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Abstract 

The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of 

diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial 

intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance 

of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted 

on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an 

impact on white matter analysis results, with statistically significant differences between groups being drastically 

reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were 

tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient 

directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 

61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial 

Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL 

techniques improved the ability to detect statistical differences between groups, they also led to an increase in false 

positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new 

true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts 

and training using data from a single group. The methods also showed divergent performance when replicating the 

original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised 

when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in 

clinical studies, as important information may be altered, even when global metrics such as structural similarity or 

peak signal-to-noise ratio appear to suggest otherwise. 
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1. Introduction 

In the field of medical imaging, the application of Artificial Intelligence (AI) in general, and Deep Learning 

techniques in particular, has brought about a significant revolution, with an increasing number of new applications 

emerging every year. These techniques have shown to effectively improve image quality and generate new images 

from limited medical imaging data. However, it is important to note that the majority of validations for these DL 

approaches in medical images have been performed visually and/or qualitatively, rather than being rigorously assessed 

in clinical studies. 

A crucial question arises regarding the impact of these techniques on the preservation of relevant quantitative 

clinical information in medical images: Are we sacrificing critical data for the sake of high-quality images generated 

by artificial intelligence techniques? The validity of traditional quality measures such as the Peak Signal-to-Noise 

Ratio (PSNR), Structural Similarity Index (SSIM), and Root Mean Squared Error (RMSE) must be taken into 

consideration for this task. It is not sufficient for the AI-generated images to simply resemble an original one; they 

must also preserve all relevant clinical information while not generating false information. 

In this work, we worked with a specific modality of medical imaging: diffusion Magnetic Resonance Imaging 

(dMRI). dMRI is a non-invasive imaging technique that provides information about the diffusion of water molecules 

in biological tissues, allowing for the assessment of microstructural properties of the brain and other organs (Basser, 

2002; Westin et al., 2002). The use of DL techniques in this modality is a rapidly growing field that has shown great 

potential in various stages of the dMRI data pipeline. These techniques include the correction of phase errors in 

multishot dMRI acquisitions (Aggarwal et al., 2019), the automatic identification and removal of artifacts (Qiao and 

Shi, 2021; Ahmad et al., 2023), and noise filtering (Tian et al., 2020; Fadnavis et al., 2020). 

In addition, DL has also been used in tissue segmentation (Zhang et al., 2021a), registration between datasets 

(Zhang et al., 2021b), simultaneous segmentation and registration of white matter tracts in longitudinal measurements 

(Li et al., 2021a), super-resolution of fiber orientation distributions (Zeng et al., 2022), and the parcellation of 

superficial white matter (Xue et al., 2023). 

Artificial intelligence techniques have also been extensively used for the harmonization of data from different 

sources. This is particularly important in the case of MRI, where data acquired with different parameters or from 

different vendor scanners can vary significantly. To enable multisite studies, it is crucial to harmonize such databases. 

DL techniques have shown potential to integrate data from multiple sources, increasing the statistical power of the 

analysis and generalizing findings across different sites (Zhu et al., 2019; Tax et al., 2019; Moyer et al., 2020; 

Blumberg et al., 2019). The harmonization process using DL can normalize data acquired under varying conditions, 

and this is expected to have a significant impact. 

DL has also established its effectiveness in quantifying scalar metrics for a range of dMRI representations and 

models, including diffusion tensor imaging (DTI) (Li et al., 2021b; Sabidussi et al., 2023), diffusion kurtosis imaging 

(DKI) (Golkov et al., 2016), ensemble average propagator measures (Ye et al., 2019), neurite orientation dispersion 

and density imaging (NODDI) (Golkov et al., 2016; Ye, 2017; Gibbons et al., 2019; Qin et al., 2021; Sedlar et al., 

2021; Faiyaz et al., 2022a), and white matter tract integrity (WMTI) models (Diao and Jelescu, 2023). While these 

frameworks can be optimized through regularized solutions (Daducci et al., 2015) or simplified with model symmetries 

(Oeschger et al., 2023), they still require a densely sampled q-space to produce quantitatively reliable biomarkers. DL 

techniques have enabled the modeling of a non-linear relationship between the q-space and the parameter space 

(Golkov et al., 2016; Gibbons et al., 2019; HashemizadehKolowri et al., 2022). Other applications include managing 

incomplete or reduced data, such as sparse sampling and time-efficient acquisition protocols (Gibbons et al., 2019; Li 

et al., 2021b; Sabidussi et al., 2023; Mani et al., 2021, 2022) or to increase angular sampling of the q-space (Lyon et 

al., 2022; Zeng et al., 2022). 

Given the potential benefits of using DL on incomplete data in dMRI, our study aims to determine whether DTI 

parameters generated from volumes acquired with a reduced number of data and processed by DL techniques can 

match the statistical results obtained from standard quality acquisitions. We intend to validate the usefulness of DL-

based reconstruction techniques in real clinical studies. 

For clarity, the study has focused on a single critical aspect of dMRI, specifically the angular resolution. This 

parameter, which is proportional to the inverse of diffusion sensitizing gradient directions, is a crucial design element 

in dMRI (de Figueiredo et al., 2011; Basser and Pierpaoli, 1996). The number of gradient directions required to fit the 

basis can vary depending on the method used to represent the dMRI signal, ranging from a minimum of six gradients 

in DTI to several dozens or hundreds in High Angular Resolution Diffusion Imaging (HARDI) techniques (Tuch et 

al., 2003; Tristán-Vega et al., 2009; Özarslan et al., 2006). In clinical settings, it is necessary to optimize the number 

of gradient directions to minimize the examination duration and ensure patient comfort. However, reducing the number 

of gradient directions may result in a loss of subtle changes in the angular characteristics of dMRI data (Jones, 2004), 

leading to inaccuracies in the quantitative measures derived from a fitted model. Consequently, clinical studies could 

provide different results with different number of gradient directions. 

In order to increase the angular sampling, i.e., to augment the number of gradient directions, one can average the 

local angular neighborhood using the spherical radial basis functions representation (Tuch, 2004) or decompose the 
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dMRI signal into orthogonal basis and then reconstruct the angular information under a different gradient configuration 

(Descoteaux et al., 2007; Chen et al., 2018, 2019). While alternative techniques based on AI have also been proposed 

(Ren et al., 2021; Lyon et al., 2022; Zeng et al., 2022), their effectiveness was evaluated using numerical measures 

such as the aforementioned RMSE, PSNR or SSIM indexes. However, recent studies have shown that reducing the 

number of gradients can result in a loss of clinically relevant information and make it difficult to detect differences in 

various medical conditions (Landman et al., 2007; Barrio-Arranz et al., 2015). The number of diffusion gradient 

orientations has been recognized as a crucial factor that influences the values of diffusion and DTI descriptors and 

affects the results of their statistical comparisons between clinical groups. 

In this study, the assessed clinical groups were based on migraine, specifically between episodic migraine (EM) 

and chronic migraine (CM) patients. This disorder was selected for the following reasons: 

1. A comprehensive and unique database of migraine patients was available, with an appropriate acquisition 

scheme that allows for downsampling the number of gradient directions without losing the coverage of the q-

space. 

2. Previous studies using the same database have identified brain regions with statistically significant differences 

using fully-sampled data, making them the ideal reference for reduced acquisitions. 

3. As migraine findings are subtle, reducing the sample size or the number of gradient directions could negatively 

impact the significance of the differences, making this database ideal for evaluating the relevance of DL 

methods. 

It is important to note that the objective of the study was not the diagnosis of migraine using diffusion-based 

parameters or the potential optimization of the dMRI acquisition. Migraine was exclusively employed to assess the 

preservation of the statistical relationships between diverse clinical groups after the application of the DL methods to 

synthesize the volumes with unsampled diffusion gradient orientation. The objective was the analysis of the effect of 

increasing the diffusion angular resolution in the context of the clinical studies. Thus, the asked DL network 

architecture design was not focused on the best possible distinction between clinical groups from the dMRI data. 

We used 160 dMRI volumes, all including a unique q-space coverage scheme that enables us to easily subsample 

the data by merely selecting appropriate 21 gradient directions out of 61 without the need of applying interpolation 

algorithms. It is worth noting that there was no aim related to the optimization of the dMRI acquisition. We wanted to 

recreate a realistic situation in a clinical context with an available reduced dMRI dataset. The whole proposal is 

surveyed in Fig. 1. Our analysis revealed that 60% of the statistically significant differences between EM and CM 

patients, identified in a white matter study utilizing 61 gradient directions, were no longer present when only 21 

directions were used. Thus, we wanted to study if the downsampled data could be enhanced using DL techniques so 

that we achieve an outcome similar to the original data. 

The study here presented was initiated as a challenge2 hosted at the 2022 Computational Diffusion MRI Workshop 

of the MICCAI conference in Singapore. It is important to note that the evaluation of the methods in this study was 

conducted using a specific database focused on migraine. Therefore, it is crucial to acknowledge that the results 

presented here may not be directly generalizable to other databases or pathologies. 

 
2. Materials 

2.1. Datasets: subjects’ selection 

 

As previously stated, the purpose of this study was to evaluate the validity of DL-based reconstructed dMRI images 

in a real clinical setting for the pathology of migraine. Migraine is a prevalent primary disabling disorder that is 

characterized by recurrent episodes of headache and is more common among young and middle-aged women. Despite 

its high prevalence, the pathophysiological mechanisms of migraine are not well understood and there are no current 

biomarkers. There are two classifications of migraine, episodic migraine (EM) and chronic migraine (CM), which are 

differentiated based on the number of headache days per month (15 or more days with headache per month for chronic 

migraine patients) (Headache Classification Committee of the International Headache Society, 2018). 

Migraine is advantageous for this kind of study since the findings related to dMRI are subtle compared to healthy 

controls, as noted in previous studies. This makes it challenging to appreciate techniques or parameters that can better 

define pathophysiological properties, as opposed to disorders such as Alzheimer’s disease or schizophrenia, where it 

is relatively easy to find statistically significant results with classic methods based on DTI, T1-, and T2-weighted MR 

imaging. 

There have been some dMRI studies assessing migraine, with DTI being the most used technique to evaluate 

                                                           

2 QUaD22: ‘Quality augmentation in diffusion MRI for clinical studies: Validation in migraine’. CDMRI Workshop, MICCAI 2022, Singapore. 

https://www.lpi.tel.uva.es/quad22/ 
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microstructural properties. These studies have found differences between healthy controls and migraine patients 

(Chong et al., 2019; Kattem Husøy et al., 2019; Planchuelo-Gómez et al., 2020b; Yu et al., 2013), as well as between 

EM and CM patients (Coppola et al., 2020; Planchuelo-Gómez et al., 2020b), for DTI-related scalars such as fractional 

anisotropy (FA), mean diffusion (MD) and Axial Diffusivity (AD). DTI has been the most employed technique to 

evaluate microstructural properties with differences found between controls and migraine patients (MP) and between 

EM and CM patients. The most reported result in these studies is lower FA in MP compared to controls. Regarding 

the AD, a similar number of studies have found both lower and higher values in the MP compared to controls. For the 

MD and also the radial diffusivity, as with AD, both trends with higher and lower values in MP compared to controls 

have been detected, but with a higher number of studies reporting the higher values in MP. A detailed description of 

these results and further comparisons with a higher number of references is available elsewhere (Rahimi et al., 2022). 

The subjects used for this work were obtained from a previous migraine clinical study (Planchuelo-Gómez et al., 

2020a). A dataset was built comprising healthy controls (HC) and patients with EM and CM. 

HC were recruited by convenience sampling and snowball sampling. Controls with a history of migraine, other 

headache disorders different to infrequent tension-type-headache (less than one attack per month), or a history of other 

neurological or psychiatric disorders were excluded. Healthy controls were aged between 18 and 65 years. 

Additionally, a questionnaire was provided to the controls to assess whether they suffered from headaches with 

migraine features. 

Migraine patients were recruited to a neurologist specialized in headache disorders at their first visit. Due to 

migraine, these patients had been referred to the Headache Unit at the Hospital Clínico Universitario de Valladolid 

(Valladolid, Spain). Patients were included after a definite diagnosis of episodic migraine or chronic migraine 

according to the third edition of the International Classification of Headache Disorders (ICHD-3). 

All the participants were aged between 18 and 60 years and read and signed a written informed consent form before 

acquiring the MRI data. The local Ethics Committee of Hospital Clínico Universitario de Valladolid (Valladolid, 

Spain) approved the study regarding the MRI acquisitions (PI: 14-197). All participants read and signed a written 

consent form prior to their participation. 
 

2.2. Datasets: Acquisition 

For all the clinical groups included in the sample, the acquisition protocol was identical. All the subjects were 

scanned using a Philips Achieva 3T MRI unit (Philips Healthcare, Best, The Netherlands) equipped with a 32-channel 

head coil in the MRI facility at the Universidad de Valladolid (Valladolid, Spain). 

The single-shell dMRI acquisition protocol was the following: repetition time TR = 9000 ms, echo time TE = 86 

ms, flip angle = 90o, 61 non-collinear diffusion-sensitizing gradient orientations, one baseline volume (b = 0), b-value 

= 1000 s/mm2, volume size of 222 mm3, 128128 matrix size, and 66 axial slices covering the whole brain. 

The acquisition time for this sequence was around 12 minutes. Regarding the diffusion gradient directions, they 

were acquired so they could be subsampled to an alternative scheme composed of 21 orientations, see Fig. 2. The 

design of the gradients is grounded in a regular icosahedron, which has 20 facets, 30 edges, and 12 vertices. It can be 

“refined” by inserting one new vertex at the mid-point of each of its edges, and projecting it onto the unit sphere. This 

splits each facet in 4 new triangles. The resulting convex polyhedron has 42 vertexes and 80 facets, coupled in 21 and 

40 pairs of antipodes. The 21 unique vertexes and the 40 unique barycenters of the facets comprise the interleaved 

gradients scheme, each set uniformly covering the orientations space. 

The training and test datasets were composed of different clinical groups with a specific number of diffusion 

gradient orientations. 

Training: this dataset included 60 HC. All the diffusion-weighted volumes, i.e., 61 directions and one non-diffusion 

weighted volume (b = 0), were provided to the participants of the challenge. The sampling scheme allows the 

61 gradient directions to be easily subsampled to 21 gradients. 

Test: this dataset included 50 patients with EM and 50 patients with CM. The subsample composed of 21 diffusion 

gradient directions together with the baseline volume of each subject was provided to the participants of the 

challenge. Datasets were shuffled, so the participant could not know if a volume belonged to EM or CM. To 

validate the results, the organizers (but not the participants) also had the complete acquisition, with 61 gradient 

directions. 

The training dataset included no patients with migraine because our objective was to assess the effects of the 

application of a general machine learning method for increasing the number of diffusion gradient orientations in the 

statistical relationships between clinical groups. The target was to avoid a development of a “migraine-specific” 

method or a migraine classifier. 
 

2.3. Diffusion MRI preprocessing 

The training and tests datasets provided in the challenge were preprocessed to avoid any bias caused by different 

preprocessing pipelines conducted by each participant group. The dMRI preprocessing was composed of the following 
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steps: denoising following the Marchenko-Pastur Principal Component Analysis method (Veraart et al., 2016), 

correction of eddy currents and motion (Andersson and Sotiropoulos, 2016), and B1 field inhomogeneity (Smith et al., 

2004; Zhang et al., 2001). All these steps were applied with MRtrix3 software (Tournier et al., 2019). 

A mask of the preprocessed dMRI volumes was extracted (Dhollander et al., 2016). The diffusion tensor (DT) was 

estimated at the voxels defined within the brain mask following the ordinary least squares method implemented in 

FSL software (Jenkinson et al., 2012). To avoid potential bias related to the extraction of the diffusion tensor or its 

descriptors compared to the original study comparing CM, EM and HC groups (Planchuelo-Gómez et al., 2020a), the 

FA, MD and AD maps of the training dataset were obtained with the FSL estimation. The maps of the test dataset 

were separately obtained for each method by each group and submitted to the organizers. 

 
3. Methods 

3.1 Task: quality enhancement  

For the analysis carried out in this study, only three DTI-derived metrics are considered: FA, AD and MD. AD and 

MD were selected for being the ones detecting significant differences in preliminary clinical studies with migraine 

patients. FA was also calculated as a complementary metric. Participants were asked to estimate these three metrics 

from the migraine dataset acquired with 21 diffusion gradient directions at b=1000 s/mm2, trying to achieve a quality 

similar to the parameters estimated from 61 gradient directions. To that end: 

1. They used the training data set to train an AI-based system that could angularly augment the dMRI data from 

21 to 61 gradient directions to provide the most faithful representation of the signal and consequently the 

quantitative parameters, including FA, MD and AD. DL methods were recommended here. 

2. Then, the participants applied the enhancement method to the migraine dataset. Three volumes (FA, MD, AD) 

were submitted by each participant group for each of the 50 EM and 50 CM subjects. 
 

3.2 Evaluation 

The dataset for the statistical study consisted of maps from two migraine groups (CM and EM), which were 

compared using the tract-based spatial statistics (TBSS) pipeline (Smith et al., 2006) for three metrics (FA, MD, AD). 

To avoid bias, the participants were unaware of the distribution of patients between CM and EM. 

For the TBSS analysis, the same steps were applied to the original maps and the maps provided by the participant 

groups. The extracted FA images were nonlinearly registered to the FMRIB-58 template in the Montreal Neurological 

Institute (MNI) space, composed of averaged FA maps, using the b-spline representation of the registration warp field 

with the FNIRT tool from FSL (Rueckert et al., 1999). After registration, the white matter skeleton was defined from 

the thinning of a generated mean FA image, using an FA threshold of 0.2 to distinguish white matter from gray matter. 

The aligned FA images from the subjects were projected onto the white matter skeleton. The MD and AD maps were 

registered to the MNI space using the same warp transformations employed to register the FA images and were 

projected onto the skeleton. To identify the regions with statistically significant differences, the Johns Hopkins 

University ICBM-DTI-81 White-Matter Labels Atlas was employed (Mori et al., 2005). The minimum volume per 

region to consider statistically significant results was 30 mm3. To minimize the sources of variability, the registration 

was done using the fully sampled data (61 gradient directions) and then applied to the data provided by the groups. 

Likewise, the FA mask derived from the 61 gradients scheme was used for all teams. 

The voxelwise differences in FA, MD and AD values of the CM and EM were assessed following the randomise 

permutation-based inference tool by non-parametric statistics implemented in FSL, considering the threshold-free 

cluster enhancement (TFCE) results (Nichols and Holmes, 2002; Smith and Nichols, 2009). This procedure was 

applied to the original maps and the maps submitted by the participant groups using 5000 permutations and considering 

a threshold for statistical significance of p < 0.05 after family wise error (FWE) correction for multiple comparisons.  

For the sake of comparison, two measures are considered: True Positives (TP) and False Positives (FP). TP are 

those voxels found in the analysis of the 61-gradients reference, considered as the silver standard. Conversely, FP are 

those voxels found as having significant differences in the comparison carried out with the improved maps submitted 

by the participants but were not found to have significant differences in the comparison carried out with the 61-

gradients reference. For a better comparison, we also used the following sensitivity and specificity parameters, based 

on the ratios of TPs and FPs: 
 

 Sensitivity, or true positive rate (TPR) 

TPR𝑖(Team) =
TP𝑖(Team)

TP𝑖(Team)+FN𝑖(Team)
=

TP𝑖(Team)

TP𝑖(T61g)
× 100[%], (1) 

 Specificity, or true negative rate (TNR)  

TNR𝑖(Team) =
TN𝑖(Team)

TN𝑖(Team)+FP𝑖(Team)
=

TN𝑖(Team)

TN𝑖(T61g)
× 100[%], (2) 

 Precision, or positive predicted value (PPV) 
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PPV𝑖(Team) =
TP𝑖(Team)

TP𝑖(Team)+FP𝑖(Team)
× 100[%],  (3) 

 False positive rate (FPR) 

FPR𝑖(Team) =
FP𝑖(Team)

FP𝑖(Team)+TN𝑖(Team)
=

FP𝑖(Team)

TN𝑖(T61g)
× 100[%], (4) 

 Accuracy (ACC) 

ACC𝑖(Team) =
TP𝑖(Team)+TN𝑖(Team)

TP𝑖(Team)+FP𝑖(Team)+TN𝑖(Team)+FN𝑖(Team)
=

TP𝑖(Team)

TP𝑖(T61g)+TN𝑖(T61g)
× 100[%],  (5) 

 

where TP𝑖(T61g) denotes the number of TP found for metric i by the reference calculated by 61 gradient directions. TN 

stands for True Negative and FP for False Positive. In all cases, we consider 𝑖 = {FA, MD, AD}. For all the metrics, we 

also defined a global metric that merges all the individual values into a single one. For instance, for TPR is defined as: 

 

TPRTotal(Team) =
∑ TP𝑖(Team)𝑖

∑ TP𝑖(61g)𝑖
× 100[%]   (6) 

 

Additionally, we have added a new metric that calculates the gain respect to the comparison carried out with the 21-

gradients maps, without the use of any technique (AI or not) to enhance their quality: 

 

Compar. 21 (Team) =
∑ (TP𝑖(Team)−FP𝑖(Team))− 𝑖 ∑ (TP𝑖(21g)−FP𝑖(21g)) 𝑖

∑ TP𝑖(61g)−[𝑖 ∑ (TP𝑖(21g)−FP𝑖(21g))] 𝑖
× 100[%]      (7) 

 

where TP𝑖(T21g) and FP𝑖(T21g) denote respectively the number of TP and FP found for metric i by the reference 

calculated from 21 gradient directions. 
 

 

3.3 Participants and methods 

Thirteen different institutions participated in the study, providing results from 14 different methods (one institution 

provided two methods). The AI-schemes were different among them, with different designs, training, and validation 

procedures, see Tables 1 and 2. More detailed insight of each method can be found in the supplementary material 

where each team deeply describes their procedure. All teams provided enhanced FA/AD/MD volumes for all migraine 

patients calculated from 21 directions. 

In general, we can divide the methods provided by the participants into three categories (see Table 1), i.e., 

techniques that operate in a) the magnitude domain of the data, b) spherical harmonics (SH) representation of the 

signal, or c) map the DTI measures between 21 and 61 gradients directly. Regarding the architecture, the most 

straightforward solutions handled the feed-forward network that translated the low-resolution diffusion weighted 

imaging (DWI) data into high-resolution DWIs, attaching local neighborhood information (Team 2) or naturally 

including the context of a voxel via the CNN-based architecture (Teams 1, 4, 10 and 11). Other approaches employed 

a U-Net-based architecture (Team 14) and its modification with extra dropout layers in the decoder part (Team 5) or 

a gated attention mechanism (Schlemper et al., 2019) (Team 9). Others used more advanced methods, such as 

denoising autoencoders (Teams 6 and 7) by adapting the qModeL (Mani et al., 2021) previously used to reconstruct 

the DWIs in parallel imaging from under-sampled raw data. The participants mostly handled the preprocessed data by 

the organizers, without additional handling. Nevertheless, two teams applied additional preprocessing to enhance the 

input data quality: Team 5 denoises again DWI data used for AD and MD generation with the DeepDTI technique 

(Tian et al., 2020) to achieve high fidelity image generation prior to DTI estimation; Team 8 repeats the whole 

preprocessing pipeline including MP-PCA denoising, Gibbs-ringing artifacts removal, motion, and distortion 

corrections and a nonuniform intensity normalization. Interestingly, one participant (Team 11) additionally handled 

tissue differences segmented into the WM, GM and CSF regions. It is worth noting that the participants were allowed 

to optimize the hyperparameters and training of the developed methods to find the optimal results and were not 

restricted to just apply a pre-trained network. 

In Table 2, we show the training procedure carried out by the different teams. Note that most of them used error-

related metrics for the loss function, such as MSE or mean absolute error (MAE). One group (Team 10) used the 

perceptual loss (Johnson et al., 2016) that takes into account the features from the pre-trained VGG16 network 

(Simonyan and Zisserman, 2015). Regarding the division of the training dataset (HC data), most groups incorporated 

the highest number of subjects in the training subset, including between 36 (Team 3) and 54 (Team 14) subjects out 

of 60 composing the whole dataset. Team 2 included only 13 out of 60 HCs to train their method, including three of 

these 13 subjects in the training subset. Team 13 trained the method with three different sets of 20 HCs (80% in the 

training subset). All the groups that used the in vivo data except Teams 9 and 11 used a validation subset that included 

between 5% (Team 14) and 20% (Team 1) of subjects. A similar proportion of subjects was included in the testing 

subset, being the number of subjects equal or higher than those included in the validation subset for most methods. 
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Two groups used two different divisions of the three subsets, using the first one to determine the best method, and the 

second one removing all subjects from the testing subset, increasing the size of the training and validation subsets, for 

cross-validation (Team 1) or improving the results of the chosen approach (Team 5). Two teams employed 5-fold 

cross-validation (Teams 1 and 9) and one group used 10-fold cross-validation (Team 12). Interestingly, Teams 6 and 

7 did not make use of the in vivo data in the training and testing subsets. Instead, the samples were generated artificially 

using a three-compartment biophysical model (Behrens et al., 2003; Jelescu et al., 2016) with the physically-

compatible parameters observed in the WM. Only one group (Team 11) used an augmentation technique (random 

flipping) to increase the training sample artificially. 
 

 

4. Results 

4.1 Quality metrics of image reconstruction  

A preliminary visual assessment of the different methods was performed using one slice from a CM patient. The 

considered metrics (FA, AD and MD) were calculated from the original data and from the different AI-enhancement 

procedures and shown in Fig. 3. Upon visual inspection, the majority of the images appear similar in terms of their 

overall appearance. While there are slight variations in intensity levels, no discernible differences were observed with 

respect to structural features. 

The quality assessment of reconstructed images in medical imaging commonly involves utilizing visual references 

and various error or noise metrics. This process enables us to determine the similarity between the reconstructed and 

original images. Our initial step is, therefore, to compute two image-based metrics, namely structural similarity index 

measure (Wang et al., 2004, SSIM) and peak signal to noise ratio (PSNR). In this regard, the 100 enhanced volumes 

for the three considered metrics (FA, MD, AD) have been considered for each team. The original data, reconstructed 

from 61 gradient directions, has been used as a reference for the calculation of the same metrics. To minimize the 

influence of the background on the SSIM calculation, the metric has been computed only on a white matter mask, 

determined for those points where FA > 0.2 with the FA calculated with 61 gradient directions. The results of these 

metrics are presented in Table 3. 

With respect to the SSIM metric, most of the methods exhibit improvement or are comparable to the reference. 

Only Team 9 shows results that indicate a significant discrepancy between the reconstructed signal and the reference. 

Additionally, Team 13 also performs slightly worse than the reference. Concerning the PSNR, Team 9 again exhibits 

significant deviation from the reference, while the other teams display results that are either slightly better or slightly 

worse than the reference. Overall, if we exclude Team 9, it can be concluded that the results of most teams demonstrate 

a high degree of similarity with the original data. In subsequent sections, we will examine whether these results align 

with the statistical results obtained from the clinical study. 
 

4.2 TBSS results 

Second, we show the results of the TBSS analysis of the data for each of the teams and every considered metric. 

Results are in Table 4. Table 4-(a) shows the raw numbers given by TBSS: the number of voxels with statistically 

significant differences in the skeleton of the FA, for FA, AD and MD, considering a total of 39,256 points over that 

skeleton. Two measures are considered, TPs and FPs. We also show the number of ROIs that presents statistically 

significant differences for each of the metrics. The first number represent the number of ROIS already present in the 

original study, i.e., TPs, and the second one, the number of ROIs that were not present in the original study, i.e., FPs. 

For a better understanding of the results, in Table 4-(b) we present an alternative version based on ratios, using Eqs. 

(1)-(7). 

If we first focus on the TPR for 21 gradient direction scheme with no enhancement, we can see that only 41% of 

the differences are detected for AD and 40% for MD, which means that, with the reduction of the number of gradient 

directions, around 60% of the differences were lost. In addition, a small number of FPs also arises, see the FPR (3% 

for both metrics) This result was precisely the motivation behind the study. In addition, no differences were found for 

FA. Let us now check the performance of the enhanced sets. 

According to the Accuracy (ACC) of the methods in Table 4-(b), three methods did not improve the 21 grads 

reference (Teams 4, 9, and 14) one method showed similar results (Team 13) and 7 of them show a performance over 

80%. These results are similar to the comparison with 21-gradient directions see column ‘Compar. 21 grads’, 

whereonly one method improved by over 30% (Team 8). If we only consider the TPR, note that most methods 

performed better than the reference, and eight methods found over 60% of the original points with significant 

differences. However, there is a counterpart: the higher the number of TPs, the higher also the number of FPs. Note 

that one method shows a FPR of 77% but, at the same time, it shows a FPR of 15%. For all the methods with TPR 

over 65%, the global FRR is over 10%. This is an undesired effect that must be carefully analyzed in the next section. 
 

4.3 Analysis of False Positives 

False positives in clinical studies refer to those results that indicate the presence of statistically significant 
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differences when they do not actually exist. These errors can have serious implications and can lead to several negative 

consequences, such as misdiagnosis and reduced reliability of study results. Thus, it is of paramount importance to 

deeply analyze the presence of these results in the studies carried out with AI-enhanced volumes, since they can limit 

the applicability of these techniques. 

We have decomposed the results in Table 4 in the bar diagrams in Fig. 4, where we show the number of voxels 

with significant differences detected by TBSS for the different methods. We have used a color coding to show: TPs 

detected by the 21-gradient reference (blue); the TPs detected by the 61-gradient reference but not by the 21 gradient 

reference (green) and the FPs (red). The values marked in green can be seen as the new TPs found by each method. 

For the sake of simplicity, we only show results for AD and MD, since FA detects no significant differences. 

As illustrated in Fig. 4, it is evident that the cost of identifying new significant differences is the occurrence of 

additional FPs. Fig. 5 presents a histogram of these new TPs and FPs across the teams. For instance, the bar in position 

4 indicates the number of voxels detected as statistically significant in four teams. We have calculated these histograms 

to check if the new TPs and the FPs occur in the same areas for all the teams or, on the contrary, the different groups 

found differences in distinct voxels. When examining the FP plots, it can be observed that the histograms are both 

skewed towards the left. This suggests that the FPs detection is not consistent across the groups, but differences are 

primarily identified by only one or two teams. This finding indicates that the presence of FPs is not a result of the data 

itself, but rather a consequence of the algorithms employed for reconstruction. 

The question that arises is the existence of a correlation between the number of new TPs and the number of FPs 

produced by each team. To examine this relationship, we have fitted simple linear regression models for the AD and 

MD metrics using least squares, as shown in Fig. 6. Each marker represents the value of new TPs to FPs for each team. 

For the AD metric, the model accuracy is R2 = 0.907 and the linear model has a slope of α = 2.11 which means that, 

according to the model, for every two new TPs the methods produce one FP. The results are similar for the MD metric, 

with R2 = 0.749 and a slope of α = 1.57, where for every one and a half new TPs, the methods produce one FP. 

It is important to note that the data used in this experiment was generated from various methods, in multiple 

laboratories, by distinct teams, and using diverse AI-based techniques. Despite the diversity in the data source, the 

results produced by each team align perfectly with the model. 
 

4.4 Analysis of the variance 

 

In this final section, we evaluate the results produced by different teams by analyzing the out values and their 

variability. We start by plotting histograms of the values of the three metrics (FA, AD, MD) over the region defined 

by the FA mask for each team. These results are shown in Fig. 7, with histograms for EM subjects only, for the sake 

of simplicity (similar results can be found for CM). Additionally, we calculate several statistics over the same FA 

mask, including mean, standard deviation (std), and coefficient of variation (CV), which are presented in Table 5. 

Based on Figure 7, the histograms of the three metrics calculated with only 21 gradient directions (R21) are the 

closest to the reference calculated with 61 directions (R61). The std and CV of AD and MD are only slightly higher 

than the reference. On the other hand, Team 9 stands out as having the largest difference in its results. Its distribution 

has a clear bias towards smaller values compared to the reference, which suggests that its data has been scaled and 

does not have the same range as the original data. This effect can also be seen, albeit less pronounced, in Teams 10, 

13, and 14. Meanwhile, Team 2, the only team that does not use DL, also shows a slight discrepancy in the three 

metrics, with reduced mean and standard deviation. In contrast, Teams 1, 3, 5, 8, and 12 display high similarity with 

the original data. 

 
5. Discussion 

In this study, we have focused on a critical aspect of dMRI: the sampling resolution of the q-space. It is well known 

that a reduction in the number of gradient directions may result in changes in the estimation of the DT and, 

subsequently, in the values of the scalar metrics derived. In the case selected for this study (EM vs. CM), when reducing 

the angular samples from 61 to 21, we detected a loss of around 60% of the voxels with statistically significant 

differences detected by TBSS. We proposed different research groups to improve the quality of the subsampled data 

using DL techniques, so that the loss of quality produced by the reduction in the number of available directions were 

compensated by their AI-based algorithms. 

We have gathered the results and numerical data of the different methods in Table 6 to gain a deeper insight into 

the impact of each technique on performance. 

One of the methods (Team 9) exhibits remarkably disparate results compared to the other methods in terms of 

SSIM, PSNR, and the histogram shape. It is evident that the data generated using this technique deviates significantly 

from the expected results. The method does not accurately reconstruct the original data but instead, it produces a scaled 

version, as demonstrated in Fig. 7. The results presented in Table 5 indicate that the mean and variance of the data 

have undergone substantial alteration. Consequently, the method fails to detect statistically significant differences. 

Interestingly, the selected AI method, inputs, and outputs are similar to those of other teams that produce much better 



 
9 

results. Therefore, Team 9 can be considered an outlier and excluded from further analysis. 

The image-based quality metrics (SSIM and PSNR) show similar values for most of the methods but, however, 

they do not correlate with the results of the statistical test. Note, for instance, Team 5, which exhibits relatively low 

values in these metrics compared to the 21-gradients reference, but still demonstrates a good performance in the clinical 

study with a 28% improvement. Among the first four teams, three of them have lower SSIM and higher PSNR values 

compared to the reference but the best TBSS results. Conversely, Team 4 has improved quality metrics, but does not 

show improvement in TBSS. These results suggest that metrics based on visual features or global errors are not 

sufficient to evaluate the significant differences in clinical studies. The global improvement of visual quality in medical 

imaging data does not necessarily mean that the processed image is better for quantitative purposes. Therefore, 

alternative metrics should be used for those AI techniques that enhance medical imaging for numerical processing. 

Upon analysis of the TBSS results, three methods did not outperform the reference, while two methods displayed 

marginal improvement and only one method demonstrated a significant improvement of over 30%. When considering 

the TPR, most methods performed better than the reference, with eight methods identifying over 60% of the original 

voxels with statistically significant differences. There was no method with a number of TPs close to the reference with 

61 gradient directions, with at least 2000 unidentified voxels with TPs. However, this comes with a trade-off, as a 

higher number of TPs leads to a higher number of FPs. Note that one method achieved a TPR of 77%, but also 

generated an excessive FPR of 14.5%. Additionally, for all methods with TPR over 65%, the overall false positive rate 

exceeded 8%. 

The generation of false positives is a critical issue in clinical studies. The errors produced by FPs can have far-

reaching consequences for the validity and reliability of study findings, potentially undermining the usefulness of the 

study for informing clinical practice. Furthermore, if FPs are not adequately addressed, they can lead to misdiagnosis 

and patients receiving unnecessary treatment, resulting in a waste of resources and further testing. It is therefore crucial 

to strive for accurate results in clinical studies and to minimize the occurrence of FP through rigorous study design 

and analysis. 

The occurrence of FPs in this study is driven by two factors: (1) increased variance in the data and (2) AI-based 

processing. The former is a result of the relationship between angular resolution and variance of the tensor metrics 

(Poonawalla and Zhou, 2004; Tristán-Vega et al., 2012): the variance of the estimation error in the DT increases when 

fewer gradients are considered. As a consequence, as shown in Table 5, the standard deviations for the AD and MD 

metrics are slightly larger for the 21 gradient case compared to the 61 gradient case. This small increase of the variance 

results in a significant decrease in findings in the TBSS analysis and the presence of FPs. However, some methods 

that produce more FPs do not increase the variance, such as Team 8, where the FPs are instead generated by the 

processing algorithm itself. 

The results of the linear regression models in Fig 6, fitted for the AD and MD metrics (with accuracies of 0.907 

and 0.749, respectively) are particularly illuminating in this regard. Despite the differences in performance, inputs, 

and outputs among the methods and teams, there appears to be a constant rate of growth in FPs. This raises questions 

about the generalization of the application of AI-based methods from a single group, as only healthy controls were 

included in the training dataset. The results of this study suggested that the more new TPs are found, the more FPs 

appear, potentially indicating that some methods are generating significant differences regardless of their existence. 

In this context, the lack of patients with migraine in the training dataset prevented the DL methods from learning the 

specific properties of these patients in relation to the differences based on the number of diffusion gradient orientations. 

Thus, our results suggest that DL-based techniques oriented for clinical studies must include a broad sample composed 

of the diverse groups of interest to learn their particular features. Generalization of machine learning methods trained 

only in one group or of pre-trained networks not including clinical cohorts of interest in the training process for a task 

should be applied with extreme caution, as the data from these cohorts may be altered generating spurious results. 

Some tasks included in this generalization include processes not directly oriented to classification such as increasing 

the angular resolution, as assessed in this study, or data harmonization. Previous studies reached similar DTI-derived 

metrics using reduced compared to large datasets (Tian et al., 2020) or were able to generalize the extraction of DTI 

maps from diverse datasets (Sabidussi et al., 2023). However, these studies included no clinical cohorts, except a 

person with white matter hyperintensities, but no specific clinical condition (Sabidussi et al., 2023). It is worth noting 

that the method by Tian et al., (2020) was used by Team 5 in the challenge, and showed similar volumes compared to 

the 61-gradient reference, and, following the general trend of our results, a high increase in the number of TP (28.1%) 

and FP (14.2%). Considering the use of clinical cohorts, a recent study has shown that the additional inclusion of DTI 

features to genetic data improved the prediction results related to the prognosis of patients with glioma using a DL 

network (Yan et al., 2021), raising the importance of including the clinical groups of interest to learn the features 

potentially present in the patients. 

In this study, the type of AI method, inputs, and outputs used for augmenting the q-space sampling resolution 

showed no clear impact on the final results. Teams using different methods, such as the well-known U-Net, were found 

both in the top and bottom rankings. The use of a particular architecture does not ensure successful results. Similarly, 

the type of inputs and outputs used varied among teams with no clear correlation to performance. One team using 

scalar metrics as inputs (Team 4) had poor results, but no significant conclusion can be drawn as no other teams used 
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this approach. The use of SH coefficients as inputs (Team 7) could be worth exploring in dMRI-related applications, 

but its impact on results is once more not clear, since only one team used it in this study. 

There was no observed influence of output format on results, as the bottom-performing methods considered scalar 

metrics but so did the top-performing method. Interestingly, Team 2, which did not use DL, showed great performance 

similar to DL methods but with a simpler configuration. The results suggest that the selection of methods and format 

of input and output is not a determining factor for success in the task. The training process may play a role, see, for 

instance, Teams 4, 9, 10 and 14, which use only few volumes for validation and testing and achieved the poorest 

results. On the other hand, Teams 8, 5 and 1 used a similar training procedure with opposite results. Teams 6 and 7 

that did not train the model with the in vivo data but with a biophysical model, remains in the middle of the table. Note 

that these two cases did not use in-vivo training data at all, but the physics-based training, and they succeeded in 

generating DWI signal and the metrics for the healthy and unhealthy cases with good agreement. The improvement 

over the 21 gradients is moderate but, at the same time, they generate a low number of false positives. The lower 

number of TP of this method could be due to not using in-vivo data for training and it may indicate that in-vivo data 

may have richer features that are not captured by the biophysical models. 

Finally, the ultimate goal of the study was to replicate the scalar metrics calculated using 61 directions so 

histograms of the reconstructed data should be comparable to the original histogram, see Fig. 7. It is interesting to 

notice that, despite the TBSS results, the histogram of the scalars calculated with only 21 gradient directions are very 

similar to the original one. Some teams (9, 10, 13, 14) showed clear differences with the reference histogram and poor 

results in TBSS. On the other hand, the methods of the top four (teams 8, 5, 1, 12) showed high similarity with the 

original data. The remaining teams had slight variations in shape, mean and/or variance. 

This raises another crucial issue regarding the use of AI methods in data harmonization. In this study, only one 

source of difference was considered, i.e., the number of acquired gradient directions. However, in real-life studies, 

data from different facilities can also differ in terms of resolution, acquisition parameters, or vendor. In such cases, 

harmonization is essential to compare data sets from different sources on the same study. For harmonization of 

heterogeneous data, methods unassessed in this study such as transfer learning can be employed. Considering the 

results from the DL-based reconstructions included in this study, as shown in Fig. 7, the processed datasets may contain 

significant biases, even with decent results in metrics such as SSIM, PSNR, or MSE. Therefore, future studies must 

assess the effects of transfer learning or similar techniques for data harmonization in relation to the possible alteration 

of relevant features, differences between subjects or high rate of FPs. 

Finally, it is essential to highlight that the assessment of the methods used in this study was performed utilizing a 

database focused solely on migraine. Therefore, the findings presented herein may not be directly generalizable to 

other databases or pathologies. The specificities of the migraine database may influence the given results and their 

relevance to broader medical research. Different pathologies could exhibit distinct characteristics, patient populations, 

and data quality, potentially impacting the performance and applicability of the different methods. Thus, while this 

study's findings hold valuable insights into AI, caution must be exercised when extrapolating these results to other 

databases. 

 
6. Conclusions 

For this particular dMRI study, the performance of different AI methods to generate DTI-based measurements 

from 21 diffusion gradient orientations to those equivalent from a 61-gradient protocol was vastly divergent, with 

some methods even producing results inferior to using the unenhanced data. Methods that increase the number of new 

TPs do so at the cost of also increasing the number of FPs. This is a critical issue in clinical studies, as it has the 

potential to negatively impact results. While the results of this study cannot be generalized to other problems, it is 

advisable to exercise caution when using DL techniques in MRI-based clinical studies. Some important conclusions 

that can be drawn from this study include: 

1. Global image metrics based on visual quality and/or errors are inadequate for evaluating the quality of 

reconstructed datasets if they are to be used in statistical analysis. Such metrics could overlook false positives 

and false negatives, and alternative metrics that account for small, relevant differences should be adopted by the 

DL community. End-to-end methods are specifically designed with this goal in mind and may be considered in 

such situations. 

2. Enhancing the quality of medical imaging data using AI methods could significantly increase the number of 

FPs. In some cases, it might be more appropriate not to process the data in order to avoid biases in data analysis. 

3. The issues that may arise with the AI-based processing of dMRI are not limited to a particular scheme. The 

generalization of AI-based techniques to clinical groups using methods trained in a single group alters the 

information included in the clinical cohorts of interest. AI-based networks design options, the loss function and 

the hyperparameter search should be focused on a specific clinical application including data from all groups of 

interest in the training process. 
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Figures and Tables 
 
 

 

 
 

 

Figure 1: Overview of the study carried out in this work. TOP: State of the art process of DTI data using 61 and 21 gradient directions EM is 

compared to CM using data acquired with 61 gradient directions. BOTTOM: Overview of the task proposed in the challenge: a Deep Learning 
network is trained using healthy controls. The trained network is used to estimate parameters from patients acquired with 21 gradient directions.  
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Figure 2: Sampling scheme of the sphere for the definition of the gradient directions in the dMRI acquisition protocol. Red points indicate the 

samples for 21 gradient directions. Blue points indicate a sampling of 40 directions. The complete sampling (61 directions) requires the blue and 
red points. (a) Samples over the icosahedron. (b) Sampling directions over the surface of the sphere (podal and antipodal directions are shown). 
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 Architecture Input data Output data Description 

Conventional machine learning 

Team 2  FCN  DWIs  DWIs  
FCN interpolation of DWI data using HemiHex (Faiyaz et al., 

2022b) subsampling in q-space.  

Convolutional neural networks 

Team 1  CNN+ MLP  DWIs  FA/AD/MD  
Direct mapping the DWIs into the enhanced metrics through 

convolutions and multilayer perceptron.  

Team 4  CNN  FA/AD/MD  FA/AD/MD  

Mapping between the diffusion metrics estimated from 21 

gradients and enhanced metrics via convolutions and residual 

learning.  

Other deep learning architectures 

Team 3  UN  DWIs  FA/AD/MD  
Mapping sparse spatial-angular resolution into diffusion 

parameters by fully connected layers.  

Team 5  U-Net  FA + DWIs  FA + DWIs  

FA: Mapping the DWIs and FA estimated from 21 gradients into 

the corresponding enhanced FA through U-net with extra dropout 

layers. AD, MD: Denoising the DWIs and DTI estimation.  

Team 6  DAE  DWIs  DWIs  

Modeling dMRI signal with a three-compartment model and 

mapping 21 DWIs into enhanced equivalents via the auto-encoder 

network.  

Team 7  DAE  SH coeffi- cients  DWIs  

Modeling dMRI signal with a three-compartment model and 

mapping the spherical harmonics coefficients between DWIs 

using the auto-encoder network.  

Team 8  AEME  DWIs  FA/AD/MD  

Direct mapping the DWIs from 21 gradients into the 

corresponding metric through iteration blocks for sparse 

representation of dMRI signals with extragradient.  

Team 9  U-Net  DWIs  FA/AD/MD  
Direct mapping the DWIs estimated from 21 gradients into the 

corresponding measure through Encoder-Decoder framework.  

Team 10  

CNN+ 

residue 

learning  

DWIs  DWIs  
Mapping DWIs to obtain diffusion metrics by use of synthetic 

DWIs generated by video frame interpolation in the polar space.  

Team 11  
CNN+ 

SARDI-Net  
DWIs  FA/AD/MD  

Mapping the DWIs into the enhanced metrics through q-space 

sampling.  

Team 12  DNSR  DWIs  DWIs  
Mapping the DWIs into the corresponding enhanced metrics by 

progressive subsampling and reconstruction through convolution.  

Team 13  
Swin- 

Transformer  
DWIs  FA/AD/MD  

Mapping the DWIs into diffusion metrics by attention and 

perception mechanisms and adjusting the data to each value 

range.  

Team 14  U-Net  DWIs  
FA/AD/MD 

(difference 21-61)  

Mapping the DWIs into the difference between 21 and 61 

scenario by max pooling and up sampling with skip layers.  

 

 

Table 1: Employed AI-reconstruction methods to synthesize FA, AD and MD from 21 gradient directions. FCN: Fully Connected Network; CNN: 

Convolutional neural network; MLP: Multilayer perceptron; UN: Unrolled network (Ye et al., 2020; HashemizadehKolowri et al., 2022); U-Net 

(C¸ i¸cek et al., 2016; Tang et al., 2021, 2022); DAE: Denoising autoencoder (Faiyaz et al., 2022b); AEME: Adaptive network with extragradient 

for dMRI based microstructure estimation (Zheng et al., 2022); SARDI-Net: Super-angular Resolution Diffusion Imaging Network (Chen et al., 

2021); DNSR: Dual network scoring and reconstruction (Blumberg et al., 2022); Swin-Transformer (Liu et al., 2021). The term enhanced metrics 
used in the description of the methods refers to the 3 considered metrics (FA, MA, AD) calculated by the different methods to achieve a quality 

similar to the parameters estimated from 61 gradient directions. 
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 NUMBER OF SUBJECTS   

 TRAINING VALIDATION TESTING LOSS FUNCTION CROSS-VALIDATION 

Team 1∗  
45 

48 

5 

12 

10 

0 

MSE 

MSE 

No 

5-fold 

Team 2†  3 5 5 MSE No 

Team 3  36 9 15 MSE No 

Team 4  44 10 6 MSE No 

Team 5∗  
40 

50 

10 

10 

10 

0 

FA: MSE/ AD, MD: MAE 

FA: MSE/ AD, MD: MAE 

No 

No 

Team 6‡  0 5 0 MSE No 

Team 7‡  0 5 0 MSE No 

Team 8  42 6 12 MSE No 

Team 9  48 0 12 MAE 5-fold 

Team 10  50 5 5 VGG loss No 

Team 11  40 0 20 MSE No 

Team 12  48 6 6 MSE 10-fold 

Team 13⋄  16 2 2 MAE No 

Team 14  54 3 3 MSE No 

 

Table 2: Training procedure for the different AI methods considered: Number of subjects used for training, validation, and testing; loss function 

used for training. ∗Teams 1 and 5 trained the method with two different divisions of subjects to improve the results after selecting the best method. 
†Only 13 subjects were used to train the method, and the remaining subjects were unused. ‡Artificially generated samples using a three-compartment 

biophysical model for training and testing subsets. The method was trained with three different sets of 20 subjects. 
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Figure 3: Slide 81 from one CM patient. Three metrics are considered (FA, AD, MD), estimated from the original data (“61 grads”), the original 
data with only 21 directions (“21 grads”) and the different AI-enhanced methods. 
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 SSIM PSNR 

 FA AD MD FA AD MD 

REF (21 grad) 0.90 0.91 0.94 30.0 80.2 83.3 

Team 1 0.92 0.92 0.94 31.5 81.0 83.3 

Team 2 0.91 0.91 0.94 30.8 80.6 82.7 

Team 3 0.92 0.92 0.94 31.4 80.8 83.3 

Team 4 0.92 0.92 0.94 31.5 81.1 83.4 

Team 5 0.92 0.84 0.88 31.5 68.8 71.1 

Team 6 0.90 0.91 0.94 30.4 79.9 81.6 

Team 7 0.90 0.91 0.94 29.1 80.2 82.8 

Team 8 0.89 0.90 0.92 29.8 76.2 78.6 

Team 9 0.48 0.42 0.53 22.4 68.9 70.7 

Team 10 0.87 0.90 0.93 29.1 79.3 80.8 

Team 11 0.92 0.92 0.94 31.4 80.7 83.2 

Team 12 0.91 0.90 0.93 30.7 78.3 79.3 

Team 13 0.84 0.86 0.90 28.4 78.4 80.1 

Team 14 0.90 0.91 0.94 30.7 78.3 79.3 

 

Table 3: Quality metrics between AI-enhanced scalars (FA, AD, MD) using 21 gradients compared to the original scalars calculated with 61 
gradients. Structural similarity index measure (SSIM) and Peak Signal to noise ratio (PSNR) are calculated. “REF (21 grad)” stands for the metrics 

calculated directly from 21 gradient directions without using any AI algorithm to process the data. Results show the average for the 100 reconstructed 

volumes. In red, those cases that did not improve the reference. In amber, those cases that are slightly worse than the reference. 
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       ROIS 

 FA AD MD TP FP 

 FP TP FP TP FP TP FA AD MD FA AD MD 

61 GRADS 0 0 0 17029 0 14981 0 40 40 0 0 0 

21 GRADS 0 0 626 6981 797 5941 0 29 27 0 0 0 

Team 1 0 0 1516 10721 2572 10266 0 32 38 0 0 2 

Team 2 0 0 1553 10594 1880 9592 0 34 38 0 0 1 

Team 3 0 0 1345 10049 2330 9887 0 34 37 0 0 2 

Team 4 0 0 373 4797 1859 8563 0 21 35 0 0 4 

Team 5 0 0 1938 11766 2594 10022 0 36 38 0 2 2 

Team 6 0 0 1312 9005 818 6313 0 34 30 0 1 0 

Team 7 0 0 978 8845 1680 8433 0 33 35 0 0 1 

Team 8 0 0 3381 13402 3384 11375 0 37 40 0 2 1 

Team 9 0 0 0 0 0 0 0 0 0 0 0 0 

Team 10 0 0 2386 10332 3150 9586 0 35 38 0 1 2 

Team 11 0 0 1957 11354 2540 9841 0 34 38 0 1 2 

Team 12 0 0 2117 11799 2785 9999 0 35 37 0 1 2 

Team 13 0 0 1197 7069 1879 7802 0 33 36 0 0 1 

Team 14 0 0 222 3736 1710 7016 0 19 31 0 0 1 

 

 

(a) Absolute numbers 
 

 AD MD TOTAL 

 ACC TPR TNR PPV FPR ACC TPR TNR PPV FPR ACC TPR TNR PPV FPR 
Comp 21 

grads 

21 GRADS 73% 41% 97% 92% 3% 75% 40% 97% 88% 3% 74% 40% 97% 90% 3% 0,0% 

Team 1 80% 63% 93% 88% 7% 81% 69% 89% 80% 11% 81% 66% 91% 84% 9% 26,3% 

Team 2 80% 62% 93% 87% 7% 81% 64% 92% 84% 8% 81% 63% 93% 85% 7% 25,6% 

Team 3 79% 59% 94% 88% 6% 81% 66% 90% 81% 10% 80% 62% 92% 84% 8% 23,2% 

Team 4 68% 28% 98% 93% 2% 79% 57% 92% 82% 8% 73% 42% 95% 86% 5% -1,8% 

Team 5 82% 69% 91% 86% 9% 81% 67% 89% 79% 11% 81% 68% 90% 83% 10% 28,1% 

Team 6 76% 53% 94% 87% 6% 76% 42% 97% 89% 3% 76% 48% 95% 88% 5% 8,2% 

Team 7 77% 52% 96% 90% 4% 79% 56% 93% 83% 7% 78% 54% 94% 87% 6% 15,2% 

Team 8 82% 79% 85% 80% 15% 82% 76% 86% 77% 14% 82% 77% 85% 79% 15% 31,8% 

Team 9 57% 0% 100% 0% 0% 62% 0% 100% 0% 0% 59% 0% 100% 0% 0% -56,1% 

Team 10 77% 61% 89% 81% 11% 78% 64% 87% 75% 13% 78% 62% 88% 78% 12% 14,1% 

Team 11 81% 67% 91% 85% 9% 80% 66% 90% 79% 10% 80% 66% 90% 82% 10% 25,3% 

Team 12 81% 69% 90% 85% 10% 80% 67% 89% 78% 11% 81% 68% 89% 82% 11% 26,3% 

Team 13 72% 42% 95% 86% 5% 77% 52% 92% 81% 8% 74% 46% 93% 83% 7% 1,4% 

Team 14 66% 22% 99% 94% 1% 75% 47% 93% 80% 7% 70% 34% 96% 85% 4% -13,1% 

 

 

(b) Ratios 
 

Table 4: Statistically significant differences for the comparison between CM and EM using TBSS in terms of True Positives (TP) and False Positives 
(FP) for the 3 considered metrics (FA, AD, MD) and total TPs and FPs over all metrics. “61 grads” and “21 grads” stand for the metrics calculated 

directly from 61 and 21 gradient directions without using any AI algorithm to process the data. A total number of 39256 points is considered. (a) 
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Absolute number for each Team. (b) Ratios of the metrics in the previous table. “Compar. 21” stands for the global improvement with respect to 

the reference (21 gradients). 
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Figure 4: Number of voxels with significant differences detected by TBSS for the different methods. Blue: true positives detected by Ref21. 
Green: True positives detected by Ref61 but not by Ref21. Red: False positives. 
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Figure 5: Histograms of (new) TPs (blue) and FPs (red) found for AD and MD. The number of coincidences ‘n’ in the abscissa indicates the number 
of voxels detected as statistically significant in ‘n’ teams at the same time. 
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Figure 6: Relation between the (new) true positives and the false positives for each method computed by a linear regression. Each marker denotes 

the value for a different Team using values from Table 4. The red lines indicate the linear model fitted to the data. The dashed lines indicate the 5th 

and 95th percentiles. The regions between them were shaded for visualization purposes. The goodness-of-fit R2 is indicated in each plot with the 
parameters of the linear fitting. 
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  Ref 61 Ref 21 T.1 T.2 T.3 T.4 T.5 T.6 

F
A

 Mean 0.5962 0.5967 0.5932 0.5508 0.5948 0.5853 0.5859 0.5647 

STD 0.1428 0.1416 0.1412 0.1367 0.1428 0.1360 0.1405 0.1427 

CV 0.2395 0.2373 0.2381 0.2481 0.2400 0.2324 0.2399 0.2527 
A

D
 Mean (10-3) 13.086 13.123 13.065 12.369 13.053 12.792 13.003 12.581 

STD (10-3) 0.2365 0.2392 0.2360 0.2023 0.2356 0.2207 0.2420 0.2230 

CV 0.1807 0.1823 0.1806 0.1635 0.1805 0.1725 0.1861 0.1773 

M
D

 Mean (10-3) 0.7325 0.7347 0.7322 0.7277 0.7312 0.7346 0.7305 0.7284 

STD (10-3) 0.7720 0.7784 0.7631 0.7576 0.7680 0.7228 0.7772 0.7706 

CV 0.1054 0.1059 0.1042 0.1041 0.1050 0.0984 0.1064 0.1058 

 
 T.7 T.8 T.9 T.10 T.11 T.12 T.13 T.14 

F
A

 Mean 0.5937 0.5776 0.3048 0.4909 0.5919 0.5866 0.5112 0.5877 

STD 0.1421 0.1392 0.1252 0.1318 0.1409 0.1409 0.1368 0.1408 

CV 0.2393 0.2411 0.4108 0.2686 0.2380 0.2402 0.2677 0.2396 

A
D

 Mean (10-3) 13.066 12.924 0.5606 12.618 13.061 12.924 12.400 12.076 

STD (10-3) 0.2379 0.2352 0.0867 0.2114 0.2392 0.2304 0.1936 0.2390 

CV 0.1821 0.1820 0.1546 0.1675 0.1831 0.1783 0.1562 0.1979 

M
D

 Mean (10-3) 0.7337 0.7353 0.4177 0.7853 0.7296 0.7301 0.7306 0.7334 

STD (10-3) 0.7773 0.7465 0.3321 0.8333 0.7642 0.7538 0.5086 0.7794 

CV 0.1060 0.1015 0.0795 0.1061 0.1047 0.1032 0.0696 0.1063 

 

Table 5: Statistics (Mean, standard deviation, and coefficient of variation) of metrics FA, AD and MD, measured over the skeleton of the FA for 
all the EM subjects. Similar results can be found for CM subjects. We have highlighted those values that differ the most with respect the original 

data (61-direction reference). 
 

 

  



 
27 

 

 

Figure 7: Histograms of the values of the three considered metrics (FA, AD, MD) for the EM processed volumes provided by the different teams. 
The histograms are calculated over the area given by the FA mask. R61: Histogram of the original data calculated with 61 gradient directions; R21: 

histogram of the original data calculated with 21 gradient directions; Tn: histogram of the data provided by Team n. R61 (continuous blue line) is 

included to all the figures for the sake of reference. 
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TBSS 
ORDER 

Compar. 
21 grads 

ACC TPR FPR SSIM PSNR TRAIN VALID. TEST LOSS FUNC SCHEME INPUT OUTPUT 
  

Team 8 1 31.8% 82.2% 77.4% 14.5% 0.91 61.5 42 6 12 MSE AEME  DWIs FA/AD/MD 

IM
P

R
O

V
E

M
EN

T
 

Team 5 2 28.1% 81.2% 68.1% 9.7% 0.88 57.1 40 10 10 MSE / MAE U-Net DWIs + FA DWIs + FA 

Team 1 3 26.3% 80.8% 65.6% 8.8% 0.93 65.2 45 5 10 MSE CNN + MLP DWIs FA/AD/MD 

Team 12 4 26.3% 80.8% 68.1% 10.5% 0.91 62.8 48 6 6 MSE DNSR  DWIs DWIs 

Team 2 5 25.6% 80.6% 63.1% 7.4% 0.92 64.7 3 5 5 RMSE FCN DWIs DWIs 

Team 11 6 25.3% 80.5% 66.2% 9.7% 0.93 65.1 40 0 20 PSNR CNN + SARDI-Net DWIs FA/AD/MD 

Team 3 7 23.2% 79.9% 62.3% 7.9% 0.93 65.2 36 9 15 MSE UN DWIs FA/AD/MD 

Team 7 8 15.2% 77.9% 54.0% 5.7% 0.92 64.0 0 5 0 MSE DAE SH coeffs DWIs 

SM
A

LL IM
P

R
O

V
 

Team 10 9 14.1% 77.5% 62.2% 11.9% 0.90 63.0 50 5 5 VGG loss CNN + RL DWIs DWIs 

Team 6 10 8.2% 76.0% 47.9% 4.6% 0.92 64.0 0 5 0 MSE DAE DWIs DWIs 

Team 13 11 1.4% 74.3% 46.5% 6.6% 0.87 62.3 16 2 2 MAE Swin-Transformer DWIs FA/AD/MD 

21 GRADS 12 0.0% 73.9% 40.4% 3.1% 0.92 64.5 - - - - - - - Ref 

Team 4 13 -1.8% 73.4% 41.7% 4.8% 0.93 65.3 44 10 6 MSE CNN FA/AD/MD FA/AD/MD 

N
O

 IM
P

R
O

V
 

Team 14 14 -13.1% 70.5% 33.6% 4.2% 0.92 62.8 54 3 3 MSE U-Net DWIs FA/AD/MD 

Team 9 15 -56.1% 59% 0.0% 0% 0.48 54.0 48 0 12 MAE U-Net DWIs FA/AD/MD 

 

 

Table 6: Overview of all the results. The Methods have been ordered following results of the comparison with 21 gradient directions. SSIM and 

PSNR shows the average of the values in Table 3. For Teams 1 and 5, only the numbers for the first training methods are shown. 
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