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Abstract 

Background: Many wild species have suffered drastic population size declines over 
the past centuries, which have led to ‘genomic erosion’ processes characterized by 
reduced genetic diversity, increased inbreeding, and accumulation of harmful muta‑
tions. Yet, genomic erosion estimates of modern‑day populations often lack concord‑
ance with dwindling population sizes and conservation status of threatened species. 
One way to directly quantify the genomic consequences of population declines is to 
compare genome‑wide data from pre‑decline museum samples and modern samples. 
However, doing so requires computational data processing and analysis tools specifi‑
cally adapted to comparative analyses of degraded, ancient or historical, DNA data with 
modern DNA data as well as personnel trained to perform such analyses.

Results: Here, we present a highly flexible, scalable, and modular pipeline to compare 
patterns of genomic erosion using samples from disparate time periods. The GenErode 
pipeline uses state‑of‑the‑art bioinformatics tools to simultaneously process whole‑
genome re‑sequencing data from ancient/historical and modern samples, and to 
produce comparable estimates of several genomic erosion indices. No programming 
knowledge is required to run the pipeline and all bioinformatic steps are well‑docu‑
mented, making the pipeline accessible to users with different backgrounds. GenErode 
is written in Snakemake and Python3 and uses Conda and Singularity containers to 
achieve reproducibility on high‑performance compute clusters. The source code is 
freely available on GitHub (https:// github. com/ NBISw eden/ GenEr ode).

Conclusions: GenErode is a user‑friendly and reproducible pipeline that enables the 
standardization of genomic erosion indices from temporally sampled whole genome 
re‑sequencing data.
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Background
A plethora of large scale projects are set to generate de novo assemblies for all eukaryotic 
species in the next few years (e.g. [1–3]), thus solving one of the traditional limitations of 
conservation genomic studies, namely the absence of reference genomes for non-model 
species. In all these projects, contributing to biodiversity conservation appears among 
the main objectives. They propose to do this by enabling genomic studies in endangered 
species, which has been sometimes presented as the solution to all sorts of conserva-
tion problems [4, 5]. Yet there are currently only a limited number of examples where 
genomic data has had concrete conservation impacts (e.g., [6–8]). While the reasons for 
this are several-fold, two of the most relevant ones are existing biases among genomic 
studies due to the lack of standard measures, and absence of validation of results using 
empirical data [9].

Human activities have caused populations of many wild species to suffer severe 
declines over the past few centuries [10]. These dwindling population sizes have led to 
an increased risk of extinction [11] as a consequence of genetic processes, such as the 
loss of genomic diversity, increased inbreeding, and accumulation of harmful muta-
tions, processes together referred to as ’genomic erosion’ [12–14]. Therefore, genomic 
approaches aimed at identifying the role of genomic erosion in shaping the fate of endan-
gered populations are key to implementing more effective conservation efforts. Unfortu-
nately, correlations between genomic erosion indices and current population sizes and/
or the conservation status of endangered species are weak [15], which further compli-
cates the inclusion of genetic parameters as a criterion to establish threat categories. 
This is because ancient bottlenecks or life-history traits typically overshadow the impact 
of the recent human-driven declines [16]. Consequently, interspecific comparisons of 
genome-wide diversity, inbreeding, and mutational load are poor predictors of popula-
tion size and conservation status between modern-day endangered species. One power-
ful solution to this issue is to obtain genomic data from historical or ancient specimens 
that predate the recent demographic declines. Such temporal data can then be used to 
establish pre-decline baselines and enable direct quantification of the rate of change in 
genomic erosion indices that have resulted from recent population declines [15].

A second important limitation to bridging the gap between genomic studies of endan-
gered species and applications in conservation is the need for advanced bioinformatics 
knowledge [9]. Handling and analyzing genomic data requires expertise in processing 
large-scale DNA datasets and programming skills that, sometimes, conservation biolo-
gists and wildlife managers are lacking. On top of this, the bioinformatic processing of 
the data and the interpretation of the analyses can be further complicated by the special 
characteristics of degraded historical and ancient DNA. Finally, reproducibility (obtain-
ing the same results from analyzing the same data) is lacking across scientific disciplines 
[17]. However, genomic erosion indices can only be meaningful, comparable measures, if 
the results are reproducible. Therefore the increased access to user-friendly software and 
structured pipelines that generate reproducible results can be key factors for genomic 
data to be regularly applied to conservation [18].

With the aim to address these issues, we present GenErode, a highly flexible and 
modular pipeline focused on the user-friendly application of genomic data for conserva-
tion genomics. It performs analyses of whole-genome re-sequencing data, enabling the 
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analysis of temporally sampled genomes with the goal to investigate patterns of genome 
erosion. GenErode employs state-of-the-art techniques to bioinformatically process 
genomic data and can handle both ancient/historical and modern samples simultane-
ously. It also generates estimates of commonly used genomic erosion indices (e.g., 
genome-wide diversity, inbreeding, and mutational load) with the objective of making 
them directly comparable between time periods.

Implementation
Description

In this pipeline, ancient/historical and modern whole-genome re-sequencing data are 
mapped to a reference genome assembly and processed according to the characteris-
tics of each data type, aiming to make them comparable among different time periods 
(Fig. 1). While it is optimized for the analysis of vertebrate re-sequencing data, all of the 
data processing tracks can be applied to a variety of organisms, including, for example, 

Fig. 1 Overview of the GenErode pipeline data processing tracks. Input and output file formats, 
dependencies between steps, and main software used are shown. Optional steps are highlighted in red
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haploid insects. Written in Snakemake [19], this pipeline can be run on Linux systems 
such as high-performance computing (HPC) clusters.

In short, GenErode takes paired-end FASTQ files as input, maps them to a refer-
ence genome assembly, performs variant calling, and runs several downstream analyses 
to estimate various genomic erosion indices. All data processing steps include quality 
checks and filtering. Optional steps include post-mortem damage base quality rescal-
ing of historical/ancient samples, removal of cytosine-guanine dinucleotide (CpG) sites, 
subsampling a proportion of reads to achieve a similar average depth across samples, 
and mapping of historical/ancient data to human and other vertebrate mitochondrial 
genomes to assess the presence of non-endogenous reads in the data.

Data processing track

Each data processing step is dependent on previous pipeline steps and is thus automati-
cally run in sequence (see Fig. 1).

1. Reference genome assembly preparations

Prior to raw data processing, the reference genome assembly is prepared to generate 
files required for downstream analyses. This includes indexing with BWA [20] and sam-
tools [21], generation of a FASTA dictionary using Picard (https:// github. com/ broad 
insti tute/ picard) and of genome-coordinate BED files from the reference. At this stage, 
the pipeline also performs de novo identification and masking of repetitive regions of 
the genome using RepeatModeler [22] and RepeatMasker [23]. The identified repetitive 
regions will be excluded from all downstream steps of the data analysis track in order to 
avoid biases caused by mismapping.

2. Data processing and mapping

Raw FASTQ files are trimmed with fastp [24], which automatically detects adapter 
sequences from the read data, under the assumption that only one adapter is present 
in the reads. Fastp also automatically enables poly-G trimming for Illumina NovaSeq 
or NextSeq samples by checking the flow cell identifier, so it handles read trimming 
for multiple Illumina platforms. For historical samples, fastp simultaneously adapter- 
and quality-trims reads and merges overlapping paired-end reads. By default, merged 
reads below a threshold of 30 bp are discarded. However, this threshold can be modi-
fied using the configuration file. Most ancient and historical DNA studies discard 
reads below a threshold of length between 30 and 35 bp, depending on the preserva-
tion of the samples (e.g. [25, 26]). The default merging settings are recommended in 
order to exclude modern-day contaminating sequences for which paired-end reads 
will not overlap since they are typically longer. Merged reads are then mapped to 
the reference genome using BWA aln with settings optimized for ancient/histori-
cal DNA (-l 16500 -n 0.01 -o 2) [27]. For modern samples, FASTQ files are adapter- 
and quality-trimmed with fastp and then mapped to the reference genome assembly 
with BWA mem [28] using default settings. For ancient/historical samples, multiple 
sequencing libraries are commonly generated per sample to avoid overrepresentation 

https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard


Page 5 of 17Kutschera et al. BMC Bioinformatics          (2022) 23:228  

of specific PCR duplicates in the read data, using different index(es) for each sequenc-
ing library. The alignments of each index of a sample that were sequenced on different 
lanes are therefore merged to generate one BAM file per index. Next, PCR duplicates 
are identified and excluded from ancient/historical data using both read start and end 
mapping coordinates using a custom Python script. For modern samples, the same 
merging algorithm is run if applicable and PCR duplicates are identified and marked 
using Picard MarkDuplicates (). For both historical and modehttps:// broad insti tute. 
github. io/ picard/rn data, the alignments of each sample from different indices are 
then merged to generate one BAM file per sample, and reads around indels are rea-
ligned with GATK IndelRealigner [29] to improve mapping accuracy. Basic mapping 
statistics are reported for each processing step using samtools and Qualimap [30], 
and are summarized using MultiQC [31]. Histograms depicting the depth per site as 
well as the genome-wide average depth and minimum and maximum depth thresh-
olds for downstream analyses are also generated. The user can decide if genome-wide 
average depth should be calculated including or excluding sites with zero coverage. 
By default, depth thresholds are set to 1/3 and ten times the average genome-wide 
depth of each sample, which should be adjusted by the users according to their data 
characteristics. However, the pipeline uses an absolute minimum depth of three reads 
per site that cannot be changed by the user. Although the pipeline can be run with 
samples sequenced to lower depths, an average genome-wide depth of at least 6X per 
sample is recommended to have enough statistical power for detecting heterozygous 
sites. MultiQC reports and depth histograms based on BAM files after indel realign-
ment are included into an automatically generated GenErode pipeline report.

There are two main optional steps to further process the BAM files before running 
any downstream data analyses: (1) base quality rescaling with MapDamage2 [32] for 
selected ancient/historical samples that have not been treated with the uracil-DNA 
glycosylase (UDG) enzyme and show post-mortem damage; and (2) subsampling of 
the selected BAM files from ancient/historical and/or modern samples using sam-
tools to a target genome-wide depth to avoid biases introduced when comparing sam-
ples at different coverages. Additionally, a mitochondrial contamination check can be 
run for selected ancient/historical samples, in which the trimmed and merged reads 
are aligned to the mitogenomes of a set of species for which contamination may be 
present in the laboratory (i.e. from the laboratory reagents [33]). The user is asked 
to include a mitogenome FASTA file of the target species at this step. The GenErode 
pipeline produces BAM file statistics and a table listing the ratio of mapped reads to 
the mitochondrial genome of a potentially contaminating species and of the target 
species to help identify sequencing libraries with more reads mapping to the mitog-
enome from a different species. The results from this mitochondrial contamination 
check are not further used in the pipeline but the BAM files containing the sequences 
mapping to the mitochondrial genome of the target species are kept so that they can 
be used for downstream analyses outside of the pipeline. After each of these optional 
steps, basic mapping statistics are reported using samtools and Qualimap, and are 
summarized using MultiQC.

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
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3. Genotyping and variant filtering

This part of the pipeline is designed to perform variant calling on a per-sample basis. The 
rationale being that ancient, historical, and modern samples typically come from disparate 
time periods and locations, so using the information from some samples to predict vari-
ation in others can lead to undesired biases. Therefore, variants are called in each sample 
using bcftools [34] mpileup and call. Before proceeding to downstream analyses, the vari-
ant calls are subjected to several filtering steps. Methylated CpG sites are protected from 
UDG enzyme treatments and so post-mortem damage might remain in such sites [35, 36]. 
Ideally, a variant filter should therefore capture sites in ancient/historical samples that have 
a basepair change from CpG due to post-mortem damage. GenErode offers three optional 
methods to identify CpG sites: (1) identifying them in the reference genome assembly, (2) 
identifying them in selected samples once genotyped; and (3) combining both strategies. 
In all three cases, these CpG sites are automatically excluded from the final VCF files and 
downstream analyses. For datasets with only one or a few samples, we recommend identify-
ing CpG sites in the reference genome assembly (option 1), which will remove damaged (or 
mutated) sites in the samples that are CpG in the reference. In larger datasets composed of 
modern and ancient/historical samples that are mapped to a more distantly related refer-
ence genome assembly (e.g. from a different species than the samples), it is recommended 
to identify CpG sites using all genotyped samples (option 2). Finally, we recommend a com-
bination of both strategies (option 3) when a more stringent CpG filter is desired. After CpG 
site removal from VCF files, the pipeline moves on to other filtering steps. Only sites with 
mapping and base qualities of at least 30 are kept. The pipeline will exclude all variants that 
are located within 5 bp of indels (insertions or deletions), and will subsequently remove all 
indels. Also, all sites falling outside the depth thresholds specified by the user (as described 
above)  are removed. An allelic imbalance filter removes heterozygous sites in which less 
than 20% or more than 80% of reads support each allele to avoid erroneous genotypes 
caused by contamination or misalignments [37]. Variants falling within repetitive regions, 
earlier identified in the reference genome assembly, are also excluded in this step.

Finally, VCF files from all samples are merged and sites that are not biallelic as well as 
sites with more than 10% missing genotypes across all samples are removed. This miss-
ingness threshold can be adjusted by the user to suit each particular dataset, for example 
by relaxing it when many samples are to be analyzed at the same time. A BED file is cre-
ated of all the genomic locations of sites remaining after the filtering and the merged 
VCF file is split into one VCF file of historical and one VCF file of modern samples.

Data analysis track

All steps in the data analysis tracks are optional and can be run independently from each 
other once the data processing track is finished (see Fig. 2).

4. Genome-wide diversity

GenErode uses mlRho [38] to estimate the maximum likelihood population muta-
tion parameter (θ = 4Neμ), which under the infinite sites model approximates the per-
site heterozygosity [39], from the final BAM file of each sample from step 2. All sites 
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are filtered for mapping and base qualities as described above and for depth of cover-
age using the specified minimum and maximum thresholds. All sites within repetitive 
regions are excluded by default and CpG sites can be excluded if desired. GenErode also 
allows to estimate heterozygosity for autosomes and sex chromosomes separately if a 
list of known sex chromosomes (or scaffolds) is provided. BED files of repeat elements 
and/or CpG sites on autosomes and sex chromosomes are automatically generated using 
BEDtools [40]. A table and a figure summarizing θ estimates from mlRho are provided 
in the GenErode pipeline report.

5. Inbreeding

Based on the VCF file of filtered genotypes from step 3, the GenErode pipe-
line uses the sliding window approach of ‘plink –homozyg’ [41] to identify runs of 

Fig. 2 Overview of the GenErode pipeline data analysis tracks and final report. Input file formats and main 
software used are shown



Page 8 of 17Kutschera et al. BMC Bioinformatics          (2022) 23:228 

homozygosity (ROH). A wide array of plink settings such as ROH minimum size, 
maximum number of heterozygous sites per window, and maximum number of miss-
ing sites per window can be specified by the user. Long ROH (> = 2 Mb) typically arise 
from recent mating with close relatives [42]. The fraction of the genome of each sam-
ple allocated in such ROH can be defined as the inbreeding coefficient (FROH), which 
is estimated and visualized in a plot that is provided in the GenErode pipeline report.

6. Population structure

The general population structure for the samples analyzed in the pipeline can be visu-
alized with a Principal Component Analysis (PCA). Based on the VCF file of filtered 
genotypes from step 3, the pipeline generates PCAs for all samples combined and for 
historical and modern samples alone using plink. This analysis can be used to check 
genetic population structure, as well as to identify genetic outliers or biases among 
samples. All the PCA plots are made available in the GenErode pipeline report.

7. Mutational load

GenErode offers two complementary methods to estimate mutational load, a proxy 
for genetic load [43], from the genomic data of the samples analyzed. For users 
intending to apply these two methods in endangered species for which the only 
remaining population is small or very small, we recommend running the GenErode 
pipeline using the reference genome assembly of a closely related species rather than 
the same species as the samples [43]. This is to avoid biases caused by a functional 
annotation that is based on an already genetically depauperate sample or from calling 
variants from data mapped to a reference genome assembly individual that is more 
genetically related to some of the samples under comparison (i.e., more related to the 
modern samples than to the historical ones).

The first method requires a genome annotation in GTF2 format based on which 
GenErode annotates individual variants from step 3 using snpEff [44]. snpEff allows to 
annotate all identified variants per sample and to estimate a simple prediction of their 
functional effects which can be compared among samples or groups of samples (i.e., 
historical vs modern). MultiQC reports summarizing snpEff results per dataset are 
provided in the GenErode pipeline report. Numbers of variants of different impact 
categories per sample (including loss-of-function (LOF) variants in the high impact 
category) as estimated by snpEff are visualized in a plot that is also available in the 
GenErode pipeline report.

The second method uses GERP scores [45] to infer the relative mutational load of 
each sample from the number of derived alleles in evolutionary constrained regions 
of the genome based on a panel of outgroup species [46]. This method does not 
require a functional annotation for the target species’ reference genome assembly, but 
it does require at least 30 genome assemblies from different species to act as out-
groups [46], and a dated phylogeny from all the included species in NEWICK format 
and in billions of years (which can be obtained from, e.g. timetree.org). Our pipeline 
first splits each outgroup genome assembly into non-overlapping 35  bp sequences 
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and maps them to the target species reference genome assembly to identify highly 
conserved regions of the genome [46]. Next, it estimates a per-site GERP score using 
GERP++ [47]. Finally, the ancestral and derived states of each variant from step 3 
are inferred and used to estimate a relative mutational load. For each sample, het-
erozygous and homozygous sites are counted as contributing to one and two derived 
alleles, respectively. Only derived sites with a GERP score within a minimum and a 
maximum threshold set by the user are considered for relative load mutational cal-
culations. Our approach is not suitable to identify fast evolving regions and positive 
GERP scores indicate evolutionary constraint, so a suitable minimum GERP score of 
at least zero should be chosen. A script to approximate a minimum GERP score based 
on a desired percentile of GERP scores from the genome from histogram bins is avail-
able in the GenErode GitHub repository (‘https:// www. utili ties/ get_ gerp_ score_ perce 
ntile. py’). A histogram of GERP scores across the genome is available in the GenErode 
pipeline report and can be used as guidance. At each of these sites, the GERP score 
is multiplied by the number of derived alleles per sample. The sum of these GERP 
scores is then normalized by the number of derived alleles at these sites (modified 
from [46]), to obtain a relative mutational load estimation for each sample. Finally, 
the pipeline generates a table and a figure with the relative mutational load estimates 
across samples that are included in the GenErode pipeline report.

Test dataset

To help the user get familiarized with our pipeline we provide a test dataset based on 
the Sumatran rhinoceros (Dicerorhinus sumatrensis) re-sequencing data from von Seth 
et  al. [43]. The test dataset is composed of re-sequencing data from three historical 
and three modern samples from the now-extinct Malay Peninsula population (Addi-
tional file 1: Table S1), which had been analyzed for patterns of genome erosion. These 
data correspond to those sequences that mapped to a single scaffold of 41  Mb size 
(‘Sc9M7eS_2_HRSCAF_41’) from the Sumatran rhinoceros genome assembly (Gen-
Bank accession  number GCA_014189135.1), as well as to the mitochondrial genome 
(GenBank accession number NC_012684.1), which are both provided as references. A 
small proportion of sequences mapping elsewhere in the genome were included too. We 
have also included three scaffolds from the white rhinoceros genome assembly (Cera-
totherium simum simum; GenBank accession number GCF_000283155.1) for analy-
ses that require a reference from a more distantly related species (‘NW_004454182.1’, 
‘NW_004454248.1’, and ‘NW_004454260.1’). These scaffolds had been identified as being 
putatively orthologous to the Sumatran rhinoceros scaffold ‘Sc9M7eS_2_HRSCAF_41’. 
For mutational load analyses, gene predictions from the three white rhinoceros scaffolds 
were extracted in GTF format and scaffolds from the genome assemblies of 30 mamma-
lian outgroup species (Additional file 1: Table S2) were identified as putative orthologs 
to the Sumatran rhinoceros scaffold. A phylogeny of the white rhinoceros and the 30 
outgroup species including divergence time estimates (in billions of years) was obtained 
from timetree.org in NEWICK format (Additional file 1: Fig. S1). A detailed description 
of the test dataset generation is provided in Additional file 1: Extended methods note 1. 
The test dataset is publicly available at the Scilifelab Data Repository (https:// doi. org/ 10. 
17044/ scili felab. 19248 172). The results presented in Fig. 3 have been generated using the 

https://www.utilities/get_gerp_score_percentile.py
https://www.utilities/get_gerp_score_percentile.py
https://doi.org/10.17044/scilifelab.19248172
https://doi.org/10.17044/scilifelab.19248172
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GenErode pipeline for this dataset on a HPC cluster using a slurm workload manager. 
The commands used to set up and run the pipeline to analyze the test dataset are pro-
vided in Additional file 1: Extended methods note 2. The final reports generated by the 

Fig. 3 Results from the downstream analyses for historical and modern Sumatran rhinoceros samples 
from the test dataset. a Principal component analysis (PCA) of historical and modern Sumatran rhinoceros 
samples using the Sumatran rhinoceros reference. Historical samples: JvS008, JvS009, JvS022. Modern 
samples: JvS033, JvS034, JvS035. See “PCA” in Additional file 3. b Maximum likelihood estimates of 
genome‑wide heterozygosity (θ) and 95% confidence intervals from mlRho in historical and modern 
Sumatran rhinoceros samples using the Sumatran rhinoceros reference. See “mlRho” in Additional file 3. 
c Inbreeding coefficient estimated as the proportion of the genome in runs of homozygosity (FROH) for 
ROH of length >  = 2 Mb in historical and modern Sumatran rhinoceros samples. Parameter settings in the 
configuration file: homozyg‑snp: 25; homozyg‑kb: 100; homozyg‑window‑snp: 250; homozyg‑window‑het: 3; 
homozyg‑window‑missing: 15; homozyg‑het: 750. See “ROH” in Additional file 3. d Number of variants in each 
impact category in historical and modern Sumatran rhinoceros samples as estimated by snpEff and using 
the white rhinoceros reference with 253 protein‑coding gene annotations. Note that none of the samples 
contained any high impact variants which are therefore not shown. See “snpEff” in Additional file 2. e Relative 
mutational load estimated from GERP scores for historical and modern Sumatran rhinoceros samples using 
the white rhinoceros reference. GERP scores were estimated using 30 outgroup species from across the 
tree of mammals. Only derived alleles from sites with GERP scores above the 99th percentile were included 
(corresponding to GERP > 0.00048928). See “GERP” in Additional file 2
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GenErode pipeline are provided as Additional file 2 and Additional file 3, which include 
configuration files specifying all parameter choices.

Results and discussion
Requirements and pipeline configuration

For a species with a genome size of around 3 Gbp the GenErode pipeline requires a 
Linux system with at least 16 cores, each with a minimum of 6 GB of RAM (a total of 
96 GB), and internet access so Snakemake can download the required containers on the 
fly. Depending on the number of samples to analyze and the sequencing effort of each 
sample the storage space required could be large. For example, in a test run with four 
Sumatran rhinoceros samples with an average genome-wide depth ranging from 9 to 
18X and mapped to the Sumatran rhinoceros genome assembly, the pipeline directory 
size after running all data processing and downstream analyses (except the storage-space 
demanding GERP step) had a final size of ca. 750 GB. However, this was after GenEr-
ode had removed temporary intermediate files and the space required reached several 
TB at some points during this pipeline run, so storage space flexibility is recommended. 
The only software requirements to run the pipeline are Singularity (at least v3.6.1) and 
Conda (tested with Miniconda3), which have to be installed on the system. The GenEr-
ode pipeline is installed by cloning the GitHub repository into the directory in which 
it will be run. The user needs to create a Conda environment from the ‘environment.
yml’ file provided in the GitHub repository, which contains Snakemake (version 6.12.1 
[19]), Python3, and all required additional python modules. All custom python scripts 
used by the pipeline are included in the GitHub repository and all additional software 
and dependencies are automatically downloaded as Docker images and run as Singular-
ity containers by Snakemake, so there is no need for any additional installations by the 
user. All output files of the pipeline will be automatically written to subdirectories within 
the GenErode directory, except for any files related to the reference genome assembly 
and the genome annotation, which will be written in the same directory as the reference 
genome assembly.

To configure a pipeline run, the user first needs to create a metadata file in which the 
sample names, sequencing runs, read group IDs, and paths to the raw sequencing files 
are specified. Examples are available in the ‘config’ directory of the GitHub repository 
and in the Scilifelab Data Repository containing the test dataset (see below). This pipe-
line has been developed using the slurm workload manager [48] with the official Snake-
make profile for slurm (https:// github. com/ Snake make- Profi les/). The computational 
resources for the different jobs that are submitted to the cluster via Snakemake are spec-
ified in a cluster configuration file (‘config/cluster.yaml’) that needs to be edited accord-
ing to the user’s system. Finally, to configure each run of the pipeline the user needs to 
edit the pipeline configuration file (‘config/config.yaml’) in which each step of the pipe-
line can be set to ‘True’ or ‘False’. Additionally, the user can specify any required param-
eters for the desired steps to run. For example, the adapter trimming step for historical 
samples requires the user to specify the minimum read length allowed after trimming 
and read merging (default 30 bp). When a step is set to ‘True’, all analyses within this 
step (‘rules’) are automatically run along with any upstream rules they depend on. For 

https://github.com/Snakemake-Profiles/
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example, if the mapping step is set to ‘True’, adapter trimming and quality controls of 
raw and trimmed reads are also automatically run in case these previous rules have not 
been run before.

A complete guide on the requirements and configuration of the pipeline, including 
detailed explanations for each step and the parameters, is available in the wiki section of 
the pipeline’s GitHub page (https:// github. com/ NBISw eden/ GenEr ode/ wiki/).

Test dataset: genomic erosion in the Sumatran rhinoceros

We analyzed the test dataset of re-sequencing data from three historical and three mod-
ern Sumatran rhinoceros samples from the now-extinct Malay Peninsula population 
(Additional file  1: Table  S1; see “Implementation: Test dataset” and Additional file  1: 
Extended methods note 1). The GenErode pipeline was run once using the Sumatran 
rhinoceros scaffold ‘Sc9M7eS_2_HRSCAF_41’ as reference to obtain PCAs, θ and FROH 
estimates, and a second time using the putatively orthologous white rhinoceros scaffolds 
‘NW_004454182.1’, ‘NW_004454248.1’, and ‘NW_004454260.1’ as reference to infer 
PCAs and mutational load using snpEff annotations and GERP scores. The Sumatran 
rhinoceros scaffold consists of 40.8 Mbp of which 27.7% were masked by RepeatMas-
ker. The white rhinoceros scaffolds have a combined length of 41.2 Mbp of which 27.1% 
were repeat masked. Three to 24 sequencing libraries were available per historical sam-
ple; each sample had been sequenced on two Illumina HiSeqX lanes. For each modern 
sample, one sequencing library was included. An average number of ca. 4.6 M paired-
end reads were included into the test dataset per historical sample, and ca. 3.1 M paired-
end reads were included per modern sample. The optional GenErode step to test for 
overrepresentation of mitochondrial reads in historical libraries revealed ratios of reads 
mapping to the included mitochondrial genomes (see Additional file  1: Table  S3) and 
the Sumatran rhinoceros mitochondrial genome ranging from 0.0 to 0.14 (mean = 0.052, 
sd = 0.037). This suggests that the presence of non-endogenous reads in the historical 
libraries of Sumatran rhinoceros is low or absent.

For the historical samples, after filtering per index and sample and PCR duplicate 
removal, an average of 2.7 M and 2.2 M reads mapped to the Sumatran and white rhi-
noceros references, respectively. Average genome-wide depth ranged from 4 to 6 for the 
Sumatran rhinoceros reference and 4 to 5 for the white rhinoceros reference (Additional 
file 1: Fig. S2A). For the modern samples, after filtering and PCR duplicate marking, an 
average of 3.0 M and 2.9 M paired-end reads mapped to the Sumatran and white rhinoc-
eros references, respectively. This corresponds to average genome-wide depths ranging 
from 16x to 20x across all samples and references (Additional file 1: Fig. S2B). Prior to 
downstream data analysis steps, BAM files from modern samples were subsampled to an 
average depth of 6. In total, 397,642 and 395,780 CpG sites were identified in the Suma-
tran and white rhinoceros references, respectively. These sites were removed from indi-
vidual VCF files followed by subsequent filtering using default settings of the pipeline. 
The filtered and merged multi-sample VCF files contained 7,484 SNPs for the Sumatran 
rhinoceros reference and 40,352 SNPs for the white rhinoceros reference. This difference 
can be explained with a large number of sites where the Sumatran rhinoceros samples 

https://github.com/NBISweden/GenErode/wiki/
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are homozygous for the ALT allele, i.e. they are diverged from the white rhinoceros 
reference.

In a PCA of Sumatran rhinoceros samples using the VCF file based on the Sumatran 
rhinoceros reference, the first principal component (PC1) explained 31.8% of the vari-
ation (Fig.  3a). The three modern samples clustered slightly closer together than the 
three historical samples. A PCA using the VCF file based on the white rhinoceros ref-
erence resulted in a highly similar plot (Additional file 1: Fig. S3). GenErode was next 
run to estimate various genomic erosion indices to compare them between historical 
and modern samples. Genome-wide heterozygosity was estimated as θ in mlRho using 
BAM files based on the Sumatran rhinoceros reference with default filtering settings 
and excluding CpG sites. Although heterozygosity for the test scaffold was lower than 
for the whole genome [43], historical and modern samples were similar (Fig. 3b), con-
sistent with genome-wide temporal comparisons from [41]. ROH were estimated using 
the VCF file based on the Sumatran rhinoceros reference (see “ROH” and “Configura-
tion” in Additional file  3 for parameter choices). Larger proportions of the reference 
were in ROH >  = 2 Mb in modern samples than in historical samples (Fig. 3c), suggest-
ing stronger effects of inbreeding in the modern population, consistent with von Seth 
et  al. [43]. No variants of potentially high impact on the protein (which include LOF 
variants) were found in any of the samples in the snpEff analyses of the VCF files based 
on the white rhinoceros reference and 253 gene predictions. Numbers of variants in the 
other impact categories were similar across historical and modern samples (Fig.  3d). 
Unlike genome-wide estimates [43], relative mutational load estimated from the top 1% 
of GERP scores based on the white rhinoceros reference and 30 outgroup species (Addi-
tional file 1: Table S2, Fig. S1) were similar between historical and modern samples for 
our test dataset (Fig. 3e; see Additional file 1: Fig. S4 for a histogram of GERP scores).

The expected runtime of all jobs run by GenErode for this test dataset on a HPC clus-
ter with 16 cores (6 GB of RAM per core) can be up to ca. 15 core hours for data pro-
cessing and downstream analyses using the Sumatran rhinoceros reference, and ca. 47 
core hours for data processing and downstream analyses using the white rhinoceros 
reference. The results from the original genome-wide dataset, generated with an under 
development version of the GenErode pipeline, can be consulted in [43].

A bioinformatics pipeline for ancient/historical, and modern data

There are established bioinformatic pipelines tailored to processing and genotyping 
ancient DNA data (e.g. [49]) as well as mining metagenomic information from it (e.g. 
[50]). However, to our knowledge, GenErode is the first pipeline specifically designed 
to process ancient, historical and modern sequencing data from the same species with 
the aim to make them comparable. This is because GenErode has separately optimized 
tracks for processing of ancient/historical and modern data, enabling a better com-
parison between samples from different time periods. Moreover, in its simplest con-
figuration, GenErode requires only a reference genome assembly and whole-genome 
re-sequencing data. It is therefore highly suitable for analyses of data from non-model 
species that often lack genomic resources, which is often the case for endangered taxa.

Our pipeline also outputs the results of a number of downstream analyses including 
estimates of genomic diversity indices, such as heterozygosity and inbreeding, as well 
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as mutational load (including per-sample LOF estimates), that can be used to quantify 
genomic erosion through time. These genomic erosion indices have been proposed 
to be relevant in assessing the species risk of extinction when compared among time 
periods, such as historical versus modern samples (e.g., [15, 43, 51, 52]). It should be 
noted that GenErode offers only one estimation method for each data analysis track 
and genomic erosion index. While this can be sufficient to draw conclusions for some 
studies, for users that desire to conduct a more in-depth analysis of their data, the 
output files produced (i.e. BAM and VCF files) can be easily used as input for other 
types of analyses outside of the pipeline.

One important feature of GenErode is that it is a highly modular and flexible pipe-
line. It allows analyzing the data in a stepwise fashion with important options pre-set 
for the user but also plenty of customizable parameters and several optional steps so 
the user can adapt it to their particular dataset. Even though the genotyping and data 
analysis tracks are specifically designed for samples sequenced at a minimum average 
genome-wide depth of 6X, the data processing tracks (read processing, mapping, and 
BAM file filtering) can be used for samples of all depths. This means that the pipeline 
can also process low or very low coverage samples, either UDG treated or not, typi-
cal for ancient DNA projects or museum collections with highly degraded specimens, 
and at the same time provide tools for authentication such as post-mortem damage 
profiles.

Finally, alongside a comprehensive variety of output result files, including an auto-
matically generated pipeline summary report, GenErode stores an organized set of 
parameter files and output logs for each step, providing the user with all information 
required to thoroughly document their analysis. Also, the majority of the pipelines’ 
analyses are run in separate, automatically executed Singularity containers, which 
enables the user to process and analyze sequencing data in a highly reproducible way 
[53]. Reproducibility still remains a challenge for most bioinformatic applications and 
analyses from published articles across the sciences [17], but is key to obtaining com-
parable genomic erosion measurements. This is necessary to integrate them into the 
criteria to establish threat categories in endangered species’ lists [8].

Conclusions
We introduce GenErode, a bioinformatic pipeline to investigate genomic erosion that 
includes state-of-the-art tools for ancient/historical, and modern DNA data within an 
integrated, easily reproducible and accessible format. Two of the main challenges to 
close the gap between evolutionary research and conservation applications are the lack 
of standard methods for the measurement of genomic diversity, as well as the need for 
training in the bioinformatic methods required to analyze genomic data. GenErode aims 
to produce comparable estimates of genomic diversity indices from temporally sampled 
datasets that can be used to quantify genomic erosion through time. Additionally, set-
ting up and running GenErode requires no programming knowledge and all the bio-
informatic steps are well documented, making it easy to run for people with different 
backgrounds. Therefore, with this pipeline we aim to make the bioinformatic methods 
required to process ancient/historical, and modern genomic data to estimate diversity 
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changes more streamlined and accessible to a wider conservation community, including 
museum curators as well as conservation researchers and practitioners.

Availability and requirements
Project name: GenErode
Project home page: https:// github. com/ NBISw eden/ GenEr ode/
Archived version: 0.4.1
Operating system(s): Linux
Programming language: Snakemake, Python3
Other requirements: Miniconda or Anaconda, Singularity
License: GPL-3.0
Any restrictions to use by non-academics: None.
GenErode is an open-source software and is available on GitHub (https:// github. com/ 
NBISw eden/ GenEr ode/), including extensive documentation. GenErode depends on 
Snakemake, the Conda package manager and Singularity. Conda can be downloaded 
as part of Anaconda or Miniconda (Python 3.7), and Singularity has to be installed. 
A Conda environment containing pipeline-wide dependencies (incl. Snakemake) is 
available on GitHub (‘environment.yml’). All other dependencies will be automatically 
handled by Snakemake using Singularity when running the pipeline.
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CpG  Cytosine‑guanine dinucleotides
FROH  ROH‑based inbreeding coefficient
HPC  High‑performance computing
LOF  Loss‑of‑function
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θ  Maximum likelihood population mutation parameter (θ = 4Neμ)
UDG  Uracil‑DNA glycosylase
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