
Evaluating Concept Drift Detectors on Real-World Data

Ufuk Erol
University of Bristol

u.erol@bristol.ac.uk

Francesco Raimondo
University of Bristol

f.raimondo@bristol.ac.uk

James Pope
University of Bristol

james.pope@bristol.ac.uk

Samuel Gunner
University of Bristol

sam.gunner@bristol.ac.uk

Vijay Kumar
Toshiba Europe Ltd.
University of Bristol

vijay.kumar@bristol.ac.uk

Ioannis Mavromatis
Toshiba BRIL, Bristol

ioannis.mavromatis@toshiba-
bril.com

Pietro Carnelli
Toshiba Europe Ltd.

Pietro.Carnelli@toshiba-
bril.com

Theodoros Spyridopoulos
Toshiba Europe Ltd.

Cardiff University

spyridopoulost@cardiff.ac.uk

Aftab Khan
Toshiba Europe Ltd.

aftab.khan@toshiba-
bril.com

George Oikonomou
University of Bristol

g.oikonomou@bristol.ac.uk

Abstract
Cloud-IoT deployments are ubiquitous and employed in

various application domains, including smart buildings. Of-
ten employed in public spaces, IoT devices are exposed to
various security threats. One such attack is “anomalous con-
cept drift”. It occurs when an attacker tampers with a device
causing it to report realistic sensor data that slowly deviates
from the correct value. Evaluating concept drift detectors
on real-world data is ideal. Though many indoor datasets
exist, our real-world dataset provides a natural, long-term
collection of indoor environmental sensor readings over six
months. The dataset consists of environmental sensor sam-
ples collected via eight IoT devices in a real office setting.
The dataset is particularly useful for evaluating concept drift
detection algorithms as spatial aspects can be used along
with the signals. The dataset has been made openly avail-
able, and in this paper we use it to inject malicious concept
drifts and to evaluate the performance of several drift de-
tection techniques. The injection tool’s source code is also
publicly available.
1 Introduction

Internet of Things (IoT) networks have become part of
daily life, and usage cases are increasing. IoT sensing appli-
cations are widely adopted, and interconnected IoT devices
are common in various fields, such as industrial monitoring,

smart cities, and environmental monitoring. As the number
of applications increased, billions of IoT devices have been
deployed and generated immense amounts of data. Use cases
include indoor air quality [1], occupancy estimation [15, 2],
drift detection, and network planning [13]. However, real-
world datasets are hard to obtain, and most real-world data is
only accessible to the organisations involved in the collection
process. Getting access to sensor information facilitates test-
ing, standardisation, and comparison of sensor-related tech-
nologies is a significant limitation/obstacle. Such datasets
are particularly helpful for research and analysis. For exam-
ple, Chimamiwa et al. [4] recently provided a dataset over
six months for smart homes. Our dataset has been produced
over a similar period with similar sensors, however, it is de-
ployed in a working office environment and provides contin-
uous monitoring data (unlike “rolling” deployed sensors in
the smart home dataset).

Open access to real-world sensor data can be coopera-
tive and fulfil the requirements of those researchers who do
not have the facility or time to generate such comprehensive
datasets. Real-world indoor environmental datasets can also
accelerate the development of algorithms designed for smart
buildings and home automation. However, having access to
such a dataset is not enough in isolation. Essential infor-
mation about the environment and how the dataset has been
processed is required to provide context. We provide a pub-
licly accessible dataset collected over six months with vari-
ous sensors on various endpoints located in different rooms
in a busy environment. In addition, we provide details about
the environment, giving additional helpful information to de-
rive meaning from the data. Finally, we provide an open-
access tool in a Git repository1 for concept drift analysis.

However, the volume of data comes with reliability and
accuracy concerns. The appeal of gathering and studying

1https://github.com/jpope8/synergia_datadrift_dataset



Figure 1: Histogram of Four Sensor Readings of a Single IoT Endpoint

real-world data is that it supports the development of new
techniques for data processing. These techniques must be
able to cope with the fact that real-world data is not always
perfect and can be impacted by issues with the sensors, ma-
licious attacks, and dynamic settings, among other things. In
order to maintain healthy and accurate information, distin-
guishing erroneous and harmful data is essential.

Data drift algorithms play a crucial role in detecting and
mitigating malicious attacks using real-world datasets [9].
These algorithms monitor the ever-changing patterns and
characteristics of data over time, enabling the identification
of any anomalous behavior that may indicate a potential at-
tack. By analyzing the drift in data distribution, these algo-
rithms can detect and raise alerts when data deviates signif-
icantly from the expected values. Real-world datasets pro-
vide a valuable resource for training and evaluating such al-
gorithms, as they capture the complexities and dynamics of
actual environments, including the presence of subtle and so-
phisticated attacks. Leveraging these datasets, data drift al-
gorithms can effectively enhance the security of systems by
promptly detecting and responding to malicious activities,
helping organizations safeguard their sensitive information
and maintain the integrity of their data infrastructure

The remainder of this paper is structured as follows: Sec-
tion 2 provides details about the dataset, how the data was
collected and the hardware used in the data collection pro-
cess. Section 3 provides the analysis of the data for mali-
cious and natural data drift detection. Finally, we conclude
this paper in Section 4.

2 Dataset and Experiment Overview
To collect real-world data, we deployed an end-to-end IoT

network in our office space and laboratory at the Univer-
sity of Bristol. The office area has a maximum occupancy
of 28 people and is actively used by a significant number
of academic staff, research and taught students. It is lo-
cated on the second floor thus, it gets exposed to environ-
mental changes such as seasonal temperature, humidity and
light fluctuations. The network consists of eight severely
resource-constrained IoT endpoints installed at fixed loca-

tions, an additional device acting as the “edge”, and a server
for data collection and controlling the experiment. Each IoT
endpoint is equipped with sensing elements providing tem-
perature, humidity, pressure, gas, 3-axes acceleration, and
light readings. The endpoints are located in different loca-
tions/rooms in the lab to collect varying data due to differen-
tiation between the areas. We collected two additional pieces
of information: the measurements’ accuracy value, calcu-
lated by the environmental sensors and the received signal
strength indicator (RSSI) [16]. Sensing elements are sam-
pled every 10 seconds, and sent from endpoints to the edge
device. The experiment started in February 2022, and we
collected in excess of six months of data (Figure 1). Sensor
readings are collected by an application developed in-house,
and stored on a cloud server in CSV file format. In the anal-
ysis presented in this manuscript we have only used three
sensor readings (Temperature, Humidity, and Light), but the
full dataset with all sensor readings is openly available [5].

2.1 Resource-Constrained Wireless Sensor
Network

Each endpoint device of the network is a data collecting
unit and consists of a Nordic nRF52840 DK board [11] and
the following sensors:

1. “ISL29125” Light Sensors: Collects intensity of the
light.

2. “MMA8452Q” Accelerometer Sensors.

3. “BME680” Environmental Digital Sensors: Sense gas
(VOC/CO2), pressure, temperature and humidity.

Endpoints are identified using both the MAC address and
a unique identifier provided by the chip vendor. To easily
locate every sensor deployed in the network, a map mark-
ing device installation locations is available as part of the
data set. The DK board and sensors are connected to ev-
ery endpoint device using a breadboard. The communica-
tion is implemented using the I2C interface. Endpoints are
connected in a mesh network topology, where the destina-
tion of the endpoints’ data traffic is a device acting as the
edge of the network. To enable communication between



Figure 2: IoT Endpoints with Sensors

the endpoints and the edge of the network, we deployed,
on the endpoints’ DK board, the Contiki-NG operating sys-
tem [12]. This provides a full stack implementation for form-
ing mesh networks using IEEE 802.15.4 Time Slotted Chan-
nel Hopping (TSCH) MAC protocol [8], an IPv6 network
layer and a UDP transport layer. The adoption of TSCH pro-
vides a very reliable MAC layer and contributes to obtain
healthy continuous data. The device used as the edge of the
mesh network is an UMBRELLA edge [3], equipped with
a Nordic nRF52840 SoC and a Raspberry Pi. The Contiki-
ng border router implementation has been deployed on the
nRF52840 SoC. In this configuration, data are received by
the nRF52840 SoC, using the IEEE 802.15.4 communica-
tion standard, and transferred to the Raspberry Pi.

On the UMBRELLA edge, we execute a series of soft-
ware services, implemented in Python, providing three func-
tions: 1) control of the experiment, 2) monitoring of the ex-
periment, 3) data file format and storage. The control func-
tion communicates with the connected nRF52840 SoC, ex-
tracting the incoming stream of sensor readings. Monitoring
functions verify that all endpoints are sending sensor data
correctly. The detection of an endpoint failure will be re-
ported, providing the date of the failure and the identifier of
the endpoint. Finally, the data file format and storage func-
tion is responsible for writing the received data in text files,
using a comma-separated values (CSV) format. Moreover,
the same component periodically transfers data to the cloud.

3 Analysis - Drift Detection
To demonstrate the utility of the dataset, we show how it

can be used to evaluate drift detection algorithms that might
be used to identify compromised IoT devices reporting mali-
cious data. We assume that a device has been compromised
and is reporting sensor values intended to misrepresent the
environmental state. Malicious data manipulation could be
sudden or gradual. We only consider gradual manipulation
as we believe sudden changes are easier to detect. There
are also natural drifts in the data, that have not been caused
by a malicious actor. These natural drifts include seasonal
changes (e.g. light, temperature, humidity). Some natural

drifts could indicate anomalous scenarios such as tempo-
rary heating, ventilation or air conditioning (HVAC) failures,
causing deviations from ideal indoor temperatures. There-
fore, we consider the two scenarios of malicious data drift
and natural data drift. Before proceeding, we note other use
cases of the dataset including occupancy detection, indoor air
quality estimation, and evaluation of time-series data genera-
tion techniques to address missing data (e.g. long-short term
memory neural networks).

For both scenarios, we use the temperature signal for
ease of illustration. However, the analysis generalises to
the other sensor data. We use the Concept Drift Detection
modules from the scikit-multiflow package [10], a machine
learning package for streaming data. We chose to use the
HDDM W [7] drift detector which uses an exponentially
weighted moving average along with McDiarmid’s bounds.
We found this implementation was the easiest to tune and
produced the most plausible results. The only hyperpa-
rameter adjusted was the lambda option that determines the
weight given to recent data. We had to adjust this for dif-
ferent sensors and noted the values used in our analysis. In
addition to the HDDM W, we re-test anomaly detection with
the Long Short-Term Memory (LSTM) model [14], which is
a type of recurrent neural network (RNN) [6].

LSTM networks incorporate memory cells and gates that
help them capture and propagate information over longer
time intervals, making them well-suited for tasks involving
sequential data and dependencies. However, LSTM can be
used the detect attacks using a prediction model. We mark
the detected abnormal values that are filtered by an algorithm
by comparing the predicted values by LSTM algorithm with
real received sensor measurement values.

It can be practical to deploy LSTM algorithm to either an
edge device or in the cloud to detect malicious attacks.

3.1 Natural Data Drift
We consider the two devices, B285 and 2DB5 co-located

in the same room. We would expect the two devices to re-
port very similar temperatures and would not expect them to
significantly deviate. Figure 3a shows the original tempera-
ture samples for the month of March. Interestingly, there is a
notable difference between the values towards the end of the
month. We believed this was because device 85 was nearer
to the window and received more direct sunlight. Figure 5
confirms this to be the case where there is notably more light
for device b5 than for device 85 later into March.

Because the samples have different timestamps, we group
them into time intervals of one hour and take the average for
each interval. We then subtract one of the signals from the
other to produce a difference. Figure 3b shows the results
of running the drift detector on the difference signal (using
lambda option=0.01). Two drift events are identified, high-
lighting the points where the two original signals appear to
deviate the most. These detected drifts are shown in both
figures by the red line.

3.2 Malicious Data Drift
We developed a simple utility to modify sections of the

signals based on date/time ranges. This allows the data in
that range to be changed with strictly artificial data. How-



(a) Devices b5 and 85, Original Temperature (b) Devices b5 and 85, Temperature Difference

Figure 3: Natural Data Drift between Devices 85 and b5 temperatures, March 2022

ever, we choose to inject data that is a function of the original
data. This approach will make detection difficult and more
indicative of a sophisticated attacker. We take a weighted av-
erage of the original data with a constant slope, linear signal
to adjust the trend. We modify the signal as follows, where ts
is the starting time to modify, t denotes time, α is a weight-
ing given to original data, and β is a weighting given to the
artificial data (α plus β should equal 1.0).

data[t] = α∗data[t]+β∗ (data[ts]− slope∗ t) (1)

Figure 4a shows the original temperature data collected
by device 61 through the month of March. There is a
steady rise, most likely caused by the increasing outside
temperature expected at this time of year (although a de-
crease is visible at the end of the month, due to either air-
conditioning or the onset of a cold period). The detector
(using lambda option=0.0001) identifies five drifts thought
to be natural. We then injected malicious data from March
10 - March 13, with slope = 0.00001 and α = 0.5. Figure 4b
shows the modified temperature data. The detector identifies
six drifts when run on this modified data. Notably, a drift
is detected near the end of the injected data. We note that
injection did not create a significant discontinuity but rather
lowered the average value so that when injection ceased on
14 March a detection was generated. Though an attacker
would likely continue to modify the data, other techniques,
for example the difference signal for nearby devices, could
be used to detect the compromised device. Moreover, this
demonstrates the utility of the dataset for drift detection.

In case of LSTM detection model, we selected humidity
and temperature readings and injected drift with the injection
code we provided. We had various LSTM configurations and
build the model according to computation as follows:

Given an input sequence X = {x1,x2, . . . ,xT}, where xt ∈
Rd , and the hidden states h = {h1,h2, . . . ,hT} and cell states
c= {c1,c2, . . . ,cT} of the LSTM network, the LSTM predic-
tion at time step t can be computed as follows:

ft = σ(W f · [ht−1,xt ]+b f ),

it = σ(Wi · [ht−1,xt ]+bi),

c̃t = tanh(Wc · [ht−1,xt ]+bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t ,

ot = σ(Wo · [ht−1,xt ]+bo),

ht = ot ⊙ tanh(ct),

where σ denotes the sigmoid function, ⊙ denotes
element-wise multiplication, and W and b represent the
weight matrices and bias vectors of the LSTM network, re-
spectively.

• ft: The “forget gate” controls the amount of informa-
tion to discard from the previous cell state, based on the
previous hidden state and current input.

• it: The “input gate” regulates the amount of new infor-
mation to be added to the cell state, based on the previ-
ous hidden state and current input.

• c̃t : The “candidate cell state” represents the new in-
formation to be considered for updating the cell state,
based on the previous hidden state and current input.

• ct: The “cell state” combines the forget gate, input gate,
and candidate cell state to update the previous cell state,
retaining relevant information and discarding irrelevant
information.

• ot: The “output gate” determines the amount of hidden
state information to expose as the output, based on the
previous hidden state and current input.

• ht: The “hidden state” is the final output of the LSTM,
obtained by applying the output gate to the cell state
after passing it through a non-linear activation function.

To detect anomalies, an LSTM model is trained on the
provided dataset, where normal instances are represented as
the majority class, and anomalies as the minority class. The
network learns to model normal behavior by capturing the
sequential patterns and dependencies in the data. During



(a) Device 61, Original Temperature (b) Device 61, Drift (10-13 March) Temperature

Figure 4: Malicious Data Drift, Device 61, March 2022

Figure 5: Devices b5 and 85 Light, March 2022

training, the LSTM, RNN adjusts its internal states, known
as cell states and hidden states, to remember long-term de-
pendencies and forget irrelevant information.

After we applied the drift-injected dataset and trained
the model, the abnormal data was detected by LSTM. We
achieve that by comparing the predicted data values with the
real measurements provided by the dataset. The detections
with red vertical lines can be seen in figure 6 and figure 7.

Once the LSTM model is trained, it can be used to predict
the next data value based on the previous sequence of data.
When presented with a new data point, the model calculates
a prediction error, which measures the discrepancy between
the predicted and actual values. Anomalies often result in
high prediction errors, indicating deviations from the learned
normal behavior.

By setting a threshold for the prediction error, the LSTM
can flag instances with errors above the threshold as anoma-
lies. This approach allows for the detection of both point
anomalies (sudden deviations) and contextual anomalies (de-
viations within a specific context). Additionally, LSTM
RNNs can handle time-series data with irregular time inter-
vals, missing values, and noisy signals, making them ver-
satile for anomaly detection in various applications such as
network intrusion detection, and predictive maintenance.

Figure 6: LSTM Data Drift Detection, Humidity

4 Conclusion
In this paper we have used an open dataset with 6 months

of environmental sensor readings to investigate the problem
of anomalous data drift in sensor networks. We have pre-
sented a technique, and accompanying open source tool, for
anomalous data injection, and we have investigated anoma-
lous data drift detection techniques including HDDM W and
LSTM models. Our study concludes that, although the data
collected by constrained IoT devices could be manipulated
due to their simplicity, it is possible to detect maliciously-
injected anomalies.

5 Acknowledgments
This work was supported by UK Research and Innova-

tion, Innovate UK [grant number 53707].

6 References
[1] R. S. Abdul Wahhab. Air quality system using iot for indoor envi-

ronmental monitoring. In Proceedings of the 2019 5th International
Conference on Computer and Technology Applications, ICCTA 2019,
page 184–188, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[2] S. Ahmed, U. Kamal, T. R. Toha, N. Islam, and A. B. M. A. Al Islam.
Predicting human count through environmental sensing in closed in-
door settings. MobiQuitous ’18, page 49–58, New York, NY, USA,
2018. Association for Computing Machinery.



Figure 7: LSTM Data Drift Detection, Temperature

[3] BRIL Toshiba Europe Ltd. UMBRELLA node. https:
//www.umbrellaiot.com/what-is-umbrella/umbrella-node/,
2021. Accessed: 2021-09-06.

[4] G. Chimamiwa, M. Alirezaie, F. Pecora, and A. Loutfi. Multi-sensor
dataset of human activities in a smart home environment. Data in
Brief, 34:106632, 2021.

[5] U. Erol, F. Raimondo, J. Pope, S. Gunner, V. Kumar, I. Mavromatis,
P. Carnelli, T. Spyridopoulos, A. Khan, and G. Oikonomou. Multi-
sensor, multi-device smart building indoor environmental dataset.
https:/doi.org/10.5523/bris.fwlmb11wni392kodtyljkw4n2, 2023.

[6] A. Fathalla, K. Li, A. Salah, and M. F. Mohamed. An lstm-based dis-
tributed scheme for data transmission reduction of iot systems. Neu-
rocomputing, 485:166–180, 2022.

[7] I. Frı́as-Blanco, J. d. Campo-Ávila, G. Ramos-Jiménez, R. Morales-
Bueno, A. Ortiz-Dı́az, and Y. Caballero-Mota. Online and non-
parametric drift detection methods based on hoeffding’s bounds. IEEE
Transactions on Knowledge and Data Engineering, 27(3):810–823,
2015.

[8] IEEE. Ieee standard for low-rate wireless networks. IEEE Std
802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pages 1–709,
2016.

[9] I. Mavromatis, A. Sanchez-Mompo, F. Raimondo, J. Pope, M. Bullo,
I. Weeks, V. Kumar, P. Carnelli, G. Oikonomou, T. Spyridopoulos, and
A. Khan. LE3D: A Lightweight Ensemble Framework of Data Drift
Detectors for Resource-Constrained Devices. In Proc. CCNC, pages
611–619, 2023.

[10] J. Montiel, J. Read, A. Bifet, and T. Abdessalem. Scikit-multiflow:
A multi-output streaming framework. Journal of Machine Learning
Research, 19(72):1–5, 2018.

[11] Nordic Semiconductor. nRF52840, 11 2021. Rev. 7.
[12] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and

N. Tsiftes. The contiki-ng open source operating system for next gen-
eration IoT devices. SoftwareX, 18:101089, 2022.

[13] N. Raj. Indoor rssi prediction using machine learning for wireless net-
works. In 2021 International Conference on COMmunication Systems
& NETworkS (COMSNETS), pages 372–374, 2021.

[14] A. Sherstinsky. Fundamentals of recurrent neural network (rnn) and
long short-term memory (lstm) network. Physica D: Nonlinear Phe-
nomena, 404:132306, 2020.

[15] L. Walmsley-Eyre and R. Cardell-Oliver. Hierarchical classifica-
tion of low resolution thermal images for occupancy estimation. In
2017 IEEE 42nd Conference on Local Computer Networks Workshops
(LCN Workshops), pages 9–17, 2017.

[16] R.-H. Wu, Y.-H. Lee, H.-W. Tseng, Y.-G. Jan, and M.-H. Chuang.
Study of characteristics of rssi signal. In 2008 IEEE International
Conference on Industrial Technology, pages 1–3, 2008.


