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INTRODUCTION
Breast cancer is the most common cancer in the world.1 
63% of breast cancer patients receive radiotherapy as part 
of their primary treatment.2 Adjuvant loco- regional radio-
therapy significantly reduces recurrence and mortality in 
breast and nodal cancer.3–5 Outcomes from a multicentre 
phase 3 trial strongly recommended lymph node (LN) 
contouring and three- dimensional (3- D) radiotherapy 

planning.6 Efficient 3- D planning requires dose conformity 
to treatment volumes and improves treatment outcomes. 
Likewise, minimising the dose delivered to organs at risk 
(OAR) reduces side effects.7

Accurate contouring is, therefore, an integral part of high- 
precision radiotherapy. Manual contouring, however, is 
time- consuming and subject to substantial inter- and 
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Objectives: Accurate contouring of anatomical struc-
tures allows for high- precision radiotherapy planning, 
targeting the dose at treatment volumes and avoiding 
organs at risk. Manual contouring is time- consuming with 
significant user variability, whereas auto- segmentation 
(AS) has proven efficiency benefits but requires editing 
before treatment planning. This study investigated 
whether atlas- based AS (ABAS) accuracy improves with 
template atlas group size and character- specific atlas 
and test case selection.
Methods and materials: One clinician retrospectively 
contoured the breast, nodes, lung, heart, and brachial 
plexus on 100 CT scans, adhering to peer- reviewed 
guidelines. Atlases were clustered in group sizes, treat-
ment positions, chest wall separations, and ASs created 
with Mirada software. The similarity of ASs compared to 
reference contours was described by the Jaccard simi-
larity coefficient (JSC) and centroid distance variance 
(CDV).
Results: Across group sizes, for all structures combined, 
the mean JSC was 0.6 (SD 0.3, p = .999). Across atlas- 
specific groups, 0.6 (SD 0.3, p = 1.000). The correlation 

between JSC and structure volume was weak in both 
scenarios (adjusted R2−0.007 and 0.185).
Mean CDV was similar across groups but varied up to 1.2 
cm for specific structures.
Conclusions: Character- specific atlas groups and test 
case selection did not improve accuracy outcomes. 
High- quality ASs were obtained from groups containing 
as few as ten atlases, subsequently simplifying the 
application of ABAS. CDV measures indicating auto- 
segmentation variations on the x, y, and z axes can be 
utilised to decide on the clinical relevance of variations 
and reduce AS editing.
Advances in knowledge: High- quality ABASs can be 
obtained from as few as ten template atlases.
Atlas and test case selection do not improve AS accuracy.
Unlike well- known quantitative similarity indices, volume 
displacement metrics provide information on the loca-
tion of segmentation variations, helping assessment of 
the clinical relevance of variations and reducing clinician 
editing. Volume displacement metrics combined with 
the qualitative measure of clinician assessment could 
reduce user variability.
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intra- observer variations.8–10 Although contouring guidelines 
have proven accuracy improvements, other factors, including 
training differences, image quality, human error, clinician vari-
ability, interpretation, radiological input and clinical experience 
levels, contribute to variability.11,12

While commercial atlas- based auto- segmentation (ABAS) lacks 
accuracy, it has improved workflow efficiency, as editing of 
auto- segmentation (AS) is more efficient than contouring from 
scratch.6,13–18 The models typically provide institutions with 
template atlases because it can be expensive, time- consuming, 
and not practical in a busy radiotherapy workflow to create 
expert/template atlases. These commercial atlases do not neces-
sarily represent local, national, or international contouring 
standards and, as a result, may require excessive and time- 
consuming modifications, potentially swaying RT departments 
from adopting AS as standard practice. However, the software 
allows the user to create and group template atlases (local previ-
ously contoured images). When creating new AS, the algorithm 
draws information from template atlases. Deformable image 
registration (DIR) brings the atlas images in precise spatial corre-
spondence to the patient/test case image and deforms the atlas 
contours to the patient coordinates. Utilising a subset of atlases 
instead of the entire database optimises the search for suitable 
atlases, reduces DIR iteration, and increases computational 
speed.19 Successful AS solutions mutually rely on the number 
and quality of expert template atlases and DIR.

Most AS clinical validation studies have been performed on head 
and neck sites. ABAS is more challenging to implement in the 
abdomen and thorax because of anatomical variations between 
patients and organ movement within anatomical cavities.19 AS 
reports in breast radiotherapy often include only a selection of 
structures required during breast and regional nodal irradia-
tion.20–22 Furthermore, the optimal number of atlases appears 
to be an overlooked research topic; most studies included 10–20 
atlases per group.20,23,24 To improve AS accuracy, Rohlfing 
proposed selecting atlas templates more suitable for a specific 
patient from large databases.25 An ABAS study on brain magnetic 
resonance imaging (MRI) also reported improved accuracy 
when using optimum atlas selection and an increased number 
of selected templates. However, high accuracy has been achieved 
by fewer templates with appropriate anatomical variability. 
Wu concluded that different ROIs might require different atlas 
numbers.26 Theoretically, perfect atlas selection on an extensive 
database may lead to AS equivalent to expert manual outlines.15 
Others reported that AS contours for the breast better repre-
sented the “true” volume than it did for the brachial plexus and 
supraclavicular nodes. Despite corrections, they also reported 
time- saving benefits and confirmed AS correction is required 
before progressing with planning.15 Based on dosimetric assess-
ment results, a multi- institutional study recommended AS for 
the clinical setting to save time, despite the need for editing 
before planning.6,27

We hypothesised that ABAS outcomes could be enhanced by 
developing an atlas database for a clinical setting, and selecting 
atlas and test cases with specific characteristics when creating AS.

The study sought to find a clinic- friendly model to optimise AS 
and reduce clinician editing. Deep learning (DL) AS methods 
were not explored due to the belief that more data lead to better 
results.28,29 Our dataset comprised of 100 high- quality CT struc-
ture sets, suitable for creating categorical clustering using ABAS 
and avoiding test case duplication in atlas groups.

METHODS AND MATERIALS
Building the atlas library and quality assurance
Given that template atlas accuracy influences AS outcomes,19 
we created a database of CT structure sets consisting of highly 
standardised contours. 100 radiotherapy planning CTs were 
randomly selected, and anatomical structures retrospectively 
contoured, utilising Prosoma, V.4. Oncology Systems Limited, 
UK. Contours included the breast, regional nodes, and organs at 
risk (Figure 1). We also combined individual nodal groups: levels 
3 and 4, and levels 1, 2, 3, and 4 as indicated by clinical target 
volumes (CTV) utilised during radiotherapy planning.

The dataset was partitioned into atlases and test cases. Template 
atlases were clustered into atlas groups, and the test case images 
were used for AS, which were compared to the reference contours 
of the same CT image.

One expert clinician followed peer- reviewed guidelines to mini-
mise inter- observer variability and ensure consistency. The Euro-
pean Society of Radiotherapy and Oncology (ESTRO), Radiation 
Therapy Oncology Group, and Hall guidelines were used for the 
breast and nodes, heart and brachial plexus, respectively.30–32 
The same clinician and two independent consultant breast 
oncologists verified the contours for accuracy and to minimise 
intra- observer variability.

Atlas Group-Selection
Pseudonymised CT structure sets were transferred to AS soft-
ware (Mirada Workflow box 1.4, Mirada Medical Ltd., UK). 
By random selection, we created seven atlas groups consisting 
of 10, 20, 25, 30, 40, 45, and 50 heterogenous/mixed atlases. AS 
were created on ten test cases to determine if accuracy relates to 
the atlas group size. Different test case images were used on the 
groups with 25 and 45 atlases to improve robustness.

Descriptive file names facilitated offline atlas sampling, creating 
character- specific atlas groups, and preventing bias by avoiding 
duplicate template atlases. Atlases were ranked according to non- 
image- based information such as treatment position and chest 
wall separation (Figure 2). Treatment position groups included 
breast board incline variables of 15° and 20°. Chest wall (CW) 
separation was determined by the distance between medial and 
lateral CT markers. All atlases in the ‘Large’ group were of a large 
separation, scanned on 15° or 20° incline. The '20° Large' group 
included atlases with large separation, scanned at a 20° incline. 
Consequently, the similarity in atlas groups '20° Large' and '15° 
Small' surpassed that of the 'Large' and '15°' groups. Finally, we 
compared categorised test cases with categorised atlases, distin-
guishing between matching (MTC) and non- matching test cases 
(NMTC)

http://birpublications.org/bjr
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Registration and fusion
We used the Workflow Box for atlas segmentation. Mirada uses 
rigid registration followed by DIR. The study utilised multi- atlas 
segmentation (MAS), where registration and deformation are 
repeated on several atlases, and the deformed field is fused into 
a consensus contour.19,33,34 The algorithm is a derivative of the 
Lucas- Kinade Optic Flow.35,36

Analysis method
Figure  3a demonstrates a typical variation between an AS and 
the reference contour of the heart.

Since under- or over- contouring results in under- or over- 
treatment, we described the intersection over the union between 
structures with the Jaccard similarity coefficient (JSC)37 in 
Figure 3b. The metric ranges between 0 and 1; 1 indicates 100% 
overlap between structures, therefore, a high degree of AS 
efficacy.

Volume overlap metrics, like the JSC, do not necessarily reflect 
the clinical relevance of AS variations.25,37,38 Therefore, we deter-
mined volume displacement between reference contours and AS 
by calculating the centroid distance variants (CDV). Centroid 
distances were defined as the most medial, lateral, superior, infe-
rior, anterior, and posterior extent of a structure to the structure 
centre, on the x, y, and z coordinate systems that relates to a CT 
scan axial slice (Figure 3c). CDV data for treatment structures 
with a JSC < 0.5 (inter- pectoral and internal mammary nodes), 
and the heart and lung were not analysed in this research; heart 
and lung structures are routinely successfully contoured by treat-
ment planning systems. Both the JSC and CDV were calculated 
using the SPAARC software package.39

We analysed the impact of atlas numbers, atlas- specific groups, 
and test case selection on the effectiveness of automated segmen-
tation, comparing JSC and CDV across groups. Positive CDV 
values indicated over- contouring, while negative values indi-
cated under- contouring compared to reference contours. We 
also examined CDV means for specific structures to determine 
the clinical relevance of variations and clinician modifications. 
Additionally, we gathered data on the time required for creating 
reference contours and AS, without emphasising time savings.

Statistical methods
Microsoft Excel 365, version 2019, was used to calculate descrip-
tive statistics including the means, standard deviations (SD), 
contouring times, and p- values of JSC and CDV. One- way anal-
ysis of variance was used to compare the means between different 
groups and calculate R2; adjusted values were reported.

Ethical considerations
The Health Research Authority and Research Governance 
Manager approved this retrospective data analysis study (REC 
reference 11/HRA/0379). Imperial College London sponsored 
the study.

RESULTS
The average AS and manual contouring time per case was 
107 min (SD 23) and 4 min, respectively.

We explored the association between the JSC and atlas group 
sizes (Figure 4). For all structures combined, the mean JSC was 
0.6 (SD 0.3, p = .999) in groups consisting of 10, 20, 25, 30, 40, 
and 45 atlases, respectively. In the same atlas groups, the mean 
JSC for larger structures combined (breast, heart, lung, and level 
one nodes) measured 0.8 (SD 0.2, p = .999), and 0.4 (SD 0.2, p = 
.999) for smaller structures combined. The correlation between 
JSC and group sizes (R2 = −0.20), and JSC and structure volume 
(R2 = −0.007) was weak.

Figure 1. Typical CT axial slice images with manual segmen-
tations of normal and nodal structures utilised during radio-
therapy planning. a) demonstrates the level 4 nodes (pink), 
humeral head (orange), brachial plexus (red), and lung (blue). 
Figure 1b) level 4 - (pink), level 3 - (yellow), level 2 - (green), 
level 1 - (aquamarine), and inter- pectoral nodes (lilac), bra-
chial plexus (red), and lung (blue). Figure 1c) lung (blue), heart 
(red), and breast clinical target volume (salmon).

http://birpublications.org/bjr
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We also explored the association between JSC and atlas- specific 
groups, based on different breast board inclines, chest wall 
separation, non- matching test cases, and heterogeneous/mixed 
atlases. Data for individual structures are demonstrated in 
Figure 5, ranging from the largest to lowest structure volumes. 
The mean JSC for all structures combined were 0.6 (SD 0.3, p 
= 1.000), larger structures 0.8 (SD 0.15, p = .999), and smaller 
structures 0.5 (SD 0.3, p = 1.000). The combined lymph node 

volumes, levels 1 to 4, and levels 3 to 4 were not included in this 
analysis. The correlation between JSC and atlas category (R2 = 
0.027), and) JSC and structure volume (R2 = −0.185) was also 
weak.

CDV results for atlas groups (Large MTC, 15° NMTC, and 
Heterogeneous) and structures are shown in (Table 1). Including 
all the structures, the overall mean variant values were 0.1, 0, and 

Figure 2. Atlases were ranked according to non- image- based information such as treatment position and chest wall separation 
to create character- specific atlas groups. a) demonstrates a breast board with an adjustable incline, 2b) a scan position with 20° 
incline (left) and 15° (right), and 2c) a chest wall separation as measured between two skin markers.

Figure 3. Auto- segmentation and reference image overlap measures. a) demonstrates the super- imposed auto- segmentation 
(red) and reference (green) contours of the heart, 3b) the Jaccard similarity coefficient (JSC) formula, and 3c) the 3D CT X, Y, and 
Z coordinate system and anatomical orientation that was utilised during calculation of centroid distance variants.

http://birpublications.org/bjr
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0.1 cm, respectively (SD 0.0). The mean CDV for specific struc-
tures, however, varied between 0 and 1.2 cm across atlas groups 
(Table 2).

DISCUSSION
We developed a quality- assured CT database of contoured struc-
tures, routinely required during breast and nodal radiotherapy 
planning. The total manual contouring time for 100 cases, 
excluding checking and editing time, was 178 h. The CT struc-
ture sets were applied as training and test cases during ABAS.

While it is expected that JSC overlap results should increase with 
atlas group size, our research concluded that high- quality AS 
can be obtained from as few as ten locally generated CT- based 
atlases, which simplifies the application of ABAS in radiotherapy 
departments. Previous research in brain MRI images, based on a 
maximum of 13 atlases per group, suggested that multiple atlases 
outperformed the single atlas method.26 Although we did not 
explore the single atlas method, we explored between 10 and 50 
consecutively acquired atlases per group and eliminated accu-
racy benefits from utilising larger than 10 atlas groups.

The JSC results for the heart, lung, breast, and humeral head were 
in the range (0.8, 0.9), compared to other studies that recorded 
the Sorenson Dice similarity coefficient (DSC) of 0.8,21 equalling 
0.7 (JSC).40 The JSC for smaller structures (brachial plexus, inter-
pectoral, and internal mammary nodes) ranged between (0.5, 

0.6) across atlas groups. Ciardo et al reported comparable results 
for the lung, heart, brachial plexus, and supraclavicular nodes.41

Previously discussed atlas selection strategies in breast AS 
included thoracic circumference and laterality.41 This is the 
first research to stratify template atlases to different treatment 
positions and CW separation groups. The results demonstrated 
no significant JSC differences between character- specific and 
heterogeneous atlas groups, or between NMTC and MTC AS 
(Figure 5). Subsequently, patient CT scans do not have to match 
atlas features, and AS can be created from any combination 
of atlases, allowing for straightforward ABAS application in 
practice.

In the analyses of varying group sizes and atlas- specific groups, 
we confirmed a weak correlation between the JSC values and 
structure volume size. It is worth stating that the JSC metric is 
volume- related and lower JSC values do not necessarily correlate 
with more clinician editing; clinician editing is more likely to 
relate to breast tissue.42

This study included combined nodal CTVs consisting of levels 
3 and 4, and levels 1, 2, 3, and 4 nodal groups, respectively. As 
the JSC results compare well with individually outlined nodal 
volumes (Figure 5), it may save time to outline combined CTVs 
instead of individual nodal groups for template atlases and avoid 
volume merging during radiotherapy planning.

Figure 4. Volume overlap outcomes for different atlas group sizes demonstrates the Jaccard similarity coefficients (JSC) values, 
sorted by the size of structure volumes, across group sizes. Atlases in these groups were randomly selected and are heterogene-
ous.

http://birpublications.org/bjr
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Both the JSC and CDV metrics resulted in similar conformity 
differences across atlas groups and disprove the hypothesis 
that ABAS conformity outcomes can be improved by atlas or 
matching test case selection. The CDV, however, differed between 
atlas groups for individual structures, suggesting the application 
of different atlas groups/templates for individual structures to 
achieve optimal AS. As this will complicate application in clin-
ical practice, it seems reasonable to utilise heterogeneous atlas 
groups and translate the knowledge on the location of variations 
into clinical relevance, reducing clinician editing. We identified 
11 variant locations needing review before radiotherapy plan-
ning. The locations included the medial and posterior aspect of 
the breast, the posterior aspect of the level 1 and level 2 nodes, 
the lateral aspect of the level 3, the lateral and medial aspect of 
the level 4 nodes, and the medial, posterior and anterior aspect 
of the brachial plexus (Table 2).

Breast treatment planning frequently involves the placement of 
large tangential fields rather than 3- D conformal radiotherapy 
(3DCRT) to a planning target volume. We did not consider the 
correction of structures in the intersection between the breast and 
nodal fields. Due to low image contrast in tissue density between 
normal tissue, the breast parenchyma and level 1 nodal tissue, 

manual outline accuracy variations in the superior, posterior, and 
lateral aspects are common.9 Considering manual contouring 
variations, AS modifications are likely to be affected by similar 
issues and unlikely to significantly impact treatment plans.

Nodal treatment fields include combinations of level 4, levels 3 
and 4, and levels 1, 2,3, and 4. Subsequently, field placements are 
determined by the medial and lateral border of the level 4 nodes, 
the lateral extent of the level 3 nodes, and the lateral extent of the 
level 1 nodes.

The mean AS variations on the medial (−0.3 cm) and lateral 
extent (−0.5 cm) of the level 4 nodes, and lateral extent of the 
level 3 nodes (0.7 cm) are likely to compromise PTV dose 
coverage which is clinically relevant and will require editing. 
However, when modifying the lateral extent of the level 3 nodes 
it is essential to avoid overlay between the treatment field and 
surgical clips and therefore, minimising radiation side effects.

The AS variations for level 1 (−1.2 cm) and 2 nodes (−0.4 cm) in 
the posterior direction (Table 1) are likely to affect the PTV dose 
coverage at depth which will be clinically relevant, and therefore, 
require correcting.

Figure 5. Volume overlap outcomes for character- specific atlas groups demonstrates JSC values sorted by the size of structure 
volumes across atlas- specific groups. The heterogeneous atlas group consisted of randomly selected atlases, not matching spe-
cific chest wall separation or breast board inclines. The “Large separation” group consisted of separations in the large range, 
scanned on either 20° or 15° inclines. All cases in “15° Breast board” group were scanned on a 15° Breast board but could be of 
a large or small separation. Cases in the ”20° Breast board incline and large separation” group were of a large separation and 
scanned on a 20° breast board. The non- matching test cases utilised in the last two groups: “15° Breast board incline”, and “15° 
Breast board incline and small separation”, did not match the atlas characteristics and, hence, were scanned on a 20° board and of 
a large chest wall separation. Apart from the “heterogeneous” group, all other test cases matched their atlas group characteristics.
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The level 2 nodes are located posterior to the interpectoral nodes, 
between the levels 3 and 1 nodes, and are never treated as a distinct 
nodal group. Medial and lateral field borders are unlikely to be 
affected by AS variations. Similarly, the humeral head anterior vari-
ation (mean 0.4 cm) does not define humeral head shielding during 
radiotherapy planning and would not require editing.

Manual contouring of the brachial plexus is problematic and varied; 
low tissue density and image contrast on CT scans make it chal-
lenging to identify landmark structures. Unsurprisingly, the CDV 
for the brachial plexus was greater than other structures. In 3DCRT, 
it is feasible to calculate the dose at the intersection between the 
first rib and clavicle, where the brachial plexus is likely to receive 
the highest dose. However, when planning IMRT and VMAT, 
contouring the entire brachial plexus is crucial. Using AS instead 

of manual contouring may be the preferred option to address these 
challenges.

Segmentations in this research were derived from a standardised 
and quality- assured “database” and may differ from template atlases 
that various clinicians have contoured. Relying on contouring by 
one person can be seen as both a study strength and weakness; inter- 
observer variability is minimised but may impact on the validity of 
drawn conclusions. However, contouring and reviewing clinicians 
attended ESTRO contouring guideline training to further minimise 
intra- observer variability and their experience levels were 10, 5, and 
15 years, respectively.

Future research and development of this model require validation of 
more AS solutions and confirmation in a multi- institutional setting. 

Table 1. Centroid distance variants between reference and auto- segmentation 3D coordinate measures across atlas groups for 
specific structures

Atlas groups Min X Max X Min Y Max Y Min Z Max Z
BREAST Large MTC 0.2 0.1 −0.9 0.0 −0.2 −0.3

15° NMTC 0.5 0.2 −0.7 0.0 0.1 −0.6

Heterogeneous group. −1.2 0.0 −0.7 −0.1 −1.2 −1.1

LEVEL 1 NODES Large MTC −0.1 0.4 −0.1 0.2 0.3 −0.2

15° NMTC −0.1 0.4 −0.8 0.0 0.1 −0.9

Heterogeneous group. −0.6 0.3 −1.2 0.1 0.8 0.8

LEVEL 2 NODES Large MTC 0.1 0.6 −0.4 0.5 0.2 0.3

15° NMTC −0.4 1.4 −0.8 0.8 −0.1 2.0

Heterogeneous group. −0.4 0.2 −0.4 0.3 0.1 0.2

LEVEL 3 NODES Large MTC −0.1 0.6 −0.7 0.1 0.1 −0.4

15° NMTC −0.2 0.6 −1.0 0.2 0.0 −0.2

Heterogeneous group. −0.6 0.7 0.2 0.2 0.3 0.0

LEVEL 4 NODES Large MTC 0.4 0.4 −0.6 0.2 0.2 −0.8

15° NMTC 0.1 0.5 −0.7 0.2 0.4 −0.5

Heterogeneous group. −0.3 −0.5 −0.5 0.2 0.2 0.1

LEVEL 3 & 4 NODES Large MTC 0.0 0.7 −0.7 0.3 0.3 −0.4

15° NMTC 0.0 0.7 −1.0 0.3 0.4 −0.2

LEVEL 1, 2, 3, & 4 NODES Large MTC 0.0 0.4 −0.4 0.1 0.6 0.1

15° NMTC 0.0 0.4 −1.0 0.4 0.5 −0.1

BRACHIAL PLEXUS Large MTC −0.8 3.2 −0.6 0.9 −0.7 0.7

15° NMTC −1.4 2.3 −0.9 0.4 −0.2 0.5

Heterogeneous group. −3.5 0.0 −0.9 2.2 2.6 7.1

HUMERAL HEAD Large MTC −0.1 0.1 −0.1 0.0 0.4 0.0

15° NMTC −0.3 −0.1 0.0 −0.1 0.7 0.0

Heterogeneous group. 0.0 −0.2 −0.2 −0.4 0.3 −0.1

This table demonstrates the minimum (Min) and maximum (Max) centroid distance variants on the x, y, and z coordinates across atlas groups. 
Negative variants refer to under- contouring and positive variants to over- contouring. The Large Matching test cases (MTC) atlas group/template 
consisted of atlases with a large separation, scanned on a 15° or 20° incline; the test cases matched the same atlas characteristics. The 15°non- 
matching test cases (NMTC) group consisted of atlases scanned on 15° incline and various separations; the test cases were scanned on 20° incline 
instead. The heterogeneous group consisted of randomly selected/mixed atlases, scanned on 15/20°.
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We expect to publish our results on comparing this AS model with 
deep learning soon.

DL approaches show competitive results compared to ABAS in 
certain CTVs (e.g., level 3 axillary and internal mammary nodes, 
heart) in terms of the dice similarity coefficient and 95% Hausdorff 
distance.14 However, reported values vary significantly, making 
consistent model comparisons difficult.43 Additionally, there is a 
need for standardised validation metrics to evaluate clinical accept-
ability and commissioning of AS models.44 The CDV measures 
used in this study indicate AS variations in the x, y, and z axes, high-
lighting the importance of modifications based on clinical relevance. 
The software solution used for data processing was validated against 
a digital phantom through IBSI international collaboration.39,45

CONCLUSION
The study results disprove the hypothesis that ABAS conformity 
outcomes can be improved by atlas or matching test case selec-
tion. High- quality ABAS could be obtained from as few as ten 
template atlases. Furthermore, our findings verified that atlas 
selection, based on breast separation, treatment position, and 
MTC does not benefit AS efficacy and subsequently simplify 
ABAS application.

Despite the continuous development of AS methods, AS does not 
yet represent a perfect match to reference images. Our research 
demonstrated potential in applying the CDV as a metric to help 
reduce clinician editing in radiotherapy departments.
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