentum of the system is
contained in the outer orbit. Eqs. (1.45) and (1.46) yield√

1− e2in,0 cos (itot,0) =
√

1− e2in cos (itot) = const., (1.56)

i.e., the z-component of the specific angular momentum of the inner orbit is a constant. In order
to find the maximum eccentricity the orbit of the test particle we can repeat the steps above
and substitute an appropriate gin to Eq. (1.25) and solve for ein. In particular, let us assume that
the orbit is initially circular, i.e., ein,0 = 0 at gin,0 = 0. Then it is straightforward to evaluate
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⟨Φquad⟩(e = ein,0, gin = gin,0) = ⟨Φquad⟩(e = ein,max, gin = π/2) which yields two physically
possible solutions for the maximum eccentricity

j2in,min = 1− e2in,max =
5

3
cos2(itot,0), (1.57)

and e2in,max = 0 where the orbit stays circular. Since j2in,min must be between zero and one,
Eq. (1.57) is only an applicable solution if cos2(itot,0) < 3/5, i.e., itot,0 must be within the
canonical range of 39.2◦ and 140.8◦ which are referred to as Kozai angles. Thus, in the test-
particle limit eccentricity oscillations of an initially circular orbit are only possible if the inclination
is within the given range of angles.

If the test particle starts on a non-circular orbit ein,0 ̸= 0, we can solve

⟨Φquad⟩(e = ein,0, gin = gin,0) = ⟨Φquad⟩(e = ein,min, gin = 0), (1.58)

⟨Φquad⟩(e = ein,0, gin = gin,0) = ⟨Φquad⟩(e = ein,max, gin = π/2), (1.59)

for ein,min and ein,max, respectively, to get (Antognini, 2015)

j2in,min =
1

6

(
ζ −

√
ζ2 − 60Θ2

)
(1.60)

for librating and circulating modes and where ζ = 3 + 5Θ2 + 2ε. Meanwhile, the minimum
eccentricity on librating trajectories (ε < 0) is given by

j2in,max =
1

6

(
ζ +

√
ζ2 − 60Θ2

)
, (1.61)

while
j2in,max = 1− ε (1.62)

on circulating trajectories.

1.1.3 Octupole dynamics

The octupole terms can become important for the dynamics of a triple if the inner binary
masses significantly differ from each other and if the outer orbit is eccentric. This applies to a
large number of planetary and stellar orbits which are observed to be eccentric (e.g., Naoz et al.,
2011; Moe & Di Stefano, 2017). The dynamical behaviour of a triple due to the octupole terms
becomes more complex and qualitatively different from the quadrupole approximation. In general,
it is chaotic and does no longer exhibit well-defined extrema of the eccentricity evolution. Here,
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Figure 1.4. Quadrupole-order oscillations of the inner orbital eccentricity (upper panels) and
relative inclination (lower panels) as functions of time (left panels) and of inner argument of the
periapse (right panels). The triples have individual masses m1 = m2 = 1M⊙ and m3 = 10M⊙,
semi-major axes ain,0 = 10AU and aout,0 = 200AU, and initial eccentricities ein,0 = 0.1 and
eout,0 = 0. Furthermore, the systems are initialised at gin,0 = 0 and we vary for each color the
initial relative inclination between cos2(itot,0) = 0 and 1, which can be read off the lower left panel
at t = 0yr. The triple dynamics is numerically integrated with an explicit Runge-Kutta method of
order 5(4) (Dormand & Prince, 1978).
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Figure 1.5. Same as Fig. 1.4 but initialised at gin,0 = π/4.
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Figure 1.6. Same as Fig. 1.4 but initialised at gin,0 = π/2.
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we focus on two key properties of the octupole dynamics which are important for massive stellar
triple evolution and refer the reader to Ford et al. (2000); Lithwick & Naoz (2011); Naoz et al.
(2013a); Antognini (2015); Will (2017) for a more detailed analysis.

Firstly, the octupole terms can cause much higher eccentricity values of the inner orbit than in
the quadrupole approximation. This is demonstrated in Fig. 1.7 where we compare the dynamical
evolution of an exemplary stellar-mass triple due to the quadrupole terms (left column) with the
more general case where also the octupole terms are taken into account (right column). We can
see that the former evolution admits eccentricities 1 − ein ∼ O(10−3), whereas in the latter case
it can be as large as 1 − ein ∼ O(10−8). These high-eccentricity excursions are accompanied by
orbital flips where the relative inclination changes from prograde to retrograde (and vice versa)
(Naoz et al., 2011, 2013a).

Secondly, the octupole terms tap a larger parameter space (compared to the quadrupole
approximation) at which significant LK oscillations can occur. In Fig. 1.8 we recover results from
Liu et al. (2015) for a stellar-mass triple and show the maximum inner eccentricity ein,max which
an exemplary triple attains as a function of the initial relative inclination itot,0. If only quadrupole
terms are taken into account, the largest eccentricities are achieved if the orbits are initialised
nearly perpendicular to each other, i.e., cos(itot,0) ≈ 0. Note that if we were to consider the test-
particle case with an initially circular inner orbit (ein,0 = 0) as done at the end of Section 1.1.2
Eq. (1.57) implies that the inner eccentricity gets the largest if the orbits are initialised strictly
perpendicular to each other, i.e., cos(itot,0) = 0. Dropping the assumption of a test particle but
allowing for a non-negligible mass m2 (but with ein,0 = 0) Liu et al. (2015) find that the tertiary
companion induces the largest inner eccentricity if cos(itot,0) = −γ (which reduces to the test
particle result if γ = 0). We can see that this analytic result (dashed vertical line in Fig. 1.8)
agrees well with the location of the maximum of ein,max from the numerical integration (of the
triple which is initialised on a nearly circular inner orbit ein,0 = 0.001, see Figure caption).

Whereas in the quadrupole approximation large inner eccentricities are only achieved within a
narrow window around cos(itot,0) ≈ 0, Fig. 1.8 shows that the eccentricity can take extreme values
for a much wider range of initial relative inclinations if the octupole terms are included. For this
particular triple, we can see that it is the case if |cos(itot,0)| ≲ 0.7. This is in particular important
for a realistic population of massive stellar triples which we will consider in the following chapter.
For those we will assume that the initial relative inclination is drawn from an isotropic probability
density function (Section 2.2). Thus, including the octupole terms increases the fraction of triples
that undergo significant LK oscillations.

J. Stegmann 21



Introduction

Figure 1.7. Exemplary triple evolution. The left column shows the evolution of the relative
inclination and inner eccentricity if only quadrupole terms are included. The right columns shows
the evolution if also the octupole terms are included. The triple is initialised with masses m1 =
10M⊙, m2 = 8M⊙, and m3 = 32M⊙, eccentricities ein,0 = 0.01 and eout,0 = 0.7, semi-major
axes ain,0 = 10AU and aout,0 = 200AU, and orbital angles gin,0 = gout,0 = 200◦, hin,0 = 180◦,
hout,0 = 0, and itot,0 = 95◦.
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Figure 1.8. Maximum eccentricity ein,max as a function of the initial relative inclination itot,0
for an exemplary triple. For the blue line only the quadrupole terms are included, for the orange
line also the octupole terms are taken into account. Whereas the relative inclination is varied
incrementally by steps of 1◦, the triple is always initialised with fixed masses m1 = 20M⊙, m2 =
1M⊙, and m3 = 50M⊙, eccentricities ein,0 = 0.001 and eout,0 = 0.6, semi-major axes ain,0 =
6AU and aout,0 = 80AU, and orbital angles gin,0 = 45◦ and gout,0 = 0◦, hin,0 = 180◦, and
hout,0 = 0◦. The maximum eccentricity is recorded over an integration time of 1Myr.
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1.2 Suppression by short-range forces and gravitational-wave emission

In the previous sections, we derived and investigated the dynamics of hierarchical triples which
are only subject to Newtonian gravity. In a realistic astrophysical triple additional effects may
become important and perturb the "clean" LK dynamics. For stellar triples these effects include
tidal interactions between the inner binary stars, torques between them which arise from their
rotation-induced oblateness, as well as relativistic corrections to the orbital evolution. These
effects are described in more detail in Chapter 2. Here, we discuss how orbital precession induced
by these effects can alter the dynamical evolution of a triple (Section 1.2.1), and investigate how
LK oscillations may drive a merger of compact objects in the inner binary if GW emission is taken
into account (Section 1.2.2). Since these effects become important if the binary is relatively close
we can ignore them for the evolution of the outer orbit.

1.2.1 Precession due to short-range forces

Torques between the inner binary stars that arise from tidal interarctions and their rotation-
induced oblateness cause their periapsis to precess about their orbital axis, i.e., there are finite
extra terms ġin,extra ̸= 0 that add up to the time derivative ġin of the argument of the inner
periapsis described by Eq. (1.35). Likewise, relativistic corrections of the inner orbit referred to as
Schwarzschild precession advance the periapsis further.

If the precession of the inner orbit due to these additional effects is much faster than the
timescale of LK oscillations (cf., Eq. (1.44)), the inner binary gets effectively shielded against the
perturbation from the tertiary companion. As a consequence, the LK effect can get quenched and
oscillations of the eccentricity and relative inclination become suppressed (Fabrycky & Tremaine,
2007; Naoz et al., 2013b; Liu et al., 2015).

As an example, we consider the relativistic Schwarzschild precession which can be written as

dgin
dt

∣∣∣∣
1PN

=
3G3/2m

3/2
in

a
5/2
in c2(1− e2in)

. (1.63)

In Fig. 1.9, we compare the maximum inner eccentricity of a triple when only the triple dynamics
up to the octupole terms are taken into account with its evolution when also Schwarzschild
precession is included. Clearly, the latter drastically suppresses the maxmimum eccentricity that
the inner binary could attain. Due to the strong dependence of Eq. (1.63) on the inner semi-
major axis ain the quenching of the LK oscillations by the Schwarzschild precession can become
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Figure 1.9. Suppression of the maximum eccentricity ein,max by the relativistic Schwarzschild
precession for an exemplary triple. For the blue line only the octupole evolution of the triple is
taken into account, for the orange line also the Schwarzschild precession is considered. The triple
parameters and total integration time are as in Fig. 1.8 except for ain,0 = 0.5AU and aout,0 =
50AU.

important only when the inner binary is relatively tight. Similar findings hold for precession induced
by tidal interactions and quadrupolar deformation of the stars (see Chapter 2).

1.2.2 Gravitational-wave emission from the inner binary

In general relativity, two masses that orbit each other as a binary emit GWs (Einstein, 1918)
which carry away orbital energy and angular momentum. As a consequence, the semi-major axis a
and eccentricity e of the binary orbit decay, i.e., the orbit inspirals and circularises, respectively, at

J. Stegmann 25



Introduction

rates that can be written as (Peters, 1964)

da

dt

∣∣∣∣
GW

= −64

5

G3µm2

c5a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
, (1.64)

de

dt

∣∣∣∣
GW

= −304

15

G3µm2e

c5a4(1− e2)5/2

(
1 +

121

304
e2
)
, (1.65)

where m and µ are the total mass and reduced mass of the binary, respectively. If the binary is in
isolation and other effects could be neglected it would thus coalesce after a finite time τcoal which
can be found by integrating Eqs. (1.64) and (1.65) yielding

τcoal = 3.211× 1017 yr
( a

AU

)4(M⊙

m

)2(
M⊙

µ

)
F (e), (1.66)

where

F (e) =
48

19

1

g4(e)

∫ e

0

g4(e′)(1− e2)5/2

e′(1 + 121
304
e′2)

de′ (1.67)

can be evaluated numerically using g(e) = e12/19(1− e2)−1(1 + 121e2/304)870/229. For instance, an
equal-mass mass binary with m1 = m2 = 30M⊙ would only merge within τcoal < 10Gyr if it is
initially closer than ain,0 ≲ 0.1AU.

The r.h.s. of Eqs. (1.64) and (1.65) strongly depend on the eccentricity of the orbit and diverge
for e → 1. If the binary is not in isolation but perturbed by a distant tertiary companion, the
high-eccentricity excursions in the LK mechanism can therefore effectively reduce the merger
time compared to Eq. (1.66). Equivalently, a binary that gets significantly perturbed by a tertiary
companion could merge within a given time even if starts from larger values of the initial semi-
major axis. As an example, we show in Fig. 1.10 the evolution of exemplary binaries with and
without tertiary companion. Within the given integration time of 5× 107 yr only the binary starting
with an initial semi-major axis a0 = 10−2AU merges in the isolated case. Yet, placing the binaries
in a triple allows the two systems with the largest initial semi-major axis ratios α = ain,0/aout,0,
i.e, those with ain,0 = 101 (orange) and ain,0 = 102AU (blue), to merge as well. Their evolution
is characteristic for two classes of tertiary-driven mergers. In the former case, mild eccentricity
excitations one after another gradually decrease the semi-major axis until the inner binary enters
a regime (after t ≃ 2 – 3 × 107 yr) where further perturbation from the tertiary companion
is suppressed by the Schwarzschild precession and the binary merges due to GW emission. In
contrast, the latter case exhibits much higher eccentricity excitations. As a consequence, the
GW emission during one or a few high-eccentricity excursions is strong enough to promote a
quick merger, which is oftentimes referred to as a "one-shot merger". Meanwhile, the binaries
with initial semi-major axes of 10−1 and 100AU are neither tight enough to merge within the
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Figure 1.10. Binary evolution towards a merger. These simulations include Schwarzschild
precession and GW emission (dashed lines). Solid lines also take the octupole perturbation from
a tertiary companion into account. Between different colours we vary the initial semi-major axis
of the binary from 10−2 to 102AU. The other parameters are the same in each simulation: fixed
masses m1 = 30M⊙, m2 = 20M⊙, and m3 = 30M⊙, initial eccentricities ein,0 = 0.001 and
eout,0 = 0.3, outer semi-major axis aout,0 = 500AU, and orbital angles gin,0 = 45◦ and gout,0 = 0◦,
hin,0 = 180◦, and hout,0 = 0◦.

integration time due to GW emission in isolation nor is their semi-major axis ratio α large enough
to experience significant LK oscillations that could promote a merger.

The evolution in which a binary undergoes a tertiary-driven merger is referred to as the triple
(formation) channel and has been studied in the context of double compact objects (DCO), i.e.,
BBHs, BNSs, or neutron star black hole binaries (NSBHs), which are accompanied by another
stellar component or that orbit a super-massive BH perturber (e.g., Blaes et al., 2002; Thompson,
2011; Antonini & Perets, 2012; Antonini et al., 2014; Prodan et al., 2015; Bonetti et al., 2016;
Silsbee & Tremaine, 2017; Liu & Lai, 2017, 2018; Antonini et al., 2018; Rodriguez & Antonini,
2018; Grishin et al., 2018; Hoang et al., 2018, this work).
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1.3 Thesis structure

The main goal of this thesis is to combine the gravitational dynamics of hierarchical triples
with stellar physics to study the evolution of massive stellar triples. For this purpose, we introduce
a numerical framework which simultaneously takes into account the gravitational triple dynamics
and relevant aspects of the evolution of massive stars, such as stellar winds, supernova (SN)
kicks, binary mass transfer, and tidal interactions. This framework allows us to rapidly evolve
a population of massive stellar triples from birth until they possibly form DCOs and subsequently
merge leading to a GW event.

In Chapter 2, we describe in detail the numerical framework which has been implemented as a
Triple Stellar Evolution code TSE∗. We explain all dynamical and stellar physical effects that are
taken into account. We use this code to evolve a population of massive stellar triples and study
their various evolutionary pathways. Thus, the focus of Chapter 2 will be the stellar evolution of
the triples, i.e., the time from the zero-age-main-sequence (ZAMS) until the possible formation of
compact objects or an otherwise terminating event.

In Chapter 3, we focus on stellar triples in which the inner binary stars merge before they could
form any compact object. We carefully consider the subsequent post-merger evolution of the
merger product stars and the tertiary companions. We find that these two stars can lead to the
formation of merging BBHs. We investigate the properties of the merging BBHs which are formed
via this newly proposed formation channel and compare them with the parameter distributions
inferred from GW observations.

In Chapter 4, we are considering a topic which is not exclusively relevant to stellar triples, but
to the evolution of massive multiple stars in general. Here, we are investigating the dynamical
evolution of the rotational angular momentum vectors (spins) of massive stars which are transferring
mass to their binary companion. We find that, in some models, the spin vector of the mass
loosing star becomes smaller in magnitude and is flipping onto the orbital plane of the binary.
We are discussing the significance of this effect in light of competing effects such as tides and
investigate implications for the formation of BBHs.

Finally, we summarise and discuss the findings of this thesis in Chapter 5.

Large parts of this thesis, especially Chapters 2 – 5 have been to a great extent adopted word-
by-word from published work, Stegmann et al. (2022b), Stegmann et al. (2022a), and Stegmann
& Antonini (2021), respectively, which were devised, conducted, and written by the author of this
thesis.

∗Publicly available at: https://github.com/stegmaja/TSE
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If not stated differently, the magnitude, unit vector, and time derivative of some vector V are
written as V = |V |, V̂ = V /V , and V̇ = dV /dt, respectively. G and c refer to the gravitational
constant and the speed of light, respectively. The value of solar metallicity is set to Z⊙ = 0.02.
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Chapter 2

Evolution of massive stellar triples

In the previous chapter, we have considered the dynamics of three hierarchical point masses which
are subject to Newtonian gravity. We have seen that the mutual gravitational interaction can lead
to large-amplitude LK oscillations of the eccentricities and relative inclination of the inner and
outer orbit of the triple. As a consequence, the periapsis ain(1− ein) of the inner binary can assume
very small values so that the two inner binary masses approach each other very closely.

Considering massive stellar triples, the tertiary companion could enrich the variety of evolutionary
pathways in the inner binary by driving it to close stellar interactions (Toonen et al., 2016, 2020).
Yet, simulating the evolution of massive stellar triples poses a difficult challenge since the stellar
physics of each individual star and the gravitational three-body dynamics have to be combined
in a self-consistent way. For massive stars both of these aspects are closely intertwined. For
instance, kicks experienced in the SN explosions modify and potentially disrupt the three-body
configuration. Likewise, massive stars at high metallicity suffer significant mass loss through stellar
winds that loosen the inner and outer orbits (Castor et al., 1975; Vanbeveren, 1991; Vink et al.,
2001; Schneider et al., 2015; Mapelli, 2016). It has been shown that mass loss in the inner binary
due to winds or at compact object formation could induce or strengthen the LK effect (Shappee
& Thompson, 2013; Michaely & Perets, 2014). In addition, massive stars attain large radii as they
evolve off the main-sequence (MS) and beyond, so that RLO and mergers are expected to occur
frequently in isolated massive binaries (Bonnell & Bate, 2005; Eldridge et al., 2008; Sana et al.,
2012; Schneider et al., 2021). For example, more than 70% of Galactic massive O-type stars are
expected to undergo at least one mass transfer episode with their binary companion (Sana et al.,
2012).

In this chapter, we introduce the code TSE that follows the secular evolution of hierarchical
stellar triples from the ZAMS until they possibly form compact objects. TSE builds upon the most
updated prescriptions of the widely-adopted single and binary evolution codes SSE (Hurley et al.,
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2000) and BSE (Hurley et al., 2002), respectively, and employs the secular three-body equations of
motion up to the octupole order with relativistic corrections up to the 2.5 post-Newtonian order.
Thus, TSE complements previous population synthesis codes which are designed to evolve stellar
triples or higher-order configurations, e.g., MSE (Hamers et al., 2021) and TrES (Toonen et al.,
2016). TSE provides an evolution scheme for the stellar masses, radii, orbital elements, and spin
vectors. Here, we apply this code to a population of massive stellar triples to study their evolution
until they form a DCO in the inner binary.

2.1 Methods

2.1.1 Triple dynamics

In this section, we describe the numerical method we use to study the long-term evolution of
hierarchical stellar triples. Compared to the triple dynamics discussed in Chapter 1, we modifiy the
description in two ways.

At first, the triples are no longer treated as a collection of three point masses. Instead, we
associate with each of the stars a finite radius R1(2)(3). The evolution of each individual star
makes R1(2)(3) = R1(2)(3)(t) functions of time which, in the case of massive stars, typically span
several orders of magnitude over a timescale of a few ∼ Myr. Furthermore, a star with a finite
radius can carry some rotational angular momentum (spin) vector S1(2) with magnitude

S1(2) = κm1(2)R
2
1(2)Ω1(2), (2.1)

where Ω1(2) is the angular velocity of the rotating star and we set κ = 0.1 (Motz, 1952). As we
will see below, taking finite stellar radii and spins into account does affect the stellar evolution
and gravitational dynamics of the triples. For instance, a star with an expanded radius may start
to transfer mass to the binary companion, or in the case of an expanded tertiary companion, to
the inner binary. Additionally, introducing a spin angular momentum to the inner binary stars
affects the way how they could torque each other and their orbit via tidal interactions. Since tidal
interactions are ineffective between stars at a large distance, we do not consider the effect of the
spin of the distant tertiary companion S3.

Secondly, we opt to describe the orbital evolution in terms of the dimensionless orbital angular
momentum vector jin(out) and eccentricity vector ein(out) instead of the Delaunay elements. They
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are defined as (e.g., Tremaine et al., 2009)

jin(out) =
√

1− e2in(out)ĵin(out), (2.2)

ein(out) = ein(out)êin(out), (2.3)

where ĵin(out) and êin(out) are orthogonal unit vectors pointing along the orbital angular momentum
Gin(out) and the pericentre, respectively. In Chapter 1 it was instructive to consider the orbital
evolution of the three hierarchical point masses in terms of their Delaunay elements because then,
the LK oscillations take a relatively simple form. This simplicity relies on the fact that the total
angular momentum vector Gtot is constant in the case of Newtonian point masses. In the case
of stellar triples Gtot is in general not conserved. As we will see, a large variety of additional
effects can alter Gin(out) independently from each other so that Gtot ̸= const. For example, the
masses of the three stars are neither constant as they suffer mass loss through stellar winds or
transfer mass from one to another, and a star could receive strong natal kicks in the event of a
core-collapse SN.

While it is possible to transform the equations of motion of the Delaunay elements to the
non-inertial frame that is defined by a rotating Gtot (e.g., Blaes et al., 2002), we find it more
convenient to equivalently express the stellar triple dynamics in terms of the dimensionless orbital
angular momentum vector jin(out) and eccentricity vector ein(out).

In this formalism, the secular equations of motion for the inner orbit, jin and ein, its semi-
major axis ain, and the spin vectors S1(2) can be written as (e.g., Anderson et al., 2016)

djin
dt

=
djin
dt

∣∣∣∣
LK,Quad

+
djin
dt

∣∣∣∣
LK,Oct

+
djin
dt

∣∣∣∣
Tide

+
djin
dt

∣∣∣∣
Rot

+
djin
dt

∣∣∣∣
1.5PN

+
djin
dt

∣∣∣∣
GW

, (2.4)

dein

dt
=

dein

dt

∣∣∣∣
LK,Quad

+
dein

dt

∣∣∣∣
LK,Oct

+
dein

dt

∣∣∣∣
Tide

+
dein

dt

∣∣∣∣
Rot

+
dein

dt

∣∣∣∣
1PN

+
dein

dt

∣∣∣∣
1.5PN

+
dein

dt

∣∣∣∣
GW

, (2.5)

dain
dt

=
dain
dt

∣∣∣∣
Tide

+
dain
dt

∣∣∣∣
Mass

+
dain
dt
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GW

, (2.6)

dS1(2)

dt
=

dS1(2)

dt

∣∣∣∣
Tide

+
dS1(2)

dt

∣∣∣∣
Rot

+
dS1(2)

dt

∣∣∣∣
Mass

+
dS1(2)

dt

∣∣∣∣
1PN

, (2.7)

where the quadrupole (LK,Quad) and octupole (LK,Quad) contributions to the LK effect have
been discussed in Chapter 1 and in its vectorial form are given by Eqs. (17) – (20) of Liu et al.
(2015). The remaining terms on the r.h.s. are described in the following subsections. Treating
the spins of the inner binary stars as vector quantities and including a vectorial prescription of
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tides, de Sitter precession, and Lense-Thirring precession (see below) is one main difference of TSE
compared to previous population synthesis codes.

Tidal interaction (Tide)

In close binaries, the mutual gravitational interaction between the stars raises tidal bulges on
their surfaces (e.g., Hut, 1981; Zahn, 1989; Eggleton et al., 1998). The viscosity of the internal
motion within the stars prevents these bulges to instantaneously align with the interstellar axis
while dissipating kinetic energy into heat. Thus, the tilted tidally deformed stars torque each other
leading to an exchange of rotational and orbital angular momentum. Generally, the strength of
this interaction can be quantified in terms of a small lag time constant τ by which the tidal bulges
lag behind or lead ahead the interstellar axis (Hut, 1981). In this work, τ is set to 1 s (Anderson
et al., 2016). The full equations of motion for ein, S1(2), ain, and jin in Eqs. (2.4) – (2.7) (Tide)
are adopted from Eqs. (21), (22), and (56) of Correia et al. (2011). Accordingly, the direction
of the angular momentum flow and consequently the change of ein and ain depend on the ratio
between orbital mean motion nin = 2π/Pin and the spin rotation rate along the orbital normal
Ω1(2) · ĵin (Correia et al., 2011)

L̇in ∝
∑
i=1,2

[
f5(ein)

j9in

Ωi · ĵin
nin

− f2(ein)

j12in

]
, (2.8)

ėin
ein

∝
∑
i=1,2

[
11

18

f4(ein)

j10in

Ωi · ĵin
nin

− f3(ein)

j13in

]
, (2.9)

ȧin
ain

∝
∑
i=1,2

[
f2(ein)

j12in

Ωi · ĵin
nin

− f1(ein)

j15in

]
, (2.10)

where the polynomials f1,2,...,5(ein) are given in Appendix A.1. In our simulation, the initial rotational
periods of the stars are typically a few days long, 1/Ω1(2) ∼ O(days), which is much shorter or,
at most, roughly equal to the initial orbital period (see Section 2.2). Unless the stellar spins are
retrograde (Ω̂1(2) · ĵin < 0), we can therefore expect that tides cause angular momentum to initially
flow from the stellar rotation to the inner orbital motion and the eccentricity and semi-major axis
to increase. Tides operate to circularise and contract the orbit only after the angular momentum
flow peters out around Ωi · ĵin/nin = f2/f5j

3
in for which the r.h.s. of Eq. (2.8) becomes zero and of

Eqs. (2.9) and (2.10) negative for any eccentricity value 0 < ein < 1 (Correia et al., 2011).

Furthermore, the torques exerted on the static tidal bulges induce a precession of ein about ĵin

34 On the Evolution of Massive Stellar Triples



Methods

on a timescale

tTide = 1
/∑

i=1,2

15kAnin

m(i−1)

mi

(
Ri

ain

)5
f4(ein)

j10in
, (2.11)

where kA = 0.014 is the classical apsidal motion constant (Fabrycky & Tremaine, 2007) and
which is usually much shorter than the time by which tides could circularise the orbit.

The tidal description outlined above is more appropriate for stars with deep convective envelopes.
Following Hurley et al. (2002), we include in TSE a different tidal mechanism for stars which
have a radiative envelope. In this case, the dominant tidal forces are dynamical and emerge from
stellar oscillations which are excited by the binary companion (Zahn, 1975, 1977). In that case,
we parameterise the tidal strength by the lag time (Hut, 1981)

τ1(2) =
R1(2)

Gm1(2)T1(2)
, (2.12)

where

kA
T1(2)

=1.9782× 104
(
m1(2)

M⊙

)(
R1(2)

R⊙

)2(
R⊙

ain

)5(
1 +

m2(1)

m1(2)

)5/6 E2,1(2)

yr
(2.13)

and

E2,1(2) ≃ 10−9

(
m1(2)

M⊙

)2.84

. (2.14)

Following Hurley et al. (2002) the code applies dynamical tides for all MS stars with a mass
greater than 1.25 M⊙, core Helium Burning stars, and naked helium MS stars.

The coefficient E2 is related to the structure of the star and refers to the coupling between
the tidal potential and gravity mode oscillations. Its value is difficult to estimate since it is very
sensitive to the structure of the star and therefore to the exact treatment of stellar evolution.
Importantly, the equations of motion (2.11) were developed in Hut (1981) under the assumption
that the tides reach an equilibrium shape with a constant time lag. These equations hold for very
small deviations in position and amplitude with respect to the equipotential surfaces. Thus, we
caution that dynamical tides, where the stars oscillates radially, are not properly described by the
constant time-lag model. At every periastron passage, tidal stretching and compression can force
the star to oscillate in a variety of eigenmodes. The excitation and damping of these eigenmodes
can significantly affect the secular evolution of a binary orbit (Wu, 2018; Vick & Lai, 2019; Vick
et al., 2019).

Because the physics of stellar tides is much uncertain and the efficiency of tides itself is debated,
in the simulations presented here we consider two choices. In our fiducial models we opt for a
simplified approach in which we employ the equilibrium tide equations for all stars with a constant
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τ = 1 s, thus encapsulating all the uncertainties related to tides in this constant factor. In another
set of models (Incl. dyn. tides), we follow the approach of Hurley et al. (2002) and use
either equilibrium or dynamical tides depending on the stellar mass and type as described above.

We find that our main results are not significantly affected by the implementation of dynamical
tides in the code. In Section 3.2, we will therefore primarily focus on our fiducial choice with
constant τ = 1 s.

Rotational distortion (Rot)

The rotation of each star distorts its shape from spherical symmetry which induces a quadrupole
moment. As a result, the binary stars torque each other yielding (e.g., Eggleton & Kiseleva-
Eggleton, 2001)

dein

dt

∣∣∣∣
Rot

=
∑
i=1,2

kAm(i−1)R
5
i

2ninµina5in

ein
j4in

{[
2
(
Ωi · ĵin

)2
− (Ωi · q̂in)

2 − (Ωi · êin)
2

]
q̂in

+ 2 (Ωi · q̂in)
(
Ωi · ĵin

)
ĵin

}
, (2.15)
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dSi

dt

∣∣∣∣
Rot

, (2.17)

where q̂in = ĵin × êin. Analogously to the tidal torques, the first term in the bracket of Eq. (2.15)
causes the inner orbit’s periapsis to precess about ĵin on a timescale

tRot = 1
/∑

i=1,2

kAm(i−1)R
5
i

2ninµina5inj
4
in

. (2.18)

Mass-loss (Mass)

During its lifetime, the mass of a star can substantially decrease as a result of, e.g., stellar winds
(Hurley et al., 2000) and the explosive mass loss in a SN (Blaauw, 1961). If the mass loss of the
star is isotropic its spin simply changes as (cf., Eq. (2.1))

dS1(2)

dt

∣∣∣∣
Mass

= S1(2)

ṁ1(2)

m1(2)

, (2.19)
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where ṁ1(2) = dm1(2)/dt ≤ 0 is the mass loss rate. While the stars lose mass, the specific orbital
angular momentum Gin/µin is conserved. Hence, the semi-major axis of the inner orbit changes as
(cf., Eq. (1.1))

dain
dt

∣∣∣∣
Mass

= −ain
ṁin

min

, (2.20)

where ṁin = ṁ1 + ṁ2, i.e., mass loss loosens the binary since ṁin < 0 implies dain/dt > 0.

Schwarzschild and de Sitter precession (1PN)

At first post-Newtonian order relativistic effects cause the eccentricity vector ein of the inner orbit
to precess about the orbital axis ĵin as

dein

dt

∣∣∣∣
1PN

=
ein
t1PN

q̂in, (2.21)

where we defined the associated timescale

t1PN =
c2a

5/2
in j2in

3G3/2m
3/2
in

. (2.22)

This apsidal precession is referred to as Schwarzschild (1916) precession. Also at first post-Newtonian
order, we have the de Sitter precession of the stellar spins S1(2) that are parallel-transported along
the orbit

dS1(2)

dt

∣∣∣∣
1PN

=
S1(2)

tS1(2)

ĵin × Ŝ1(2), (2.23)

where

tS1(2)
=

c2ainj
2
in

2Gµinnin

[
1 +

3m2(1)

4m1(2)

]−1

. (2.24)

Lense-Thirring precession (1.5PN)

At 1.5 post-Newtonian order, the spins of the inner binary members back-react on the orbit
inducing a frame-dragging effect. As a result, the orbit changes as (Barker & O’Connell, 1975;
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Rodriguez & Antonini, 2018)

dein

dt

∣∣∣∣
1.5PN

=
2G

c2

∑
i=1,2

Siein
a3inj

3
in

(
1 +

3m(i−1)

4mi

)
×
[
Ŝi − 3(Ŝi · ĵin)

]
êin, (2.25)
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Si
a3inj

2
in

(
1 +

3m(i−1)

4mi

)
Ŝi × ĵin. (2.26)

The precessional term on the r.h.s. of Eq. (2.21) is larger than that of Eq. (2.25) by a factor
∼ L12/S1(2) > 1 for the stellar systems we are interested in.

Gravitational waves (GW)

As described in Chapter 1, GW emission from the inner binary carry away orbital energy and
angular momentum. As a consequence, the inner orbit decays and circularises. This dissipation
effect can be included in the vectorial Eqs. (2.4) and (2.5) as (Rodriguez & Antonini, 2018)

dein

dt

∣∣∣∣
GW

=
dein
dt
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GW

ein, (2.27)

djin
dt

∣∣∣∣
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= − dein
dt
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GW

ein
jin

ĵin, (2.28)

where dein/dt|GW is given by Eq. (1.65) and the inner semi-major axis changes according to
Eq. (1.64).

Outer orbit evolution

For the evolution of the outer orbit we can safely neglect the relativistic effects and the torques
emerging from the tides and stellar rotations since they are suppressed by the larger semi-major
axis aout. The evolution is thus solely given by

djout
dt

=
djout
dt

∣∣∣∣
LK,Quad

+
djout
dt

∣∣∣∣
LK,Oct

, (2.29)

deout

dt
=

deout

dt

∣∣∣∣
LK,Quad

+
deout

dt

∣∣∣∣
LK,Oct

, (2.30)

daout
dt

=
daout
dt

∣∣∣∣
Mass

, (2.31)
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where the LK terms are given by Eqs. (17) – (20) of Liu et al. (2015) and the mass loss term is,
analogously to Eq. (2.20), given by

daout
dt

∣∣∣∣
Mass

= −aout
ṁout

mout

, (2.32)

Thus, we also do not follow the spin evolution of the outer companion. Together, Eqs. (2.4) –
(2.7) and (2.29) – (2.31) constitute a coupled set of twenty differential equations (vectorial
quantities counting thrice) which we numerically integrate forward in time. Simultaneously, we
keep track of the evolution of the stellar masses and radii, m1(2)(3) = m1(2)(3)(t) and R1(2) =

R1(2)(t), respectively. This is governed by the rich stellar physics describing the coevolution of the
three massive stars that we implement as described in the following section.

2.1.2 Stellar evolution

In the following, we describe our treatment of stellar evolution. By default, the stars are evolved
using the public stellar evolution code Single Stellar Evolution (SSE, Hurley et al., 2000).
We modified this code to include up-to-date prescriptions for stellar winds, BH formation, and
SN kicks and we couple it to the equations above to account for the dynamical evolution of the
system.

We use metallicity-dependent stellar wind prescriptions (Vink et al., 2001). These are the same
stellar evolution subroutines currently employed in other binary population synthesis codes (e.g.,
Belczynski et al., 2016c; Breivik et al., 2020). With these modifications, TSE reproduces the mass
distribution for single BHs adopted in recent studies of compact object binary formation from
field binaries and clusters (e.g., Belczynski et al., 2020; Rodriguez et al., 2016a; Banerjee et al.,
2020; Antonini & Gieles, 2020). Optionally, TSE takes a mass loss dependency on the electron-
scattering Eddington factor into account (Gräfener & Hamann, 2008; Gräfener et al., 2011; Vink
et al., 2011; Vink, 2017; Giacobbo et al., 2018).

In TSE, the initial radius of each star is given by SSE where it is calculated from the initial mass
and metallicity as in Hurley et al. (2000). By default, the initial spin for each star is taken also
to be consistent with the adopted value in SSE where the equatorial speed of ZAMS stars is set
equal to (Lang, 1992)

vrot,1(2) = 330km s−1

(
m1(2)

M⊙

)3.3
[
15 +

(
m1(2)

M⊙

)3.45
]−1

, (2.33)

so that the initial spin frequency becomes Ωi = vrot,1(2)/R1(2). For this work, the spins are
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assumed to be initially aligned with the orbital angular momentum of the binary.

When a star evolves to become a NS or a BH, the remnant radius is set to zero, and its mass
is immediately updated. In TSE, the model adopted for the remnant masses is set by the code
parameter nsflag. If nsflag = 1 the BH and NS masses are computed as in Belczynski et al.
(2002); if nsflag = 2 the BH and NS masses are computed as in Belczynski et al. (2008); if
nsflag = 3 they are given by the “rapid” SN prescription described in Fryer et al. (2012); and if
nsflag = 4 they are described by the “delayed” SN prescription also from Fryer et al. (2012).

Given the large uncertainties in the natal kick velocities of BHs, we adopt three different
models for their distributions. We assume that kick velocities are randomly oriented, then the
assumed model for the BH kick velocity magnitude is set by the code parameter bhflag. If
bhflag = 0 the natal kicks of all BHs and NSs are set to zero. In any other case we assume
that NS kicks follow a Maxwellian distribution with dispersion σ = 265km s−1 (Hobbs et al.,
2005). If bhflag = 1, the BHs receive the same momentum kick as NSs, i.e., the BH kick
velocities are lowered by the ratio of NS mass (set to 1.5M⊙) to BH mass. We will refer to them
as "proportional" kicks. If bhflag = 2 we assume that the BH kicks are lowered by the mass that
falls back into the compact object according to

vk = vk,natal(1− ffb), (2.34)

where ffb is the fraction of the ejected SN mass that falls back onto the newly formed proto-
compact object, which is given by the assumed SN mechanism set by the parameter nsflag.

What we are interested in is the change to the orbital elements due to the mass loss and natal
kicks as the stars evolve towards their final states. When a remnant is formed, we extract the
velocity of the natal kick from the adopted prescription. The kick is then self-consistently applied
to the orbital elements of the system following Pijloo et al. (2012). Briefly, we draw a random
phase from the mean anomaly and then apply the instantaneous kick, vk, to the initial velocity
vector of that component, v0. Thus, the new angular momentum and eccentricity vectors (using
the new orbital velocity vector and the same orbital position vector) are given by

jnew =
rin × vnew√
mnewanew

(2.35)

and
enew =

1

Gmnew

(vnew × jnew)−
rin
rin
, (2.36)
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where mnew is the new total mass of the binary and vnew = v0 + vk. The new semi-major axis is

anew =

(
2

rin
− v2new
Gmnew

)−1

. (2.37)

If the kicks occur in one of the inner binary components, we must also take care of the kick
imparted on the centre of mass of the binary. Thus, the change in the centre of mass velocity of
the inner binary is explicitly calculated. This change is then added to the velocity arising from the
BH natal kick, and applied as vnew to the outer binary (e.g., Lu & Naoz, 2019). As a result, the
orientation of the orbital plane changes. Meanwhile, it is uncertain if the spin orientation of the
compact remnants changes as well. For young pulsars, Noutsos et al. (2012, 2013) found evidence
that the spins align with their proper motion which could be explained by NS natal kicks defining
a preferred direction for the subsequent angular momentum accretion of fallback material (Janka
et al., 2022). Thus, the spin-kick correlation is expected to be stronger for higher natal kicks.
Here we adopt the assumption made in the literature that natal kicks leave the spin orientations
unchanged (e.g., Pijloo et al., 2012; Rodriguez et al., 2016b; Rodriguez & Antonini, 2018; Lu &
Naoz, 2019).

2.1.3 Mass transfer

If a star is bound to a close companion, it can experience a set of binary interactions, including
accretion of mass. Accretion onto a companion star can occur during either RLO or when material
is accreted from a stellar wind. We describe below our simplified treatment of these two possible
modes of accretion.

Wind accretion

The material ejected as a wind can be partly accreted by the companion star, or self-accreted by
the donor star itself. Because of gravitational focusing, the accretion cross-section is generally
much larger than the geometric cross-section of the accretor and it is often expressed by the
Bondi-Hoyle accretion radius (Bondi & Hoyle, 1944)

Racc =
2Gmacc

v2
(2.38)

with macc the accretor mass and v the relative velocity between the wind and the accretor star.
For a mass loss rate ṁwind and a spherically symmetric wind, the accretion rate is given by (Boffin,
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2015)

ṁacc = −ṁwind

(
macc

mdon +macc

)2(
vorb
vwind

)4

(2.39)

where mdon is the donor mass, vorb is the orbital velocity, and vwind is the wind velocity.

The accretion process will affect the mass and spin of the stars, as well as the orbital parameters
of the triple, e.g., Eqs. (2.20) and (2.32). However, its formulation presents a number of difficulties.
First, when the wind mass losing star is the tertiary we should take into account that accretion
occurs onto a binary rather than a single object, and there is no simple prescription to describe
this (cf., Antoni et al., 2019). Moreover, there are major uncertainties in modeling the evolution
of the binary orbit and stellar spins due to wind accretion, which would require careful geometrical
considerations of how the mass flow is ultimately accreted onto the star surface (Mastrodemos &
Morris, 1998; de Val-Borro et al., 2009; Perets & Kenyon, 2013). Fortunately, massive stars are
characterised by high wind velocities, typically a few thousand km s−1 (Prinja, 1992; Crowther,
2001). Moreover, both the inner and outer orbit of the progenitors of compact object triples tend
to be relatively wide – in order to avoid a merger of the inner binary during an episode of unstable
mass transfer and to guarantee dynamical stability. Thus, the last factor in Eq. (2.39) generally
makes the accretion rate several orders of magnitude smaller than the mass loss rate. Because
in the systems we consider, wind-accretion tends to be of secondary importance and much less
important than accretion by atmospheric RLO, we proceed in what follows with the assumption
that changes in mass and angular momentum from material gained by a wind can be ignored, i.e.,
we set ṁacc = 0. We redirect the reader to Hamers et al. (2021) for an approximate treatment of
wind accretion in triples and higher multiplicity systems.

Roche-lobe overflow

If one of the stars in the inner binary overflows its Roche-lobe, matter can move through the first
Lagrangian point and be accreted by the companion star. We assume that RLO begins when the
stellar radius of an inner binary component satisfies (Eggleton, 1983)

R1(2) >
0.49

[
m1(2)/m2(1)

]2/3
ain(1− ein)

0.6
[
m1(2)/m2(1)

]2/3
+ ln

{
1 +

[
m1(2)/m2(1)

]1/3} . (2.40)

The theory of RLO is based on two stars in a circular orbit in which complete corotation has been
achieved (Eggleton, 1983). The modelling of mass transfer in eccentric orbits is the subject of
ongoing research (Dosopoulou & Kalogera, 2016b; Hamers & Dosopoulou, 2019), but remains an
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elusive subject overall. For want of a more detailed treatment, when condition (2.40) is met we
evolve the binary using the binary stellar evolution analogous to SSE, the code Binary Stellar

Evolution (BSE, Hurley et al., 2002). Here, the binary is subject to instant synchronisation and
circularises on the tidal friction timescale. The various parameters that enter in the equations of
motion of the binary (e.g., K, kA, τ) are chosen to be consistent with those used in Eqs. (2.4) –
(2.7). During the entire episode of mass transfer we neglect the dynamical influence of the tertiary.

Although necessarily approximate, our approach is in most cases adequate because tides generally
act on a time-scale shorter than the secular evolution time-scale of the triple, quenching the
dynamical influence of the tertiary star. For example, using Eq. (1.44) it is easy to show that
for equal mass components, the precession of the inner binary periapsis due to tidal bulges will
fully quench the LK oscillations for any aoutjout/ain ≳ 10j3in/ [f4(1− ein)

5]
1/3, where f4 = f4(ein)

is a polynomial given in Appendix A.1. Moreover, when mass transfer begins at high eccentricities,
dissipative tides can become dominant very quickly, circularising the orbit and thereby reducing
the dynamical effect of the tertiary.

Finally, we assume that the tertiary star overfills its Roche-lobe when (cf., Eq. (2.40))

R3 >
0.49qout

2/3

0.6qout2/3 + ln {1 + qout1/3}
aout(1− eout). (2.41)

Currently, we do not try to model mass transfer from the tertiary to the inner binary. Thus, if the
previous condition is satisfied, we simply stop the integration.
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Figure 2.1. Examples of the evolution of three stellar triples. Vertical dashed lines and grey shaded regions indicate the time of
compact object formation and episodes of mass transfer in the inner binary, respectively. The initial parameters of the three triples are
given in Appendix A.2.
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2.1.4 Coupling stellar evolution and dynamics

In the code presented in this work, stellar evolution and dynamics are coupled by using the
following numerical treatment.

Because we neglect wind mass accretion, the mass and radius of each star will evolve as if
they were isolated, at least until the next RLO episode occurs. Thus, we start by setting a final
integration time and compute the evolution of the stellar masses and radii using SSE until this
final time is reached. Simultaneously, we use these masses and radii as a function of time in
Eqs. (2.4) – (2.7) to determine the evolution of the stellar orbits and spins. During the integration
of the equations of motion we check whether any of the stars forms a compact object. If they do,
we calculate the natal kick according to the adopted prescriptions and compute the effect of the
kick on the inner and outer orbits.

Due to its lower binding energy the outer orbit is more vulnerable to disruptions than the inner
one. As a consequence, there are some SN kicks which destroy the outer orbit while leaving the
inner orbit intact, i.e., the inner binary loses its tertiary companion. In this case, we continue the
evolution of the remaining orbit with BSE.

During the evolution, we check whether the system undergoes a phase of RLO. If mass transfer
does not occur at any point during the evolution, the dynamical equations of motion are simply
integrated until the required final time is reached.

If a phase of RLO occurs in the outer binary, we stop the simulation. If the mass transfer phase
occurs in the inner binary instead, we pass the required stellar and orbital parameters to BSE and
continue evolving the binary until the end of the mass transfer phase. During the BSE integration,
appropriate prescriptions from Hurley et al. (2002) are used to identify whether the stars come
into contact and coalesce, if the binary reaches a CE state, or if the mass transfer is stable. When
a merger occurs, we terminate the simulation. In particular, we assume that any CE evolution
that is initiated by a donor star in the Hertzsprung gap (HG) leads to a stellar merger because it
is questionable whether they already developed a well-defined core-envelope structure (Belczynski
et al., 2007). In the absence of a stellar core no stable binary configuration could result from a
CE evolution. If the binary survives the mass transfer phase, we keep evolving the two inner stars
with SSE from the end of the mass transfer phase until the final integration time, and obtain new
m1(2)(t) and R1(2)(t). In this latter case, we store the orbital and stellar parameters at the time
the mass transfer phase terminates and integrate Eqs. (2.4) – (2.7) from that moment on, but
using the newly computed m1(2)(t) and R1(2)(t). Note that the stellar spins, S1(2), at the end of
the mass transfer phase are assumed to be synchronised with the orbit, which is consistent with
the treatment in BSE. Moreover, during the BSE integration we use Eq. (2.32) to keep track of the
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evolution of aout due to mass loss from the system.

Stopping conditions

In summary, the simulation is terminated before the final integration time in one of the following
events:

1. The tertiary star initiates a mass transfer episode onto the inner binary once it fills its
Roche-lobe according to Eq. (2.41).

2. The inner binary stars merge after an unstable mass transfer phase or an eccentric encounter.

3. The triple becomes dynamically unstable (see Section 2.2.6).

4. The inner orbit is disrupted due to a SN.

Either of these events leads to very different evolutionary outcomes. A tertiary RLO (i) may occur
stably or initiate a CE engulfing all three stars in which a merger of two stars, chaotic ejection of
one of them, or of the envelope is possible (Di Stefano, 2020a,b; Glanz & Perets, 2021; Hamers
et al., 2022). Yet, modelling tertiary RLO is less understood than RLO in isolated binaries due to
the additional complexity of the inner binary motion.

If the inner binary merges before the formation of compact objects (ii), a post-merger binary
can form which consists of a massive post-merger star and the tertiary companion (Schneider
et al., 2019, 2020; Hirai et al., 2021). If the initial triple was sufficiently compact a merging BBH
might eventually from from the stellar post-merger binary (Stegmann et al., 2022a, Chapter 3).

Triples that become dynamically unstable (iii) can no longer be described by our secular approach,
but enter a chaotic regime in which the ejection of one star or the merger of two become likely
(Mardling & Aarseth, 2001; Petrovich, 2015; Toonen et al., 2022).

Lastly, if a SN disrupts the inner binary (iv), we expect that either the outer binary is also
disrupted due to the kick imparted to the inner binary centre of mass, or the remaining inner
binary star and tertiary companion subsequently evolve on a wide orbit.

2.1.5 Stellar evolution parameters

In this work, we investigate a set of different models whose parameters are summarised in
Table 2.1. In any of our models we set the CE efficiency parameter αCE to 1 and the tidal lag
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Table 2.1. Model parameters. In all models we also set nsflag = 3 (rapid SN prescription),
αCE = 1, and τ = 1s.

Model
Metallicity Z

bhflag
τ

[Z⊙] [s]

Fallback kicks 0.01, 1.0 2 1.0
Proportional kicks 0.01, 1.0 1 1.0

No kicks 0.01, 1.0 0 1.0
Incl. dyn. tides 0.01, 1.0 2 See Sec. 2.1.1

time τ to 1 s. The latter recovers well the observation of circularised inner binaries at short periods.
The remnant masses prescription follows the "rapid" SN model (nsflag = 3, Fryer et al., 2012).
We study the impact of natal kicks by adopting the three models fallback kicks, proportional
kicks, and no kicks in which we set bhflag to 2, 1, and 0, respectively, and investigate the
effect of metallicity by setting Z = 0.01 Z⊙ (low metallicity) or Z = 1.0 Z⊙ (high/solar metallicity).
If not stated differently, the fallback kicks model is used as a default in the following sections.

2.1.6 Example cases

In Fig. 2.1, we show the evolution of three example systems at Z = 0.01Z⊙. The systems
in the left and middle panels undergo LK oscillations, while in the right panel we see a system
where the oscillations are quickly quenched by the tides acting between the inner binary stars. All
three systems enter one or two phases of stable mass transfer, which are indicated by the vertical
grey shaded regions. As a consequence of the mass and semi-major axes changes, the period and
maximum eccentricity of the LK oscillations in the system of the left panel changes after the mass
transfer episode, which produces the observed modulation. A similar effect can be seen after the
formation of a BH as indicated by the vertical dashed lines.

The system in the left panel survives all peculiar steps during the stellar evolution and eventually
ends up as a stable BH triple. This is not the case for the system shown in the middle panel.
Here, the expansion of the inner binary during a mass transfer phase causes the triple to become
dynamically unstable (see Section 2.2.6). In contrast, the system in the right panel starts relatively
compact with an initial outer semi-major axis of only aout ≈ 17.2AU. This is small enough for the
tertiary companion to fill its Roche-lobe during its giant phase. Then, we stop the integration for
want of a more accurate treatment.

In Appendix A.2, we list the initial parameters of the three exemplary triples.
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Figure 2.2. Initial conditions of the triple population. The counts N are normalised w.r.t. the
total number of triples Ntot which are initially stable, detached, and whose inner binary members
are massive enough to form compact objects.

2.2 Initial conditions

In the following, we describe the set-up of the initial parameter distribution of our massive
stellar triple population. The initial time is chosen when the stars are on the ZAMS. Observationally,
companions to massive, early-type stars were discovered by means of several techniques, e.g.,
radial velocity monitoring (e.g., García & Mermilliod, 2001; Sana et al., 2012; Kobulnicky et al.,
2014), eclipses (e.g., Kirk et al., 2016; Soszyński et al., 2016; Pawlak et al., 2016; Moe & Di
Stefano, 2015), proper motion (e.g., Lépine & Bongiorno, 2007), and interferometry (e.g., Rizzuto
et al., 2013; Sana et al., 2014). For massive triples, it has been shown that the parameter distributions
of early-type stars are a good indicator for the initial distribution at birth (Rose et al., 2019).
For the initial parameter distribution of our population we follow Moe & Di Stefano (2017) who
compiled a variety of previous surveys.

Accordingly, the masses and mass ratios, eccentricities, and orbital periods are not statistically
independent from each other. Instead, they show important correlations across different periods,
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e.g., an excess of nearly-equal mass ratios ("twins") and circularised orbits at short periods whereas
the properties of two stars are more consistent with a random pairing process toward long periods.

Specifically, we adopt the following sampling procedure which results in the marginalised
distributions shown in Fig. 2.2. At first, we propose an inner binary from the joint probability
distribution

f(m1,m2, Pin, ein) = f(m1)f(Pin|m1)f(m2|m1, Pin)f(ein|m1, Pin), . (2.42)

Afterwards, an outer orbit is repeatedly drawn from the distribution

f(m3, Pout, eout|m1) = f(Pout|m1)f(q̃out|m1, Pout)f(eout|m1, Pout), (2.43)

with q̃out = m3/m1, until the triple system is hierarchically stable and detached (see below).

This procedure recovers the observed distributions of triples in which m1 is the largest mass of
the triple stars, i.e., where it is part of the inner binary. Unfortunately, triples where the tertiary
companion is the most massive star completely elude detection since it is difficult to resolve
additional companions to the less massive star of a wide orbit. In order to model those kind of
systems we agnostically draw in every third system the tertiary mass from a uniform distribution
with a lower limit of m1 and the orbital parameters from

f(Pout, eout|m3) = f(Pout|m3)f(eout|m3, Pout). (2.44)

The triples proposed in this way are only retained if they are hierarchically stable and detached
which naturally skews the final inner and outer orbital distributions. The marginal distributions are
as following (Moe & Di Stefano, 2017). For convenience we define mp = max(m1,m3) to be the
largest mass of the triple.

2.2.1 Primary mass distribution f(m1)

The primary star is initially the more massive component of the inner binary. We draw its mass
between 8 and 100M⊙ from the canonical initial mass function (Kroupa, 2001) which is described
by a single power law f(m1)dm1 ∝ mα

1dm1 with exponent α = −2.3. In general, the canonical
initial mass function describes the mass distribution of all stars that formed together in one star-
forming event. Note that it does not necessarily coincide with the initial mass distribution of
the primaries which is skewed towards larger masses. However, for the massive primaries under
consideration both are approximately equal (Kroupa et al., 2013, Section 9).
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2.2.2 Period distributions f(Pin(out)|mp)

The inner and outer periods Pin(out) are technically proposed from the same conditional distribution
f(Pin(out)|mp) in the range 0.2 ≤ log10(Pin(out)/day) ≤ 5.5 (8.0). This distribution function is
slightly bimodal with one dominant peak at short periods, log10(Pin(out)/day) < 1 (consistent with
Sana et al., 2012), and another at log10(Pin(out)/day) ≈ 3.5. Discarding hierarchically unstable
triples (see Section 2.2.6), roughly 41% (0%) of the systems have inner (outer) periods below
10 days, 86% (10%) below 103 days, and 99% (48%) per cent below 105 days. After specifying
the mass ratios (see below), the resulting semi-major axis distributions are shown in the lower
right panel of Fig. 2.2.

2.2.3 Inner (outer) mass ratio distribution f(qin(q̃out)|mp, Pin(out))

The mass ratio distributions are described by an underlying broken power-law with two slopes
α = αsmallq(mp, Pin(out)) and αlargeq(mp, Pin(out)) for 0.1 ≤ q < 0.3 and q ≥ 0.3, respectively.
This is shown in the upper right panel of Fig. 2.2. Small inner mass ratios are further reduced
since we only retain secondary stars with a mass m2 ≥ 8M⊙. Moreover, observational surveys of
massive primaries have discovered an excess fraction of twins (Tokovinin, 2000; Pinsonneault &
Stanek, 2006), i.e., companions with a mass similar to their primary (qin > 0.95), if their orbital
period is very short log10(Pin/day) ≲ 1, which gives rise to the large peak in the rightmost bin of
the inner mass ratio distribution. In turn, the outer companion masses at long orbital periods are
more consistent with a random pairing from the initial mass function (Moe & Di Stefano, 2017).

Since we are interested in inner binary stars which could form compact objects, their masses
are restricted to m1,2 ≥ 8M⊙. This restriction does not apply to the tertiary companion. Instead,
we take any mass down to m3 = 0.1M⊙ into account.

2.2.4 Inner (Outer) eccentricity f(ein(out)|mp, Pin(out))

The inner (outer) eccentricity ein(out) is drawn from the conditional distribution f(ein(out)|mp, Pin(out))

between 0 and 1. The distribution is fitted by an underlying power-law with exponent α =

α(Pin(out)) described as (Moe & Di Stefano, 2017)

α = 0.9− 0.2

log10(Pin/day)− 0.5
. (2.45)

In general, a power-law diverges at the lower boundary ein(out) = 0 and cannot be interpreted as
a probability density function if α ≤ −1. Here, this is the case if log10(Pin/day) ≲ 0.6. For these
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short periods it is reasonable to assume that all orbits were circularised due to tidal interactions
(e.g., Hut, 1981; Zahn, 1989; Eggleton & Kiseleva-Eggleton, 2001).

For longer periods, the power-law exponent increases monotonically where there is a narrow
window, 0.6 ≲ log10(Pin/day) ≲ 0.7, for which −1 < α < 0 (i.e., the eccentricity distribution
is skewed towards small values) and α ≥ 0 for log10(Pin/day) ≳ 0.7 (i.e., skewed towards large
values). For long periods, the power-law approaches a thermal distribution. Note that Moe & Di
Stefano (2017) imposed an approximate upper limit emax(Pin(out)) < 1 for the eccentricity above
which a binary is semi-detached or in contact at periapsis. Here, we explicitly check for each
system whether one of the three stars initially fills its Roche-lobe at periapsis and reject them as
described below.

2.2.5 Orbital angles

We sample the initial values of the two arguments of periapsis of the inner and outer orbit and
their relative inclination itot from isotropic distributions. The longitudes of the ascending nodes
are "eliminated" by setting their difference to π (see Chapter 1, Naoz et al., 2013a).

Our assumption for the inclination distribution is uniformative since there exists no observational
evidence about the mutual inclination itot for massive triples. Meanwhile, Borkovits et al. (2016)
found all compact solar-type triples within aout < 10AU have i < 60◦, and the majority had
i < 20◦. Similarly, Tokovinin (2017) found nearly all triples with aout < 50AU were prograde
(i < 90◦), and solar-type triples had random orientations only beyond aout > 103AU. However,
he did note that more massive triples may be more misaligned, i.e., A/early-F triples achieved
random orientations beyond aout > 100AU (instead of > 103AU). If the overall preference
of close solar-type triples for prograde inclinations turns out to persist in future observations of
massive triples our isotropic assumption must be skewed towards small angles beyond the Kozai
regime (cf., Section 2.1.1).

2.2.6 Discarded systems

Triples that are proposed according to the sampling procedure described above are discarded
if they are dynamically unstable, if at least one star fills its Roche-lobe, or if the inner binary
members are not massive enough to form compact objects (m1(2) < 8M⊙; see Toonen et al.
(2020) for a study with less massive inner binaries). For the former two criteria we reject all
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systems that initially satisfy either

aout(1− eout)

ain
< 2.8

[(
1 +

m3

min

)
1 + eout√
1− eout

]2/5
, (2.46)

or Eqs. (2.40) and (2.41) (Mardling & Aarseth, 2001; Eggleton, 1983; Hamers & Dosopoulou,
2019).

2.2.7 Drawbacks in initial conditions

Most previous population synthesis studies assume (log-)uniform initial distributions of the
inner and outer mass ratios, orbital periods, semi-major axes, or eccentricities (e.g., Antonini
et al., 2017; Silsbee & Tremaine, 2017; Rodriguez & Antonini, 2018; Fragione & Kocsis, 2020;
Hamers et al., 2022). Typically, a mutual dependency of the orbital parameters is introduced
by discarding initially unstable or Roche-lobe filling systems, which, e.g., removes systems with
relatively small inner semi-major axes and large inner eccentricities (Antonini et al., 2017; Toonen
et al., 2020). The drawback of this procedure is that it fails at reproducing the known parameter
distributions of the inner binaries. For example, consider a model in which the inner orbital periods
are drawn from a given distribution that is inferred by observations (e.g., Sana et al., 2012),
whereas the outer semi-major axis distribution is uninformative (e.g., log-uniform), reflecting
our poor statistics on wide (outer) binaries. A large number of triples will be discarded based
on Eq. (2.46) because they are dynamically unstable. As a consequence, the resulting orbital
distribution of the inner binaries will deviate from the observationally motivated model that
was assumed in the first place. Moreover, the adopted method does not take into account the
observed correlation between the different orbital parameters of early-type stars.

The sampling procedure presented in this work aims to improve previous work by reproducing
some of the statistical features identified by observations (Moe & Di Stefano, 2017). Thus, the
novel feature of our method is that it takes into account the observed mutual correlation between
orbital parameters. Moreover, the distributions of the inner binary properties in our triple systems
are consistent with observations since for a given inner binary we propose a tertiary until the
triple satisfies the stability criteria. But, we remain speculative regarding triples in which the most
massive component is the tertiary star and for which there are no observations. Since the LK
effect is stronger for larger tertiary masses (cf., Chapter 1), this introduces some uncertainty to
the total fraction of systems in which a tertiary can dynamically perturb the inner binary.
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Table 2.2. Upper half: Fraction of triple evolutionary outcomes for our different models at sub-solar and solar metallicity. The last
three columns refer to the fraction of surviving systems that harbour a BBH (ΓBBH), NSBH (ΓNSBH), and BNS (ΓBNS) in the inner
binary. For those and for the stellar mergers we provide the fraction of systems that retain their tertiary companion plus ("+") the
systems that lose it in a SN explosion, i.e., keep evolving as isolated inner binaries. Lower half: Evolutionary outcomes of isolated inner
binaries when no tertiary companion is included from the beginning of the simulation.

Z [Z⊙] Model Ntot

Fraction of evolutionary outcomes N/Ntot [%]
Orbital Stellar Dynamically Tertiary

ΓBBH ΓNSBH ΓBNS
disruption merger unstable RLO

0.01

Fallback kicks 71936 49.72 18.70 + 9.90 7.15 4.86 3.56 + 5.89 0.05 + 0.15 0.00 + 0.02
Proportional kicks 65858 53.93 15.04 + 13.25 7.21 4.83 0.29 + 5.31 0.02 + 0.13 0.00 + 0.00

No kicks 42891 9.57 28.81 + 23.89 9.93 5.04 5.27 + 7.68 1.14 + 7.34 0.10 + 1.25
Incl. dyn. tides 9746 49.39 19.75 + 8.93 7.81 4.77 3.53 + 5.60 0.03 + 0.18 0.00 + 0.00

1.0

Fallback kicks 104643 57.92 17.19 + 9.09 9.45 5.52 0.26 + 0.54 0.00 + 0.03 0.00 + 0.00
Proportional kicks 75607 59.64 15.77 + 9.96 9.05 5.53 0.00 + 0.04 0.00 + 0.00 0.00 + 0.00

No kicks 59020 9.47 33.28 + 23.26 14.26 5.79 1.74 + 2.71 1.37 + 5.79 0.14 + 2.18
Incl. dyn. tides 14973 55.77 19.66 + 8.06 10.50 5.20 0.29 + 0.51 0.00 + 0.02 0.01 + 0.00

0.01
Fallback kicks 49598 58.49 30.20 11.11 0.19 0.02

Proportional kicks 49614 63.24 29.59 7.00 0.15 0.01
No kicks 49705 11.33 62.88 14.89 9.34 1.56

1.0
Fallback kicks 47848 67.86 31.40 0.73 0.00 0.00

Proportional kicks 47883 69.83 30.16 0.00 0.00 0.00
No kicks 47789 9.75 74.35 4.54 8.83 2.53
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Figure 2.3. Probability for evolutionary outcomes as a function of the initial (ZAMS) outer mass
ratio qout = m3/min and outer semi-major axis aout at Z = 0.01Z⊙ (left panel) and Z = 1.0Z⊙
(right panel) in the fallback kicks model. For a given qout and aout, the contours correspond
to the fraction of triples that achieve a particular outcome.

2.3 Results

2.3.1 Evolutionary outcomes

After generating our initial conditions as described above, we evolve the systems forward in
time until one of the following outcomes is achieved:

(i) The inner orbit is disrupted due to a SN;

(ii) The system becomes dynamically unstable;

(iii) The tertiary companion fills its Roche-lobe (tertiary RLO);

(iv) The inner binary stars merge;

(v) The inner binary becomes a DCO and the tertiary is lost in a SN explosion;

(vi) The system becomes a stable triple in which the inner binary is a DCO. The tertiary companion
can be either another compact object or a low mass star that will neither undergo a SN nor
fill its Roche-lobe in its following evolution.

In Table 2.2 we provide the fractions of evolutionary outcomes for the different population
models. In case (iv), we consider any merger that involves a stellar component, i.e., either mergers
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of two stars or of a star and a compact object. In the latter case, the compact object enters the
envelope of the companion star and sinks to its core before the envelope could be ejected. For
case (v) and (vi), we distinguish between systems that end up harbouring a BBH, NSBH, or BNS
in the inner binary. An example system of case (vi) is shown in the left panel of Fig. 2.1.

For comparison, Table 2.2 also provides the fractions of orbital disruptions, stellar mergers,
and surviving systems when no tertiary companion was included at all. This isolated inner binary
population is evolved with BSE. We will compare in more detail the results from the binary and
the triple populations in Section 2.3.2.

In any of our models, we find that the majority of systems are either disrupted (case (i)) or
that the inner binary components merge (case (iv)). Stellar mergers in triples have been extensively
studied in previous work (Antonini & Perets, 2012; Prodan et al., 2015; Stephan et al., 2016;
Toonen et al., 2018; Stephan et al., 2019; Toonen et al., 2022). For example, it has been suggested
that the resulting merger product could explain the observation of blue straggler stars in globular
clusters (Perets & Fabrycky, 2009; Naoz & Fabrycky, 2014; Antonini et al., 2016b). The merger
process itself may give rise to a luminous red nova (e.g., Tylenda & Kamiński, 2016; MacLeod
et al., 2017; Blagorodnova et al., 2017; Pastorello et al., 2019). It is expected that the merger
star undergoes a brief phase with a bloated envelope (Suzuki et al., 2007; Schneider et al., 2020).
If the outer orbit is sufficiently tight, it may be partially or entirely enclosed by the bloated star.
This can lead to transient phenomena as the tertiary companion plunges into the enlarged envelope
(Portegies Zwart & van den Heuvel, 2016; Hirai et al., 2021). Moreover, a sufficiently tight
tertiary companion could co-evolve with the merger product star of the inner binary to form a
bound (merging) BBH (Stegmann et al., 2022a).

The fraction of surviving systems (i.e., cases (v) and (vi)) depends on the kick prescription,
metallicity, and the nature of the compact objects to be formed. It is the largest if no kicks are
considered and the lowest for the proportional kicks which generally lead to the fastest kick
velocities. Additionally, the number of surviving systems decreases toward solar metallicity where
the stellar winds loosen the orbits and less massive remnants are formed which experience stronger
natal kicks in the fallback kicks model. Lastly, NSs experience stronger natal kicks than BHs,
making the NSBH and BNS a subdominant population in the kick models compared to BBHs. In
all models, we find that the fraction of surviving DCOs that lost their tertiary companion (i.e.,
case (v)) is higher than those that retain it and end up as stable triples (i.e., case (vi)).

In Fig. 2.3, we plot the evolutionary outcomes of triples as a function of the initial values of
qout and aout, for the fallback kicks model. The contours correspond to the probability that:
at least one member of the triple is ejected through a SN, case (i) or (v), the system becomes
dynamically unstable, case (ii), or the tertiary undergoes RLO, case (iii), after they started from
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a given point in the plane. Clearly, there is a well-defined mapping between the final evolutionary
outcomes and the initial properties of the tertiary companion.

The red contours in Fig. 2.3 show that disruptions due to a SN occur mostly for systems with
a large aout since tertiaries on wider orbits are more easily unbound by a natal kick. Below qout ≈
0.5, we find that more than 50% of the systems are disrupted if aout ≳ 400AU. This primarily
occurs due to a SN explosion in one of the inner binary components. At solar metallicity the kicks
in these SNe are typically high enough to unbind both orbits. In contrast, if the inner SN occurs
in a metal-poor and sufficiently hierarchical triple (aout/ain ≳ 103), it cannot easily disrupt the
compact inner binary, but only the loosely bound outer orbits by sufficiently shifting the inner
binary centre of mass. Above qout ≳ 0.5, disruptions occur primarily due to a SN explosion of the
initially most massive tertiary companion which unbinds the outer orbit while leaving the inner
orbit bound.

The purple contours in Fig. 2.3 represent systems that become dynamically unstable according
to Eq. (2.46). While reaching this regime is achieved or facilitated by the expansion of the inner
orbit due to stellar winds from metal-rich binary members or, more rarely, due to a non-disruptive
SN, a large number of systems at both metallicities become unstable during a RLO in the inner
binary. Typically, the first phase of RLO is initiated by the primary star which expands more
rapidly than its secondary companion. During the subsequent mass transfer phase, the inner
binary mass ratio inverts, allowing ain to grow by a factor ∼ O(1) (Eggleton, 2006). Thus, triples
with a close tertiary companion (preferentially aout ≲ 10AU) become dynamically unstable,
leading to a chaotic evolution in which the ejection or collision of the stars is likely. An example of
this evolution is presented in the middle panel of Fig. 2.1.

The green contours in Fig. 2.3 represent systems in which the tertiary companion fills its
Roche-lobe according to Eq. (2.41). An example case is shown in the right panel of Fig. 2.1. In
general, this occurs when the tertiary companion is close (aout ≲ 102 AU) and relatively massive
(qout ≳ 0.5). Outside that parameter region, the radius of the tertiary star is either too small to
fill its Roche-lobe, the inner binary becomes unstable, or undergoes a collision before the tertiary
star fills its Roche-lobe. The subsequent evolution of the inner binaries might be significantly
affected by the mass donated by the tertiary star. For instance, if the inner binary stars become
compact objects, it is expected that accretion will increase and equalise the component masses
leading to a reduced merger time and, if present, transforming a NS into a BH (Di Stefano,
2020b). If the tertiary mass transfer is unstable, a CE encompassing all three components will
drain a large amount of energy and angular momentum of the orbits and allow for a diverse set
of outcomes, including the merger of the inner binary and a chaotic evolution leading to the
ejection of one component (Glanz & Perets, 2021). However, given the uncertainty related to
mass transfer between just two stars, we opt for stopping the integration of systems when the
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tertiary fills its Roche-lobe. For the fallback kicks model, we find that 5.5% (1.2%) of the
inner binaries at low (high) metallicity develop a BH component before the tertiary fills its Roche-
lobe. Those binaries may give rise to an X-ray signal as they accrete matter from the tertiary.
Meanwhile, 0.3% (0.4%) developed a NS.

In summary, a stellar triple has to circumvent a number of defeating events in order to form a
stable triple with an inner DCO. Those events demarcate distinct regions in the orbital parameter
space. Most frequently, the triples are either disrupted by strong natal kicks or due to a stellar
merger that takes place in the inner binary. In the following section, we will focus on the orbital
properties of the surviving systems.

2.3.2 Orbital properties of the surviving systems

In this section, we investigate the properties of systems in which the inner binary becomes a
DCO (case (v) and (vi) above).

In Table 2.3, we give the fraction of surviving triples which are accompanied by a low-mass
star and those in which the tertiary is a compact object. In any model, the number of BBHs in
the inner binary which are accompanied by another BH is roughly equal or dominate those with
a low-mass star by a factor of four to five. No surviving triple was found with a NS in the outer
orbit. Table 2.3 gives those systems in which the tertiary is still dynamically relevant at the end
of the simulation and could possibly affect the following evolution of the inner DCO through the
LK mechanism. At low metallicity, we find that the tertiary perturbation is suppressed by the
inner binary’s Schwarzschild precession, i.e., πt1PN/jintLK ≲ 1, in a significant portion of the
triples, e.g. 46% in the fallback kicks model. At solar metallicity, almost all surviving triples
(88% in the fallback kicks model) have a dynamically important tertiary. Interestingly, in the
models in which we apply a finite kick to the compact objects we find no triples with an inner
NS component and in which the tertiary is still dynamically relevant. We conclude that the LK
mechanism is unlikely to produce any compact object binary merger in which one of the inner
components is a NS.

In Figures 2.4 and 2.5, we plot the orbital parameters of the surviving systems in our models
for Z = 0.01 Z⊙ and 1.0 Z⊙ in the fallback kicks model, respectively. We distinguish between
DCOs which are either still accompanied by a tertiary low mass star or compact object (orange
histograms), or which end up isolated (blue histograms). In either case, the large majority of inner
binaries are BBHs (see Table 2.2).

At Z = 0.01Z⊙, the mass distribution of the primary component of the inner binary (upper
left panel) peaks at ≃ 20M⊙ and extends to ≃ 40M⊙. The cut-off at ≃ 40M⊙ is partly because
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we adopted an initial maximum component mass of 100M⊙. Extending the initial mass function
above this mass value is unlikely to significantly change the overall shape of the mass distributions
because such massive stars are very rare. Moreover, pair-instablity SN will suppress the formation
of BHs more massive than 50+20

−10M⊙ (e.g., Belczynski et al., 2016b; Spera & Mapelli, 2017;
Giacobbo et al., 2018).

At solar metallicity, Z = 1.0 Z⊙, the primary mass distribution is significantly different. Stronger
wind-mass loss prior to BH formation suppresses the formation of BHs with a mass above about
15M⊙ (Fryer et al., 2012; Spera et al., 2015). The pronounced peak at 8M⊙ primarily comes
from BHs formed by 25 – 35M⊙ stars and initially more massive stars (45 – 60M⊙) which lost
additional mass in some mass transfer episode. A secondary peak at 13M⊙ relates to initially very
massive stars (≳ 80M⊙) which remain detached from their companion.

At both metallicities, the resulting mass ratio distribution shows a clear preference for equal
masses, qin ≈ 1, but otherwise differ significantly. At solar metallicity, the mass distribution of
the secondary BH also shows two peaks at 8M⊙ and 13M⊙. Consequently, the mass ratio shows
a secondary peak at q ≈ 8M⊙/13M⊙ ≈ 0.6. In contrast, both BH component masses at low
metallicity follow a much broader distribution leading to a smooth decrease of mass ratios down
to qin ≈ 0.3.

Compared to the parent distributions (see Fig. 2.2), the inner and outer semi-major axes
of the surviving triples are significantly changed because of systems that become dynamically
unstable or merge, and by inner binary interactions, and at high metallicity by stellar winds. At
both metallicities, a large fraction of inner binaries are prone to merge during stellar evolution and,
if they are accompanied by a nearby tertiary star, to be removed due to dynamical instability or a
tertiary RLO. Nonetheless, small values ain ≲ 10−1AU are recovered in the metal-poor population
because of systems in which the inner binary semi-major axis shrinks due to a CE phase, leading
to a final distribution with approximately the same median value āin ≈ 1–2 AU as the initial
distribution. At solar metallicity instead, the vast majority of inner binaries that undergo a CE
phase merge. Moreover, the orbital expansion driven by the stronger stellar winds shifts the inner
semi-major axis of surviving systems to higher values, with a median āin ≈ 200 AU. Likewise, the
final value of aout is on average larger than its initial value due to the removal of close tertiaries
which induce dynamical instability or fill their Roche-lobe and due to stellar winds of metal-rich
stars. As a result, the medians of aout increase from an initial ∼ 500AU to ∼ 2 × 103AU and
∼ 2× 104AU at Z = 0.01 Z⊙ and Z = 1.0 Z⊙, respectively.

We find that 21% of the surviving triples at Z = 0.01Z⊙ experience a phase of CE evolution
prior to the formation of the inner DCO. At solar metallicity this is the case for none of the
survivors. The zero fraction of systems that survive a CE phase at high metallicity is caused by
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the rapid expansion of metal-rich stars in the HG that initiate a CE, leading to stellar mergers due
to the absence of a well-developed core-envelope structure. In contrast, metal-poor stars remain
relatively compact in the HG but expand more significantly in the subsequent stellar evolution
(Klencki et al., 2020). Consequently, a larger fraction of donor stars at lower metallicities initiate
a CE during the post-HG evolution which allows for successful envelope ejection. The efficient
inspiral and circularisation during a CE phase leads to low values of ain and ein, although a small
residual eccentricity can be attained during a second SN. This type of evolution produces two
characteristic features in the distributions shown in Figures 2.4: the peak near ein ≈ 0 seen in the
bottom-left panel; and the presence of DCOs at relatively small semi-major axis value, ain ≲ 1AU.
As a consequence of the decreasing ain, we find that πt1PN/jintLK < 1 for most of these triples,
as shown in the bottom-right panel. Thus, the dynamical influence of the tertiary is expected to
be fully negligible for the subsequent evolution of virtually all DCOs formed from binaries that
experience a CE phase.

Regarding the DCOs that lost their tertiary companion (blue histograms in Figures 2.4 and 2.5),
we find a much larger fraction that underwent a CE evolution and end up at relatively low values
of ain and ein compared to the triples that retain their companion. We use Eq. (1.66) to compute
the fraction of isolated DCO mergers. Based on the orbital properties at the time when the
DCO is formed, we find 2.2% (0.16%) BBHs, 0.04% (0.03%) NSBHs, and 0.001% (0.01%)
BNSs with τcoal < 1010 yr at low (high) metallicity in the fallback kicks model. In the no

kicks model we have 3.0% (0.24%) BBHs, 0.14% (0.04%) NSBHs, and 0.14% (0.4%) BNSs
and in the proportional kicks 1.9% (0.14%) BBHs, 0.04% (0.006%) NSBHs, and 0.003%

(0.017%) BNSs.

It is useful to compare the distribution of all DCOs formed in the triple population to those
that formed from an equivalent isolated binary population, i.e., binaries that evolve without
an outer companion from the beginning. To this end, we evolve the same inner binaries of our
triple population with BSE and give the fractions of different evolutionary outcomes in Table 2.2.
Figures 2.6 and 2.7 show the orbital properties of the DCOs in the two populations for the fallback

kicks model. Overall, the number of surviving DCOs from the triple population is smaller due
to systems that become dynamically unstable or whose integration is terminated due to a tertiary
RLO. Yet, the overall shape of the parameter distributions is similar. Likewise, in the other kick
models we find no significant differences between the shape of the parameter distributions between
the binary and triple population models. This suggests that the presence of a tertiary companion
does not significantly affect the final orbital distribution of the DCOs formed in our models.
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Figure 2.4. Final orbital properties of surviving systems after a BBH has formed in the inner
binary in the fallback kicks model. By that time, the orange systems are still accompanied
by a tertiary which is either a compact object or a low mass star and whose properties are shown
in green. The blue BBHs have lost their tertiary companion. For both groups we show the inner
binaries that undergo and survive a CE using light colours. Blue and orange contributions are
stacked.
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Figure 2.5. Same as Fig. 2.4 for Z = 1.0 Z⊙.
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Figure 2.6. Final orbital properties of BBHs which are formed from an isolated binary
population. The population is initially identical to the inner binaries of our triples. We distinguish
between binaries that undergo and survive a CE evolution and those which do not (no CE). For
comparision, we also show the distribution of the inner BBHs that form in the triple population in
the fallback kicks model (red), cf., Fig. 2.4.
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Figure 2.7. Same as Fig. 2.6 for Z = 1.0 Z⊙.
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Table 2.3. Detailed fraction of surviving triples for our different models at sub-solar and solar metallicity. The number of systems
harbouring a DCO in the inner binary as reported in Table 2.2 are further refined by distinguishing between triples in which the
tertiary companion is a low-mass star ("+Star") and a BH ("+BH"). There is no surviving triple with a NS tertiary. The numbers
in parentheses indicate the fractions of systems which are LK-possible in the sense that πt1PN > jintLK at the end of the simulation.

Z [Z⊙] Model
Fraction of evolutionary outcomes N/Ntot [%]

ΓBBH+Star ΓBBH+BH ΓNSBH+Star ΓNSBH+BH ΓBNS+Star ΓBNS+BH

0.01

Fallback kicks 0.72 (0.29) 2.84 (1.65) 0.03 (0.00) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00)
Proportional kicks 0.15 (0.01) 0.14 (0.03) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

No kicks 1.00 (0.45) 4.27 (2.57) 0.39 (0.27) 0.74 (0.59) 0.05 (0.00) 0.05 (0.02)
Incl. dyn. tides 0.56 (0.27) 2.97 (1.74) 0.00 (0.00) 0.03 (0.01) 0.00 (0.00) 0.00 (0.00)

1.0

Fallback kicks 0.14 (0.13) 0.12 (0.10) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Proportional kicks 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

No kicks 0.34 (0.33) 1.40 (1.27) 0.72 (0.68) 0.66 (0.62) 0.08 (0.03) 0.06 (0.02)
Incl. dyn. tides 0.13 (0.11) 0.16 (0.13) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00)
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2.3.3 Tertiary impact on inner binary interactions

We previously identified certain regions of parameter space where the tertiary companion
induces dynamical instability, is ejected by a SN, or overflows its Roche-lobe. In this section, we
investigate how the companion affects the evolution of the inner binary stars. It is well-known
that massive stars in binaries are prone to closely interact and undergo one or more episodes of
mass transfer (Paczyński, 1967b; Podsiadlowski et al., 1992; Sana et al., 2012; de Mink et al.,
2013; Raucq et al., 2016; Stegmann & Antonini, 2021; Menon et al., 2021). Here, we determine
whether the interaction with a tertiary companion changes the stellar evolution of the inner binary
stars and the overall fraction of systems that experience a mass transfer phase.

In Fig. 2.8, we plot the initial distribution of the semi-major axis ratio aout/ain and periapsis
ain(1 − ein) of triples in which the inner binaries undergo a phase of mass transfer (either stable
or unstable). This is the case for 83% (87%) of all systems at Z = 0.01Z⊙ (Z = 1.0Z⊙). In
the left panels, we highlight whether the initial relative inclination is in the Kozai angle regime
(cos2 itot < 3/5), where particularly strong LK oscillation are expected (see Chapter 1), and in the
right panels, we show the differences between the initial eccentricity and its value at the onset of
mass transfer.∗ We note that RLO outside the Kozai angle regime (cos2 itot ≥ 3/5) only occurs
if the initial periapsis is below ain(1 − ein) ≲ 103R⊙ However, if the relative inclination is within
the Kozai angles, RLO is possible in initially wider orbits and up to ≲ 105R⊙. In these systems,
the tertiary companion excites the inner eccentricity via LK oscillations and effectively reduces the
periapsis so that the stars have to be less expanded in order to fill their Roche-lobe. RLO in those
inner binaries is therefore induced by the perturbation from the tertiary companion.

In the right panels of Fig. 2.8 we show the change in eccentricity between the initial time and
the onset of mass transfer. For ain(1 − ein) ≳ 103R⊙ the binary eccentricity is higher than its
initial value (∆ein > 0), demonstrating the impact of the LK mechanism. A considerable fraction
of 16.4% (16.4%) of Roche-lobe overflowing systems at ain(1− ein) < 103R⊙, also have a higher
eccentricity (∆ein > 0.1). Furthermore, these binaries are found to fill their Roche-lobe at an
earlier evolutionary stage than in an equivalent run without tertiary companion. This shows that
the impact of the LK mechanism extends to essentially all values of ain, but only for semi-major
axis ratios below aout/ain ≲ 102. Finally, if ain(1 − ein) ≲ O(101)R⊙, the binary orbits can be
significantly affected by tides. These binaries circularise due to tidal friction (∆ein < 0). Similar
results are found by Toonen et al. (2020) who considered less massive triples with initial primary
masses 1 – 7.5M⊙.

Lastly, we investigate whether the tertiary companion changes the fraction of binaries that

∗If an inner binary undergoes multiple mass transfer phases we are considering the first one.
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Figure 2.8. All triples whose inner binaries undergo a phase of mass transfer at Z = 0.01Z⊙
(upper panels) and Z = 1.0Z⊙ (lower panels). Plotted are the initial values for their semi-major
axis ratio aout/ain and inner periapsis ain(1− ein). The colour scheme on the left panels indicates
the initial relative inclination between the inner and outer orbital plane. On the right panels, we
indicate the eccentricity change ∆ein between the initial time and the onset of mass transfer.
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experience a specific type of close interaction. More specifically, we distinguish between four types
of stellar interactions:

(i) The inner binary stars merge;

(ii) The two stars do not merge, but undergo and survive at least one phase of CE;

(iii) The binary neither merges nor experiences a CE phase, but undergoes at least one phase of
stable mass transfer;

(iv) If none of cases (i) – (iii) applies, the inner binary will evolve without undergoing any strong
interaction and the stars will effectively behave as if they were single stars. Thus, we refer
to this latter type of evolution as “effectively single”.

As in Section 3.2, merger refers to any coalescence of the inner binary that involves at least
one stellar component. In the left panels of Fig. 2.9, we show the fraction of binary interactions
for Z = 0.01 (upper panel) and 1.0 Z⊙ (lower panel) as a function of their initial inner orbital
period. Evidently, close stellar interactions between the massive inner binary members are prevalent
at both metallicities since only 15% and 12% of them evolve as effectively single stars for Z =

0.01 and 1.0 Z⊙, respectively. The type of interaction depends on the binary orbital period. At
Pin ≲ 10 days, the vast majority of inner binary stars merge. For those we highlight the binaries
that merge in a CE which is initiated by a donor in the HG. Toward longer orbital periods the
fraction of binary stars which undergo a stable mass transfer episode increases until the population
becomes dominated by stars that do not interact at all (above Pin ≳ 104 days). The major
difference between the two metallicities lies in the fraction of systems that survive a CE phase
(around Pin ≈ 103 days), which is 10% at Z = 0.01 Z⊙ and only 2% at Z = 1.0 Z⊙.

Systems whose evolution is terminated due to a tertiary RLO or due to dynamical instability
are shown separately and found at short periods Pin ≲ 102 days (cf., Section 2.3.1). Together
these system contribute 12% (15%) at Z = 0.01Z⊙ (Z = 0.01Z⊙). Although their evolution
is uncertain, we should expect that the triple interaction will leave a significant imprint on the
evolution of the stars in these systems. In dynamical unstable systems, one member (typically the
lightest star) is likely to be ejected from the triple leaving a bound pair of stars behind (Mardling
& Aarseth, 2001). For tertiary RLO it can be expected that the inner binary will undergo some
sort of interaction during the subsequent evolution, which is further perturbed by the mass accreted
from the tertiary (Di Stefano, 2020a,b; Glanz & Perets, 2021; Hamers et al., 2022).

In the right panels of Fig. 2.9, we show the same analysis for the binary population model in
which the initially identical inner binaries are evolved without tertiary companion (see Table 2.2).
The phenomenon of tertiary-induced interactions as discussed in the previous section amounts to
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a decrease by less than 3% of effectively single inner binaries in the triple population. Hence, the
presence of a tertiary companion only marginally changes the number of systems that evolve as
effectively single binaries. On the other hand, as discussed above, the inner binary evolution is
more significantly affected at short orbital periods, where we see systems that undergo a tertiary
RLO or become dynamical unstable.

In Figures 2.10 and 2.11, we show the same comparison in the proportional kicks and no

kicks model, respectively. While the former is nearly identical to the fallback kicks model,
the latter shows a much higher fraction of systems which merge or undergo a CE evolution with
a donor in the HG. This happens when the binary companion is already a compact object. In the
non-zero kick models, these systems tend to be disrupted already at the formation of the compact
object due to a natal kick.
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Figure 2.9. Fractions of systems in a triple population (left panels) and isolated binary
population (right panels) that undergo a certain kind of close stellar interaction as a function
of their initial (inner) orbital period in the fallback kicks model.
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Figure 2.10. Same as Fig. 2.9 in the proportional kicks model.
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Figure 2.11. Same as Fig. 2.9 in the no kicks model.
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Chapter 3

Black hole mergers from stellar mergers in triples

Massive binary stars are prone to merge before they could form any compact object (Sana et al.,
2012; Menon et al., 2021). In Chapter 2, we have seen that this is also true for interacting massive
stars in the inner binary of triples. In that case, additional stellar mergers could be dynamically
driven by the gravitational perturbation from the tertiary companion. Regardless of whether the
stellar merger is driven by the tertiary or if it would also take place if the inner binary was placed
in isolation, a stellar merger in a triple opens up the interesting possibility of a post-merger binary
evolution between the merger product star and the tertiary companion. Evidently, this possibility
does not exist if the stellar merger took place in an isolated binary.

In this chapter, we investigate how the subsequent post-merger evolution of the merger product
star and the tertiary companion could lead to the formation of a BBH which merges due to the
emission of GWs. Moreover, we compare them with the BBH mergers formed via alternative
formation channels. For this purpose, we distinguish between the following populations.

• Triple population: Starting from a hierarchical triple population, stable BBHs are formed
which subsequently merge within a Hubble time due to the emission of GWs. These BBHs
might form in two different ways as following.

– Inner binary channel: The two stars in the inner binary form a stable BBH.

– Outer binary channel: The two stars in the inner binary merge and the post-merger
star and tertiary companion subsequently form a stable BBH.

• Isolated binary population: Starting from an isolated binary population the binary stars form
stable BBHs which subsequently merge within a Hubble time due to the emission of GWs.
This is a standard population model used in the literature for which the effect of a tertiary
companion is not considered (Paczyński, 1967b; Podsiadlowski et al., 1992; Dominik et al.,
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2012; Belczynski et al., 2016a; Giacobbo & Mapelli, 2018; Olejak et al., 2021; de Mink
et al., 2013; Raucq et al., 2016; Stegmann & Antonini, 2021; Menon et al., 2021; Olejak
et al., 2021).

Hereafter, stellar merger refers to the merger of two stars (or one star and a compact object),
whereas BBH merger to the merger of a BBH promoted by GW radiation. The formation of BBH
mergers via the outer binary channel is the novel mechanism investigated here.

3.1 Methods

3.1.1 Stellar evolution

To follow the stellar evolution in time, we use a simplified version of TSE in the majority of
our models (see below) where we ignore the dynamical effect of the tertiary. Instead, we use the
code MOBSE (Giacobbo et al., 2018; Giacobbo & Mapelli, 2018, 2019, 2020) which is an update
of the widely-adopted binary stellar evolution code BSE (Hurley et al., 2002). BSE/MOBSE models
all relevant evolutionary steps of stellar binaries including mass transfer episodes, CE evolution,
and tidal interaction. MOBSE improves BSE by including up-to-date metal-dependent stellar wind
prescriptions, fallback kicks imparted to the remnants of SN explosions, and (pulsational) pair
instability SNe (Giacobbo et al., 2018; Giacobbo & Mapelli, 2018, 2019, 2020). For our purpose,
MOBSE provides an adequate tool to simulate isolated binaries, starting on the ZAMS.

Applied to triples, we use MOBSE to evolve the inner binary and tertiary companion as two
dynamically independent entities as done in previous triple studies (Antonini et al., 2017, 2018;
Rodriguez & Antonini, 2018; Martinez et al., 2022). As in previous chapters, we consider hierarchical
stellar triples in which a close inner binary with semi-major axis ain and eccentricity ein is orbited
by a distant tertiary star with semi-major axis aout ≫ ain and eccentricity eout (see Fig. 3.1).

In reality, the distant tertiary companion could perturb the dynamics of the inner binary through
the LK mechanism, leading to large amplitude oscillations of ein(t) (Lidov, 1962; Kozai, 1962). In
Chapter 2, we have seen that this could alter the evolution of the inner binary stars by inducing
eccentric mass transfer (see also Toonen et al., 2020; Hamers & Dosopoulou, 2019). Moreover,
the long-term interaction with the companion could drive the inner binary to a merger after a
BBH is formed (Silsbee & Tremaine, 2017; Antonini et al., 2017, 2018; Liu & Lai, 2018; Rodriguez
& Antonini, 2018; Liu et al., 2019; Fragione & Kocsis, 2020; Martinez et al., 2022). In order to
investigate the effect of dynamics on the outer binary channel, we do include one computationally
expensive model (3BodyDynamics) in which we reevolve all systems which above lead to a BBH
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Figure 3.1. Two examples of low mass ratio BBH mergers due to the outer binary channel in the
Rapid1 model at metallicity Z ≃ 1 × 10−4 (upper panel) and 5 × 10−4 (lower panel). The final
BBHs merge after tGW ≃ 172Myr and 29Myr, respectively. The type of the stars is described
by k1,2,3,post, where CHeB and HeMS refers to a Core Helium Burning and Naked Helium MS
star, respectively. The provided parameter values refer to the end of each event, e.g., to the time
at which the two stars fully merge, the stable mass transfer peters out, or the CE is successfully
ejected leaving behind a close binary. Distances and eccentricities are not drawn to scale.
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merger using the secular three-body integrator, TSE, presented in Chapter 2. Only reevolving
the systems which above lead to a BBH merger potentially ignores systems in which a stellar
merger is solely driven by the dynamical effect of tertiary (Toonen et al., 2022), i.e., it would
not occur if the inner binary was in isolation. Hence, the resulting rates of BBH mergers in the
3BodyDynamics must be treated as lower limits. As a result, we will show below that the tertiary
effect on the distribution of these BBH mergers is small. Thus, in all the other models we neglect
dynamics, which allows us to efficiently explore the relevant parameter space.

During the inner binary evolution ain changes due to tides, SN kicks, GW emission, stellar
winds or during an episode of mass transfer. These processes are self-consistently treated by
MOBSE (and likewise for the isolated binary population). For the outer binary evolution we proceed
as in Section 2.1.1 and expand aout(t) according to the fractional mass loss from the system, e.g.,
due to winds and during a mass transfer episode in the inner binary.

At any point in time we check whether the triples become dynamically unstable (see Section 2.2.6),
or if the tertiary companions fills their Roche-lobe (see Section 2.1.3). In either events we stop
the evolution of the systems because their subsequent evolution is uncertain. Recent studies
propose that additional stellar mergers could be triggered by a mass transfer phase initiated by
Roche-lobe filling tertiary companions (Glanz & Perets, 2021; Gao et al., 2023).

During the stellar evolution the inner binary stars might merge. This happens when the two
stars undergo a CE in which their inspiralling cores coalesce before the envelope could be ejected
(see below), or when two stars of similar compactness, e.g., two MS stars, collide. Our description
of stellar mergers follows closely that of Glebbeek & Pols (2008) and Hurley et al. (2002). Most
relevant to our work are MS-MS stellar mergers (see Section 3.2). This kind of merger yields
another MS star which is rejuvenated. That is, the additional hydrogen fuel delays the time at
which the post-merger star leaves its MS. In general, the rejuvenation process can be described as

τpost =
1

αqc,post

1

1− ϕ

qc,1m1τ1 + qc,2m2τ2
mpost

, (3.1)

where α parameterizes the amount of mixing and τ1,2,post ∈ [0, 1] is the fractional timescale of
the primary, secondary, and post-merger star on the MS, respectively (Glebbeek & Pols, 2008).
ϕ is the fractional mass loss during the merger (see below) and qc,1,2,post the effective core mass
fraction defined as the fraction of hydrogen that is burned during the MS of the primary, secondary,
and post-merger star, respectively. Stellar observables like the radius and luminosity substantially
increase only toward the end of the MS evolution, τpost → 1.0 (Hurley et al., 2000). Rejuvenation
is equivalent to τpost < max(τ1, τ2), i.e., the post-merger star appears younger than the most
evolved inner binary star did (or both).
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Here, we adopt the mass-dependent approximation for the effective core mass fractions of
Glebbeek & Pols (2008) and a mixing parameter of α = 1.14 (Schneider et al., 2016). By
default, BSE/MOBSE follows Tout et al. (1997) using ϕ = 0, qc,1 = qc,2 = qc,post = 0.1, and
α = 10 (Glebbeek & Pols, 2008). This is based on the supposition that the merging stars fully
mix and that the end of the MS is reached when 10 per cent of the total hydrogen fuel has been
burnt (Tout et al., 1997). Thus, this prescription likely overestimates rejuvenation since it is
expected that the MS stars do not fully mix and that less core hydrogen is replenished (Glebbeek
& Pols, 2008; de Mink et al., 2013). We explore the original prescription in one additional model
(Tout97).

The mass mpost of the post-merger star is uncertain. Here, we follow Glebbeek et al. (2013)
and assume that during a MS-MS merger the system suffers a fractional mass loss

ϕ =
min −mpost

min

= 0.3
qin

(1 + qin)2
, (3.2)

where qin = min(m1,m2)/max(m1,m2).

Immediately after the merger, it is expected that the resulting star undergoes a bloated phase
where its radius expands before it contracts to its equilibrium state on the (thermal) Kelvin-
Helmholtz timescale (Suzuki et al., 2007; Hirai et al., 2021). If it is sufficiently close, the post-
merger orbit may be partially or entirely enclosed by the outermost parts of the bloated post-
merger star. This situation may give rise to interesting transient phenomena as the tertiary companion
plunges into the bloated envelope (Portegies Zwart & van den Heuvel, 2016; Hirai et al., 2021).
In general, it is not expected that the post-merger orbit gets significantly perturbed by the interaction
between companion and envelope since the bloated phase is brief and only a small fraction of the
stellar mass undergoes a large expansion (Schneider et al., 2020). Nevertheless, we also include
a conservative model (DiscardBloated) in which we discard any system whose outer periapsis
aout(1− eout) at the time of the merger is smaller than the radius of the bloated star. Unfortunately,
it is not well understood by how much the radius of the bloated post-merger star expands. Here,
we use the Hayashi limit as a theoretical upper bound to the radius, Rpost =

√
Lpost/4πσT 4

post,
where σ is the Stefan-Boltzmann constant and we assume a surface temperature limit of Tpost =
103.7K. For the luminosity L we use the Eddington limit LEdd/L⊙ ≃ 3.2× 104mpost/M⊙ beyond
which the star would leave hydrostatic equilibrium and its hydrogen envelope would suffer intense
radiation-driven winds. Computed in this way the radius serves as strict upper limit to that of the
bloated star.

After a stellar merger we use MOBSE to continue the integration of the outer orbit composed
of the post-merger star and the tertiary companion. If the system survives the subsequent stellar
evolution to form a stable BBH, we then calculate the merger timescale induced by GW emission
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(Eq. (1.66), Peters, 1964). We add this timescale to the time elapsed until BBH formation to
obtain the delay time between star formation and BBH merger, which is used to calculate the
BBH merger rate (see below). An analogue expression holds for BBHs formed in inner and isolated
binaries, respectively. An example evolution of two BBHs formed via the outer binary channel is
sketched in Fig. 3.1.

In our models, most BBHs merge only if the orbits of the isolated, inner, or post-merger
binaries, respectively, significantly inspiraled during a CE evolution. Otherwise, the progenitor
stars are too far apart for the resulting BBH to merge within a Hubble time.

A CE evolution occurs when there is a collision involving a giant star with a dense core or if
there is a mass transfer phase from a giant on a dynamical timescale. In either cases the giant’s
envelope engulfs the orbit of the binary companion and the giant’s core. The orbit suffers a
friction-driven decay within the envelope which heats up the latter. As a result, the companion
and core either coalesce within the envelope or the latter is ejected leaving behind a tight binary
which could subsequently form a (merging) BBH. Thus, the efficiency at which orbital energy of
the inspiralling cores is transferred to the envelope significantly affects the number of surviving
binaries but is very uncertain (Ivanova et al., 2013). Here, we adopt the standard αCE-formalism
(Hurley et al., 2002) where the efficiency is described by the free parameter αCE.

In this chapter, we study a set of plausible values for αCE which are summarised in Table 2.1.
Additionally, we explore different BH formation mechanisms following the “rapid" and “delayed"
SN model from Spera et al. (2015) and assume different treatments of rejuvenation and the
bloated stars. We also include three-body dynamics in one of our models as described above.
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3.1.2 Initial conditions

In order to set up the initial conditions of the triple parameters on the ZAMS, we adopt simple
probability density functions motivated by observations. We sample the primary mass m1 from
a standard Kroupa (2001) mass function N(m1) ∝ m−2.3

1 , between 5 and 150M⊙. For the
mass ratio qin = m2/m1, eccentricity ein, and orbital period Pin = 2πa

3/2
in /(Gmin)

1/2 we adopt
simple power-law fits to the observational data of Galactic binaries with O-type primaries (Sana
et al., 2012): N(qin) ∝ q−0.1

in between 0.1 and 1.0, N(ein) ∝ e−0.45
in between 0.0 and 0.9, and

N (log(Pin/days)) ∝ (log(Pin/days))
−0.55 between 0.15 and 5.5. We only keep systems in which

also m2 ≥ 5M⊙ since otherwise in neither of the investigated populations BBHs could be formed.

To any inner binary we repetitively propose tertiary companions until they meet the stability
criterion (Mardling & Aarseth, 2001) (see Section 2.2.6, beyond which the triple would become
chaotic and our adopted method breaks down. To this end, we sample the tertiary mass m3 from
a uniform distribution between 8M⊙ and m1+m2, the outer eccentricity from a thermal distribution
N(eout) ∝ eout between 0.0 and 0.9, and the outer semi-major axis from a log-uniform distribution
between ain and 104AU.

For our model with three-body dynamics included, we assume random orientations of the inner
and outer orbit.

The massive stellar progenitors of BHs are consistent with a near hundred percent fraction of
triples and higher order systems (Moe & Di Stefano, 2017). Nevertheless, most previous work
focused on the evolution of isolated binaries (e.g., Paczyński, 1967b; Podsiadlowski et al., 1992;
Dominik et al., 2012; Belczynski et al., 2016a; Giacobbo & Mapelli, 2018; Olejak et al., 2021; de
Mink et al., 2013; Raucq et al., 2016; Stegmann & Antonini, 2021; Menon et al., 2021; Olejak
et al., 2021). Thus, as a reference, we also study the evolution of an isolated binary population
without tertiary companions. Comparing it to the triple population allows us to discern the impact
of the simplified assumption made in the literature. For our isolated binary population we simply
use the same distributions of masses and orbital parameters as for the inner binaries of the triple
population. Since the orbital distributions of the latter were taken from observational surveys of
binaries, their initial conditions are consistent with observations.

3.2 Results

A key parameter that determines the relative efficiency of both triple channels is their initial
outer semi-major axis aout,0. In Fig. 3.2, we show the cumulative fraction of BBH mergers formed
in either channel as a function of aout,0. In any of our models, we find the outer binary channel
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Figure 3.2. Cumulative distribution of BBH mergers from triple population as a function of the
initial outer semi-major axis (denoted as aout,init = aout,0). Solid lines correspond to mergers via
the outer binary channel and dashed lines to the inner binary channel. The outer binary channel
dominates the formation of BBH mergers from compact triples with aout,0 ≲ 101 – 102AU, where
the precise value depends on the assumed model. The metallicity is sampled log-uniformly.
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Figure 3.3. Collision matrix of stellar mergers in the Rapid1 model. The grayscale correspond
to the fraction of each merger type normalised to one. The axes and integers in each cell indicate
the stellar type of the merging stars and the post-merger star, respectively (only cells with
nonzero fractions are described). The integers are defined as in Hurley et al. (2002, Section 1),
e.g., k1,2 = 1 for MS stars.

to be the dominant way of forming BBH mergers from triples with aout,0 ≲ 101 – 102AU. This
is simply because the inner orbits of these compact triples must be even closer in order to ensure
dynamical stability and hierarchy. This makes the inner binary stars prone to undergo a stellar
merger. Above aout,0 ≳ 101 – 102AU, the inner binary channel dominates. In these systems,
any post-merger star and tertiary companion are too far apart from each other to undergo a
mass transfer episode which is necessary to shrink their orbit. Hence, these systems are unable
to form BBHs that end up close enough to merge within a Hubble time. Thus, in the entire triple
population the inner BBH mergers outweigh those formed via the outer binary channel by a factor
of ∼ O(10).

As a typical example we show in Fig. 3.3 the distribution of stellar types which merge in the
Rapid1 model. In any model, the majority (ranging from ≃ 60% to 80% in the Rapid1 and
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Rapid5 model, respectively) of stars already merge on their MS yielding another star on the MS.
By the time of the stellar merger, most (≃ 80 to 90%) of the tertiary stars are still on their
MS as well. Hence, these merger occur at a relatively early evolutionary stage of all three stars,
typically after a few Myr.

Previously it has been suggested that stellar mergers of an evolved star with a carbon-oxygen
core and a MS star could produce a post-merger star that circumvents a pair-instability SN (Di
Carlo et al., 2019; Ballone et al., 2023). Thus, it has been suggested that GW190521-like events
(Abbott et al., 2020b) with the primary BH mass being in the upper mass gap are possibly formed
in young stellar clusters (Di Carlo et al., 2019, 2020a,b; Kremer et al., 2020). We note that our
MS-MS mergers are not expected to produce a star which could populate the upper mass gap.

In both populations and channels, the fraction of systems which lead to BBH mergers is higher
at low metallicity. We find that a fraction ∼ O(10−2) of the isolated binaries and inner binaries,
respectively, evolve to merging BBHs if Z ≲ O(10−3). Above Z ≳ O(10−3) the fraction sharply
drops to fractions ∼ O(10−5) at solar metallicity. Similarly, the number of BBH mergers via the
outer binary channel falls from ∼ O(10−3) at low metallicities to ∼ O(10−5) at solar metallicity.

As shown in Fig. 3.4, BBH mergers from the triple and isolated binary population are predominantly
formed with equal masses (q ≃ 1). This results from the CE evolution of the progenitor stars
which precedes most of our BBH mergers. In the αCE-formalism, low mass ratio stellar binaries
are more susceptible to merge within a CE rather than forming a close binary which could eventually
lead to a BBH merger.

Yet, the BBH mergers formed from the triple population tend to have lower mass ratios than
those from the isolated binary population. Although in both populations, we find BBH mergers
with mass ratios as low as q ≃ 0.1, BBH mergers with q ≲ 0.4 – 0.6 are much more frequently
formed from triples because of the outer binary channel. In this channel, we identify two ways
that facilitate the formation of low mass ratio BBH mergers which are shown in Fig. 3.1.

First, a stellar merger simply produces a more massive star. Thus, there are systems in which
the post-merger star is much more massive than the tertiary companion. Typically, in these
systems the mass of the post-merger star is larger than mpost ≳ 60M⊙ whereas that of the
tertiary companion is m3 ≃ 20 – 30M⊙. While details depend on metallicity and the SN prescription
(Spera et al., 2015; Fryer et al., 2012), there is the general tendency that more massive stars
also form more massive BHs. As exemplified in the upper panel of Fig. 3.1, a low mass ratio
BBH merger is formed after the massive post-merger star initiated a CE evolution during which
the orbit of both stellar cores efficiently decays. This evolutionary pathway is responsible for the
formation of the lowest BBH mass ratios down to q ≃ 0.1.

82 On the Evolution of Massive Stellar Triples



Results

Figure 3.4. BBH merger distribution as a function of metallicity in the Rapid1 model. The
upper panels show for each metallicity the mass ratio distribution from triples and binaries,
respectively. The lower panel shows the relative residuals between both populations. For any
bin, they are defined as (t− b)/(t+ b) where t corresponds to the bin value in the triple population
and b to that of the binary population. Thus, colored areas indicate a large difference between the
two populations.
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Second, as shown above, the very large majority of BBH mergers in the outer binary channel
are preceded by a MS-MS stellar merger. The resulting MS star is rejuvenated. Thus, there
are systems in which the post-merger star is more massive but less evolved than the tertiary
companion star. Consequently, the latter fills its Roche-lobe first and initiates a stable mass
transfer phase onto the post-merger star as exemplified in the lower panel of Fig. 3.1. This further
increases the imbalance of the stellar progenitor masses and the resulting BH masses. In this way,
low mass ratio BBH mergers with q ≳ 0.3 can be formed. It requires the mass of the post-merger
star to be only a few solar masses ≲ 10M⊙ larger than that of the tertiary progenitor star.

BBH mergers from an isolated binary population evolve differently. Typically, the progenitor of
the primary BH was the donor star of the first stable mass transfer (e.g., Belczynski et al., 2016a,
Figure 1) which reduces the imbalance of the resulting BH masses. We note that previous models
of isolated binary populations can produce a larger number of low mass ratio BBH mergers only
under certain assumptions (Stevenson et al., 2017; Olejak et al., 2020; Belczynski et al., 2020).
As discussed by Belczynski et al. (2020), the resulting mass ratios of BBH mergers crucially
depend on the fraction fa ∈ [0, 1] of transferred mass that is accreted by the progenitor of
the secondary BH. Lower values of fa tend to produce lower mass secondary stars/BHs and
therefore lead to smaller mass ratios of BBH mergers. For example, Zevin & Bavera (2022)
explore different values of fa and find that the bulk of their BBH population has q ≳ 0.2 for
fa = 0 (fully nonconservative) whereas q ≳ 0.4 for fa = 1 (fully conservative). Unfortunately, fa
is poorly constrained and any value between zero and one seems possible (Wellstein et al., 2001;
de Mink et al., 2007; Erdem & Öztürk, 2014; Schneider et al., 2015; Shao & Li, 2016; Mennekens
& Vanbeveren, 2017; Dervişoǧlu et al., 2018; Belczynski et al., 2020).

In the remainder of this work, we investigate the BBH merger rates from both populations and
compare them to the one inferred from GW detections.

In the local Universe the total BBH merger rate inferred from the third Gravitational-wave
Transient Catalog (GWTC-3) is R(z = 0) = 16.7+16.5

−8.7 Gpc−3 yr−1 (90% C.L.) by using the
“flexible mixture model" (Tiwari, 2021; Tiwari & Fairhurst, 2021; Tiwari, 2022). To calculate
the BBH merger rate from our models, we consider the rate and metallicity at which the stellar
progenitor systems are formed throughout cosmic history and convolve it with the delay time
distribution. Thus, the rate at a given redshift z takes into account all systems that were formed
at some earlier redshift zb > z and whose delay time matches the cosmic time elapsed between zb
and z. We use the metallicity-dependent cosmic star formation rate of Madau & Fragos (2017)
and adopt concordant ΛCDM cosmology. Details of our calculations are provided in the Appendix A.3.

In Table 3.2, we report the resulting total rates for in our models at z = 0. Across all models,
we find the median contribution of the outer binary channel to the total BBH merger rate to be
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in the range R(z = 0) = 0.3 – 25.2Gpc−3 yr−1 which amounts to a typical fraction ∼ O(0.01 –
0.1) of the BBH merger rate from the triple population. In any model, the total rates from the
triple and isolated binary population are in the same order of magnitude as the observationally
inferred one. Thus, although our medians tend to overpredict the inferred local BBH merger rate
by a factor of two to three they are in good agreement compared to formation channels that were
previously proposed (Mandel & Broekgaarden, 2022).
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Table 3.2. BBH merger rates R(z = 0) in Gpc−3 yr−1. For the total rate of the triple population, the contributions from both
channels have to be added. The numbers in the table indicate the median rates and 5 – 95% credible intervals, respectively.

Model name
Triple population

Isolated binary population GWTC-3
Inner binary channel Outer binary channel

Rapid1 42.6+27.4
−18.4 12.5+12.7

−6.1 46.1+32.1
−17.6

16.7+16.5
−8.7

Rapid3 48.3+33.0
−17.8 1.6+2.4

−0.8 37.2+31.9
−13.4

Rapid5 16.5+13.9
−4.3 0.7+1.8

−0.4 16.9+14.8
−7.5

Delayed 21.7+15.2
−8.0 5.3+14.6

−3.2 22.1+26.7
−9.2

DiscardBloated 42.6+31.7
−14.6 5.7+9.5

−2.8 46.1+32.1
−17.6

Tout97 44.5+19.1
−12.8 2.8+5.6

−1.5 46.1+32.1
−17.6
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Figure 3.5. Cumulative mass ratio distribution of BBH mergers in the local Universe (z = 0). In
the left panel, we show the BBH mergers from the triple population and in the right panel from
the isolated binary population (solid lines). In the former, we highlight the contribution of BBH
mergers via the outer binary channel (dashed lines) which start to dominate below q ≲ 0.4 – 0.6.
All lines indicate median values. The blue envelope shows the 5 – 95% credible interval of GWTC-
3.

Despite only adding a subdominant fraction to the total merger rate, the BBH mergers formed
via the outer binary channel significantly affect the mass ratio distribution of the entire population.
In Fig. 3.5, we plot the cumulative rate

R<q(z = 0) =

∫ q

0

dR(z = 0)

dq′
dq′ (3.3)

of BBH mergers as a function of their mass ratio q. Neither the inner binary channel in triples
nor isolated binaries are found to reproduce well the mass ratio distribution inferred by the GW
detections. While they agree well with the cumulative rate above q ≃ 0.4 – 0.6 they fail at
lower mass ratios. The inferred mass ratio distribution can be better recovered after including
the contribution from the outer binary channel (dashed lines). For the aforementioned reasons, it
is found to be more efficient in producing low mass ratio BBH mergers leading to a less steeply
decreasing distribution toward low values of q. Below the threshold mass ratio q ≃ 0.4 – 0.6, BBH
mergers from the outer binary channel dominate the inner binary channel.
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Chapter 4

Flipping spins in mass transferring binaries

4.1 Introduction

A large number of stars are found to be in close binary systems. The fraction of MS stars
which are bound to one or more companions ranges from ∼ 40 per cent in the case of solar-type
stars up to ∼ 90 per cent for massive O-type stars (Duquennoy & Mayor, 1991; Sana et al., 2012;
Moe & Di Stefano, 2017). A substantial fraction of binaries move on close orbits with orbital
periods less than ∼ 103 to 104 days. Compared to a life in isolation, their evolutionary pathways
are significantly altered as they can undergo a phase of mass transfer in which they exchange a
large amount of mass and rotational angular momentum with their close companions (Paczyński,
1971). Mass transfer between binary members is responsible for a set of astrophysical phenomena
such as X-ray binaries (Shakura & Sunyaev, 1973) and millisecond pulsars (Bhattacharya & van
den Heuvel, 1991). Moreover, the larger and more evolved but paradoxically less massive members
of Algol-type eclipsing binaries are thought to become so during a phase of mass transfer to their
companions (Crawford, 1955).

A number of binary stellar evolution codes exist that allow to simulate the life of binary stars
including mass transfer phases along with other binary effects such as mass accretion, CE evolution,
SN kicks, and angular momentum losses (e.g., BSE (Hurley et al., 2002), StarTrack (Belczynski
et al., 2008), MESA (Paxton et al., 2011), binary_c (Izzard et al., 2004)). Regarding the
mass transfer, these codes typically build upon two assumptions. Firstly, the effect of any orbital
eccentricity is neglected during the mass transfer phase. For circular orbits, there exists the
well-established Roche-lobe limit which a star’s radius has to exceed so that it loses mass to its
companion (see Section 2.1.3, Eggleton, 1983). In turn, modelling the mass transfer rate on
eccentric orbits in which the orbital separation oscillates is extremely difficult since mass transfer
might occur partially within each orbit at varying rate and does back-react on the orbital elements
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changing the eccentricity and semi-major axis. Recently, several promising attempts have been
made to solve these difficulties (Sepinsky et al., 2007; Dosopoulou & Kalogera, 2016b,a; Hamers
& Dosopoulou, 2019). Secondly, the rotational angular momentum vectors (spins) of the binary
stars are assumed to be aligned with the orbital axis. This assumption has partly been made due
to simplicity and partly because tidal interactions between the binary members are believed to
diminish any spin-orbit misalignment (e.g., Hut, 1981). However, there is observational evidence
of close binaries with highly inclined spin axes suggesting that tides are not in all cases able to
align the spins with the orbital axis (e.g., BANANA survey, Albrecht et al., 2009).

Here, we question the second assumption of spin-orbit alignment. Based on the work of Matese
& Whitmire (1983), we will show that if a binary undergoes a phase of mass transfer the mass-
donating star actually loses rotational angular momentum in a way that causes its spin vector to
flip onto the orbital plane.

We will apply this result to the evolutionary pathways of massive stars in close binaries. Isolated
in the galactic field, these systems have been proposed as the progenitors of a formation channel
(Klencki et al., 2021; Belczynski et al., 2016a; Mandel & de Mink, 2016; Dominik et al., 2012)
leading to the BBH mergers observed by GW facilities (Abbott et al., 2019). In this scenario,
mass transfer between the two stars precedes a CE phase in which the orbital separation quickly
shrinks to values small enough for the BH remnants to merge in less than ∼ 10Gyr.

The orientation and magnitude of the BH spins constitute an important observable to discriminate
among the different binary formation channels (e.g., Mandel & O’Shaughnessy, 2010; Gerosa
et al., 2013; Rodriguez et al., 2016b; Zevin et al., 2020). For instance, the LIGO-Virgo detectors
are sensitive to the mass-weighted projection of the BH spins onto the orbital angular momentum,

χeff =
m1χ1 cos θ1 +m2χ2 cos θ2

m
. (4.1)

Here, m1,2 are the two BH masses and m their sum. The spins are usually expressed in terms
of the dimensionless spin parameters χ1,2 whilst we will use the canonical rotational angular
momenta S1,2 to describe those of their stellar progenitors. Both vectors are related as S1,2 =

χ1,2Gm
2
1,2/c. The angles θ1,2 = cos−1 Ŝ1,2 · ĥ describe the tilts of the spins with respect to

the specific orbital angular momentum h. A viable formation channel has to be compatible with
the χeff-distribution of the BBH mergers measured by LIGO-Virgo which peaks around χeff ≃ 0

with a slight tendency towards positive values (Abbott et al., 2019, 2021a; The LIGO Scientific
Collaboration et al., 2021). This suggests that the final BH spins are either small, anti-aligned
with each other, or perpendicular to h.

By means of a population synthesis we will apply the spin dynamics that we derived to the
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Figure 4.1. Donor spin evolution for a constant mass loss rate. We are considering circular
orbits (e = 0). The quantities m1 (m0), S (S0), and θ (θ0) describe the current (initial) values
of the donor’s mass, spin magnitude, and tilt angle with respect to the specific orbital angular
momentum h, respectively. The left panel reveals that as the donor loses mass, i.e., m1/m0

decreases, any initial donor spin with cos θ0 ∈ (−1.0, 1.0) gets flipped towards the orbital plane
cos θ0 = 0.0. Meanwhile, the right panel shows how at the same time the spin magnitude
efficiently gets damped down.

first stable mass transfer occurring in the isolated binary channel. There, we will also take other
binary effects such as tidal interactions into account (Eggleton & Kiseleva-Eggleton, 2001) in
order to investigate whether flipping spins are a prevalent phenomenon or not. Apart from that,
we emphasise that the dynamics can be important for any other binary formation channel that
might involve a phase of mass transfer, e.g., the triple channel (Di Stefano, 2020a), as well as for
mass-exchanging stellar binaries in general.

4.2 Basic Assumptions

Here, we consider an isolated stellar binary in which one member star transfers mass to the
other. We label all quantities related to the mass losing star (donor) and the mass-gaining star
(accretor) with the indices i = 1, 2, respectively. Thus, let Ri, mi, ri, and d = r2 − r1 denote the
stars’ radii, masses, the distance between the stellar centres of mass to the binary centre of mass,
and orbital separation, respectively. Together they carry a specific orbital angular momentum per
reduced mass µ = m1m2/m12 which is given by

h(t) = d× ḋ. (4.2)
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In terms of the semi-major axis a, eccentricity e, and total mass m12, its magnitude can be written
as

h = j
√
Gm12a, (4.3)

where j =
√
1− e2. Furthermore, we associate with each star a rotational angular momentum

vector (spin) given by

Si(t) =
∑
k

ρi,k × (mkρ̇i,k) =
∑
k

ρi,k × (mkωi,k × ρi,k) . (4.4)

The sums in Eq. (4.4) are taken over all particles with masses mk, absolute positions si,k, relative
positions ρi,k = si,k − ri, and angular velocities ωi,k that constitute the star i at some time t. If we
assume for simplicity that the stars retain spherically symmetric shapes during the mass transfer
and uniformly rotate at some angular velocities ωi = ωi,k, one recovers the familiar form

Si(t) = Θ i · ωi, (4.5)

where Θ i = κmiR
2
i 1 is the respective star’s total inertia tensor with 1 being the identity. Henceforth,

we set κ = 0.08 for a n ∼ 3 polytrope (Motz, 1952).

In general, mass is transferred from the donor to the accretor via their first Lagrangian point
L1 once the former fills its Roche-lobe (Paczyński, 1971; Lubow & Shu, 1975). That is, the
radius of the donor has to expand to the limit approximately given by (see Section 2.1.3, Eggleton,
1983)

RL(t) = dF (q), (4.6)

where q = m1/m2 is the stars’ mass ratio and the function F (q) is defined as

F (q) =
0.49q2/3

0.6q2/3 + ln (1 + q1/3)
. (4.7)

Whenever the donor has grown to that size, R1 = RL, we assume that it loses mass at the point
R1 = R1d̂ at a rate ṁ1 = −ṁ where ṁ > 0 which subsequently gets transferred to the accretor
(Matese & Whitmire, 1983). For simplicity, we assume that the mass transfer is conservative, i.e.,
no mass is lost from the binary during this process.

4.3 Donor spin evolution due to mass transfer

In this section we study the spin evolution of the donor based on the work of Matese & Whitmire
(1983) and Sepinsky et al. (2010). For this reason and for better readability, we will henceforth
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omit the donor’s index i = 1 (S = S1, ω = ω1, R = R1, etc.). Consider a general donor quantity
G which at some time t can be written as G(t) =

∑
kGk(t), i.e., as a sum over all particles

labeled with k that constitute the donor at that time (e.g., Eq. (4.4)). At a later time t+∆t, G
will be given by G(t+∆t) =

∑
k′ Gk′(t+∆t), where∑

k′

=
∑
k

−
∑
l

(4.8)

is the sum over all particles that constitute the respective star at the later time t+∆t. That is, the
donor lost the contribution of the particles labelled with l that left it within the time interval ∆t.
Consequently, the time derivative of G(t) can be written as (Matese & Whitmire, 1983)

Ġ =
∑
k

Ġk(t)− lim
∆t→0

1

∆t

∑
l

Gl(t+∆t). (4.9)

The first term on the r.h.s. of Eq. (4.9) describes the change of G if the mass were held constant,
whereas the second term reflects the change due to mass transfer. Insertion of Eq. (4.4) into (4.9)
yields Ṡ(t) = ε(t)− ζ(t) where we defined

ε(t) =
∑
k

d

dt
{ρk(t)× [mkρ̇k(t)]} , (4.10)

ζ(t) = lim
∆t→0

1

∆t

∑
l

ρl(t+∆t)× [mlρ̇l(t+∆t)] . (4.11)

Physically, the first term ε(t) comprises all external torques applied to the donor spin if its total
mass were held constant (Hrushow, 1969). These external torques can emerge, e.g., from the
tidal forces of the companion star and will be discussed in Sections 4.4 and 4.5. In order to study
the effect of mass loss alone we set ε(t) = 0 in the remainder of this section. In that case,
Eqs. (4.5) and (4.11) yield for the time derivative of the donor spin

Ṡ(t) = −ṁR× (ω ×R)

= −ṁ
[
R2ω − (R · ω)R

]
= −1

κ

ṁ

m
S
[
Ŝ −

(
d̂ · Ŝ

)
d̂
]
, (4.12)

since we approximated R = Rd̂ to be the first Lagrangian point where the donor loses its
particles, i.e., R = ρl. Eq. (4.12) is equivalent to the derivations of Matese & Whitmire (1983)
and partly uses Eq. (23) of Sepinsky et al. (2010). Here, we make two implicit key assumptions
that are commonly used in the literature. Firstly, we assumed that the particles leave the donor
through R at the donor’s rotational velocity, i.e., at a velocity ω × R in the frame co-rotating

J. Stegmann 93



Flipping spins in mass transferring binaries

Figure 4.2. Donor spin evolution given that all mass is lost at the periapsis. The quantities m1,
m0, θ, and θ0 are defined as in Fig. 4.1 whilst ϕ0 is the initial azimuthal angle of S. For a fiducial
fractional leftover mass of m1/m0 = 0.75, the left panel shows the additional dependency of the
tilt angle evolution on the initial azimuthal angle ϕ0, revealing that a flip onto the orbital plane
is most (least) efficient if it is close to 0 or π (π/2 or 3π/2). For the latter case (ϕ0 = 0.49π),
the right panel shows that it requires smaller values of m1/m0 compared to Fig. 4.1 in order to
achieve a significant flip. The opposite would be true if we were to plot the panel for ϕ0 around 0
or π.

with the orbital motion (Sepinsky et al., 2010). Secondly, by replacing the angular velocity vector
by the spin (cf., Eq. (4.5)) in the last step of Eq. (4.12) we assumed that the stellar interior
transport of angular momentum is efficient enough to align the spins of all parts of the star on a
timescale shorter than that of mass loss. Otherwise, the spin direction of some stellar parts, e.g.,
the core, could in principle decouple from the spin direction of the other parts, e.g., the envelope.
We discuss the implications of these assumptions in Section 4.5.

The last part of Eq. (4.12) unveils a clear geometrical interpretation. The first term in the
rectangular brackets causes the magnitude S of the donor spin to decrease. Meanwhile, the
second term alters the spin direction unless d̂ · Ŝ = 0. Thus, depending on the orbital phase and
the current spin direction, the second term causes the donor spin vector to either move towards
the orbital plane or away from it. In what follows we will orbit-average the phase-dependent time-
evolution equation (4.12) in order to investigate which effect dominates over longer timescales.
We consider the two cases in which (i) ṁ is constant within each orbit and (ii) all mass per orbit
is lost at the periapsis. We note that on an eccentric orbit, ṁ/m may vary smoothly along the
orbit. For instance, it might be reasonable to assume that ṁ has a local maximum and minimum
at periapsis and apoapsis, respectively (Hamers & Dosopoulou, 2019). Detailed modelling of mass
transfer in eccentric orbits is the subject of ongoing research which is beyond the scope of this
work. Instead, we restrict ourselves to the two limiting cases (i) and (ii). We may assume that
the former case is a valid approximation for circular and less eccentric systems whereas the latter
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holds for more eccentric orbits.

In case (i), ṁ/m and S only change on timescales that are much longer than the orbital period
which is T ≲ O(103) days for the systems we will be interested in (see Section 4.5). Hence, we
can fix ṁ/m and S when averaging Eq. (4.12) over one period. For that purpose, it is convenient
to introduce a rotating reference frame F by defining a right-handed orthonormal triad (ê, q̂, ĥ).
Here, ê is the unit vector of the Laplace-Runge-Lenz vector e that has a magnitude equal to the
orbit’s eccentricity e and points towards its periapsis. Meanwhile, the unit vector q̂ = ĥ× ê is along
the latus rectum of the orbit. In this frame, d̂ and Ŝ read in spherical coordinates

d̂ = cos νê+ sin νq̂, (4.13)

Ŝ = cosϕ sin θê+ sinϕ sin θq̂ + cos θĥ, (4.14)

where ϕ ∈ [0, 2π) and θ ∈ [0, π] are the azimuthal and polar (tilt) angles of Ŝ, respectively. The
angle ν ∈ [0, 2π) is the azimuthal angle of d̂ which is equivalent to the binary’s orbital phase.

In general, the orbit-averaged change of some stellar quantity G over an orbit with eccentricity
0 ≤ e < 1 is given by (Dosopoulou & Kalogera, 2016b)

⟨Ġ(t)⟩ = (1− e2)3/2

2π

∫ 2π

0

Ġ

(1 + e cos ν)2
dν. (4.15)

For simplicity, we assume that also e does not change significantly on orbital timescales so that
we can set e = const. in the integral of Eq. (4.15). Thus, we find for the orbit-averaged change of
S

⟨Ṡ(t)⟩ =− 1

κ

ṁ

m
S{[1− f1(e)] cosϕ sin θê+ [1− f2(e)] sinϕ sin θq̂ + cos θĥ}, (4.16)

where we defined f1(0) = f2(0) = 1/2, whereas for 0 < e < 1 we have

f1(e) =
e4 + 2e2 (j − 1)− j + 1

je2
, (4.17)

f2(e) =
(e2 − 1) (j − 1)

e2
, (4.18)

whose difference is small and always negative, 0 > f2(e)− f1(e) > −1. In terms of the spherical
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coordinates of S, Eq. (4.16) reads

⟨θ̇⟩ = 1

κ

ṁ

m
sin θ cos θ

[
f1(e) cos

2 ϕ+ f2(e) sin
2 ϕ
]
, (4.19)

⟨Ṡ⟩ = −1

κ

ṁ

m
S
{
1− sin2 θ

[
f1(e) cos

2 ϕ+ f2(e) sin
2 ϕ
]}
, (4.20)

⟨ϕ̇⟩ = f2(e)− f1(e)

κ

ṁ

m
sinϕ cosϕ. (4.21)

For the special case of circular, stationary orbits (e = ⟨ė⟩ = 0), the integration of Eqs. (4.19)–
(4.21) is particularly simple, yielding the analytical solutions

θ = tan−1

[(
m

m0

)−1/2κ

tan θ0

]
, (4.22)

S = S0

[(
m

m0

)2/κ

cos2 θ0 +

(
m

m0

)1/κ

sin2 θ0

]1/2
, (4.23)

ϕ = const., (4.24)

where m0 = m(t0), θ0 = θ(t0), and S0 = S(t0) are the donor’s mass, tilt angle, and spin
magnitude at the onset of mass transfer, respectively. Importantly, θ and S are only functions
of the initial tilt angle θ0 and fractional leftover mass 0 ≤ m/m0 ≤ 1, i.e. the fraction between
the donor’s current and initial masses m and m0, respectively. They are not explicit functions of
time. Physically, this means that the details of the functional form of ṁ(t) are irrelevant for θ(t)
and S(t) as long as the integrated mass loss is the same.

In Fig. 4.1, we plot cos θ and S/S0 for e = 0 as functions of m/m0 and cos θ0 revealing two
essential features. Firstly, as the donor loses mass any initial tilt angle θ0 gets flipped onto the
orbital plane (cos θ = 0; see left panel). The only two exceptions are given by cos θ0 = −1 and
+1 for which cos θ remains constant. However, the latter values constitute unstable equilibria
since for any small deviation we do observe a flip. Moreover, in a realistic astrophysical setting
these points are irrelevant because we will never start from perfect alignment of S and ±h. Most
importantly, we see that the spin flip is very efficient in the sense that even moderate mass losses,
e.g., m/m0 ≃ 0.75, cause large changes of cos θ towards zero unless cos θ0 is very close to −1 or
+1. Hence, the orbital plane is a strong dynamical attractor for the evolution of S.

Secondly, the spin magnitude S of the donor gets efficiently damped down (see right panel).
This is even true for cos θ0 = −1 and +1. In fact, the closer cos θ0 is to these values the stronger
is the spin-down. Unless the mass loss is small the spin can decrease by several orders of magnitude.

Next, we investigate case (ii) in which all mass per orbit is lost at periapsis. To this end, we
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Figure 4.3. Donor spin-down if all mass is lost at the periapsis. All quantities are defined as in
Figures 4.1 and 4.2. For m1/m0 = 0.75, the left panel shows the dependency on ϕ0. We can see
that the damping of the magnitude is most (least) efficient for π/2 or 3π/2 (0 or π) whilst the
opposite was true for the spin flip (e.g., Fig. 4.2, left panel). For the fiducial angle ϕ0 = π/4, the
right panel shows that the spin magnitude gets damped down but much less efficiently than for
the circular, constant mass loss rate case (Fig. 4.1).

introduce a mass loss rate ṁ0 > 0 such that (Dosopoulou & Kalogera, 2016b)

ṁ(ν) =
ṁ0

2π
δ(ν), (4.25)

where δ(ν) is the Dirac-delta distribution. In this case, Eq. (4.15) yields for the donor spin,

⟨Ṡ⟩ = − 1

4π2κ

(1− e2)3/2

(1 + e)2
ṁ0

m
S
(
sinϕ sin θq̂ + cos θĥ

)
. (4.26)

In terms of the spherical coordinates we thus get

⟨θ̇⟩ = 1

κ

⟨ṁ⟩
m

cos2 ϕ sin θ cos θ, (4.27)

⟨Ṡ⟩ = −1

κ

⟨ṁ⟩
m

S
(
sin2 ϕ sin2 θ + cos2 θ

)
, (4.28)

⟨ϕ̇⟩ = −1

κ

⟨ṁ⟩
m

sinϕ cosϕ, (4.29)

where we substituted the orbit-average of Eq. (4.25)

⟨ṁ⟩ = ṁ0

4π2

(1− e2)3/2

(1 + e)2
. (4.30)

Note that since we defined ṁ0 to be positive, the donor loses mass at a rate −⟨ṁ⟩. Analogously
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to Eqs. (4.19) – (4.24), we find analytical solutions to Eqs. (4.27) – (4.29) which are given by

θ = tan−1


[(

m

m0

)−2/κ

cos2 ϕ0 + sin2 ϕ0

]1/2
tan θ0

, (4.31)

S = S0x
αyβ, (4.32)

ϕ = tan−1

[(
m

m0

)1/κ

tanϕ0

]
, (4.33)

where we defined

x =cos2 ϕ0 sin
2 θ0 +

(
m

m0

)2/κ (
cos2 θ0 + sin2 ϕ0 sin

2 θ0
)
, (4.34)

y =
1

4

[
1− cos(2θ0) + 2 cos(2ϕ0) sin

2 θ0 +

(
m

m0

)2/κ (
3 + cos(2θ0)− 2 cos(2ϕ0) sin

2 θ0
) ]
,

(4.35)

α =
1

2 + 2 cot2 θ0 csc2 ϕ0

, (4.36)

β =
2 cos2 θ0

3 + cos(2θ0)− 2 cos(2ϕ0) sin
2 θ0

. (4.37)

In the following, we investigate the implications of Eqs. (4.31) – (4.33). At first, note that
these equations are not explicit functions of the eccentricity. Hence, their scope is only physically,
but not mathematically, restricted to eccentricities that must be large enough so that Eq. (4.25)
provides a valid approximation for the mass loss rate. Yet, Eqs. (4.31) – (4.33) are more complicated
to analyse than Eqs. (4.22) – (4.24) due to their additional dependency on ϕ0. The dependency
of the tilt angle is shown in the left panel of Fig. 4.2 where we fixed m/m0 = 0.75. It reveals that
the flip is more efficient the closer the spin starts around the periapsis or apoapsis, i.e., around
ϕ0 = 0 or π, respectively, whilst it does not flip at all if ϕ0 = π/2 or 3π/2. The limiting behaviour
at these values becomes evident from Eqs. (4.27) and (4.29). If ϕ0 is an integer or half-integer
multiple of π, ϕ becomes stationary (⟨ϕ̇⟩ = 0) since sinϕ cosϕ = 0 for these cases. Therefore,
⟨θ̇⟩ scales with a constant factor cos2 ϕ0 which is zero or one if ϕ0 is an half-integer or integer
multiple of π, respectively. In the right panel of Fig. 4.2, we plot cos θ for ϕ0 = 0.49π, i.e., for an
initial azimuthal angle close to a half-integer minimum. We see that it requires smaller values of
m/m0 compared to Fig. 4.1 in order to achieve a significant flip. The opposite would be true if
we were to plot the panel for ϕ0 around 0 or π.

In Fig. 4.3, we show the spin magnitude evolution. In the left panel, we show its dependency
on ϕ0 for m/m0 = 0.75. Whilst we explained above that the spin flip is most (least) efficient if
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ϕ0 is an integer (half-integer) multiple of π, respectively, the opposite is true for the spin-down.
In the right panel, we show for ϕ0 = π/4 the spin-down as a function of cos θ0. In comparison
to the circular, constant mass loss rate case (Fig. 4.1), the spin-down is weaker leading to a
typical fraction of about S1/S0 ∼ O(0.1). Furthermore, there is a mass loss scale of about
m/m0 ≃ 0.8 below which the spin-down no longer depends on m/m0. At this value, terms that
are proportional to (m/m0)

2/κ become negligible in Eqs. (4.34) and (4.35) so that S/S0 solely
depends on θ0 and ϕ0. In this regime, the spin-down is the most (least) efficient if the spin is
oriented towards the poles (orbital plane).

4.4 Tides

In a close semi-detached binary tidal bulges can emerge on the surface of a star because of
the perturbing force of its companion. Due to the viscosity of the star these bulges will not
instantaneously align with the relative distance vector d but they either slightly lag behind or
lead ahead depending on whether its rotational angular frequency ω is smaller or greater than the
orbital mean motion n = 2π/T , respectively (Alexander, 1973; Zahn, 1977; Hut, 1981). Further
bulges arise at the star’s equator due to its rotation introducing at lowest order a quadrupolar
perturbation to the gravitational potential. Applying both effects to the donor star, the equations
of motion for the evolution of the stellar spin and binary angular momentum are described by a
set of differential equations for S, ê, q̂, ĥ, e, and h as follows

dS

dt
=

dS

dt

∣∣∣∣∣
ṁ

+
dS

dt

∣∣∣∣∣
Quad

+
dS

dt

∣∣∣∣∣
Diss

, (4.38)

dû

dt
=

dû

dt

∣∣∣∣∣
Quad

+
dû

dt

∣∣∣∣∣
Diss

, (4.39)

de

dt
=

de

dt

∣∣∣∣∣
ṁ

+
de

dt

∣∣∣∣∣
Diss

, (4.40)

dh

dt
=

dh

dt

∣∣∣∣∣
ṁ

+
dh

dt

∣∣∣∣∣
Diss

, (4.41)

where û is used as a proxy for ê, q̂, and ĥ, respectively. For simplicity, we ignore tides raised
on the acceptor star which are much weaker than the tides raised on the donor. Each term in
Eqs. (4.38) – (4.41) either emerges from the mass transfer (indicated by "ṁ"), the quadrupolar
distortion of the donor ("Quad"), or the tidal dissipation ("Diss"). The mass transfer term for S
is either given by Eq. (4.16) (case (i)) or (4.26) (case (ii)). In addition, conservative mass transfer
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causes the magnitude of the specific angular momentum to change as (Eggleton, 2006)

dh

dt

∣∣∣∣∣
ṁ

= ṁ

(
1

m1

− 1

m2

)
h. (4.42)

Meanwhile, the mass transfer term for the eccentricity depends on how the mass loss rate
changes along the orbit. If the rate is independent on the orbital phase as in case (i), then (Eggleton,
2006)

de

dt

∣∣∣∣∣
ṁ

= 0, (4.43)

whereas for the delta-mass function case (ii), it can be written as (Sepinsky et al., 2007; Dosopoulou
& Kalogera, 2016b)

de

dt

∣∣∣∣∣
ṁ

= − ṁ

m1

R

a
j + 2ṁ

(
1

m1

− 1

m2

)
j(1− e), (4.44)

where we treated the accretor as a point mass. In any case, the orientation of the orbital frame F

remains unaffected by the mass transfer (Eggleton, 2006). Hence, Eq. (4.39) involves no term in
this regard.

Together, the terms for the quadrupolar distortion and tidal dissipation can be conveniently
expressed by means of five perturbing functions X, Y , Z, V , and W which we explicate in Appendix
A.5 (Eggleton & Kiseleva-Eggleton, 2001; Eggleton, 2006) and which is equivalent to the prescription
given in Chapter 2

dS

dt

∣∣∣∣∣
Quad

+
dS

dt

∣∣∣∣∣
Diss

= µh(W ĥ−K × ĥ), (4.45)

dû

dt

∣∣∣∣∣
Quad

+
dû

dt

∣∣∣∣∣
Diss

= K × û, (4.46)

de

dt

∣∣∣∣∣
Diss

= −V e, (4.47)

dh

dt

∣∣∣∣∣
Diss

= −Wh, (4.48)

where K = Xê + Y q̂ + Zĥ is the angular velocity of F. Of the perturbing functions, V and
W are due to tidal dissipation which cause the orbit to circularise and the stellar rotation to
synchronise. The functions X, Y , and Z incorporate the quadrupolar distortion which gives
rise to apsidal motion and spin precession around ĥ. However, also X and Y do include small
terms due to tidal dissipation which enforce the spin to align with the orbital angular momentum.
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Hence, the effect of tidal dissipation counteracts the flip of the donor spin due to mass transfer,
i.e., its misalignment with ĥ. Therefore, any spin flip is suppressed unless the mass transfer terms
in Eq. (4.38) are able to dominate the others. In the following, we address in which circumstances
this might happen.

In the equilibrium tide model the tidal friction timescale tF is defined as (Fabrycky & Tremaine,
2007)

tF,e =
tV
9

( a
R

)8 m2
1

m2m12

1

(1 + 2kA)2
, (4.49)

where kA = 0.014 is the apsidal motion constant which quantifies the quadrupolar deformability of
a star and tV is the viscous timescale given by

tV = 3
(1 + 2kA)

2

kA

R3

Gm1τ
. (4.50)

Physically, τ describes the time by which the tidal bulges lag behind or lead ahead w.r.t. the line
connecting both binary members. In the theory of equilibrium tides, τ is a constant which is an
intrinsic property of the tidally forced star in question (Hut, 1981).

We also consider an approximate prescription for dynamical tides which could become important
for stars with outer radiative envelopes (Zahn, 1977). Following Hurley et al. (2002), in this case
we still use the equations from Eggleton & Kiseleva-Eggleton (2001) but with the tidal dissipation
timescale now given by

tF,d =
( a
R

)9√ a3

Gm1

q

(
1 +

1

q

)−11/6
1

E2

, (4.51)

where E2 is a coefficient that is related to the structure of the star and refers to the coupling
between the tidal potential and gravity mode oscillations. Unfortunately, the value of E2 is difficult
to calculate since it is very sensitive to the structure of the star and therefore to the exact treatment
of stellar evolution (e.g., Zahn, 1975; Yoon et al., 2010; Siess et al., 2013; Qin et al., 2018).

We can approximately quantify the effect of tides on the stellar spin by introducing a timescale
for variations in the spin-orbit tilt angle due to tidal dissipation, tS,e(d) ∼ (S/µh)tF,e(d)j

13. Thus,
for a star which just fills its Roche-lobe, i.e., R = F (q)a(1− e), and for the equilibrium tide model
we have

tS,e = 1.6× 10−2 yr
κ

0.08

0.014

kA

(
1 s

τ

)(
1 day

P

)(
M

3/2
⊙

m2
√
m12

)(
a

R⊙

)9/2
qj12

[F (q)(1− e)]3
, (4.52)
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where P = 2π/ω. For the dynamical tide model we find

tS,d = 4.4× 102 yr
κ

0.08

(
10−9

E2

)(
1 day

P

)(√
m1m12

m2
2

M⊙

)(
a

R⊙

)3
j12

[F (q)(1− e)]7

(
m2

m12

)11/6

.

(4.53)
We then compare the above timescales to the timescale for spin change due to mass loss, tṁ ∼
κm1/ṁ. From the condition tṁ = tS,e(d), we have that the mass loss effect dominates over tidal
effects if at the onset of mass transfer the binary semi-major axis is larger than

ae = 11.9R⊙

(
kA

0.014

τ

1 s

10−4M⊙ yr−1

ṁ

P

1 day

)2/9
(
m2

2

√
m12

M
5/2
⊙

)2/9
[F (q)(1− e)]2/3

j8/3
, (4.54)

for equilibrium tides, and larger than

ad = 1.2R⊙

(
E2

10−9

10−4M⊙ yr−1

ṁ

P

1 day

m2
2m1√

m1m12M2
⊙

)1/3
[F (q)(1− e)]7/3

j4

(
m12

m2

)11/18

, (4.55)

for dynamical tides.

In Fig. 4.4, we plot ae and ad as a function of the donor mass. In this calculation, we consider
circular equal-mass binaries. For the lag time constant we use τ = 10−1 s which is a value
typically adopted for solar type stars (e.g., Wu & Murray, 2003; Anderson et al., 2017), and set
E2 = 10−9 (m1/M⊙)

2.8 which was obtained by Zahn (1977) for ZAMS stars. Although ae and
ad depend weekly on τ and E2 respectively, it is important to note that plausible values for these
parameters can span orders of magnitude (e.g., Goldreich & Soter, 1966; Zahn, 1977). Moreover,
we set ṁ = 10−4M⊙ yr−1 which is a realistic value for RLO. According to Kippenhahn et al.
(1967) a 9M⊙ donor loses more than 5M⊙ to a 5M⊙ accretor in only 6 × 104 yr during the
hydrogen burning and almost 7M⊙ in 4 × 104 yr when the mass transfer starts after exhaustion
of hydrogen in the core. Paczyński (1967a) and van Rensbergen et al. (2010) find similar mass
transfer rates for MS donors. The mass loss rate can be as large as 10−1 M⊙ yr−1 in the case of
massive binaries (e.g., Figure 1 of Belczynski et al., 2016a).

Fig. 4.4 shows that ae varies between several tens to ∼ 100R⊙, increasing weakly with the
mass of the donor, whilst ad varies between ad ≃ 2R⊙ for a 2M⊙ donor up to ad ≃ 400R⊙

for the most massive stars. We can now ask whether during a given evolutionary stage a mass
transfer episode can occur at such, or smaller, orbital separations; this requires that R/F (q)(1−
e) > ae(d). In Fig. 4.4 we compute RMS/F (q) and RRG/F (q), where RMS is the maximum stellar
radius during the MS and RGB is the radius at the start of He burning, as a function of the mass
of the star at that evolutionary stage. The stellar radii were obtained with the fast binary stellar
evolution code BSE (Hurley et al., 2002; Banerjee et al., 2020). Hence, RMS/F (q) and RRG/F (q)
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Figure 4.4. Critical binary semi-major axis ae and ad for a spin rotational period P = 5days
(lower lines) and P = 30days (upper lines). Tides are expected to suppress the flip of the stellar
spin due to mass loss if mass transfer starts at a < ae and a < ad for equilibrium and dynamical
tides, respectively. The dashed blue lines give the maximum value of the binary semi-major axis
that will still allow a mass transfer event to occur on the MS, RMS/F (q), and before He burning
starts, RGB/F (q). Here, we consider circular binaries with e = 0, q = 1, and solar metallicity.
Other parameters and details are given in Section 4.4.

represent the maximum value of the binary semi-major axis that will still allow a mass transfer
event to happen during the MS or before He burning starts, respectively. Comparing these to the
red and black lines in the figure, we see that the effect of mass loss can indeed be important for
both MS and giant stars. If mass transfer starts near the tip of the giant branch, then the mass
loss effect will dominate regardless of the exact treatment of tides. Even for MS stars, however,
the mass loss effect can become comparable to tides for a large range of masses and dominates
in some cases. For example, radiative damping on the dynamical tide is expected to be the most
efficient dissipative mechanism in MS stars with m1 ≳ 1.5M⊙. For these stars and for masses up
to m1 ≈ 5M⊙, RMS/F (q) ≫ ad so that mass loss effects will dominate.

In conclusion, the results shown in this section demonstrate that the assumption that tides
will erase any spin-orbit misalignment might not always be valid. In the following section, we will
consider how the spin dynamics we described above can affect the spin-orbit alignment of BBHs
formed from the evolution of field binaries.
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Table 4.1. Initial parameter distribution of the binary population. The primary mass is
drawn from the Kroupa (2002) initial mass function whilst the distributions for the mass ratio,
eccentricity, and orbital period are adopted from Sana et al. (2012). Note that the observational
sample used by Sana et al. (2012) only allowed for a statistical analysis of binaries with primary
masses up to 60M⊙. Here, we explicitly assume that the distributions are valid up to primary
masses of 100M⊙. The exponents κ, η, and λ are assumed to follow normal distributions, i.e.,
for each binary instance we draw new values from normal distributions with means and standard
deviations as given in the Table.

Parameter Distribution Exponent Domain
Primary mass m1 Pm1 ∝ mς

1 ς = −2.3 22− 100M⊙
Mass ratio m2/m1 Pm2/m1 ∝ (m2/m1)

κ κ = −0.2± 0.6 0.1− 1.0
Eccentricity e Pe ∝ eη η = −0.4± 0.2 0.0− 0.9
Orbital period T Plog T/days ∝ (log T/days)λ λ = −0.4± 0.2 100.15 − 103.5 days

4.5 Application to binary black hole formation

In this section, we simulate a population of isolated massive stellar binaries and use Eqs. (4.38) –
(4.41) to investigate the implications of the spin dynamics described above. As in Chapter 3, the
population is set up using the parameter distributions that Sana et al. (2012) inferred from the
observation of 71 Galactic binaries. That is, we draw the primary masses, mass ratios, orbital
periods, and eccentricities from the distribution functions given in Table 4.1. In the remainder
of this section, we will refer to the star (and its compact remnant) that was initially the more
massive one as the primary and to its companion as the secondary.

We evolve this binary population in time by means of the binary stellar evolution code BSE

(Hurley et al., 2002; Banerjee et al., 2020). As described in the previous chapters, BSE simulates
the stellar evolution including binary features such as mass transfer, mass accretion, CE evolution,
SN kicks, and angular momentum losses. For the subset of systems that form merging BBHs
through the isolated binary channel, interactions among the stellar binary members played a vital
role (e.g., Belczynski et al., 2016a). Briefly, starting with two massive stars in the galactic field
the primary star transfers mass to the secondary during a dynamically stable RLO phase. Soon
after this process the primary star forms a (first-born) BH whereas the secondary expands as a
supergiant. A second mass transfer phase from the secondary star to the BH takes place once the
former fills its Roche-lobe. This time, the process is dynamically unstable leading to a CE phase in
which the expanding star engulfs its BH companion. Whilst moving through the CE, drag forces
cause the BH’s orbit quickly to shrink and the CE might be ejected. Eventually, a BBH forms
once the secondary star develops a BH, too. On this evolutionary pathway it is the CE phase
which is of crucial importance for the BBH to finally merge. It can rapidly reduce the orbital
separation to values small enough for energy loss due to GW emission to provoke a coalescence
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within the age of the Universe.

In total, Eqs. (4.38) – (4.41) constitute a set of fourteen coupled differential equations (vectorial
quantities counting thrice) that we numerically integrate once RLO starts. At that time, we
use the masses, orbital parameters, and spin rates computed by BSE as the initial values for
our integration scheme. Furthermore, we draw the initial value ϕ0 for the azimuthal angle of
the donor from a uniform distribution between zero and 2π. For the initial value of cos θ0 of
the tilt angle, we assume a uniform distribution in the interval [0.9, 1.0). Thus, our approach
is conservative in the sense that we start with donor spins which are fairly aligned with the orbital
angular momentum. During the integration, we follow Hurley et al. (2002) by using R = a(1 −
e)F (q) as the effective donor radius. For comparison, we also ran a simulation using R = aF (q)

without noticing a substantial difference of the results. The mass loss rate we adopted is also
obtained from the BSE calculation. This is, however, based on the assumption that the binary
moves on a circular orbit which is not always the case for our binaries. Nonetheless, for want of
a more detailed treatment we assume that this mass loss rate is still applicable to our eccentric
systems. In particular, the BSE mass loss rate is used for the orbit-average given by Eq. (4.30) in
case (ii).

Because the physics of stellar tides is much debated and the efficiency of tides itself is uncertain
(e.g., Claret & Cunha, 1997; Langer, 2009), in the simulations presented here we opt for a simplified
approach in which we employ the equilibrium tide equations for all stars. Then we use the constant
time lag as a free parameter in order to tune the efficiency of tides. We set τ = 100 s (efficient
tides), τ = 10−1 s (moderately efficient tides), and τ = 10−2 s (inefficient tides). For m1 = 50M⊙,
R = 10R⊙, and τ = 100 s, Eq. (4.50) gives a viscous time tV ≃ 360 yr.

Before presenting the results of our analysis, we comment on some assumptions in our treatment
that we briefly introduced in Section 4.2 and that are also commonly adopted in the literature.
Firstly, because the extent to which the rotation of the stellar core is coupled to that of the stellar
envelope is very uncertain, we simply assume maximal coupling, i.e., that the entire star behaves
as a rigid rotator with a uniform angular velocity (Steinle & Kesden, 2021; Sepinsky et al., 2010;
Belczynski et al., 2008; Hurley et al., 2000; Belczynski et al., 2020), but comment here on the
other extreme case of minimal coupling in which core and envelope are fully decoupled. As long as
a star remains homogeneous, various processes (e.g., shear instability) will tend to rapidly restore
uniform rotation. Thus, when the stars are on the MS the assumption of solid rotation might
represent a good approximation. But, once the star leaves the MS it will then develop a compact
He rich core whose rotation could fully decouple from that of the envelope before any significant
amount of mass has been lost by the donor. The validity of our treatment for post MS stars
therefore requires that mass and angular momentum transport within the star are efficient enough
that the stellar core remains strongly coupled to the outer envelope. The angular momentum
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evolution of stellar interiors, along with the resulting rotation rates of stellar remnants, remains
poorly understood. However, several studies have shown that angular momentum transport within
massive stars might be efficient enough to carry a significant amount of spin from the core to
the envelope (e.g., Qin et al., 2018; Fuller & Ma, 2019). In this case, a spin tilt predicted by
our model will reflect onto the spin of the core as well, although the latter might still rotate at
a somewhat different angular frequency and at a different angle than the envelope. If the core
and envelope are fully decoupled, we would expect that the core will keep rotating in the same
direction as the entire star at the onset of mass transfer. The relative orientation between the
spins of the binary stars and their orbital angular momentum then will largely depend on whether
tides were efficient enough to realign any prior spin-orbit tilt, and on the primordial spin-orbit
alignment.

Secondly, following Sepinsky et al. (2007, 2010) and Dosopoulou & Kalogera (2016b,a) we
assume that any orbital angular momentum carried by the loss particles is immediately returned
(only) to the orbit once they have passed the first Lagrangian point. Generally, mass transfer
becomes non-conservative if not all mass lost from the donor can be accreted by its companion
(Tout, 2012). In this case, the systemic mass and angular momentum losses would change the
orbital elements differently compared to a conservative mass transfer. Sepinsky et al. (2009)
showed for the case where all mass per orbit is lost at periapsis that the orbit would expand
(contract) faster (slower). They found the same tendency for the growth (damping) of the eccentricity.
Meanwhile, we showed in Section 4.3 that the donor spin dynamics foremostly depends on the
donor’s fractional mass loss rate. Thus, we expect our results to change under the consideration
of non-conservative mass transfer only if the orbital elements are able to alter the latter significantly
compared to the conservative case.

In the following, we present the results of our analysis. As a typical example, we show in
Fig. 4.5 the spin flip during the mass transfer phase of a binary at low metallicity (Z = 0.03 Z⊙)
modelled with case (i) and a tidal lag time of τ = 10−1 s. This system started on the ZAMS
(t = 0) with stellar masses, eccentricity, and orbital period set to m1 = 55M⊙, m2 = 45M⊙,
e = 0.1, and T = 102 days, respectively. The mass transfer phase in question lasts from 4.37 to
4.48Myr. In this period of time, the donor transfers about 60 per cent of its mass to the accretor
(first panel). The normalised components of the donor spin in some inertial frame are shown
in the second panel. This inertial frame is chosen such that the z-axis initially points along ĥ.
However, even at later time their directions will not deviate significantly from one another since
K stays almost parallel to ĥ during the process. Thus, the reduction of Ŝz from about one to
zero indicates the flip onto the orbital plane which can be also directly seen by the evolution
of the cosine of the tilt angle, cos θ = Ŝ · ĥ (third panel). The oscillations of the other two
components describe the spin precession around ĥ. Meanwhile, in terms of the dimensionless
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parameter χ = cS/Gm2
1 the fourth panel shows that the donor spin magnitude decreases by

approximately two orders of magnitude ending up at a value χ ∼ O(0.1). Evidently, the value of
χ at the onset and hence also at the end of the mass transfer phase depend on its initial value
χ(t = 0) and any torques which affect the spin until onset. Here, the initial spin is determined
by a fit to the rotational velocities of MS star data (Lang, 1992) following Hurley et al. (2000).
Starting with that value, BSE computes the subsequent spin evolution taking angular momentum
losses due the isotropic stellar winds and tidal interactions with the companion into account (cf.
Section 4.4).

After a second mass transfer phase from m2 to m1 starting at 5.76Myr which leads to a
CE evolution, this system evolves to a BBH at 6.12Myr that merges after ∼ 6Gyr due to the
emission of GWs.

In Fig. 4.6, we show the primary star tilt angles for the whole binary population considering
only those systems that according to BSE eventually develop BBHs. For each system, the value
of the tilt angle is taken once the primaries stop transferring mass to their secondaries. If there
was no mass transfer from the former to the latter we draw a random value from the initial value
distribution of cos θ0 between 0.9 and 1.0 (see above). Each histogram drawn with a solid line
comprises 104 systems either at low (Z = 0.03 Z⊙) or high metallicity (Z = Z⊙), whose lag
time τ is either set to 100, 10−1, or 10−2 s, and whose mass transfer is either modelled with
case (i) or case (ii). We emphasise that the bin width of 0.1 is chosen such that the rightmost
bin (cos θ = 0.9 − 1.0) covers the range of initial angles. Thus, spins ending up in any other
bin (cos θ < 0.9) were dominated by the mass transfer terms. As a results, we find that any
distribution is strongly bimodal with most of the primary spins either being flipped (cos θ ≲ 0.1)
or remaining aligned (cos θ ≳ 0.9). From longer to shorter lag times tides become weaker and
allow the balance between the two peaks to pivot from the majority of systems being aligned to
flipped. Thus, the means of the distributions indicated by the vertical solid lines shift from about
cos θ ∼ 0.7 to 0.8 (τ = 100 s) to ∼ 0.5 to 0.6 (τ = 10−1 s) and ∼ 0.4 to 0.5 (τ = 10−2 s) for low
metallicity. For high metallicity, the spin flips are more effective ranging from cos θ ∼ 0.5 to 0.7

(τ = 100 s) to ∼ 0.3 to 0.4 (τ = 10−1 s) and ∼ 0.1 to 0.2 (τ = 10−2 s). In reality, the relative
number of flipped spins therefore depends on the precise value of the lag time. In turn, we do not
see any major difference between our two models (i) and (ii) of mass transfer. Even though we
pointed out that these models are arguably approximate with the caveats given above, the latter
fact indicates that details about the orbital phase dependency of mass transfer might not play an
important role for the effect that we are investigating.

In general, flipping spins are less numerous in the subsets of binaries whose BH remnants would
coalesce within 10Gyr (near the peak of cosmic star-formation rate, e.g., (Madau & Dickinson,
2014)) taken as a rough criterion for observability by GW detectors. Yet, the following results are
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Figure 4.5. Spin-evolution in one exemplary mass transferring stellar binary. At t = 0 (ZAMS),
the stellar masses, eccentricity, and orbital period were set to m1 = 55M⊙, m2 = 45M⊙, e =
0.1, and T = 102 days, respectively. This binary undergoes a mass transfer phase at about 4.37
to 4.48Myr which is considered here. The tidal lag time was set to τ = 10−1 s. From top to
bottom, the first panel shows the evolution of the stellar masses, the second panel the donor spin
components in some inertial frame, the third panel the cosine of the tilt angle, and the fourth
panel its dimensionless spin magnitude χ = cS/Gm2

1. The inertial frame is defined such that it
coincides with F at the onset of mass transfer (i.e., the z-axis is pointing along ĥ).
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Figure 4.6. Tilt angle distributions of the primaries once they stopped donating mass. Initially,
the tilt angles were uniformly distributed in the rightmost bins (cos θ = 0.9 − 1.0). Each solid
histograms includes 104 systems in which the primary fills its Roche-lobe first and that eventually
end up as BBH systems. The dashed histograms constitute the subset of systems that merge
within tcoal < 10Gyr. Vertical lines indicate the means of each distribution. From the top to
the lowest panel row, the strength of the tides were decreased by lowering the lag time τ . The
different panel columns incorporate low and high metallicities and mass transfer modelled with
case (i) and (ii) (e.g., Section 4.3).
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not very sensitive to the precise numerical value. The time to coalescence can be estimated by
Eq. (1.66) which we evaluate once both BHs are formed. In Fig. 4.6, these subsets are indicated
by dashed lines. We also display the means of the distributions by means of the vertical dotted
lines. For τ = 100 s, the number of flipped spins is insignificantly low and the means are close to
or within the initial value range [0.9, 1.0). Hence, it can be concluded that mass transfer would
be irrelevant for the spin dynamics in that case. Only if shorter lag times are considered the
number of flipped spins can become comparable to that of aligned spins. In terms of the means
we achieve about 0.6 to 0.9 and 0.3 to 0.7 for τ = 10−1 s and τ = 10−2 s, respectively. The fact
that flips are less prevalent in the merger subsets is due to the shorter binary separation which
increases the strength of tides (see Section 4.4).

Once the primary stops transferring mass to the secondary, there are four successive evolutionary
stages in which its spin direction relative to ĥ (or that of its BH remnant) could, in principle,
change again (e.g., Fig. 1 of Belczynski et al. (2016a)). Firstly, during the rest of its lifetime the
primary star is still subject to tidal forces by its companion. However, the tidal friction timescales
of systems whose primaries flipped during mass transfer is typically much larger than the remaining
lifetime which is about O(0.1)Myr. Hence, we do not expect a significant change of the spin
distributions in Fig. 4.6. Secondly, when the primary forms a BH in a SN the latter can receive a
kick due to asymmetric mass loss that tilts the orbital angular momentum inducing a misalignment
with respect to the spin directions (Kalogera, 2000; Gerosa et al., 2013). We investigate this
possibility below. Thirdly, if the secondary star fills its Roche-lobe it transfers mass towards the
first-born BH that has been formed out of the primary. The timescale at which the BH spin would
align with the angular momentum of an accretion disk has been derived by Natarajan & Pringle
(1998) and is given by

talign ≃ 0.56Myrχ11/16
( α

0.03

)13/8( L

0.1LE

)−7/8(
m1

108M⊙

)−1/16 ( ϵ

0.3

)7/8
, (4.56)

where α the dimensionless viscosity parameter of the accretion disk (Shakura & Sunyaev, 1973),
L the energy accretion rate onto the BH, LE = 1.4× 1038m1 M

−1
⊙ ergs s−1 the Eddington luminosity,

and ϵ = L/ṁ1c
2 the efficiency of the accretion process. As an order-of-magnitude estimate we

would get talign ≃ 1.4Myr for χ = 1, α = 0.03, L = 0.1LE, m1 = 50M⊙, and ϵ = 0.3. Again,
this is typically much longer than the duration of the second mass transfer phase. Fourthly, if
this mass transfer is succeeded by a CE phase in which the expanding envelope of the secondary
engulfs the primary BH the latter is subject to dynamical friction forces promoting a quick inspiral.
Recent hydrodynamic simulations show that whilst inspiralling the mass and dimensionless spin
parameter of the BH do increase but not larger than 1 to 2 per cent and 0.05, respectively (De
et al., 2020).
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Based on this discussion, we have reason to believe that, unless natal kicks are considered, the
tilt angle of the primary spin and the orbital angular momentum does not significantly change
between the end of the first mass transfer phase and the formation of the BH binary. Fig. 4.6
would hence reflect the spin distributions of the first-born BH in the BBH unless the effect of
natal kicks are considered.

In Fig. 4.7, we take the latter effect into account by implementing the tilts of ĥ due to the
natal kicks at the first and second SNe. That is, for each SN we adopt the widely held assumption
that the magnitude of the natal kick velocity vkick of the BH follows the one observed for NSs
scaled down by some fallback-fraction ffb (Banerjee et al., 2020),

vkick = vkick,NS(1− ffb), (4.57)

where 0 ≤ ffb ≤ 1 and vkick,NS is drawn from a Maxwellian distribution with a velocity dispersion
σkick,NS = 265 km s−1 (Hobbs et al., 2005). Assuming the SN explosion occurs instantaneously,
Eq. (4.57) can be used to derive the angle ν between the new and old angular momentum before
and after the SN, respectively (see appendix of Hurley et al., 2002). Thus, the new tilt angle θnew

of the primary’s spin can be computed as

cos θnew = cosϕ sin θold sin ν + cos θold cos ν, (4.58)

where θold describes the tilt angle before the SN and ϕ is an angle drawn from a uniform distribution
between 0 and 2π reflecting an isotropic kick distribution (e.g., Gerosa et al., 2013; Rodriguez
et al., 2016b). For producing Fig. 4.7, this method has been successively applied for each SN.
For the merging BBHs the effect of kicks alone can be seen from the dot-dashed histograms for
which we skipped the spin dynamics given by Eq. (4.38). Instead, we directly applied the kick
prescription to the initial tilt angles in the range [0.9, 1.0) (see above). The resulting distributions
have pronounced peaks at cos θ = 1 with an exponential tail ranging down to cos θ = −1. The
effect of the tails is to broaden the distributions with the whole spin dynamics included (solid and
dashed histograms) yielding a small fraction of donor spins that have a cos θ below zero.

Furthermore, we investigate whether the distributions presented in Figures 4.6 and 4.7 are
correlated with the chirp mass Mc = (m1m2)

3/5/(m1 +m2)
1/5 which the LIGO-Virgo detectors

are most sensitive to. As a result, we find that cos θ does not depend on Mc. Finally, we also
investigate the possibility that at the onset of mass transfer the spin direction is isotropically
distributed. That is, we draw the initial value of cos θ0 from a uniform distribution in the interval
(−1, 1). As one would expect, we find that the resulting distributions are shifted towards zero by
up to ∼ 0.2.
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Figure 4.7. Same as Fig. 4.6 but natal kicks are included. Additionally, the dot-dashed
histograms show the tilt angle distribution of the merging systems (tcoal < 10Gyr; dashed
histograms) if the spin directions were only affected by the natal kicks and not by the spin
dynamics given by Eq. (4.38).
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Figure 4.8. Spin projections onto the orbital axis of 104 binaries that form merging BBHs. The
two panels differ from each other by their metallicities. In both cases, mass transfer and tides are
modelled with case (i) and a lag time τ = 10−1 s.

Finally, we study the contributions of the first-born BHs to χeff (cf. Eq. (4.1)) at its formation.
For this purpose, we plot in Fig. 4.8 the distribution of the primary spin projection χ cos θ at high
(left) and low metallicity (right panel) for 104 binaries that form merging BBHs. In both cases,
mass transfer and tides are modelled with case (i) and a lag time τ = 10−1 s. The effect of
kicks is not taken into account. The inner pies of the panels differentiate the population between
primaries whose contribution we consider to be insignificant (χ cos θ < 0.1) and significant
(χ cos θ ≥ 0.1). We stress that this differentiation is somewhat arbitrary, also we do not take
the mass-weight into account, but it nevertheless gives a rough estimate of the primaries’ spin
contribution. We see a clear difference between the two metallicities. Whereas at high metallicity
χ cos θ of about 80 per cent is insignificant, this is only true for 30 per cent at low metallicity.
This shows that one must not neglect the spin of the first-born BH if formed at low metallicity. In
particular, this result would also hold for stronger tides, i.e., larger values for τ , because in that
case cos θ would tend to increase towards 1, i.e., align with the orbital axis. For the systems with
insignificant contribution we can ask whether this is due to a small magnitude χ or due to a flip,
i.e., a small cos θ. At both metallicities, the fraction with χ ≥ cos θ is non-negligible. This is true
for about 20 per cent and even one half at high and low metallicity, respectively. This suggests
that the spin orientation has to be taken into account when studying the spin-contribution of the
first-born BH to χeff at formation. In Section 4.5, we have shown that the spin magnitude and its
subsequent evolution depend on the spin value at t = 0. Evidently, the spin orientation becomes
irrelevant if we had overestimated the initial spin magnitude, i.e., if χ were actually smaller than
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we have assumed. Lastly, we note that during inspiral, the orbit-average of χeff remains constant
at 2PN order whereas the relative contributions of the primary and secondary BH change due to
relativistic effects which become more important as the orbit gets tighter (Damour, 2001; Racine,
2008).
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Chapter 5

Conclusion

In this work, we investigated the long-term evolution of hierarchical massive stellar triples. For
this purpose, we presented a novel Triple Stellar Evolution Code TSE that simultaneously takes
into account the secular three-body interaction and the evolution of the stars. We used this code
to follow the evolution of a population of isolated triples from their ZAMS until the formation of
compact objects. We investigated and quantified the frequency of various evolutionary outcomes
of massive triple evolution, and discussed the implications for the formation compact object triples
that could be driven to a merger via the LK mechanism (Chapter 2).

As a result from the stellar triple evolution, we have seen that the inner binary stars frequently
merge before they could form any compact object. Therefore, we studied in detail the evolution of
the stellar post-merger binaries composed of the merger product star and the tertiary companion.
We found that post-merger binaries originating from compact stellar triples with outer semi-major
axes aout,0 ≲ 101 – 102AU provide a new way to form BBH mergers in the galactic field. By
means of a population synthesis, we estimated their contribution to the total BBH merger rate to
be R(z = 0) = 0.3 – 25.2Gpc−3 yr−1. Merging BBHs that form from stellar post-merger binaries
have exceptionally low mass ratios. We identified a critical mass ratio q ≃ 0.5 below which they
dominate the total BBH merger rate in the field. We showed that after including their additional
contribution, the mass ratio distribution of BBH mergers in the galactic field scenario is in better
agreement with that inferred from GW detections (Chapter 3).

Lastly, we examined the evolution of the rotational angular momentum (spin) vector of a
massive (donor) star which transfers to a binary companion (accretor). Assuming that the donor
star loses mass along the instantaneous interstellar axis, we derived the orbit-averaged equations
of motion describing the evolution of the donor spin vector which accompanies the transfer of
mass. We considered: (i) a model in which the mass transfer rate is constant within each orbit
and (ii) a phase-dependent rate in which all mass per orbit is lost at periapsis. In both cases, we
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found that the ejection of ≳ 30 per cent of the donor’s initial mass causes its spin to nearly flip
onto the orbital plane of the binary, independently of the initial spin-orbit alignment. Moreover,
we showed that the spin flip due to mass transfer can easily dominate over tidal synchronisation in
any giant stars and MS stars with masses ∼ 1.5 to 5M⊙. Finally, the general equations of motion,
including tides, were used to evolve a realistic population of massive binary stars leading to the
formation of BBHs. Assuming that the stellar core and envelope are fully coupled, the resulting
tilt of the first-born BH reduced its spin projection onto the orbit normal by a factor ∼ O(0.1).
This result supports previous studies in favour of an insignificant contribution to the effective spin
projection, χeff, in BBHs formed from the evolution of field binaries (Chapter 4).

In the following, we discuss for each chapter our findings in more detail.

5.1 Evolution of massive stellar triples

Simulating the evolution of a population of massive stellar triples, we found a well-defined
mapping between the initial properties of the triples and the probability to achieve a certain
evolutionary outcome (Fig. 2.3). Wide systems are vulnerable to disruption by a SN kick. In
our models with non-zero kicks we found that in more than 50% of triples with an outer semi-
major axis aout ≳ 400AU the inner binary is disrupted during a SN. At smaller values of aout,
most systems either experience a merger in the inner binary before a DCO is formed, become
dynamically unstable (for qout ≲ 0.8), or have tertiary companion that fills its Roche-lobe (for
qout ≳ 0.8). Stellar mergers can give rise to observable signatures such as red novae (Pastorello
et al., 2019) and hydrogen-rich (Vigna-Gómez et al., 2019) or strongly magnetised remnants
(Schneider et al., 2019). Dynamically unstable systems enter a regime in which our secular approach
breaks down and a chaotic evolution takes place leading to the ejection of one component or the
merger of two (Mardling & Aarseth, 2001; Petrovich, 2015; Toonen et al., 2022). The subsequent
evolution of systems with a Roche-lobe filling tertiary companion is not well understood. Compared
to RLO in isolated binaries, previous work on tertiary RLO is inherently more complex due to
modulations caused by the periodic motion of the inner binary and its non-trivial response to mass
accretion (Di Stefano, 2020a,b; Glanz & Perets, 2021; Hamers et al., 2022).

Our method provides a self-consistent way to generate compact object triples (and DCOs
with a low mass star companion) which can be used to study the triple channel for GW sources
(Silsbee & Tremaine, 2017; Antonini et al., 2018, 2017; Rodriguez & Antonini, 2018). Table 2.2
gives the fraction of triple evolutionary outcomes for our different models, showing that at most
a few percent of systems evolve to become stable triples with an inner DCO binary – the exact
fraction depends on metallicity and the adopted natal kick prescription. The orbital properties
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of all systems that form a DCO binary are shown in Figures 2.4 and 2.5. At low metallicity, more
than half of the surviving triples are LK-possible in the sense that LK oscillations are not quenched
by the Schwarzschild precession of the inner binary orbit. At solar metallicity, this is the case for
almost all triples.

In any of our models, the vast majority of surviving triples harbour an inner BBH (see Table 2.3).
Triples with a NS component in the inner binary are very rare. In models with non-zero natal
kicks their number is typically two orders of magnitude smaller than triples with BBHs. Unless no
kicks are assumed, no surviving triple harbouring a BNS has been found in our population. We
conclude that it is unlikely that BNSs can be driven to a merger via the LK mechanism in triples.

Population synthesis studies of massive stellar binaries do not follow the interaction of the
binary with outer companions. However, treating the inner binary as being isolated poses a risk
to miss out the perturbative effect a tertiary companion on the evolution of the inner binary. Our
study shows that inner binaries with initial periapses 103 ≲ ain(1 − ein)/R⊙ ≲ 105 are driven
to a RLO due to the presence of the tertiary companions (Fig. 2.8). The latter can effectively
reduce the minimum periapses so that the inner binary stars have to be less expanded in order
to fill their Roche-lobe. This gives rise to mass transfer episodes on very eccentric orbits. Below
∼ 103R⊙ the inner binary stars undergo RLOs even if they were in isolation. Nonetheless, the
tertiary companions can cause them to occur on more eccentric orbits provided that aout/ain ≲

102 initially.

By comparing the triple population to isolated binary population models, we showed that
the interaction with the tertiary companion does not significantly change the resulting orbital
distributions of the surviving (inner) DCOs. Moreover, in the triple population the fraction of
systems in which the inner binaries evolve without undergoing a mass transfer episode is only
decreased by not more than 3% compared to the binary population models (Figures 2.9 – 2.11).
However, compact triples with initial inner periods Pin ≲ 102 days are prone to become dynamically
unstable or to have a Roche-lobe filling tertiary companion. We found this to be the case in ∼ 7 –
14% and ∼ 5% of the systems, respectively (Table 2.2). For these systems the evolution of the
inner binary is expected to be significantly affected by the triple interaction.

5.2 Black hole mergers from stellar mergers in triples

Motivated by the large fraction of stellar mergers that take place in the inner binaries, we
considered the subsequent evolution of the merger product stars and the tertiary companions to
merging BBHs. As a consequence of the stellar mergers, the number of heavy primary stars in
the post-merger binary gets inflated which which generally leads to heavier BHs. Consequently,
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more low mass ratio BBH mergers are produced in the triple population. Additionally, rejuvenation
of the merger product star can make it the acceptor during a mass transfer episode with the
tertiary companion, which further increases the imbalance of the BH masses. Thus, exceptional
BBH merger events like GW190412 with reported component masses m1 = 30.1+4.6

−5.3M⊙ and
m2 = 8.3+1.6

−0.9M⊙ (Abbott et al., 2020a) could be a possible outcome of the outer binary channel.

Meanwhile, the marginalised mass distribution of BBH mergers is not significantly altered. We
find the chirp mass distribution everywhere to be dominated by the high mass ratio BBH mergers
formed via the inner binary channel (see Fig. A.1 in Appendix A.4). Moreover, we do not expect
the outer binary channel to leave a distinctive imprint on the eccentricity distribution. Since a
CE evolution precedes most BBH mergers in both channels, we expect high eccentricities to be
suppressed. A thorough investigation of the spins of merging BHs is beyond the scope of this
work. Yet, the outer binary channel might explain the observed correlation between low mass
ratios and higher effective spin parameters (Packet, 1981; The LIGO Scientific Collaboration
et al., 2021). It is expected that even little mass accretion efficiently spins up the post-merger star
during the stable mass transfer episode (Renzo & Götberg, 2021). Previous magneto-hydrodynamical
simulations suggest that the post-merger star is strongly magnetised (Schneider et al., 2019,
2020). A strong core-envelope coupling by the magnetic fields would ensure that the core also
spins up due to the mass transfer phase (Fuller & Ma, 2019). As a result, low mass ratio BBH
mergers with highly spinning primary BHs may be formed.

5.3 Flipping spins in mass transferring binaries

Considering the spin dynamics in mass transferring binaries, we showed that the mass loss from
the donor is accompanied with an anisotropic spin-loss that causes the spin magnitude to decrease
and its direction to flip onto the orbital plane, i.e., to form a tilt angle of θ = π/2 w.r.t. the
orbital angular momentum. Generally, this spin dynamics were described by Eq. (4.12). Provided
that all parts of the star are sufficiently coupled by efficient angular momentum transport it
follows that the solution to this equation also determines the spin direction of all individual parts
of the star.

We derived the orbit averaged equations of motion describing the evolution of the donor spin,
assuming either a constant mass transfer rate per orbit, Eqs. (4.19)–(4.21), or a delta-function
mass transfer at periapsis, Eqs. (4.27)–(4.29). Whilst the former case holds for approximately
circular orbits the latter may be a valid model for highly eccentric systems. By considering these
two extreme cases we expect that, in reality, the mass transfer rate on moderately eccentric orbits
lies somewhere in the intermediate range. As a key result of both cases, we found that for total
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relative mass losses of about O(0.1) the spin flip is highly efficient unless it starts perfectly or
nearly (anti-)aligned with the orbital angular momentum (see Section 4.3 and Figures 4.1 and
4.2). Meanwhile, the relative loss in spin magnitude is about several orders of magnitude. As a
corollary, we found that both effects are independent of the actual duration of mass transfer but
only depend on the total mass that is lost.

We compared the timescale for spin misalignment due to mass loss to the synchronisation
timescale due to tidal torques. Whether the former effect is faster than tides depends strongly on
the stellar separation at the onset of mass transfer, with smaller separations favoring tides. We
found, however, that the effect of mass loss can dominate in both MS and giant stars and for a
wide range of donor masses. Hence, the commonly adopted assumption that tides will very rapidly
erase any spin-orbit misalignment in mass transferring binaries is not fully justified.

In reality, a donor might actually have expanded so much that it loses mass through the outer
Lagrangian point too, i.e., through the second (L2) or third (L3) depending on whether it is the
less or more massive binary member, respectively. By simulating the response of giant donors to
mass loss, Pavlovskii & Ivanova (2015) showed that there exists a critical mass ratio below which
its mass is transferred solely and stably through L1. For example, they found that a 30M⊙ donor
undergoes L2/L3 overflow only if it is about two to three times as massive as its companion.
If we replace R in Eq. (4.12) by some vector pointing to L2/L3, i.e., along −d̂, we see that
Ṡ remains invariant up to some positive factor accounting for the larger expansion of the star.
Hence, we expect L2/L3 overflow to promote a spin flip as well. However, L2/L3 overflow of the
donor is typically very short so that the stream of matter is negligible compared to that through
L1 (Pavlovskii et al., 2017; Pavlovskii & Ivanova, 2015).

As a potential application, we investigated the spin evolution of isolated stellar binaries which
form a BBH (see Section 4.5). A fraction of these BBHs lead to a merger detectable by LIGO-
Virgo though their emission of GWs. These binaries have to move on a close orbit making them
prone to undergo a phase of stable mass transfer in which the stellar progenitor of the first-born
BH typically loses up to about half of its mass to its companion. By means of a population
synthesis, we followed the spin evolution of the primary stars in a large number of BBH forming
binaries. To this end, we let our spin dynamics [Eq. (4.12)] compete with external torques emerging
from the quadrupolar distortion of the donor and the tidal interaction between the binary members
whose strength was parametrised by the constant lag times τ = 100, 10−1, and 10−2 s [Eq. (4.50)].
The stellar physics was simulated at low (Z = 0.03 Z⊙) as well as high metallicity (Z = Z⊙). We
found that the resulting tilt angle distribution is strongly bimodal with most spins ending up either
aligned with or perpendicular to the orbital angular momentum. The ratio of aligned and flipped
systems, however, depends on the metallicity, the tidal lag time, and whether the BBHs merge
within 10Gyr or not. For instance, going from the long to the short lag time we found that for
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mergers with low (high) metallicity the cos θ-distributions’ means decrease from ∼ 0.9 (0.8 to 0.9)
to ∼ 0.5 to 0.7 (∼ 0.3 to 0.5), i.e., from fair alignment to a mature flip. The values were even
smaller by ∼ 0.1 − 0.2 when we considered all systems that form BBHs. Finally, we have argued
that natal kicks are the only effect that could significantly change again the tilt angle between the
end of the mass transfer phase and the BBH formation. Whilst the bulk of primary spins remains
largely unaffected, natal kicks introduce an exponentially suppressed fraction of primaries with
tilt angles towards anti-alignment (−1 < cos θ < 0). Overall, we found that at formation the
first-born BH’s contribution to χeff [see Eq. (4.1)] of a BBH which will merge through the channel
considered is typically negligible not only due to its depleted spin magnitude but also due to its
misalignment cos θ ∼ O(0.1) w.r.t. the orbital axis.
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Appendix

A.1 Hut’s polynomials
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8
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A.2 Exemplary triples

The initial parameters of the three triples shown in Figure 2.1 are as following.

The masses of the system in the left panel are m1 = 98.4M⊙, m2 = 32.6M⊙, and m3 =

44.1M⊙. The eccentricities and semi-major axes are ein = 0.89, eout = 0.48, ain = 30.7AU, and
aout = 915.2AU, respectively. The relative inclination reads cos itot = 0.26 while the arguments of
periapses are sin gin = 0.11 and sin gout = 0.87.

For the systems in the middle panel we have m1 = 60.8M⊙, m2 = 44.0M⊙, m3 = 20.2M⊙,
ein = 0.99, eout = 0.68, ain = 74.9AU, aout = 1125.3AU, cos itot = −0.83, sin gin = −0.06, and
sin gout = 0.72.
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Finally, the parameters of the system in the right panel are m1 = 49.6M⊙, m2 = 33.0M⊙,
m3 = 40.0M⊙, ein = 0.83, eout = 0.38, ain = 0.8AU, aout = 17.2AU, cos itot = 0.77,
sin gin = 0.27, and sin gout = 0.82.

A.3 BBH merger rate density

At cosmological redshift z, the merger rate of BBHs from a given stellar population can be
calculated by a convolution of the delay time distribution and the cosmic star formation history
(Safarzadeh et al., 2020)

RBBH(z) =

∫ zb=z

zb=10

∫ Z=0.03

Z=10−4

dzb dZ
dt

dz
(zb)FZ(t− tb)RSFR(Z, zb). (A.6)

We adopt standard ΛCDM cosmology in which dt/dz = − [(1 + z)E(z)H0]
−1 and E(z) =

[ΩM,0(1 + z)3 + ΩK,0(1 + z)2 + ΩΛ,0]
1/2 with 1/H0 = 14Gyr, ΩM,0 = 0.3, ΩK,0 = 0, and

ΩΛ,0 = 0.7 (Planck Collaboration et al., 2016).

The function FZ(t− tb) results from the simulation of the stellar populations and describes the
fraction of systems in a metallicity bin [Z,Z + dZ) which lead to BBH mergers with a delay time
t − tb per dt. The second term in the integration, RSFR(Z, zb), is the cosmic star formation rate
which we write as

RSFR(Z, zb)dZ = κψ(zb)p(Z, zb)dZ, (A.7)

using the data fit from Madau & Fragos (2017)

ψ(zb) = 0.01
(1 + zb)

2.6

1 + [(1 + zb)/3.2]
6.2 M⊙Mpc−3 yr−1, (A.8)

and the chemical enrichment model where Z at redshift zb follows a log-normal distribution

p(Z, zb) =
log(e)√
2πσ2

ZZ
exp

{
− [log(Z/Z⊙)− µ(zb)]

2

2σ2
Z

}
, (A.9)

with mean metallicity µ(zb) = 0.153− 0.074z1.34b (Madau & Fragos, 2017). and standard deviation
σZ = 0.25 (Dvorkin et al., 2015). Different choices for the value σZ For ψ we assume a log-
normal distribution with a standard deviation of σψ = 0.5.

Eq. (A.8) describes the rate at which mass of all stars with mass 0.1 – 100M⊙ is formed,
regardless whether they are multiplicity systems or not. Since we are only simulating massive
triples and binaries with m1(2) ≥ 5M⊙ and m3 ≥ 8M⊙ (see Section 3.1.2) the constant κ is
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Figure A.1. Chirp mass distribution of BBH mergers in the local Universe (z = 0). As in
Figure 3.5 dashed lines highlight the contribution from the outer binary channel.

introduced to convert ψ into a formation rate of progenitor systems with the assumed properties.
To calculate κ we set up an entire stellar population of any mass assuming the same parameter
distribution as in Section 3.1.2 and multiplicity fractions as a function of the primary spectral
type as reported by Moe & Di Stefano (2017). Here, we only consider singles, binaries, and triples
(neglecting the effect of quadruples and higher-order systems) and assume that any primary star
with m1 ≥ 20M⊙ is in a triple. We then calculate κ and the resulting BBH merger rate for each
spectral type individually.

In practice, the uncertainty of RBBH(z) is estimated by Monte-Carlo sampling of Eq. (A.6).

A.4 Chirp mass distribution

In Figure A.1, we show the differential merger rate per chirp mass Mc = (m1m2)
3/5/(m1 +

m2)
1/5 which determines the gravitational waveform at leading order. On coarse-grained scales,

we find agreement of our models with the “flexible mixture model" (GWTC-3) up to Mc ≲

40M⊙, but note that neither the isolated nor the triple population could reproduce substructure
of the mass distribution that were discovered in the third observing run of the The LIGO Scientific
Collaboration et al. (2021).
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A.5 Tides and Rotation

The perturbations of the equations of motion (4.45) – (4.48) can be expressed in terms of
five functions X, Y , Z, V , and W (Eggleton & Kiseleva-Eggleton, 2001; Fabrycky & Tremaine,
2007):

X =− M2kAR
5

µna5
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, (A.10)

Y =− M2kAR
5

µna5
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where the tidal friction timescale tF depends on the dissipative mechanism at work as described in
Section 4.4.
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Dervişoǧlu A., Pavlovski K., Lehmann H., Southworth J., Bewsher D., 2018, MNRAS, 481, 5660

Di Carlo U. N., Giacobbo N., Mapelli M., Pasquato M., Spera M., Wang L., Haardt F., 2019,
MNRAS, 487, 2947

Di Carlo U. N., Mapelli M., Bouffanais Y., Giacobbo N., Santoliquido F., Bressan A., Spera M.,
Haardt F., 2020a, MNRAS, 497, 1043

Di Carlo U. N., et al., 2020b, MNRAS, 498, 495

Di Stefano R., 2020a, MNRAS, 491, 495

Di Stefano R., 2020b, MNRAS, 493, 1855

Dominik M., Belczynski K., Fryer C., Holz D. E., Berti E., Bulik T., Mandel I., O’Shaughnessy R.,
2012, ApJ, 759, 52

Dong S., Katz B., Socrates A., 2014, ApJ, 781, L5

J. Stegmann 127

http://dx.doi.org/10.1093/mnras/stw1590
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461.4419B
http://dx.doi.org/10.1111/j.1365-2966.2005.09360.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.362..915B
http://dx.doi.org/10.1093/mnras/stv2530
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.4136B
http://dx.doi.org/10.3847/1538-4357/ab9d85
https://ui.adsabs.harvard.edu/abs/2020ApJ...898...71B
http://dx.doi.org/10.3847/1538-4357/ab8461
https://ui.adsabs.harvard.edu/abs/2020ApJ...894...15B
http://dx.doi.org/10.1086/153315
https://ui.adsabs.harvard.edu/abs/1975ApJ...195..157C
https://ui.adsabs.harvard.edu/abs/1997A&A...318..187C
http://dx.doi.org/10.1007/s10569-011-9368-9
http://dx.doi.org/10.1007/s10569-011-9368-9
https://ui.adsabs.harvard.edu/abs/2011CeMDA.111..105C
http://dx.doi.org/10.1086/145965
https://ui.adsabs.harvard.edu/abs/1955ApJ...121...71C
http://arxiv.org/abs/astro-ph/0010581
http://dx.doi.org/10.1007/978-94-015-9723-4_17
http://dx.doi.org/10.1103/PhysRevD.64.124013
https://ui.adsabs.harvard.edu/abs/2001PhRvD..64l4013D
http://dx.doi.org/10.3847/1538-4357/ab9ac6
https://ui.adsabs.harvard.edu/abs/2020ApJ...897..130D
http://dx.doi.org/10.1093/mnras/sty2684
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.5660D
http://dx.doi.org/10.1093/mnras/stz1453
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.2947D
http://dx.doi.org/10.1093/mnras/staa1997
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.1043D
http://dx.doi.org/10.1093/mnras/staa2286
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498..495D
http://dx.doi.org/10.1093/mnras/stz2572
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491..495D
http://dx.doi.org/10.1093/mnras/staa220
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.1855D
http://dx.doi.org/10.1088/0004-637X/759/1/52
https://ui.adsabs.harvard.edu/abs/2012ApJ...759...52D
http://dx.doi.org/10.1088/2041-8205/781/1/L5
https://ui.adsabs.harvard.edu/abs/2014ApJ...781L...5D


BIBLIOGRAPHY

Dormand J. R., Prince P. J., 1978, Celestial Mechanics, 18, 223

Dosopoulou F., Kalogera V., 2016a, ApJ, 825, 70

Dosopoulou F., Kalogera V., 2016b, ApJ, 825, 71

Duchêne G., Kraus A., 2013, ARAA, 51, 269

Duquennoy A., Mayor M., 1991, A&A, 248, 485

Dvorkin I., Silk J., Vangioni E., Petitjean P., Olive K. A., 2015, MNRAS, 452, L36

Eggleton P. P., 1983, ApJ, 268, 368

Eggleton P., 2006, Evolutionary Processes in Binary and Multiple Stars

Eggleton P. P., Kiseleva-Eggleton L., 2001, ApJ, 562, 1012

Eggleton P. P., Kiseleva L. G., Hut P., 1998, ApJ, 499, 853

Einstein A., 1918, Sitzungsberichte der K&ouml;niglich Preussischen Akademie der
Wissenschaften, pp 154–167

Eldridge J. J., Izzard R. G., Tout C. A., 2008, MNRAS, 384, 1109

Erdem A., Öztürk O., 2014, MNRAS, 441, 1166

Fabrycky D., Tremaine S., 2007, ApJ, 669, 1298

Ford E. B., Kozinsky B., Rasio F. A., 2000, ApJ, 535, 385

Fragione G., Banerjee S., 2021, ApJ, 913, L29

Fragione G., Kocsis B., 2020, MNRAS, 493, 3920

Fryer C. L., Belczynski K., Wiktorowicz G., Dominik M., Kalogera V., Holz D. E., 2012, ApJ, 749,
91

Fuller J., Ma L., 2019, ApJ, 881, L1

GRAVITY Collaboration et al., 2018, A&A, 620, A116

Gao Y., Toonen S., Leigh N., 2023, MNRAS, 518, 526

García B., Mermilliod J. C., 2001, A&A, 368, 122

Gerosa D., Kesden M., Berti E., O’Shaughnessy R., Sperhake U., 2013, Phys. Rev. D, 87, 104028

128 On the Evolution of Massive Stellar Triples

http://dx.doi.org/10.1007/BF01230162
https://ui.adsabs.harvard.edu/abs/1978CeMec..18..223D
http://dx.doi.org/10.3847/0004-637X/825/1/70
https://ui.adsabs.harvard.edu/abs/2016ApJ...825...70D
http://dx.doi.org/10.3847/0004-637X/825/1/71
https://ui.adsabs.harvard.edu/abs/2016ApJ...825...71D
http://dx.doi.org/10.1146/annurev-astro-081710-102602
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..269D
https://ui.adsabs.harvard.edu/abs/1991A&A...248..485D
http://dx.doi.org/10.1093/mnrasl/slv085
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452L..36D
http://dx.doi.org/10.1086/160960
https://ui.adsabs.harvard.edu/abs/1983ApJ...268..368E
http://dx.doi.org/10.1086/323843
https://ui.adsabs.harvard.edu/abs/2001ApJ...562.1012E
http://dx.doi.org/10.1086/305670
https://ui.adsabs.harvard.edu/abs/1998ApJ...499..853E
https://ui.adsabs.harvard.edu/abs/1918SPAW.......154E
http://dx.doi.org/10.1111/j.1365-2966.2007.12738.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.384.1109E
http://dx.doi.org/10.1093/mnras/stu630
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.1166E
http://dx.doi.org/10.1086/521702
https://ui.adsabs.harvard.edu/abs/2007ApJ...669.1298F
http://dx.doi.org/10.1086/308815
https://ui.adsabs.harvard.edu/abs/2000ApJ...535..385F
http://dx.doi.org/10.3847/2041-8213/ac00a7
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L..29F
http://dx.doi.org/10.1093/mnras/staa443
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3920F
http://dx.doi.org/10.1088/0004-637X/749/1/91
https://ui.adsabs.harvard.edu/abs/2012ApJ...749...91F
https://ui.adsabs.harvard.edu/abs/2012ApJ...749...91F
http://dx.doi.org/10.3847/2041-8213/ab339b
https://ui.adsabs.harvard.edu/abs/2019ApJ...881L...1F
http://dx.doi.org/10.1051/0004-6361/201833575
https://ui.adsabs.harvard.edu/abs/2018A&A...620A.116G
http://dx.doi.org/10.1093/mnras/stac3068
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518..526G
http://dx.doi.org/10.1051/0004-6361:20000528
https://ui.adsabs.harvard.edu/abs/2001A&A...368..122G
http://dx.doi.org/10.1103/PhysRevD.87.104028
https://ui.adsabs.harvard.edu/abs/2013PhRvD..87j4028G


BIBLIOGRAPHY

Giacobbo N., Mapelli M., 2018, MNRAS, 480, 2011

Giacobbo N., Mapelli M., 2019, MNRAS, 482, 2234

Giacobbo N., Mapelli M., 2020, ApJ, 891, 141

Giacobbo N., Mapelli M., Spera M., 2018, MNRAS, 474, 2959

Glanz H., Perets H. B., 2021, MNRAS, 500, 1921

Glebbeek E., Pols O. R., 2008, A&A, 488, 1017

Glebbeek E., Gaburov E., Portegies Zwart S., Pols O. R., 2013, MNRAS, 434, 3497

Goldreich P., Soter S., 1966, Icarus, 5, 375

Gowers T., Barrow-Green J., Leader I., eds, 2008, The Princeton Companion to Mathematics.
Princeton University Press, Princeton

Gräfener G., Hamann W. R., 2008, A&A, 482, 945

Gräfener G., Vink J. S., de Koter A., Langer N., 2011, A&A, 535, A56

Grishin E., Perets H. B., Fragione G., 2018, MNRAS, 481, 4907

Hamers A. S., 2021, MNRAS, 500, 3481

Hamers A. S., Dosopoulou F., 2019, ApJ, 872, 119

Hamers A. S., Lai D., 2017, MNRAS, 470, 1657

Hamers A. S., Safarzadeh M., 2020, ApJ, 898, 99

Hamers A. S., Rantala A., Neunteufel P., Preece H., Vynatheya P., 2021, MNRAS, 502, 4479

Hamers A. S., Glanz H., Neunteufel P., 2022, ApJS, 259, 25

Hamilton C., Rafikov R. R., 2019, ApJ, 881, L13

Harrington R. S., 1968, AJ, 73, 190

Hayashi T., Trani A. A., Suto Y., 2023, ApJ, 943, 58

Hirai R., Podsiadlowski P., Owocki S. P., Schneider F. R. N., Smith N., 2021, MNRAS, 503, 4276

Hoang B.-M., Naoz S., Kocsis B., Rasio F. A., Dosopoulou F., 2018, ApJ, 856, 140

J. Stegmann 129

http://dx.doi.org/10.1093/mnras/sty1999
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.2011G
http://dx.doi.org/10.1093/mnras/sty2848
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.2234G
http://dx.doi.org/10.3847/1538-4357/ab7335
https://ui.adsabs.harvard.edu/abs/2020ApJ...891..141G
http://dx.doi.org/10.1093/mnras/stx2933
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.2959G
http://dx.doi.org/10.1093/mnras/staa3242
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.1921G
http://dx.doi.org/10.1051/0004-6361:200809931
https://ui.adsabs.harvard.edu/abs/2008A&A...488.1017G
http://dx.doi.org/10.1093/mnras/stt1268
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434.3497G
http://dx.doi.org/10.1016/0019-1035(66)90051-0
https://ui.adsabs.harvard.edu/abs/1966Icar....5..375G
http://dx.doi.org/10.1051/0004-6361:20066176
https://ui.adsabs.harvard.edu/abs/2008A&A...482..945G
http://dx.doi.org/10.1051/0004-6361/201116701
https://ui.adsabs.harvard.edu/abs/2011A&A...535A..56G
http://dx.doi.org/10.1093/mnras/sty2477
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.4907G
http://dx.doi.org/10.1093/mnras/staa3498
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.3481H
http://dx.doi.org/10.3847/1538-4357/ab001d
https://ui.adsabs.harvard.edu/abs/2019ApJ...872..119H
http://dx.doi.org/10.1093/mnras/stx1319
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.1657H
http://dx.doi.org/10.3847/1538-4357/ab9b27
https://ui.adsabs.harvard.edu/abs/2020ApJ...898...99H
http://dx.doi.org/10.1093/mnras/stab287
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.4479H
http://dx.doi.org/10.3847/1538-4365/ac49e7
https://ui.adsabs.harvard.edu/abs/2022ApJS..259...25H
http://dx.doi.org/10.3847/2041-8213/ab3468
https://ui.adsabs.harvard.edu/abs/2019ApJ...881L..13H
http://dx.doi.org/10.1086/110614
https://ui.adsabs.harvard.edu/abs/1968AJ.....73..190H
http://dx.doi.org/10.3847/1538-4357/acac1e
https://ui.adsabs.harvard.edu/abs/2023ApJ...943...58H
http://dx.doi.org/10.1093/mnras/stab571
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503.4276H
http://dx.doi.org/10.3847/1538-4357/aaafce
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..140H


BIBLIOGRAPHY

Hobbs G., Lorimer D. R., Lyne A. G., Kramer M., 2005, MNRAS, 360, 974

Hrushow W. K., 1969, AIAA Journal, 7, 337

Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543

Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897

Hut P., 1981, A&A, 99, 126

Iben Icko J., Tutukov A. V., 1999, ApJ, 511, 324

Ito T., Ohtsuka K., 2019, Monographs on Environment, Earth and Planets, 7, 1

Ivanova N., et al., 2013, A&A Rev., 21, 59

Izzard R. G., Tout C. A., Karakas A. I., Pols O. R., 2004, MNRAS, 350, 407

Janka H.-T., Wongwathanarat A., Kramer M., 2022, ApJ, 926, 9

Kalogera V., 2000, ApJ, 541, 319

Kervella P., Thévenin F., Lovis C., 2017, A&A, 598, L7

Kippenhahn R., Kohl K., Weigert A., 1967, ZAp, 66, 58

Kirk B., et al., 2016, AJ, 151, 68

Klencki J., Nelemans G., Istrate A. G., Pols O., 2020, A&A, 638, A55

Klencki J., Nelemans G., Istrate A. G., Chruslinska M., 2021, A&A, 645, A54

Kobulnicky H. A., et al., 2014, ApJS, 213, 34

Kozai Y., 1962, AJ, 67, 591

Kremer K., et al., 2020, ApJ, 903, 45

Kroupa P., 2001, MNRAS, 322, 231

Kroupa P., 2002, Science, 295, 82

Kroupa P., Weidner C., Pflamm-Altenburg J., Thies I., Dabringhausen J., Marks M., Maschberger
T., 2013, in Oswalt T. D., Gilmore G., eds, , Vol. 5, Planets, Stars and Stellar Systems. Volume
5: Galactic Structure and Stellar Populations. p. 115, doi:10.1007/978-94-007-5612-0_4

Lang K. R., 1992, Astrophysical Data I. Planets and Stars.

130 On the Evolution of Massive Stellar Triples

http://dx.doi.org/10.1111/j.1365-2966.2005.09087.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.360..974H
http://dx.doi.org/10.2514/3.5096
https://ui.adsabs.harvard.edu/abs/1969AIAAJ...7..337H
http://dx.doi.org/10.1046/j.1365-8711.2000.03426.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.315..543H
http://dx.doi.org/10.1046/j.1365-8711.2002.05038.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.329..897H
https://ui.adsabs.harvard.edu/abs/1981A&A....99..126H
http://dx.doi.org/10.1086/306672
https://ui.adsabs.harvard.edu/abs/1999ApJ...511..324I
http://dx.doi.org/10.5047/meep.2019.00701.0001
https://ui.adsabs.harvard.edu/abs/2019MEEP....7....1I
http://dx.doi.org/10.1007/s00159-013-0059-2
https://ui.adsabs.harvard.edu/abs/2013A&ARv..21...59I
http://dx.doi.org/10.1111/j.1365-2966.2004.07446.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.350..407I
http://dx.doi.org/10.3847/1538-4357/ac403c
https://ui.adsabs.harvard.edu/abs/2022ApJ...926....9J
http://dx.doi.org/10.1086/309400
https://ui.adsabs.harvard.edu/abs/2000ApJ...541..319K
http://dx.doi.org/10.1051/0004-6361/201629930
https://ui.adsabs.harvard.edu/abs/2017A&A...598L...7K
https://ui.adsabs.harvard.edu/abs/1967ZA.....66...58K
http://dx.doi.org/10.3847/0004-6256/151/3/68
https://ui.adsabs.harvard.edu/abs/2016AJ....151...68K
http://dx.doi.org/10.1051/0004-6361/202037694
https://ui.adsabs.harvard.edu/abs/2020A&A...638A..55K
http://dx.doi.org/10.1051/0004-6361/202038707
https://ui.adsabs.harvard.edu/abs/2021A&A...645A..54K
http://dx.doi.org/10.1088/0067-0049/213/2/34
https://ui.adsabs.harvard.edu/abs/2014ApJS..213...34K
http://dx.doi.org/10.1086/108790
https://ui.adsabs.harvard.edu/abs/1962AJ.....67..591K
http://dx.doi.org/10.3847/1538-4357/abb945
https://ui.adsabs.harvard.edu/abs/2020ApJ...903...45K
http://dx.doi.org/10.1046/j.1365-8711.2001.04022.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.322..231K
http://dx.doi.org/10.1126/science.1067524
https://ui.adsabs.harvard.edu/abs/2002Sci...295...82K
http://dx.doi.org/10.1007/978-94-007-5612-0_4


BIBLIOGRAPHY

Langer N., 2009, A&A, 500, 133

Lépine S., Bongiorno B., 2007, AJ, 133, 889

Lidov M. L., 1962, Planet. Space Sci., 9, 719

Lithwick Y., Naoz S., 2011, ApJ, 742, 94

Liu B., Lai D., 2017, ApJ, 846, L11

Liu B., Lai D., 2018, ApJ, 863, 68

Liu B., Muñoz D. J., Lai D., 2015, MNRAS, 447, 747

Liu B., Lai D., Wang Y.-H., 2019, ApJ, 881, 41

Lu C. X., Naoz S., 2019, MNRAS, 484, 1506

Lubow S. H., Shu F. H., 1975, ApJ, 198, 383

MacLeod M., Macias P., Ramirez-Ruiz E., Grindlay J., Batta A., Montes G., 2017, ApJ, 835, 282

Madau P., Dickinson M., 2014, ARAA, 52, 415

Madau P., Fragos T., 2017, ApJ, 840, 39

Mandel I., Broekgaarden F. S., 2022, Living Reviews in Relativity, 25, 1

Mandel I., O’Shaughnessy R., 2010, Classical and Quantum Gravity, 27, 114007

Mandel I., de Mink S. E., 2016, MNRAS, 458, 2634

Mapelli M., 2016, MNRAS, 459, 3432

Mardling R. A., Aarseth S. J., 2001, MNRAS, 321, 398

Martinez M. A. S., Rodriguez C. L., Fragione G., 2022, ApJ, 937, 78

Mason B. D., Gies D. R., Hartkopf W. I., Bagnuolo William G. J., ten Brummelaar T., McAlister
H. A., 1998, AJ, 115, 821

Mason B. D., Hartkopf W. I., Gies D. R., Henry T. J., Helsel J. W., 2009, AJ, 137, 3358

Mastrodemos N., Morris M., 1998, ApJ, 497, 303

Matese J. J., Whitmire D. P., 1983, ApJ, 266, 776

J. Stegmann 131

http://dx.doi.org/10.1051/0004-6361/200912151
https://ui.adsabs.harvard.edu/abs/2009A&A...500..133L
http://dx.doi.org/10.1086/510333
https://ui.adsabs.harvard.edu/abs/2007AJ....133..889L
http://dx.doi.org/10.1016/0032-0633(62)90129-0
https://ui.adsabs.harvard.edu/abs/1962P&SS....9..719L
http://dx.doi.org/10.1088/0004-637X/742/2/94
https://ui.adsabs.harvard.edu/abs/2011ApJ...742...94L
http://dx.doi.org/10.3847/2041-8213/aa8727
https://ui.adsabs.harvard.edu/abs/2017ApJ...846L..11L
http://dx.doi.org/10.3847/1538-4357/aad09f
https://ui.adsabs.harvard.edu/abs/2018ApJ...863...68L
http://dx.doi.org/10.1093/mnras/stu2396
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447..747L
http://dx.doi.org/10.3847/1538-4357/ab2dfb
https://ui.adsabs.harvard.edu/abs/2019ApJ...881...41L
http://dx.doi.org/10.1093/mnras/stz036
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.1506L
http://dx.doi.org/10.1086/153614
https://ui.adsabs.harvard.edu/abs/1975ApJ...198..383L
http://dx.doi.org/10.3847/1538-4357/835/2/282
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..282M
http://dx.doi.org/10.1146/annurev-astro-081811-125615
https://ui.adsabs.harvard.edu/abs/2014ARA&A..52..415M
http://dx.doi.org/10.3847/1538-4357/aa6af9
https://ui.adsabs.harvard.edu/abs/2017ApJ...840...39M
http://dx.doi.org/10.1007/s41114-021-00034-3
https://ui.adsabs.harvard.edu/abs/2022LRR....25....1M
http://dx.doi.org/10.1088/0264-9381/27/11/114007
https://ui.adsabs.harvard.edu/abs/2010CQGra..27k4007M
http://dx.doi.org/10.1093/mnras/stw379
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.2634M
http://dx.doi.org/10.1093/mnras/stw869
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459.3432M
http://dx.doi.org/10.1046/j.1365-8711.2001.03974.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.321..398M
http://dx.doi.org/10.3847/1538-4357/ac8d55
https://ui.adsabs.harvard.edu/abs/2022ApJ...937...78M
http://dx.doi.org/10.1086/300234
https://ui.adsabs.harvard.edu/abs/1998AJ....115..821M
http://dx.doi.org/10.1088/0004-6256/137/2/3358
https://ui.adsabs.harvard.edu/abs/2009AJ....137.3358M
http://dx.doi.org/10.1086/305465
https://ui.adsabs.harvard.edu/abs/1998ApJ...497..303M
http://dx.doi.org/10.1086/160825
https://ui.adsabs.harvard.edu/abs/1983ApJ...266..776M


BIBLIOGRAPHY

Mennekens N., Vanbeveren D., 2017, A&A, 599, A84

Menon A., et al., 2021, MNRAS, 507, 5013

Merritt D., 2013, Dynamics and Evolution of Galactic Nuclei

Michaely E., Perets H. B., 2014, ApJ, 794, 122

Moe M., Di Stefano R., 2015, ApJ, 810, 61

Moe M., Di Stefano R., 2017, ApJS, 230, 15

Motz L., 1952, ApJ, 115, 562

Muñoz D. J., Lai D., Liu B., 2016, MNRAS, 460, 1086

Naoz S., 2016, ARAA, 54, 441

Naoz S., Fabrycky D. C., 2014, ApJ, 793, 137

Naoz S., Farr W. M., Lithwick Y., Rasio F. A., Teyssandier J., 2011, Nature, 473, 187

Naoz S., Farr W. M., Rasio F. A., 2012, ApJ, 754, L36

Naoz S., Farr W. M., Lithwick Y., Rasio F. A., Teyssandier J., 2013a, MNRAS, 431, 2155

Naoz S., Kocsis B., Loeb A., Yunes N., 2013b, ApJ, 773, 187

Naoz S., Fragos T., Geller A., Stephan A. P., Rasio F. A., 2016, ApJ, 822, L24

Natarajan P., Pringle J. E., 1998, ApJ, 506, L97

Noutsos A., Kramer M., Carr P., Johnston S., 2012, MNRAS, 423, 2736

Noutsos A., Schnitzeler D. H. F. M., Keane E. F., Kramer M., Johnston S., 2013, MNRAS, 430,
2281

Olejak A., Fishbach M., Belczynski K., Holz D. E., Lasota J. P., Miller M. C., Bulik T., 2020,
ApJ, 901, L39

Olejak A., Belczynski K., Ivanova N., 2021, A&A, 651, A100

Packet W., 1981, A&A, 102, 17

Paczyński B., 1967a, Acta Astron., 17, 193

Paczyński B., 1967b, Acta Astron., 17, 355

132 On the Evolution of Massive Stellar Triples

http://dx.doi.org/10.1051/0004-6361/201630131
https://ui.adsabs.harvard.edu/abs/2017A&A...599A..84M
http://dx.doi.org/10.1093/mnras/stab2276
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5013M
http://dx.doi.org/10.1088/0004-637X/794/2/122
https://ui.adsabs.harvard.edu/abs/2014ApJ...794..122M
http://dx.doi.org/10.1088/0004-637X/810/1/61
https://ui.adsabs.harvard.edu/abs/2015ApJ...810...61M
http://dx.doi.org/10.3847/1538-4365/aa6fb6
https://ui.adsabs.harvard.edu/abs/2017ApJS..230...15M
http://dx.doi.org/10.1086/145570
https://ui.adsabs.harvard.edu/abs/1952ApJ...115..562M
http://dx.doi.org/10.1093/mnras/stw983
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.1086M
http://dx.doi.org/10.1146/annurev-astro-081915-023315
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..441N
http://dx.doi.org/10.1088/0004-637X/793/2/137
https://ui.adsabs.harvard.edu/abs/2014ApJ...793..137N
http://dx.doi.org/10.1038/nature10076
https://ui.adsabs.harvard.edu/abs/2011Natur.473..187N
http://dx.doi.org/10.1088/2041-8205/754/2/L36
https://ui.adsabs.harvard.edu/abs/2012ApJ...754L..36N
http://dx.doi.org/10.1093/mnras/stt302
https://ui.adsabs.harvard.edu/abs/2013MNRAS.431.2155N
http://dx.doi.org/10.1088/0004-637X/773/2/187
https://ui.adsabs.harvard.edu/abs/2013ApJ...773..187N
http://dx.doi.org/10.3847/2041-8205/822/2/L24
https://ui.adsabs.harvard.edu/abs/2016ApJ...822L..24N
http://dx.doi.org/10.1086/311658
https://ui.adsabs.harvard.edu/abs/1998ApJ...506L..97N
http://dx.doi.org/10.1111/j.1365-2966.2012.21083.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.423.2736N
http://dx.doi.org/10.1093/mnras/stt047
https://ui.adsabs.harvard.edu/abs/2013MNRAS.430.2281N
https://ui.adsabs.harvard.edu/abs/2013MNRAS.430.2281N
http://dx.doi.org/10.3847/2041-8213/abb5b5
https://ui.adsabs.harvard.edu/abs/2020ApJ...901L..39O
http://dx.doi.org/10.1051/0004-6361/202140520
https://ui.adsabs.harvard.edu/abs/2021A&A...651A.100O
https://ui.adsabs.harvard.edu/abs/1981A&A...102...17P
https://ui.adsabs.harvard.edu/abs/1967AcA....17..193P
https://ui.adsabs.harvard.edu/abs/1967AcA....17..355P


BIBLIOGRAPHY

Paczyński B., 1971, ARAA, 9, 183

Paczynski B., 1976, in Eggleton P., Mitton S., Whelan J., eds, Vol. 73, Structure and Evolution of
Close Binary Systems. p. 75

Park D., Kim C., Lee H. M., Bae Y.-B., Belczynski K., 2017, MNRAS, 469, 4665

Pastorello A., et al., 2019, A&A, 630, A75

Pavlovskii K., Ivanova N., 2015, MNRAS, 449, 4415

Pavlovskii K., Ivanova N., Belczynski K., Van K. X., 2017, MNRAS, 465, 2092

Pawlak M., et al., 2016, Acta Astron., 66, 421

Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P., Timmes F., 2011, ApJS, 192, 3

Perets H. B., Fabrycky D. C., 2009, ApJ, 697, 1048

Perets H. B., Kenyon S. J., 2013, ApJ, 764, 169

Perets H. B., Kratter K. M., 2012, ApJ, 760, 99

Peters P. C., 1964, Physical Review, 136, 1224

Petrovich C., 2015, ApJ, 808, 120

Petrovich C., Antonini F., 2017, ApJ, 846, 146

Pijloo J. T., Caputo D. P., Portegies Zwart S. F., 2012, MNRAS, 424, 2914

Pinsonneault M. H., Stanek K. Z., 2006, ApJ, 639, L67

Planck Collaboration et al., 2016, A&A, 594, A13

Podsiadlowski P., Joss P. C., Hsu J. J. L., 1992, ApJ, 391, 246

Portegies Zwart S., Leigh N. W. C., 2019, ApJ, 876, L33

Portegies Zwart S. F., van den Heuvel E. P. J., 2016, MNRAS, 456, 3401

Preibisch T., Balega Y., Hofmann K.-H., Weigelt G., Zinnecker H., 1999, New A, 4, 531

Prinja B. K., 1992, in Drissen L., Leitherer C., Nota A., eds, Astronomical Society of the Pacific
Conference Series Vol. 22, Nonisotropic and Variable Outflows from Stars. p. 167

Prodan S., Antonini F., Perets H. B., 2015, ApJ, 799, 118

J. Stegmann 133

http://dx.doi.org/10.1146/annurev.aa.09.090171.001151
https://ui.adsabs.harvard.edu/abs/1971ARA&A...9..183P
http://dx.doi.org/10.1093/mnras/stx1015
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.4665P
http://dx.doi.org/10.1051/0004-6361/201935999
https://ui.adsabs.harvard.edu/abs/2019A&A...630A..75P
http://dx.doi.org/10.1093/mnras/stv619
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449.4415P
http://dx.doi.org/10.1093/mnras/stw2786
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.2092P
http://dx.doi.org/10.48550/arXiv.1612.06394
https://ui.adsabs.harvard.edu/abs/2016AcA....66..421P
http://dx.doi.org/10.1088/0067-0049/192/1/3
https://ui.adsabs.harvard.edu/abs/2011ApJS..192....3P
http://dx.doi.org/10.1088/0004-637X/697/2/1048
https://ui.adsabs.harvard.edu/abs/2009ApJ...697.1048P
http://dx.doi.org/10.1088/0004-637X/764/2/169
https://ui.adsabs.harvard.edu/abs/2013ApJ...764..169P
http://dx.doi.org/10.1088/0004-637X/760/2/99
https://ui.adsabs.harvard.edu/abs/2012ApJ...760...99P
http://dx.doi.org/10.1103/PhysRev.136.B1224
https://ui.adsabs.harvard.edu/abs/1964PhRv..136.1224P
http://dx.doi.org/10.1088/0004-637X/808/2/120
https://ui.adsabs.harvard.edu/abs/2015ApJ...808..120P
http://dx.doi.org/10.3847/1538-4357/aa8628
https://ui.adsabs.harvard.edu/abs/2017ApJ...846..146P
http://dx.doi.org/10.1111/j.1365-2966.2012.21431.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.2914P
http://dx.doi.org/10.1086/502799
https://ui.adsabs.harvard.edu/abs/2006ApJ...639L..67P
http://dx.doi.org/10.1051/0004-6361/201525830
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..13P
http://dx.doi.org/10.1086/171341
https://ui.adsabs.harvard.edu/abs/1992ApJ...391..246P
http://dx.doi.org/10.3847/2041-8213/ab1b75
https://ui.adsabs.harvard.edu/abs/2019ApJ...876L..33P
http://dx.doi.org/10.1093/mnras/stv2787
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456.3401P
http://dx.doi.org/10.1016/S1384-1076(99)00042-1
https://ui.adsabs.harvard.edu/abs/1999NewA....4..531P
http://dx.doi.org/10.1088/0004-637X/799/2/118
https://ui.adsabs.harvard.edu/abs/2015ApJ...799..118P


BIBLIOGRAPHY

Qin Y., Fragos T., Meynet G., Andrews J., Sørensen M., Song H. F., 2018, A&A, 616, A28

Racine É., 2008, Phys. Rev. D, 78, 044021

Raucq F., Rauw G., Gosset E., Nazé Y., Mahy L., Hervé A., Martins F., 2016, A&A, 588, A10

Renzo M., Götberg Y., 2021, ApJ, 923, 277

Rizzuto A. C., et al., 2013, MNRAS, 436, 1694

Rodriguez C. L., Antonini F., 2018, ApJ, 863, 7

Rodriguez C. L., Loeb A., 2018, ApJ, 866, L5

Rodriguez C. L., Chatterjee S., Rasio F. A., 2016a, Phys. Rev. D, 93, 084029

Rodriguez C. L., Zevin M., Pankow C., Kalogera V., Rasio F. A., 2016b, ApJ, 832, L2

Rose S. C., Naoz S., Geller A. M., 2019, MNRAS, 488, 2480

Safarzadeh M., Biscoveanu S., Loeb A., 2020, ApJ, 901, 137

Sana H., et al., 2012, Science, 337, 444

Sana H., et al., 2014, ApJS, 215, 15

Schneider F. R. N., Izzard R. G., Langer N., de Mink S. E., 2015, ApJ, 805, 20

Schneider F. R. N., Podsiadlowski P., Langer N., Castro N., Fossati L., 2016, MNRAS, 457, 2355

Schneider F. R. N., Ohlmann S. T., Podsiadlowski P., Röpke F. K., Balbus S. A., Pakmor R.,
Springel V., 2019, Nature, 574, 211

Schneider F. R. N., Ohlmann S. T., Podsiadlowski P., Röpke F. K., Balbus S. A., Pakmor R.,
2020, MNRAS, 495, 2796

Schneider F. R. N., Podsiadlowski P., Müller B., 2021, A&A, 645, A5

Schwarzschild K., 1916, Abh. Konigl. Preuss. Akad. Wissenschaften Jahre 1906,92, Berlin,1907,
1916, 189

Sepinsky J. F., Willems B., Kalogera V., Rasio F. A., 2007, ApJ, 667, 1170

Sepinsky J. F., Willems B., Kalogera V., Rasio F. A., 2009, ApJ, 702, 1387

Sepinsky J. F., Willems B., Kalogera V., Rasio F. A., 2010, ApJ, 724, 546

134 On the Evolution of Massive Stellar Triples

http://dx.doi.org/10.1051/0004-6361/201832839
https://ui.adsabs.harvard.edu/abs/2018A&A...616A..28Q
http://dx.doi.org/10.1103/PhysRevD.78.044021
https://ui.adsabs.harvard.edu/abs/2008PhRvD..78d4021R
http://dx.doi.org/10.1051/0004-6361/201527543
https://ui.adsabs.harvard.edu/abs/2016A&A...588A..10R
http://dx.doi.org/10.3847/1538-4357/ac29c5
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..277R
http://dx.doi.org/10.1093/mnras/stt1690
https://ui.adsabs.harvard.edu/abs/2013MNRAS.436.1694R
http://dx.doi.org/10.3847/1538-4357/aacea4
https://ui.adsabs.harvard.edu/abs/2018ApJ...863....7R
http://dx.doi.org/10.3847/2041-8213/aae377
https://ui.adsabs.harvard.edu/abs/2018ApJ...866L...5R
http://dx.doi.org/10.1103/PhysRevD.93.084029
https://ui.adsabs.harvard.edu/abs/2016PhRvD..93h4029R
http://dx.doi.org/10.3847/2041-8205/832/1/L2
https://ui.adsabs.harvard.edu/abs/2016ApJ...832L...2R
http://dx.doi.org/10.1093/mnras/stz1846
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.2480R
http://dx.doi.org/10.3847/1538-4357/abb1af
https://ui.adsabs.harvard.edu/abs/2020ApJ...901..137S
http://dx.doi.org/10.1126/science.1223344
https://ui.adsabs.harvard.edu/abs/2012Sci...337..444S
http://dx.doi.org/10.1088/0067-0049/215/1/15
https://ui.adsabs.harvard.edu/abs/2014ApJS..215...15S
http://dx.doi.org/10.1088/0004-637X/805/1/20
https://ui.adsabs.harvard.edu/abs/2015ApJ...805...20S
http://dx.doi.org/10.1093/mnras/stw148
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.2355S
http://dx.doi.org/10.1038/s41586-019-1621-5
https://ui.adsabs.harvard.edu/abs/2019Natur.574..211S
http://dx.doi.org/10.1093/mnras/staa1326
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.2796S
http://dx.doi.org/10.1051/0004-6361/202039219
https://ui.adsabs.harvard.edu/abs/2021A&A...645A...5S
https://ui.adsabs.harvard.edu/abs/1916AbhKP1916..189S
http://dx.doi.org/10.1086/520911
https://ui.adsabs.harvard.edu/abs/2007ApJ...667.1170S
http://dx.doi.org/10.1088/0004-637X/702/2/1387
https://ui.adsabs.harvard.edu/abs/2009ApJ...702.1387S
http://dx.doi.org/10.1088/0004-637X/724/1/546
https://ui.adsabs.harvard.edu/abs/2010ApJ...724..546S


BIBLIOGRAPHY

Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337

Shao Y., Li X.-D., 2016, ApJ, 833, 108

Shappee B. J., Thompson T. A., 2013, ApJ, 766, 64

Siess L., Izzard R. G., Davis P. J., Deschamps R., 2013, A&A, 550, A100

Silsbee K., Tremaine S., 2017, ApJ, 836, 39

Soszyński I., et al., 2016, Acta Astron., 66, 405

Spera M., Mapelli M., 2017, MNRAS, 470, 4739

Spera M., Mapelli M., Bressan A., 2015, MNRAS, 451, 4086

Stegmann J., Antonini F., 2021, Phys. Rev. D, 103, 063007

Stegmann J., Vermeulen S. M., 2023, arXiv e-prints, p. arXiv:2301.02672

Stegmann J., Capelo P. R., Bortolas E., Mayer L., 2020, MNRAS, 492, 5247

Stegmann J., Antonini F., Schneider F. R. N., Tiwari V., Chattopadhyay D., 2022a, Phys. Rev. D,
106, 023014

Stegmann J., Antonini F., Moe M., 2022b, MNRAS, 516, 1406

Steinle N., Kesden M., 2021, Phys. Rev. D, 103, 063032

Stephan A. P., Naoz S., Ghez A. M., Witzel G., Sitarski B. N., Do T., Kocsis B., 2016, MNRAS,
460, 3494

Stephan A. P., Naoz S., Gaudi B. S., 2018, AJ, 156, 128

Stephan A. P., et al., 2019, ApJ, 878, 58

Stevenson S., Vigna-Gómez A., Mandel I., Barrett J. W., Neijssel C. J., Perkins D., de Mink S. E.,
2017, Nature Communications, 8, 14906

Storch N. I., Anderson K. R., Lai D., 2014, Science, 345, 1317

Storch N. I., Lai D., Anderson K. R., 2017, MNRAS, 465, 3927

Suzuki T. K., Nakasato N., Baumgardt H., Ibukiyama A., Makino J., Ebisuzaki T., 2007, ApJ,
668, 435

The LIGO Scientific Collaboration et al., 2021, arXiv e-prints, p. arXiv:2111.03634

J. Stegmann 135

https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S
http://dx.doi.org/10.3847/1538-4357/833/1/108
https://ui.adsabs.harvard.edu/abs/2016ApJ...833..108S
http://dx.doi.org/10.1088/0004-637X/766/1/64
https://ui.adsabs.harvard.edu/abs/2013ApJ...766...64S
http://dx.doi.org/10.1051/0004-6361/201220327
https://ui.adsabs.harvard.edu/abs/2013A&A...550A.100S
http://dx.doi.org/10.3847/1538-4357/aa5729
https://ui.adsabs.harvard.edu/abs/2017ApJ...836...39S
http://dx.doi.org/10.48550/arXiv.1701.03105
https://ui.adsabs.harvard.edu/abs/2016AcA....66..405S
http://dx.doi.org/10.1093/mnras/stx1576
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.4739S
http://dx.doi.org/10.1093/mnras/stv1161
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451.4086S
http://dx.doi.org/10.1103/PhysRevD.103.063007
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103f3007S
http://dx.doi.org/10.48550/arXiv.2301.02672
https://ui.adsabs.harvard.edu/abs/2023arXiv230102672S
http://dx.doi.org/10.1093/mnras/staa170
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.5247S
http://dx.doi.org/10.1103/PhysRevD.106.023014
https://ui.adsabs.harvard.edu/abs/2022PhRvD.106b3014S
http://dx.doi.org/10.1093/mnras/stac2192
https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.1406S
http://dx.doi.org/10.1103/PhysRevD.103.063032
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103f3032S
http://dx.doi.org/10.1093/mnras/stw1220
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.3494S
http://dx.doi.org/10.3847/1538-3881/aad6e5
https://ui.adsabs.harvard.edu/abs/2018AJ....156..128S
http://dx.doi.org/10.3847/1538-4357/ab1e4d
https://ui.adsabs.harvard.edu/abs/2019ApJ...878...58S
http://dx.doi.org/10.1038/ncomms14906
https://ui.adsabs.harvard.edu/abs/2017NatCo...814906S
http://dx.doi.org/10.1126/science.1254358
https://ui.adsabs.harvard.edu/abs/2014Sci...345.1317S
http://dx.doi.org/10.1093/mnras/stw3018
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.3927S
http://dx.doi.org/10.1086/521214
https://ui.adsabs.harvard.edu/abs/2007ApJ...668..435S
http://dx.doi.org/10.48550/arXiv.2111.03634
https://ui.adsabs.harvard.edu/abs/2021arXiv211103634T


BIBLIOGRAPHY

Thompson T. A., 2011, ApJ, 741, 82

Tiwari V., 2021, Classical and Quantum Gravity, 38, 155007

Tiwari V., 2022, ApJ, 928, 155

Tiwari V., Fairhurst S., 2021, ApJ, 913, L19

Tokovinin A. A., 2000, A&A, 360, 997

Tokovinin A., 2017, ApJ, 844, 103

Toonen S., Hamers A., Portegies Zwart S., 2016, Computational Astrophysics and Cosmology, 3,
6

Toonen S., Perets H. B., Hamers A. S., 2018, A&A, 610, A22

Toonen S., Portegies Zwart S., Hamers A. S., Bandopadhyay D., 2020, A&A, 640, A16

Toonen S., Boekholt T. C. N., Portegies Zwart S., 2022, A&A, 661, A61

Tout C. A., 2012, in Richards M. T., Hubeny I., eds, Vol. 282, From Interacting Binaries to
Exoplanets: Essential Modeling Tools. pp 417–424, doi:10.1017/S1743921311027967

Tout C. A., Aarseth S. J., Pols O. R., Eggleton P. P., 1997, MNRAS, 291, 732

Tremaine S., Yavetz T. D., 2014, American Journal of Physics, 82, 769

Tremaine S., Touma J., Namouni F., 2009, AJ, 137, 3706

Tylenda R., Kamiński T., 2016, A&A, 592, A134

Vanbeveren D., 1991, A&A, 252, 159

Vick M., Lai D., 2019, Phys. Rev. D, 100, 063001

Vick M., Lai D., Anderson K. R., 2019, MNRAS, 484, 5645

Vigna-Gómez A., Justham S., Mandel I., de Mink S. E., Podsiadlowski P., 2019, ApJ, 876, L29

Vigna-Gómez A., Toonen S., Ramirez-Ruiz E., Leigh N. W. C., Riley J., Haster C.-J., 2021, ApJ,
907, L19

Vigna-Gómez A., Liu B., Aguilera-Dena D. R., Grishin E., Ramirez-Ruiz E., Soares-Furtado M.,
2022, MNRAS, 515, L50

136 On the Evolution of Massive Stellar Triples

http://dx.doi.org/10.1088/0004-637X/741/2/82
https://ui.adsabs.harvard.edu/abs/2011ApJ...741...82T
http://dx.doi.org/10.1088/1361-6382/ac0b54
https://ui.adsabs.harvard.edu/abs/2021CQGra..38o5007T
http://dx.doi.org/10.3847/1538-4357/ac589a
https://ui.adsabs.harvard.edu/abs/2022ApJ...928..155T
http://dx.doi.org/10.3847/2041-8213/abfbe7
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L..19T
https://ui.adsabs.harvard.edu/abs/2000A&A...360..997T
http://dx.doi.org/10.3847/1538-4357/aa7746
https://ui.adsabs.harvard.edu/abs/2017ApJ...844..103T
http://dx.doi.org/10.1186/s40668-016-0019-0
https://ui.adsabs.harvard.edu/abs/2016ComAC...3....6T
https://ui.adsabs.harvard.edu/abs/2016ComAC...3....6T
http://dx.doi.org/10.1051/0004-6361/201731874
https://ui.adsabs.harvard.edu/abs/2018A&A...610A..22T
http://dx.doi.org/10.1051/0004-6361/201936835
https://ui.adsabs.harvard.edu/abs/2020A&A...640A..16T
http://dx.doi.org/10.1051/0004-6361/202141991
https://ui.adsabs.harvard.edu/abs/2022A&A...661A..61T
http://dx.doi.org/10.1017/S1743921311027967
http://dx.doi.org/10.1093/mnras/291.4.732
https://ui.adsabs.harvard.edu/abs/1997MNRAS.291..732T
http://dx.doi.org/10.1119/1.4874853
https://ui.adsabs.harvard.edu/abs/2014AmJPh..82..769T
http://dx.doi.org/10.1088/0004-6256/137/3/3706
https://ui.adsabs.harvard.edu/abs/2009AJ....137.3706T
http://dx.doi.org/10.1051/0004-6361/201527700
https://ui.adsabs.harvard.edu/abs/2016A&A...592A.134T
https://ui.adsabs.harvard.edu/abs/1991A&A...252..159V
http://dx.doi.org/10.1103/PhysRevD.100.063001
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100f3001V
http://dx.doi.org/10.1093/mnras/stz354
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.5645V
http://dx.doi.org/10.3847/2041-8213/ab1bdf
https://ui.adsabs.harvard.edu/abs/2019ApJ...876L..29V
http://dx.doi.org/10.3847/2041-8213/abd5b7
https://ui.adsabs.harvard.edu/abs/2021ApJ...907L..19V
http://dx.doi.org/10.1093/mnrasl/slac067
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515L..50V


BIBLIOGRAPHY

Vink J. S., 2017, Philosophical Transactions of the Royal Society of London Series A, 375,
20160269

Vink J. S., de Koter A., Lamers H. J. G. L. M., 2001, A&A, 369, 574

Vink J. S., Muijres L. E., Anthonisse B., de Koter A., Gräfener G., Langer N., 2011, A&A, 531,
A132

Wang H., Stephan A. P., Naoz S., Hoang B.-M., Breivik K., 2021, ApJ, 917, 76

Wellstein S., Langer N., Braun H., 2001, A&A, 369, 939

Will C. M., 2017, Phys. Rev. D, 96, 023017

Wu Y., 2018, AJ, 155, 118

Wu Y., Murray N., 2003, ApJ, 589, 605

Yoon S. C., Woosley S. E., Langer N., 2010, ApJ, 725, 940

Zahn J. P., 1975, A&A, 41, 329

Zahn J. P., 1977, A&A, 57, 383

Zahn J. P., 1989, A&A, 220, 112

Zevin M., Bavera S. S., 2022, ApJ, 933, 86

Zevin M., Berry C. P. L., Coughlin S., Chatziioannou K., Vitale S., 2020, ApJ, 899, L17

Zevin M., et al., 2021, ApJ, 910, 152

Ziosi B. M., Mapelli M., Branchesi M., Tormen G., 2014, MNRAS, 441, 3703

de Mink S. E., Pols O. R., Hilditch R. W., 2007, A&A, 467, 1181

de Mink S. E., Langer N., Izzard R. G., Sana H., de Koter A., 2013, ApJ, 764, 166

de Val-Borro M., Karovska M., Sasselov D., 2009, ApJ, 700, 1148

de Vries N., Portegies Zwart S., Figueira J., 2014, MNRAS, 438, 1909

van Rensbergen W., De Greve J. P., Mennekens N., Jansen K., De Loore C., 2010, A&A, 510,
A13

van Son L. A. C., et al., 2022, ApJ, 940, 184

J. Stegmann 137

http://dx.doi.org/10.1098/rsta.2016.0269
https://ui.adsabs.harvard.edu/abs/2017RSPTA.37560269V
https://ui.adsabs.harvard.edu/abs/2017RSPTA.37560269V
http://dx.doi.org/10.1051/0004-6361:20010127
https://ui.adsabs.harvard.edu/abs/2001A&A...369..574V
http://dx.doi.org/10.1051/0004-6361/201116614
https://ui.adsabs.harvard.edu/abs/2011A&A...531A.132V
https://ui.adsabs.harvard.edu/abs/2011A&A...531A.132V
http://dx.doi.org/10.3847/1538-4357/ac088d
https://ui.adsabs.harvard.edu/abs/2021ApJ...917...76W
http://dx.doi.org/10.1051/0004-6361:20010151
https://ui.adsabs.harvard.edu/abs/2001A&A...369..939W
http://dx.doi.org/10.1103/PhysRevD.96.023017
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96b3017W
http://dx.doi.org/10.3847/1538-3881/aaa970
https://ui.adsabs.harvard.edu/abs/2018AJ....155..118W
http://dx.doi.org/10.1086/374598
https://ui.adsabs.harvard.edu/abs/2003ApJ...589..605W
http://dx.doi.org/10.1088/0004-637X/725/1/940
https://ui.adsabs.harvard.edu/abs/2010ApJ...725..940Y
https://ui.adsabs.harvard.edu/abs/1975A&A....41..329Z
https://ui.adsabs.harvard.edu/abs/1977A&A....57..383Z
https://ui.adsabs.harvard.edu/abs/1989A&A...220..112Z
http://dx.doi.org/10.3847/1538-4357/ac6f5d
https://ui.adsabs.harvard.edu/abs/2022ApJ...933...86Z
http://dx.doi.org/10.3847/2041-8213/aba8ef
https://ui.adsabs.harvard.edu/abs/2020ApJ...899L..17Z
http://dx.doi.org/10.3847/1538-4357/abe40e
https://ui.adsabs.harvard.edu/abs/2021ApJ...910..152Z
http://dx.doi.org/10.1093/mnras/stu824
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.3703Z
http://dx.doi.org/10.1051/0004-6361:20067007
https://ui.adsabs.harvard.edu/abs/2007A&A...467.1181D
http://dx.doi.org/10.1088/0004-637X/764/2/166
https://ui.adsabs.harvard.edu/abs/2013ApJ...764..166D
http://dx.doi.org/10.1088/0004-637X/700/2/1148
https://ui.adsabs.harvard.edu/abs/2009ApJ...700.1148D
http://dx.doi.org/10.1093/mnras/stt1688
https://ui.adsabs.harvard.edu/abs/2014MNRAS.438.1909D
http://dx.doi.org/10.1051/0004-6361/200913272
https://ui.adsabs.harvard.edu/abs/2010A&A...510A..13V
https://ui.adsabs.harvard.edu/abs/2010A&A...510A..13V
http://dx.doi.org/10.3847/1538-4357/ac9b0a
https://ui.adsabs.harvard.edu/abs/2022ApJ...940..184V

	Summary
	Publications
	List of abbreviations
	Acknowledgements
	Introduction
	Secular dynamics of three-body systems
	Hamiltonian model
	Quadrupole dynamics
	Octupole dynamics

	Suppression by short-range forces and gravitational-wave emission
	Precession due to short-range forces
	Gravitational-wave emission from the inner binary

	Thesis structure

	Evolution of massive stellar triples
	Methods
	Triple dynamics
	Stellar evolution
	Mass transfer
	Coupling stellar evolution and dynamics
	Stellar evolution parameters
	Example cases

	Initial conditions
	Primary mass distribution f(m1)
	Period distributions f(Pin(out)|mp)
	Inner (outer) mass ratio distribution f(qin(out)|mp,Pin(out))
	Inner (Outer) eccentricity f(ein(out)|mp,Pin(out))
	Orbital angles
	Discarded systems
	Drawbacks in initial conditions

	Results
	Evolutionary outcomes
	Orbital properties of the surviving systems
	Tertiary impact on inner binary interactions


	Black hole mergers from stellar mergers in triples
	Methods
	Stellar evolution
	Initial conditions

	Results

	Flipping spins in mass transferring binaries
	Introduction
	Basic Assumptions
	Donor spin evolution due to mass transfer
	Tides
	Application to binary black hole formation

	Conclusion
	Evolution of massive stellar triples
	Black hole mergers from stellar mergers in triples
	Flipping spins in mass transferring binaries

	Appendix
	Hut's polynomials
	Exemplary triples
	BBH merger rate density
	Chirp mass distribution
	Tides and Rotation


