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Abstract 

SARS-CoV-2 variants of concern (VOCs) arise against the backdrop of increasingly heterogeneous 

human connectivity and population immunity. Through a large-scale phylodynamic analysis of 

115,622 Omicron genomes, we identified >6,000 independent introductions of the antigenically 

distinct virus into England and reconstructed the dispersal history of resulting local transmission. We 

estimate that by the time Omicron BA.1 was reported in southern Africa (November 22nd, 2021) six of 

the eight largest transmission lineages were already established in England. During that time 
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internationally well-connected hubs started acting as exporters of the variant which led to continued 

seeding of the VOC to England where it locally dispersed through the hierarchical travel network. Our 

results offer a detailed characterisation of processes that drive the invasion of an emerging VOC 

across multiple spatial scales. Genomic surveillance along the travelling network, coordinated and 

rapid decision making during the emergence of infectious diseases is necessary to delay their arrival. 

 

One sentence summary: Omicron variant was introduced into England before detection in South 

Africa and rapidly disseminated from city to city. 

 

Main Text 

Since the emergence of SARS-CoV-2 in late 2019, multiple variants of concern (VOCs) have 

sequentially dominated the pandemic across the world. The Omicron variant (Pango lineage B.1.1.529 

later divided into lineages including BA.1 and BA.2) was discovered in late November 2021, through 

genomic surveillance in Botswana and South Africa and a traveller from South Africa in Hong Kong 

(1) and designated a VOC by the World Health Organisation on 26 November 2021 (2). An initial 

surge in Omicron cases in South Africa indicated a higher transmission rate than previous variants (3), 

which studies later attributed to a shorter serial interval, increased immune evasion and greater 

intrinsic transmissibility (4–7). The mechanism for this greater transmissibility is hypothesised to be 

altered tropism and higher replication in the upper respiratory tract (8, 9). Together with waning levels 

of population immunity from previous infections and vaccination (10), local transmission of Omicron 

BA.1 was soon reported thereafter in major travel hubs worldwide, including New York City and 

London by early December 2021, despite travel restrictions on international flights from multiple 

southern African countries (11, 12). 

 

Following the first confirmed case of Omicron BA.1 in England on 27 November 2021 (13), Omicron 

prevalence increased rapidly across all regions of England, with Greater London prevalence peaking 

first in mid-December at ~6%, followed by the South East region (14). Other metropolitan areas in the 

North West and North East saw similar but delayed increases in prevalence with observed peaks 

https://paperpile.com/c/ivsGqs/B3skB
https://paperpile.com/c/ivsGqs/B3skB
https://paperpile.com/c/ivsGqs/B3skB
https://paperpile.com/c/ivsGqs/hQzZC
https://paperpile.com/c/ivsGqs/hQzZC
https://paperpile.com/c/ivsGqs/hQzZC
https://paperpile.com/c/ivsGqs/3uSbt
https://paperpile.com/c/ivsGqs/3uSbt
https://paperpile.com/c/ivsGqs/3uSbt
https://paperpile.com/c/ivsGqs/ROWwx+zAxt8+hSuFP+GKJnu
https://paperpile.com/c/ivsGqs/ROWwx+zAxt8+hSuFP+GKJnu
https://paperpile.com/c/ivsGqs/ROWwx+zAxt8+hSuFP+GKJnu
https://paperpile.com/c/ivsGqs/ROWwx+zAxt8+hSuFP+GKJnu
https://paperpile.com/c/ivsGqs/ROWwx+zAxt8+hSuFP+GKJnu
https://paperpile.com/c/ivsGqs/HMurg+cTl9m
https://paperpile.com/c/ivsGqs/HMurg+cTl9m
https://paperpile.com/c/ivsGqs/HMurg+cTl9m
https://paperpile.com/c/ivsGqs/HMurg+cTl9m
https://paperpile.com/c/ivsGqs/HMurg+cTl9m
https://paperpile.com/c/ivsGqs/4HQpV
https://paperpile.com/c/ivsGqs/4HQpV
https://paperpile.com/c/ivsGqs/4HQpV
https://paperpile.com/c/ivsGqs/4R2y6+5S8mW
https://paperpile.com/c/ivsGqs/4R2y6+5S8mW
https://paperpile.com/c/ivsGqs/4R2y6+5S8mW
https://paperpile.com/c/ivsGqs/4R2y6+5S8mW
https://paperpile.com/c/ivsGqs/4R2y6+5S8mW
https://paperpile.com/c/ivsGqs/iE5Ji
https://paperpile.com/c/ivsGqs/iE5Ji
https://paperpile.com/c/ivsGqs/iE5Ji
https://paperpile.com/c/ivsGqs/mX3oc
https://paperpile.com/c/ivsGqs/mX3oc
https://paperpile.com/c/ivsGqs/mX3oc


 

4 

between early- and mid-January 2022. Incidence of Omicron BA.1 had declined substantially in 

Greater London and other southern regions by early-January 2022, resulting in a gradient of 

decreasing prevalence from north to south England (15). This spatiotemporal pattern of early spread 

was also observed for the Alpha variant in England (16), but is markedly different from that of the 

Delta variant, which spread initially from the North West and surrounding regions of England (17). 

Rapid growth in infections during the initial emergence of Omicron in England prompted the UK 

government to impose interventions including a move to “Plan B” non-pharmaceutical restrictions (a 

mandatory COVID pass for entry into certain indoor venues, face coverings and work-from-home 

guidance) on 8 December 2021 (18) and an accelerated program of booster vaccination for all adults 

by mid-December 2021 (19). The prevalence of SARS-CoV-2 in England decreased later in January 

2022, coincident with a falling proportion of BA.1 infections as BA.2 lineage replaced BA.1 as the 

dominant lineage, which itself was later replaced by the BA.4 and BA.5 lineages (20–22). 

 

Understanding and quantifying the relative contributions of the factors that determined the arrival and 

spatial dissemination of Omicron BA.1 in England can help inform the design of spatially-targeted 

interventions against future VOCs (23). Here, we analyse the initial Omicron BA.1 wave in England, 

using a dataset of 48,748 Omicron BA.1 genomes sampled in England. This dataset represents ~1% of 

all confirmed Omicron BA.1 cases in England during the study period and is combined with sub-city 

level aggregated and anonymized human mobility and epidemiological data from 313 lower tier local 

authorities (LTLAs) in England. 

 

International seeding events and Omicron BA.1 lineage dynamics 

To investigate the timing of virus importations into England and the dynamics of their descendent 

local transmission lineages, we undertook a large-scale phylodynamic analysis of 115,622 SARS-

CoV-2 Omicron genomes (BA.1/BA.2 and their descendent lineages), sampled globally between 8 

November 2021 and 31 January 2022. About 42% (N=48,748) were sampled from England and 

sequenced by the COVID-19 Genomics UK (COG-UK) consortium (24). All available genomes 

(from COG-UK and GISAID (25) on 12 and 9 April 2022 respectively) collected before 28 November 
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2021 were included; genomes collected after that date were randomly subsampled in proportion to 

weekly Omicron case incidence while maintaining a roughly 1:1 ratio between English and non-

English samples. To reduce potential bias caused by heterogeneous sequencing coverage, we 

performed a weighted subsampling of the English genomes using a previously developed procedure 

which accounts for variation in the number of sequences sampled per reported case at the Upper Tier 

Local Authority (UTLA) level (26) (supplementary material, materials and methods). 

 

We identified at least 6,455 [95% HPD: 6,184 to 6,722] independent importation events. Most 

imports from outside of England (69.9% [95% HPD: 69.0 to 70.7]) led to singletons (i.e., a single 

genome sampled in England associated with an importation event, which did not lead to observable 

local transmission in our dataset). The earliest importation event is estimated between 5 and 18 

November (approximated as the midpoint between the inferred times of the most recent common 

ancestor (MRCA) of the transmission lineage and the parent of the MRCA (PMRCA)). Between the 

first introduction event and mid-December 2021, we infer an approximately exponential increase in 

the daily number of imports before a plateau in early January 2022 (Fig. 1C). There is some indication 

that the daily importation rate was raised between 22 November, when Omicron was first reported 

and the start of travel restrictions (Fig. 1C). Increased outflow of passengers before (and possibly in 

anticipation of) travel restrictions has been reported for earlier waves of SARS-CoV-2 (16, 27). This 

rapid growth in importation continued despite restrictions on incoming international travel from 11 

southern African countries and could have originated from Omicron outbreaks in other countries in 

late November and early December 2021. To explore this hypothesis, we calculate the Estimated 

Importation Intensity (EII) of Omicron BA.1 from countries with the highest air traffic volumes to the 

UK capturing 80% of total air travel. We aim to increase the resolution of the global scale analyses in 

Tegally et al. (2023) (28) by focusing on Omicron imports to England specifically. For each source 

location, the EII measure combines the weekly average COVID-19 test positivity rate, weekly relative 

prevalence of Omicron BA.1 genomes, and monthly number of observed air passengers travelling to 

England (see supplementary material, materials and methods for details and sensitivity analysis using 

case data and geographic disaggregations; Fig S4-S6). While the earliest imports were mostly inferred 
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to have come from South Africa, we observe a shift in Omicron BA.1 imports from South Africa to a 

larger set of countries, by late November/early December 2021 (Fig. 2), during the period of travel 

restrictions on South Africa. We performed a sensitivity analysis in which EIIs are instead calculated 

using per capita case incidence rather than test positivity and the results are broadly consistent (Fig. 

S6). 

 

We conclude the exponential growth of BA.1 importations through mid-December is therefore in part 

due to introductions from countries other than South Africa (Fig. 1B and Fig. 2), which became major 

contributors due to the Omicron epidemics there and the substantial volume of air travel to England  

(Fig. S5). At the time when travel restrictions to 11 southern African countries were announced, 

sequences of Omicron BA.1 from only four countries had been uploaded to GISAID (25). We note 

that our work is not designed to quantitatively assess the impact of these restrictions on infection 

numbers in England. 

 

 

Fig. 1: Dynamics of Omicron BA.1 transmission lineages in England. (A) Timeline of key events 

during the SARS-CoV-2 Omicron BA.1 wave in England until February 2022. (B) Histogram of the 

estimated daily number of Omicron BA.1 cases, coloured according to the proportion of cases 

attributable to importation at different times (shaded region shows period of travel restrictions). Solid 
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lines represent the daily frequency of inferred importations (7-day rolling average), coloured 

according to the size of resulting local transmission lineages; shading denotes the 95% HPD across 

the posterior tree distribution. For each of the eight largest detected transmission lineages (labelled A 

to H), the estimated time of importation, TPMRCA (inferred time of parent of most recent common 

ancestor) and TMRCA (inferred time of most recent common ancestor) are shown in the bottom left of 

the panel. (C) Daily frequency of inferred importations (7-day rolling average), without stratification 

by size of resulting local transmission lineage (black dots); error bars denote the 95% HPD across 

the posterior tree distribution. Solid blue line represents the daily number of imports expected from 

an exponential model fitted to the observed 7-day rolling average importation intensity. (D) 

Distribution of TPMRCAs and TMRCAs of all 6,455 detected introductions. Each horizontal line 

represents a single introduction event that led to a transmission lineage or a singleton, with the left 

limit indicating the TPMRCA and the right limit indicating the TMRCA (or genome collection date for 

a singleton). 

 

To cross-validate the importation dynamics inferred from viral genomes using an independent data 

source, we extracted data from the Variant and Mutations (VAM) line list (29) provided by the UK 

Health Security Agency (UKHSA) and calculated the daily number of incoming travellers who were 

later tested positive for Omicron BA.1 in community surveillance (Pillar 2) of the UK SARS-CoV-2 

testing programme. The temporal profile of importation intensity from these epidemiological data is 

broadly consistent with that inferred from the phylodynamic analysis, with the latter being temporally 

expanded and lagged compared to the former (Fig. S2). This observation is consistent with previous 

studies (30) and the apparent discrepancy represents the time lag between international importation 

and the first local transmission event that is observable from phylogenetic data. 

 

As with the emergence of previous variants in England (17, 30), we find that transmission lineage 

sizes are overdispersed (Fig. S3), with most sampled genomes belonging to a small number of large 

transmission lineages. The eight largest transmission lineages (each with >700 genomes) together 

comprise >60% of the genomes sampled in England in our dataset (Fig. 1B). Most of these (six of 
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https://paperpile.com/c/ivsGqs/cfgKh
https://paperpile.com/c/ivsGqs/cfgKh
https://paperpile.com/c/ivsGqs/QACnz
https://paperpile.com/c/ivsGqs/QACnz
https://paperpile.com/c/ivsGqs/QACnz
https://paperpile.com/c/ivsGqs/g3bGy+QACnz
https://paperpile.com/c/ivsGqs/g3bGy+QACnz
https://paperpile.com/c/ivsGqs/g3bGy+QACnz
https://paperpile.com/c/ivsGqs/g3bGy+QACnz
https://paperpile.com/c/ivsGqs/g3bGy+QACnz


 

8 

eight) are inferred to have been imported before restrictions on travel from southern African countries 

were introduced (26 November  2021), and three could have been introduced before the first 

epidemiological signal of the new variant (an uptick in S-gene target failure, SGTF, samples 

identified by a private lab in South Africa on 15 November 2021 (Fig. 1B). Additionally, we observe 

a strong association between the size and time of importation of local transmission lineages, with 

most large transmission lineages attributed to early introductions between 5 and 13 November 2021 

(Fig. 1B). This pattern can be recapitulated using a simple mathematical model; if all lineages share 

the same transmission characteristics, then the date of importation is the main determinant of 

transmission lineage size when the epidemic in the recipient location is growing exponentially (see 

materials and methods). 
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Fig. 2: Estimated Importation Intensity (EII) of Omicron BA.1 from selected potential exporters. 

Estimated weekly number of Omicron BA.1 cases arriving in England from 27 countries (including 

Scotland and Northern Ireland independently) with the highest air passenger volumes arriving in 

England between November 2021 and January 2022 (collectively accounting for ~80% of total air 

passenger volume in this period). Thick solid lines represent EIIs from eight selected countries with 

notable contribution to the overall importation intensity at different points during the study period; 

thin grey lines represent all other countries. Inset shows a magnified view of early trends. (B) Relative 
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proportion of weekly EII of Omicron BA.1 by country among selected potential exporters. Areas 

representing countries highlighted in (A) are labelled. See supplementary materials for sensitivity 

analyses. 

 

We estimate that 399 transmission lineages (including the eight largest) resulted from importation 

events before the end of restrictions on travel from southern Africa (15 December 2021); 29 of these 

lineages were introduced before 26 November 2021. Although these early imports account for only a 

small proportion (~6%) of the estimated total number of introductions, they are responsible 

collectively for ~80% of Omicron BA.1 infections reported in England to the end of January 2022. 

 

Some transmission lineages from early importations were only detected several weeks after their 

inferred time of importation. However, we interpret this result cautiously, as we cannot exclude the 

possibility that these transmission clusters represent the aggregation of multiple independent 

transmission lineages, as a result of unsampled genetic diversity outside England. Such aggregation 

would result in earlier estimated dates of importation, potentially explaining the smaller than expected 

size (compared to predictions from simulations; Fig. S7 and Fig. S8) of these transmission lineages 

with unusually long importation lag (30). Future analyses incorporating detailed metadata on travel 

history could help reduce the degree of uncertainty in the number and timing of inferred importation 

events (31, 32). 

 

Human mobility drives spatial expansion and heterogeneity in Omicron BA.1 growth 

The rapid increase in Omicron importations in late 2021 led to the establishment of local transmission 

chains, initially concentrated in Greater London and neighbouring LTLAs in the South West and East 

of England. This coincided with early increases in Omicron BA.1 prevalence in the corresponding 

regions, as observed from SGTF data and other epidemiological studies based on prevalence surveys 

(15). To further investigate the spatiotemporal dynamics of Omicron transmission lineages in 

England, we reconstructed the dispersal history of all identified transmission lineages (with >5 

genomes) using spatially explicit phylogeographic techniques. Sampling of English genomes was 

https://paperpile.com/c/ivsGqs/QACnz
https://paperpile.com/c/ivsGqs/QACnz
https://paperpile.com/c/ivsGqs/QACnz
https://paperpile.com/c/ivsGqs/6W765+Td178
https://paperpile.com/c/ivsGqs/6W765+Td178
https://paperpile.com/c/ivsGqs/6W765+Td178
https://paperpile.com/c/ivsGqs/6W765+Td178
https://paperpile.com/c/ivsGqs/6W765+Td178
https://paperpile.com/c/ivsGqs/jYXGe
https://paperpile.com/c/ivsGqs/jYXGe
https://paperpile.com/c/ivsGqs/jYXGe


 

11 

highly representative of the estimated number of Omicron BA.1 cases at the UTLA level (Fig. S9; 

comparison with modelled case incidence with adjustment for changes in case reporting is shown in 

Fig. S10).  

 

We observe multiple distinct stages to the spread of BA.1 across England, with the eight largest 

identified transmission lineages sharing broadly similar patterns of spatial dispersal. Unlike other 

variants, we find that the numbers of transmission lineages first detected are fairly evenly distributed 

among regions, with ~20% in Greater London (followed by 15.4% in the South East and 13.3% in the 

North West; if only introductions prior to December 2021 are considered, the value for Greater 

London is 27.3%). However, most of the early cases outside Greater London resulted in limited local 

spatial diffusion (Fig. 3, Fig. S11 and Fig. S12). 

 

Further, initial long distance viral lineage movements from Greater London repeatedly arrived in 

multiple urban (according to 2011 Rural-Urban Classification by the UK Office of National Statistics 

(33)) conurbations in early/mid-December 2021, but local transmission was not established 

immediately. The fraction of all viral lineage movements that were local (within-city) remained 

between 25%-50% from December 2021 to January 2022 in all areas except Greater London and 

Greater Manchester. This fraction grew when local mobility levels recovered after the holiday period 

(34–37), coinciding with the time when local transmission was established across most LTLAs in 

England. In contrast, between November and December 2021, local viral movements in Greater 

London and Greater Manchester comprised ~90% and ~60% of all movements respectively, 

indicating that epidemics in those locations were driven by multiple locally-established lineages (Fig. 

S11).  Further, cities other than Greater London acted primarily as sinks throughout the BA.1 wave 

with limited backflow of long-distance viral lineages from North West England to Greater London 

(e.g. Transmission Lineage-A and Transmission Lineage-B; similar dynamics are also seen for the 

South West of England; Fig. 3E). We define locations as sinks/sources according to whether there was 

a net flow of viral lineages into/out of the location over the study period. 
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Even after the establishment of local transmission in most English LTLAs, Greater London continued 

to be a source of mid-to-long range viral lineage movements (Fig. 3E). This is expected given that 

Greater London is a major travel hub in England’s mobility network (similar trends were observed 

during the Alpha wave in 2020 (16)). The importance of Greater London as a source of short range 

(<50 km) lineage movements declined through time (Fig. 3E, left-top) and we observe a secondary 

peak in the frequency of mid-to-long range movements (>50 km; Fig. 3E) driven predominantly by 

virus lineages emanating from the Midlands and southern England (Fig. 3E, middle and right). These 

observations are consistent with epidemiological data showing that most areas outside of southern 

England experienced a BA.1 incidence peak only in the last week of December 2021 or the first week 

of January 2022 (Fig. S13). 
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Fig. 3: Spatiotemporal dynamics of Omicron BA.1 transmission lineages in England. (A and C) 

Continuous phylogeographic reconstruction of the dispersal history of the largest detected BA.1 

transmission lineages in England (Transmission Lineage-A). Nodes are coloured according to 

inferred date of occurrence and the direction of viral lineage movement is indicated by edge 

curvature (anti-clockwise). Panel A shows the progress of dissemination at three specific times, and 

panel C shows the complete construction. (B) Geographical distribution of the intensity of inflow and 
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outflow of viral lineages for Transmission Lineage-A from the beginning of December up to 

Christmas 2021. Blue colours indicate areas with high intensity of domestic lineage outflow; red 

colours indicate those with high intensity of inflow. Red circles indicate areas with high densities of 

local viral movements (distances <15 km); circle radii are proportional to that density. (D) 

Continuous phylogeographic reconstruction of Transmission Lineages C, E, and G (as per panel C) 

with corresponding maps of the geographical distribution of the intensity of viral lineage inflow and 

outflow (as per panel B). Fig. S12 provides an equivalent figure for Transmission Lineages B, D, F 

and H. (E) Plots in each row correspond to viral lineage movements across different spatial scales 

(top: <50 km, middle: 50 to 300 km, bottom: >300 km). (Left) Histograms show the daily frequency of 

viral lineage movements across spatial scales. Colours indicate whether the origin and/or destination 

of the viral lineage movements are inferred to have occurred in Greater London. (Middle/Right) Solid 

black lines represent the daily frequency of among-region viral lineage movements across spatial 

scales. Vertical bars indicate the proportions of viral lineage movements (aggregated at 2-day 

intervals);coloured according to their origin/destination locations. Shaded grey areas indicate 

periods when there were <9 inferred viral lineage movements per. 

 

To assess the contribution of demographic, epidemiological and mobility-related factors to the 

dissemination of Omicron BA.1 in England, we used a discrete phylogeographic generalised linear 

model (GLM) to test the association of those factors with viral lineage movements among LTLAs, 

across two periods (before 26 December 2021, and between 26 December 2021 and 31 January 2022; 

supplementary materials) (35, 36, 38). Using this time-inhomogeneous model we find evidence for a 

dynamic spatial transmission process, with change through time in the estimated effect sizes of most 

predictors (Fig. 4B). During the earlier “expansion” period of lineage transmission among cities, we 

observe consistently strong support for the gravity model components (a spatial interaction model in 

which travel intensity between pairs of locations increases with origin and destination population sizes 

but decreases with distance between them). Consistent with results from continuous phylogeography, 

the early period is characterised by directional viral dissemination; lineage movements tend to 

https://paperpile.com/c/ivsGqs/zNqBn+gblch+7ZkpS
https://paperpile.com/c/ivsGqs/zNqBn+gblch+7ZkpS
https://paperpile.com/c/ivsGqs/zNqBn+gblch+7ZkpS
https://paperpile.com/c/ivsGqs/zNqBn+gblch+7ZkpS
https://paperpile.com/c/ivsGqs/zNqBn+gblch+7ZkpS
https://paperpile.com/c/ivsGqs/zNqBn+gblch+7ZkpS
https://paperpile.com/c/ivsGqs/zNqBn+gblch+7ZkpS


 

15 

originate from Greater London (Fig 4b) and this is particularly pronounced for smaller transmission 

lineages (Fig. 3 and Fig. S12). 

 

In three out of four analyses we also find greater dissemination out of LTLAs with earlier times of 

peak incidence during the expansion period and, conversely, a lower inflow of viral lineages during 

the post-expansion period in all analyses (Fig. 4 and Fig. S14). These results reflect the dynamic, 

network-driven nature of Omicron’s geographic spread, with variation in the timing of peak incidence 

reflecting heterogeneity in the underlying human mobility network, i.e. varying degrees of connection 

to locations with frequent early seeding events (39).  

 

Interestingly, the human mobility matrix predictor is supported consistently only in the post-

expansion phase (Fig. 4B), after local transmission had been established in most LTLAs. This reflects 

a transition from unidirectional long-distance movements to more homogeneous local viral lineage 

movements. Conversely, support for the gravity model predictors decreased over time (Fig. 4B), 

consistent with the notion that the gravity model better predicts city-to-city mobility and poorly 

describes diffusion-like mobility over short distances in urban areas (40). Importantly, the 

phylogeographic GLM results are consistent among the transmission lineages analysed (Fig 4B), and 

also when a simpler time-homogenous model is used (Fig. S15). These findings are consistent with 

our continuous phylogeography analyses (Fig. 3) and with epidemiological studies showing strong 

local spatial structure of the Omicron BA.1 wave (14, 15). In a supplementary analysis, we included 

booster vaccine uptake (per capita at the LTLA level) as a predictor under a time-inhomogeneous 

model, but we did not find it to be significantly supported (supplementary material), possibly due to 

collinearity with other predictors (peak timing in case incidence and case-sample residuals) or due to 

limited spatial heterogeneity in vaccine uptake. 
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Fig. 4: Predictors of Omicron BA.1 viral lineage movements in England. (A) Map at LTLA level of 

model predictors included in the discrete phylogeographic GLM analysis, for the largest detected 

BA.1 transmission lineages (Transmission Lineage-A). (B) For each predictor, the box and whiskers 

show the posterior distribution of the product of the log predictor coefficient and the predictor 

inclusion probability; the left hand value represents the expansion period estimate and the right hand 

value the post-expansion period estimate. Top panel shows estimates for Transmission Lineage-A and 

bottom panel shows those for Transmission Lineage-B. Posterior distributions are coloured 

according to predictor type: geographic distances (geo distance, dark blue), population sizes at origin 

and destination (pop size ori & pop size dest, black), aggregated mobility (mobility mat, purple), 

mobility-based community membership level 1 and level 2 (comm overlap l1 & l2, purple), Greater 

London origin and destination (gr LDN ori & gr LDN dest, red), time of peak incidence at origin and 

destination (peak time ori & peak time dest, orange) and the residual of a regression of sample size 

against case count regression at either origin and destination (sample res ori & sample res dest, 

yellow). Boxes at the bottom of each panel are numbered and shaded to represent the rank of 
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predictors based on their deviance measure, with 1 indicating the largest (most important) and 12 

indicating the smallest (least important).  

   

Discussion 

We find that a substantial proportion of SARS-CoV-2 infections during the Omicron BA.1 wave in 

England can be traced back to a small number of introductions inferred to have occurred before or 

during the early travel restrictions on incoming passengers from southern Africa. Although the rate of 

importation continued to increase after mid-December, local onward transmission was observed only 

for a proportion (~25%) of imports that arrived after Christmas 2021. These results augment previous 

investigations of VOCs in England and other countries (30, 41), highlighting that the impact of 

international travel restrictions is limited if applied after local exponential growth is established and in 

the absence of local control measures. Here we conclude that the epidemics of BA.1 in multiple 

locations outside the country of first detection substantially contributed to the exponential growth of 

BA.1 importation into England in December 2021 (28). Thus, the practical effect of targeted travel 

restrictions can be constrained by the existence of multiple pathways between any two countries in the 

global aviation network, often via highly-connected locations with large travel volumes that can act as 

early secondary sources (39). UK travel restrictions were intended to delay the rapid expansion of 

BA.1 locally while offering additional vaccination to at-risk individuals. However, it is likely that 

Omicron had already spread internationally by the time it was detected in late November 2021, 

allowing secondary locations of VOC export to become established (28, 42). Therefore any proposed 

global systems that intend to rapidly detect and respond to new VOCs (and emerging infectious 

diseases in general) need to be designed around the connection structure of human mobility networks. 

Despite this, there are likely to be scenarios under which travel restriction can help control, contain, or 

delay the spread of emerging infections (43, 44) and much further theoretical and empirical work is 

needed to improve and inform rapid decision making concerning travel during public health 

emergencies. 
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Our continuous and discrete phylogeographic analyses (Fig. 3 & 4) jointly show how Omicron BA.1 

disseminated rapidly across England, with Greater London playing a central role in its initial 

dissemination. Early viral movements outside of Greater London were dominated by medium-to long-

distance travel from there; local transmission chains in recipient locations were observed later, 

coinciding with an increase in human mobility after the winter holidays (Fig. S18). The epidemic is 

revealed to be a network-driven phenomenon with an initial expansion phase that is well described by 

a gravity model, followed by a period of sustained local transmission propagated by local human 

mobility (39). 

 

With this study, we can now compare the transmission histories of three successive VOC waves in 

England (Alpha (16), Delta (17), and Omicron) and contrast the factors that influenced their 

dispersals. First, Omicron and Delta were both introduced through international importation, whereas 

Alpha appeared to have originated in England (45). For both Omicron and Delta, early introductions 

from their presumed location of origin were followed by an increase in importation intensity from 

secondary locations. However, early transmission clusters for Delta were observed mainly in North 

West England, whereas most early Omicron infections were found in Greater London (15, 20). 

Second, different local NPIs and restrictions on within-country travel were implemented during the 

VOC waves. Although the introduction of Delta occurred during a period of relaxed NPIs, initial 

spreading was delayed due to a lower level of mobility following a national lockdown (17), whereas 

Omicron was introduced when human mobility had mostly recovered to a pre-pandemic level (Fig. 

S18). For the Alpha wave, rapid expansion from the South East was observed as a result of holiday 

travels (16) and was subsequently brought under control when NPIs were introduced, leading to 

reduced levels of local mobility (16). Third, spatial variations in population immunity from prior 

infections are likely to have impacted the dissemination of each VOC differently. For example, we 

expect the spread of Delta to be relatively unaffected by population immunity due to widespread 

infections and vaccination, and similarly for Omicron due to the antigenic novelty of the variant (9, 

46, 47); whereas the initial growth rates of Alpha were affected by local variations in previous attack 

rates (16). These findings highlight two key questions for future work: how do the spatiotemporal 

interactions between importation and local transmission shape the spread of an invading VOC, and 
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how can we efficiently evaluate the interplay of factors that drive the dissemination of an emerging 

VOC within a country. 

 

Findings from our phylodynamic analysis should be interpreted in the context of several limitations. 

First, as discussed previously (30), the number of importation events identified is likely to 

underestimate the true number of independent introductions due to incomplete sampling and uneven 

sequencing coverage worldwide (48). Nevertheless, we were able to cross-validate our phylogenetic 

results using independent epidemiological data (Fig. S7 and Fig. S8). Second, to maintain 

computational tractability and remove potential sampling bias in the phylogeographic reconstruction 

of local transmission lineages, we included only a subset (about 7%) of the available English SARS-

CoV-2 genomes from COG-UK, while accounting for geographical variations in sequencing coverage 

and COVID-19 prevalence. Despite this subsampling procedure, we note that spatial and temporal 

sampling was not perfectly representational (Fig. 4A and Fig. S9). This could be caused by 

geographical variation in case reporting rate or because the maximum sequencing capacity was 

exceeded in locations with exceptionally high case incidence. Third, our phylogenetic GLM analysis 

that explores the association of factors with virus lineage movement should be interpreted in light of 

potential biases in the mobility data. For example, movements in sparsely populated locations may be 

poorly captured due to censoring to protect user anonymity, and the degree to which smartphone 

mobility data is representative of the whole population could be affected by variation in smartphone 

use among locations. Work is ongoing to assess the benefit of human mobility data in the prediction 

and description of infectious diseases invasion dynamics. 

 

Omicron BA.1 was replaced by lineage BA.2 in February 2022 and later by lineage BA.5 in June 

2022 (20, 21). While the public health burden of COVID-19 has lessened due to reduced average 

disease severity and increased population immunity, the continued antigenic evolution of SARS-CoV-

2 means that future variants with increased virulence remain possible. One priority in preparing for 

the next SARS-CoV-2 variant or novel pathogen emergence is to develop and implement robust 

pipelines for large-scale genomic and epidemiological analyses supported by unified data 
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infrastructures (49, 50) a challenging task that will be realised only through the coordination of public 

health efforts worldwide. 
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Materials and Methods 
Genomic data 
All SARS-CoV-2  sequences used in this study were downloaded on 12 April 2022. All available 
international (non-England, including Wales, Scotland and Northern Ireland independently) sequences 
were downloaded from GISAID (25) while English samples marked as community surveillance (pillar 
2)  were acquired from COG-UK. Historically, pillar 2 testing sites were instructed to select a number 
of 96 well plates for sequencing proportional to the fraction of total tests that week. Pillar 2 
surveillance is intended to represent a random sample of community cases in the UK, with only 8% of 
being associated with testing for special reasons, i.e. 'attended-event', 'attended-outbreak-venue', 
'confirmatory-test-borders', 'contact-testing-study', 'test-for-contact-self-referral', 'test-for-contact-
tracing', 'test-for-contact-tracing-app', 'venue-outbreak’. However, given the changes in testing 
behaviour and regulations that occurred during the study period we can not rule out the possibility that 
there are some biases in the data set. These were partially addressed in the subsampling mentioned 
below.  
 
Sequences were aligned and filtered as part of the COG-UK datapipe analysis hosted by CLIMB. This 
analysis removed duplicate and environmental sequences, and flagged samples with improbable 
collection dates (see https://github.com/COG-UK/datapipe for details). All sequences with impossible 
or improbable collection dates were removed. To further minimise dating errors caused by 
retrospective sequencing, only samples published to COG-UK or GISAID (25) within four weeks of 
sample collection were included. Sequences were aligned to the reference Wuhan-Hu-1 (genbank 
accession MN908947.3) with minimap2 and samples with less than 93% coverage were discarded.  
Sequence coverage weights were calculated for English sequences 
(https://github.com/robj411/sequencing_coverage) to ensure they could be subsampled proportional to 
the number of reported cases in each Upper Tier Local Authority using a two week sliding window. 
Scorpio was run as part of Pangolin and sequences identified as BA.1 or BA.2 were selected for 
further analysis.  
 
Variant and Mutations (VAM) line list (from UK Health Security Agency) 
The variant and mutations (VAM) line list compiled and provided by the UK Health Security Agency 
(UKHSA) contains epidemiological metadata of specimens sequenced from the pillar 2 mass testing 
programme by the COVID-19 Genomics UK Consortium (COG-UK). From the variant line list we 
extracted the traveller status (Traveller, Contact of Traveller, Not Travel-associated, Refused or 
Uncontactable, Awaiting Information) and specimen date of all sampled individuals who were tested 
positive for Omicron B.1.1.529 (BA.1) between 1 November 2021 and 31 January 2022. 
 
Estimated Omicron BA.1 case incidence (from COVID-19 case count and S-gene target failure data) 
Daily number of new COVID-19 cases by specimen date in each LTLA were downloaded from 
https://coronavirus.data.gov.uk/details/download (last assessed on 26 June 2022). S-gene target failure 
data were provided by UKHSA via a data sharing agreement. The presence of a genetic deletion on 
the spike protein of the Omicron BA.1 sub-variant produces SGTG in most PCR tests which can be 
used as a proxy for BA.1 infections. We used daily SGTF PCR-positive tests as a proxy (because 
these were time- and cost-effective as a test compared to genetic sequencing to ascertain variants) for 
Omicron BA.1 infection in conjunction with reported case data to estimate daily number of new BA.1 
cases. However, small sample sizes in the SGTF dataset could lead to extreme scaling, i.e. zero or 
100% of cases could be attributed to BA.1 infections if for example none or all samples were SGTF 
positive. Hence we calculated BA.1 cases in a Bayesian framework using uninformative Beta(1, 1) 
priors and the observed proportion of BA.1 infections (from the SGTF dataset) to estimate the 
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posterior proportion of BA.1 cases which was then scaled up by the number of reported cases from 
the coronavirus data download. We can also use the estimated uncertainty from the posterior 
distribution to get lower and upper bounds in the scaled up BA.1 case numbers. 
International passenger flight data arriving in England 
We evaluated travel data generated from the International Air Transport Association (IATA) to 
quantify passenger volumes originating from international airports and arriving in England. IATA 
data accounts for approximately 90% of passenger travel itineraries on commercial flights, excluding 
transportation via unscheduled charter flights (the remainder is modelled using market intelligence). 
 
Estimated importation intensity of Omicron BA.1 from potential exporters 
We estimated and compared the weekly importation intensity of SARS-CoV-2 Omicron BA.1 from 
27 countries (including Scotland and Northern Ireland independently) with the highest air passenger 
volumes arriving in England between 7 Nov 2021 and 26 March 2022 (collectively accounting for 
~80% of the total air passenger volume during this period). The weekly importation intensity is an 
estimate of the number of Omicron BA.1 cases imported during a given week from a specified source 
location, calculated by multiplying together the estimated weekly relative prevalence of Omicron 
BA.1 at the source location and the number of air passengers arriving from the source location.  
 
We estimated the weekly number of air passengers arriving in England using monthly air traffic data, 
assuming a uniform daily distribution of passengers throughout the month and aggregating to a 
weekly level. To account for potential biases that might result from differences in case reporting rate, 
we used test positivity as a proxy for the underlying weekly prevalence at the source locations. Daily 
test positivity rates at the country level were downloaded from OWID (https://ourworldindata.org/; 
last accessed on 3 April 2023) and their weekly averages were computed. For Scotland and Northern 
Ireland, daily test positivity rates were downloaded from GOV.UK COVID-19 Dashboard 
(https://coronavirus.data.gov.uk/; last accessed on 23 April 2023). To account for local (within-
country) heterogeneities in Omicron BA.1 prevalence and air traffic volume, we calculated EIIs from 
Spain and the United States at the autonomous community- and state-level. Weekly test positivity 
rates for autonomous communities in Spain were downloaded from the European Centre for Disease 
Prevention and Control Data Dashboard (https://www.ecdc.europa.eu/en/publications-data/archive-
historical-data-testing-volume-covid-19; last assessed on 22 April 2023). For the US, weekly test 
positivity rates at the state level were calculated using data from https://github.com/govex/COVID-
19/blob/master/data_tables/testing_data/time_series_covid19_US.csv (last assessed on 4 April 2023). 
We note that three different approaches were used to calculate test positivity for the US states 
depending on the availability of different test statistics. The three different approaches are: (A) 
positive specimens / total specimens, i.e. the number of positive PCR tests divided by the total number 
of PCR tests given, (B) positive people / total encounters, i.e. number of people who tested positive 
(PCR) divided by the total number of PCR tests given, and (C) positive people / total specimens, i.e. 
the number of people who tested positive (PCR) divided by the total number of PCR tests given. For 
states where multiple measures of the positivity rates are possible, the optimal approach was applied 
according to the order (A), (B) and (C), with approach (A) being the optimal approach. For 
Washington state (WA) in particular, no appropriate measure of the denominator in the calculation of 
positivity rate is available using any of the approaches, and as a result the national average positivity 
rates were used instead. We also note that no reliable testing data for Egypt can be found; Egypt is 
therefore omitted in this EII analysis and only included in subsequent sensitivity analysis as detailed 
below. 
 

https://ourworldindata.org/
https://coronavirus.data.gov.uk/
https://www.ecdc.europa.eu/en/publications-data/archive-historical-data-testing-volume-covid-19
https://www.ecdc.europa.eu/en/publications-data/archive-historical-data-testing-volume-covid-19
https://github.com/govex/COVID-19/blob/master/data_tables/testing_data/time_series_covid19_US.csv
https://github.com/govex/COVID-19/blob/master/data_tables/testing_data/time_series_covid19_US.csv
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In a sensitivity analysis, we separately calculated EIIs using weekly COVID-19 case incidence per 
capita as a proxy for prevalence at the source locations (Fig. S6). Data sources are the same as in the 
analysis using test positivity rates (with the inclusion of Egypt using data from OWID 
(https://ourworldindata.org/; last accessed on 3 April 2023). Similarly, EIIs for Spain and the US were 
calculated at the autonomous community- and state-level. To highlight the potential bias that might 
have resulted from variations in case reporting rate between countries, the weekly number of tests 
performed per capita is calculated for each country (Fig. S4) 
 

UK population estimates 
Mid-year population estimates for England in 2020 at the LTLA level were downloaded from 
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates
/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland. Population sizes were 
used as the denominator in calculating numbers of COVID-19 cases per capita and normalised local 
mobility in each LTLA. 
 
Vaccination data with age breakdown  
Daily vaccination data with age breakdown at the lower tier local authority (LTLA) level were 
downloaded from https://coronavirus.data.gov.uk/metrics/doc/vaccinationsAgeDemographics. The 
dataset consists of daily cumulative number and percentages of people who have received either a 1st 
dose, 2nd dose, or booster dose (of any type) since the start of the pandemic in each LTLA, with age 
breakdown by roughly 5-year intervals (5-11, 12-15, 16-17, 18-24, 25-29, 30-34, 35-39, 40-44, 45-49, 
50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85-89, 90+). 
 
Aggregated and anonymised human mobility data 
We used the Google COVID-19 Aggregated Mobility Research Dataset described in detail in (51, 52), 
which contains anonymized relative mobility flows aggregated over users who have turned on the 
Location History setting, which is turned off by default. This is similar to the data used to show how 
busy certain types of places are in Google Maps — helping identify when a local business tends to be 
the most crowded. The mobility flux is aggregated per week, between pairs of approximately 5km2 
cells worldwide, and for the purpose of this study further aggregated for LTLAs in the United 
Kingdom (https://geoportal.statistics.gov.uk/datasets/lower-tier-local-authority-to-upper-tier-local-
authority-december-2016-lookup-in-england-and-wales/explore) for the time period of November 
2019 to January 31st, 2022. 
 
To produce this dataset, machine learning is applied to log data to automatically segment it into 
semantic trips. To provide strong privacy guarantees (53), all trips were anonymized and aggregated 
using a differentially private mechanism to aggregate flows over time (see 
https://policies.google.com/technologies/anonymization). This research is done on the resulting 
heavily aggregated and differentially private data. No individual user data was ever manually 
inspected, only heavily aggregated flows of large populations were handled. All anonymized trips are 
processed in aggregate to extract their origin and destination location and time. For example, if n 
users travelled from location a to location b within time interval t, the corresponding cell (a,b,t)  in the 
tensor would be n∓err, where err is Laplacian noise. The automated Laplace mechanism adds random 
noise drawn from a zero mean Laplacian distribution and yields (𝜖, δ)-differential privacy guarantee 
of 𝜖 = 0.66 and δ = 2.1 × 10−29 per metric. Specifically, for each week W and each location pair 
(A,B), we compute the number of unique users who took a trip from location A to location B during 
week W. To each of these metrics, we add Laplace noise from a zero-mean distribution of scale 
1/0.66. We then remove all metrics for which the noisy number of users is lower than 100, following 

https://ourworldindata.org/
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://coronavirus.data.gov.uk/metrics/doc/vaccinationsAgeDemographics
https://paperpile.com/c/ivsGqs/J2Abc+a6TJT
https://paperpile.com/c/ivsGqs/J2Abc+a6TJT
https://paperpile.com/c/ivsGqs/J2Abc+a6TJT
https://paperpile.com/c/ivsGqs/J2Abc+a6TJT
https://paperpile.com/c/ivsGqs/J2Abc+a6TJT
https://geoportal.statistics.gov.uk/datasets/lower-tier-local-authority-to-upper-tier-local-authority-december-2016-lookup-in-england-and-wales/explore
https://geoportal.statistics.gov.uk/datasets/lower-tier-local-authority-to-upper-tier-local-authority-december-2016-lookup-in-england-and-wales/explore
https://paperpile.com/c/ivsGqs/xqdDs
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the process described in (53), and publish the rest. This yields that each metric we publish satisfies 
(ε,δ)-differential privacy with values defined above. The parameter 𝜖 controls the noise intensity in 
terms of its variance, while δ represents the deviation from pure 𝜖-privacy. The closer they are to zero, 
the stronger the privacy guarantees.  
 
These results should be interpreted in light of several important limitations. First, the Google mobility 
data is limited to smartphone users who have opted in to Google’s Location History feature, which is 
off by default. These data may not be representative of the population as whole, and furthermore their 
representativeness may vary by location. Importantly, these limited data are only viewed through the 
lens of differential privacy algorithms, specifically designed to protect user anonymity and obscure 
fine detail. Moreover, comparisons across rather than within locations are only descriptive since these 
regions can differ in substantial ways. 
 
Changes in case reporting rate in the United Kingdom 
To assess the degree of changes in case reporting rate in the United Kingdom, we compared the 
weekly national case incidence downloaded from the GOV.UK COVID-19 Dashboard with that 
estimated by the UK Office of National Statistics (ONS). Specifically, since we were interested in the 
relative changes over time rather than the absolute values, a linear regression of the ONS case 
incidence estimates against case incidence from the GOV.UK COVID-19 Dashboard was performed 
and the residuals from the model were examined (Fig. S10). 
 
As described in further details below, Omicron sequences from England were subsampled with 
sample weights calculated from the ratio between the cumulative number of reported cases and the 
cumulative number of sequences collected in the preceding two weeks for any given date. Therefore, 
to assess the potential bias that might have resulted from changes in case reporting rate in the context 
of the subsampling of English genomes, a similar linear regression analysis as above was performed, 
with additional (two-preceding-weeks) smoothing applied to both the ONS and GOV.UK case 
incidences (Fig. S10). 
 
Phylogenetic analysis and importation analysis 
We developed a large-scale phylogenetic analysis pipeline following a similar approach as in du 
Plessis et al. (2021) (54) with additional extensions and modifications to ensure the computational 
tractability of analyses of up to hundreds of thousands of SARS-CoV-2 sequences (55) (Fig. S1). 
 
First, the study period was divided into two phases: (1) from 21 November 2021 (sample date of the 
earliest known genome of the Omicron variant in England, sequenced retrospectively) to 28 
November 2021, and (2) from 29 November 2021 to 31 January 2022. The time of division between 
the two phases was chosen on the basis of an expected change in importation intensity as a result of 
the implementation of travel restrictions targeted at multiple southern African countries starting on 28 
November 2021. With the relatively few genomes available from the first phase and to account for an 
increased risk of importations prior to the travel restrictions, all 874 available sequences (from both 
England and non-England locations) were included. Owing to the large number of genome samples 
collected during the second phase, a downsampling strategy was applied to ensure that the analysis 
was computationally tractable. To generate a manageable dataset of global sequences, first we 
computed a crude estimate of the number of new Omicron cases in each country in each epi-week by 
multiplying the number of reported COVID-19 cases (downloaded from https://github.com/owid; last 
accessed on 4 May 2022) by the proportion of sampled genomes that were of the Omicron variant 
PANGO lineages BA.1 and BA.2, using metadata available from GISAID (25) (https://gisaid.org/; 

https://paperpile.com/c/ivsGqs/xqdDs
https://paperpile.com/c/ivsGqs/xqdDs
https://paperpile.com/c/ivsGqs/xqdDs
https://paperpile.com/c/ivsGqs/VgwK6
https://paperpile.com/c/ivsGqs/VgwK6
https://paperpile.com/c/ivsGqs/VgwK6
https://paperpile.com/c/ivsGqs/sqpxA
https://paperpile.com/c/ivsGqs/sqpxA
https://paperpile.com/c/ivsGqs/sqpxA
https://github.com/owid
https://paperpile.com/c/ivsGqs/N9qE
https://paperpile.com/c/ivsGqs/N9qE
https://paperpile.com/c/ivsGqs/N9qE
https://gisaid.org/
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last accessed on 12 April 2022). The number of global sequences to be sampled in each epi-week was 
then allocated in proportion to the estimated total number of Omicron lineages BA.1 and BA.2 cases 
in the week whilst maintaining a dataset size of ~50,000. In a given epi-week, countries with an 
estimated number of Omicron cases that accounted for at least 0.5% of the estimated global total were 
considered as potential exporters. Genome samples were then allocated in proportion to the estimated 
number of cases among these potential exporters, with the remaining allocation randomly distributed 
among the non-exporter countries. There was a slight enrichment for samples collected in the early 
phase of the Omicron wave (early December 2021), where we ensured that a minimum of 4,000 
genomes were sampled for each epi-week where available. A similar approach was used to curate a 
dataset of 21,039 Omicron genomes sampled from Wales, Scotland and Northern Ireland, again using 
relevant metadata from GISAID (25) and epidemiological data available on  
(https://api.coronavirus.data.gov.uk/v1/data; last accessed on last accessed on 4 May 2022). This 
downsampling procedure resulted in a dataset of 59,647 global (non-English) sequences. To generate 
a dataset of English genomes of roughly the same size, 60,000 sequences were randomly sampled 
from the COG-UK master alignment whilst accounting for variations in sequencing coverage and 
prevalence amongst UTLAs over time, using the same method as in Volz et al. (56). This resulted in a 
combined dataset of 140,686 genomes of which 42.6% were sampled in England with the remaining 
from non-England locations. 
 
Despite substantial downsampling, estimating a phylogenetic tree for hundreds of thousands of 
SARS-CoV-2 sequences remains a challenge, with most standard programs only able to handle up to 
thousands of sequences. To tackle this, we first estimated a maximum likelihood (ML) tree for the 
874 sequences collected during the first phase of the study period using IQTREE (57) with the 
GTR+G substitution model, rooted with reference genome Wuhan-Hu-1 (GenBank accession 
MN908947.3) as an outgroup. Five molecular clock outliers were identified and subsequently 
removed, after examining the root-to-tip regression plot from TreeTime (58). The resulting tree was 
then used as a starting tree from which a parsimony tree was estimated by inserting individual 
sequences sequentially and in chronological order according to sample dates, using the recently 
developed UShER placement tool (59). During each step in the iterative process, all sequences 
sampled on a given date were considered for placement whilst excluding sequences with 5 or more 
equally parsimonious placements. Sequences excluded in a previous step were appended to the next 
batch for reconsideration. The resulting tree was then optimised through 6 iterations of matOptimize 
(60) with SPR radius of 40 and 100 for the first 5 and final iteration respectively. This iterative tree 
building process resulted in a phylogeny of 115,634 sequences (with 25,921 (18.3%) sequences 
excluded due to uncertainty in sample placement). Next we used Chronumental (61) (a recently 
developed time-tree estimation tool for handling large phylogenies) to estimate a randomly resolved 
time-calibrated tree, with inferred tip dates that maximise the evidence lower bound under a 
probabilistic model. By comparing the inferred tip dates with sample dates and examining a root-to-
tip plot, 12 molecular clock outliers were further removed, resulting in a final phylogeny of 115,622 
sequences. 
 
To further reduce the computational resources and time required, we divided the phylogeny estimated 
above into smaller tree partitions according to sub-lineage (of Omicron) assignment as defined by the 
Pango nomenclature (62). Using a custom Python script, subtrees with a high degree of clustering of 
sequences of the same descendant lineage of Omicron were identified, whilst accounting for some 
level of ambiguity in lineage assignment (e.g. a tree partition may contain up to 25% of sequences that 
are of a minority sub-lineage before it is subdivided into multiple partitions), as would be expected 
given the high sampling density and variations in sequencing quality. Further merging of these 

https://paperpile.com/c/ivsGqs/N9qE
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https://paperpile.com/c/ivsGqs/N9qE
https://api.coronavirus.data.gov.uk/v1/data
https://paperpile.com/c/ivsGqs/b656t
https://paperpile.com/c/ivsGqs/b656t
https://paperpile.com/c/ivsGqs/b656t
https://paperpile.com/c/ivsGqs/SfpRJ
https://paperpile.com/c/ivsGqs/SfpRJ
https://paperpile.com/c/ivsGqs/SfpRJ
https://paperpile.com/c/ivsGqs/7fE6L
https://paperpile.com/c/ivsGqs/7fE6L
https://paperpile.com/c/ivsGqs/7fE6L
https://paperpile.com/c/ivsGqs/ghWrO
https://paperpile.com/c/ivsGqs/ghWrO
https://paperpile.com/c/ivsGqs/ghWrO
https://paperpile.com/c/ivsGqs/dwfxs
https://paperpile.com/c/ivsGqs/dwfxs
https://paperpile.com/c/ivsGqs/dwfxs
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identified subtrees resulted in five final tree partitions, labelled BA.1 (n=38,522), BA.1.1 (n=37,028), 
BA.1.15 (n=12,229), BA.1.17 (n=21,549), and BA.2 (6,294) according to the sub-lineage represented 
by the majority of sequences in each partition. Given that the primary focus of this study is the 
invasion dynamics of Omicron BA.1 in England, the BA.2 partition was omitted in all further 
downstream analyses. 
 
Having divided the phylogeny into smaller tree partitions of computationally manageable size, we 
then performed time-calibration of the subtrees using a recently implemented model in BEAST v1.10 
(63) which replaces the traditional tree-likelihood with a more efficient likelihood based on a simple 
Poisson model, thus allowing Bayesian phylogenetic analyses of up to tens of thousands of sequences. 
In this approach, the tree operators are constrained such that only node heights and polytomy 
resolutions are sampled, whilst the tree topology is fixed to that of a data tree which we generated 
using Treetime (58) with a fixed clock rate of 7.5x10E-4 substitutions/site/yr. Using a Skygrid 
coalescent tree prior (64) with grid points every two weeks, we ran between 2 and 6 MCMC chains of 

3⨉108 to 2.4⨉109 iterations for each tree partition independently. The first 33% to 40% of each 

chain was discarded as burn-in and resampled every 1⨉106 to 2.4⨉108 states before merging using 

LogCombiner, resulting in 1,200 posterior tree samples for each tree partition. Model convergence 
and mixing was assessed using Tracer (65). 
 
To reconstruct the importation dynamics of Omicron BA.1, we then used a two-state asymmetric 
discrete trait analysis (DTA) model implemented in BEAST v1.10 (63), using the posterior tree 
samples estimated above as the empirical tree distributions. For each tree partition, we ran two 
MCMC chains of 5 million iterations each, resampled every 9,000 states and with the first 10% 
discarded as burn-in. TreeAnnotator 1.10 (63) was used to generate a maximum clade credibility 
(MCC) tree for each subtree, in which each internal node is assigned a posterior probability of 
representing a transmission event in England. Nodes with a posterior probability of >0.5 were 
identified as introductions; a small number of nodes with ambiguous location assignment (posterior 
probability = 0.5) were ignored in downstream analyses. To identify the local transmission lineage 
resulting from each of the introductions, a depth-first search was performed following the same 
procedure as in du Plessis et al. (2021) (54), where a path starting from each internal node that 
corresponds to an introduction is traversed forwards in time until a non-England node is encountered 
or there are no more nodes to be explored. By convention, introductions that led to only a single 
sampled English sequence were labelled as singletons; only introductions that led to more than one 
observed local transmission event were labelled as transmission lineages. The time of importation of 
each transmission lineage was estimated by taking the mid-point between the internal node 
corresponding to the introduction and its parent. 
 
Our methodology estimating the time of importation of transmission lineages is likely to result in an 
apparent “expansion” of the temporal profile of inferred importation intensity (daily number of 
infected travellers arriving in England) relative to its true underlying distribution. This could be 
explained by an increase in importation lag (time elapsed between when a lineage is inferred to have 
been imported and the first detected local transmission event) over time as shown previously by du 
Plessis et. al. (30), due to transmission lineages from later importations having fewer genomes as they 
have less time to grow, and are therefore less likely to be captured by genomic surveillance assuming 
a constant sampling intensity. To verify this effect, we compared the inferred importation intensity 
from the above phylodynamic analysis with empirical observations from testing data recording 
international travellers, extracted from the Variant Mutation line list provided by UKHSA (Fig. S2). 
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However, we note that the robustness of this comparison is potentially limited by variations in 
sampling intensity in the epidemiological data as a result of rapidly-changing testing policies for 
arriving travellers in the United Kingdom during the latter part of January 2022 (66). 
 
Exponential growth of daily frequency of importations 
In the absence of any travel restrictions and changes in human mobility as a result of the emergence of 
a new VOC, the importation intensity during the initial phase of the invasion would be expected to 
follow a pattern of exponential growth that mirrors the increase in number of infections in the 
exporting countries. To verify and examine any potential deviation from this pattern, we fitted a 
simple exponential model to the 7-day rolling average daily number of importations inferred from the 
phylodynamic analysis. Specifically, we fitted the model using least-squares regression to the inferred 
daily numbers of importations during the period between the beginning of November 2021 and a 
range of cut-off dates. The cut-off date that resulted in the highest adjusted R2 value can be interpreted 
as an estimate of the time when the growth of importation intensity began to deviate from an 
exponential trajectory. 
 
Continuous phylogeographic analysis 
To reconstruct the spatiotemporal patterns of  the Omicron BA.1 wave in England, all local 
transmission lineages (as identified from the MCC trees generated from the 2-state discrete trait 
analysis above) with five or more sequences were extracted for continuous phylogeographic analyses. 
Each sequence was assigned a latitude and a longitude randomly from within the postal district 
(metadata provided by COG-UK) where the sample was collected. For each transmission lineage, we 
performed the continuous phylogeographic reconstruction on a fixed (pruned from the MCC tree) 
using a relaxed random walk model (67) implemented in BEAST 1.10.4 (63), with a Cauchy 
distribution to model the among-branch heterogeneity in dispersal velocity. Following a similar 
approach as in McCrone et al. (17), the eight largest transmission lineages (labelled A to H, from 
largest to smallest) containing >700 sequences were inferred independently, with the remaining 
smaller transmission lineages (n=524) inferred in a single joint analysis with a shared diffusion model 
(i.e. same parameter estimates for likelihood, precision matrix, correlation, etc, but independent 
estimates for diffusion rate and trait likelihood). Owing to variations in the extent of spatial dispersal 
among these smaller transmission lineages (with larger lineages being more spatially dispersed in 
general), 30 were subsequently removed from the joint analysis and inferred independently. Model 
convergence and mixing was assessed using Tracer v1.7 (65). For the independent analyses of the 
eight largest transmission lineages, we ran between 2 and 5 MCMC chains of 200 to 300 million 
iterations, sampling every 10,000 to 80,000 states and removing the first 10% to 33% of each chain as 
burn-in, resulting in 10,000 to 13,5000 trees sampled from the posterior distribution. For the 
independent analyses of the 30 smaller transmission lineages with fewer than 700 sequences, we ran 2 
MCMC chains each of 200 million iterations which we then merged after resampling every 30,000 
states and removing the first 10% as burn-in, giving 12,000 posterior trees per transmission lineage. 
Finally, in the joint analysis, 8 independent chains of 200 million were run with sampling every 
120,000 states. They were combined after removing the first 10% as burn-in, again resulting in 12,000 
posterior tree samples for each transmission lineage. These posterior tree samples were then used to 
generate an annotated MCC tree for each transmission lineage using TreeAnnotator (63). 
 
To facilitate subsequent analyses of viral lineage movements at the LTLA level, we mapped the 
inferred location of each internal node in the transmission lineages to its corresponding LTLA by 
checking whether the inferred coordinates are contained within the associated polygon. In the case 
where an enclosing polygon could not be found (e.g. a small proportion of internal nodes were 
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inferred to lie in the small spaces between neighbouring polygons), the polygon that is geographically 
closest to the inferred location was assigned. 
 

Discrete phylogeography with generalised linear model (GLM) parameterisation 
We used the approach of discrete phylogeography with generalised linear model (GLM) to 
parameterise transition rates between locations and test the association of viral lineage dispersal with 
a number of geographical, demographic, epidemiological and human mobility-related factors (see 
Table S2 for full list of predictors). Specifically, to test the gravity model as a predictor of viral 
lineage movements, we considered in the GLM analysis the population size at the origin and 
destination location of each movement and the geographical distance between them. To further 
capture any heterogeneities in aggregated human mobility at the city-level (which are unlikely to be 
adequately described by the gravity model), we also included the aggregated mobility matrix and 
community memberships as predictors. We allowed these mobility-related predictors to vary across 
different phases in the time-inhomogeneous model to test for temporal variations in aggregated human 
mobility patterns and also potentially time-varying effect of mobility on viral dispersal. We observed 
from both epidemiological data and continuous phylogeography that many LTLAs in Greater London 
experienced an earlier uptick in Omicron BA.1 cases compared to most LTLAs with other regions of 
England. To capture this asynchronicity in local epidemic dynamics and investigate its impact on viral 
dispersal, we considered in the GLM analysis whether each viral movement started or ended in the 
Greater London region and additionally the time of first peak in Omicron BA.1 case incidence at the 
origin and destination location. Furthermore, we also tested for the impact of sampling bias by 
including a predictor based on the residuals from a simple regression of sample size against Omicron 
BA.1 cases for both the origin and destination location. Due to the small number of sequences 
collected in some LTLAs especially during later phases of the epidemic, the regression residuals were 
computed using sample sizes and case counts aggregated over the whole study period in both the 
time-homogeneous and time-inhomogeneous models. 
 
Unlike continuous phylogeography where each sequence is assigned a unique set of coordinates in 
continuous space, discrete phylogeography requires that sequences are grouped into discrete 
geographical units. The level of granularity of these geographical units depends on a number of 
factors including (i) the desired level of resolution at which the dispersal history is to be 
reconstructed, (ii) the amount of heterogeneities present within each geographical unit, and (iii) the 
maximum number of geographical units beyond which the analysis becomes computationally 
intractable. To capture heterogeneities in viral movements at the city-level and to allow comparisons 
with results from continuous phylogeography, we allocated sequences to their corresponding LTLAs 
using a lookup table which provides unique mapping between postal districts and LTLAs.  
 
The current computational architecture and implementation of the discrete phytogeographic GLM 
model limits the number of discrete units possible to 256, which is smaller than the number of LTLAs 
across which sequences were sampled for some of the larger transmission lineages. To tackle this, we 
aggregated LTLAs where appropriate to reduce the number of geographic units. In order to minimise 
the resulting information loss, we first considered LTLAs with the fewest sequences and performed a 
merging operation if an adjacent LTLA with at least one sampled genome could be found. In the case 
where multiple adjacent LTLAs were available, the LTLA with the most number of sampled genomes 
was chosen for the merger. After each merging operation, the list of LTLAs (or geographical units 
after merging) ranked by the number of sampled genomes was recalculated for the next iterative step 
(it is therefore possible for an LTLA to be involved with multiple merging operations). This process 
continued until there were only 253 geographic units in each transmission lineage. For the 
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geographical units consisting of multiple LTLAs, each statistic of interest was averaged over the 
relevant LTLAs, weighted by population size where appropriate. For transmission lineages with 
sequences sampled in fewer than 256 LTLAs, no merging was performed. 
 
The discrete phylogeographic GLM model parameterizes the log of between-location transition rates 
as a log linear function of the predictors. Continuous predictors (geographical distances, population 
sizes, aggregated mobility matrices, peak timing in case incidence, sampling residuals) were therefore 
log-transformed and standardised after adding a pseudo-count to each entry where appropriate. Binary 
variables (community memberships, Greater London/non-Greater London) were encoded as 0 and 1. 
In the mobility-related predictors, there was missing data for one or two geographical units in some 
transmission lineages (due to mobility data being unavailable for South Tyneside and City of 
London), which we labelled as NA and later integrated out in our Bayesian inference. For the 
aggregated mobility matrix predictor with continuous values in the large-scale transmission analyses, 
we confronted this using a new Hamiltonian Monte Carlo (HMC) kernel to jointly sample all missing 
covariates from their posterior distributions building on similar efforts in the BEAST framework (68, 
69). The HMC kernel produces distant proposals with relatively high acceptance rate for the 
Metropolis algorithm by exploiting numerical solutions to the Hamiltonian dynamics. We performed 
the analyses using the code available in the hmc-clock branch of the BEAST codebase (available at 
https://github.com/beast-dev/beast-mcmc/tree/hmc-clock) in conjunction with the BEAGLE code 
available in the hmc-clock branch of the codebase (available at https://github.com/beagle-dev/beagle-
lib/tree/hmc-clock). We ran the analyses on a set of 100 empirical trees for each transmission lineage 
extracted from the BEAST importation analysis and ran sufficiently long chains sampling every 500 
generations, or combined multiple chains (excluding adequate burn-ins), to ensure effective sample 
sizes (ESSs) > 100 for the continuous parameters as diagnosed using Tracer (65). A custom R script 
was used to summarise and visualise the posterior coefficient estimates and inclusion probabilities of 
each predictor. 
 

Discrete phylogeography with GLM: effect of booster uptake 
The rollout of booster vaccination in the United Kingdom began in September 2021 (70) and was 
initially prioritised for those aged 50 and above as they are at a higher risk of severe symptoms and 
hospitalisation from infection. Eligibility for boosters was extended to those aged 40 and above on 22 
November 2021 (71), and subsequently to all adults on 30 November 2021 (72). This resulted in 
spatial variations in booster uptake that are strongly correlated with the underlying age structure of the 
population (Fig. S16, A and C), which is in turn correlated with Omicron BA.1 prevalences due age-
dependent transmission patterns as shown by Elliott et al. (2022) (15) (Fig. S16, B and D). 
 
To adjust for age structure as a confounder, here we devise an effective measure of the booster uptake 
that is independent of the underlying age structure of the population. Using vaccination data 
(downloaded from the GOV.UK COVID-19 Dashboard) consisting of the percentage of people in 
different age groups who have received a booster dose, we calculate the overall booster uptake in each 
Lower Tier Local Authority (LTLA) assuming an age distribution that is the same as the national 
population-weighted average age distribution (computed from mid-2020 population estimates 
published by the UK Office of National Statistics). This is equivalent to the overall proportion of the 
population who would have received a booster dose in an LTLA given its observed age-specific 
booster uptake (with roughly 5-year grouping), assuming that it has the same age structure as the 
national average. Similar to other covariates included in the GLM analysis, for the geographical units 
consisting of multiple LTLAs, the effective booster uptake is averaged over the relevant LTLAs 
weighted by population size. 

https://paperpile.com/c/ivsGqs/QGaGY+WcmcU
https://paperpile.com/c/ivsGqs/QGaGY+WcmcU
https://paperpile.com/c/ivsGqs/QGaGY+WcmcU
https://paperpile.com/c/ivsGqs/QGaGY+WcmcU
https://paperpile.com/c/ivsGqs/QGaGY+WcmcU
https://paperpile.com/c/ivsGqs/QGaGY+WcmcU
https://github.com/beast-dev/beast-mcmc/tree/hmc-clock
https://github.com/beagle-dev/beagle-lib/tree/hmc-clock
https://github.com/beagle-dev/beagle-lib/tree/hmc-clock
https://paperpile.com/c/ivsGqs/Emu6U
https://paperpile.com/c/ivsGqs/Emu6U
https://paperpile.com/c/ivsGqs/Emu6U
https://paperpile.com/c/ivsGqs/2oyM
https://paperpile.com/c/ivsGqs/2oyM
https://paperpile.com/c/ivsGqs/2oyM
https://paperpile.com/c/ivsGqs/P5Ld
https://paperpile.com/c/ivsGqs/P5Ld
https://paperpile.com/c/ivsGqs/P5Ld
https://paperpile.com/c/ivsGqs/E3sW
https://paperpile.com/c/ivsGqs/E3sW
https://paperpile.com/c/ivsGqs/E3sW
https://paperpile.com/c/ivsGqs/jYXGe
https://paperpile.com/c/ivsGqs/jYXGe
https://paperpile.com/c/ivsGqs/jYXGe


 

33 

 

Discrete phylogeography with GLM: likelihood-deviance measure 
To evaluate the relative importance of the different predictors in the time-inhomogeneous GLM 
analysis, we have developed and implemented a new phylogeographic model-fit measure which 
builds upon standard, permutation-based machine learning approaches to assessing variable 
importance (73). 
 
Starting from the posterior 𝑝(𝛩|𝑌, 𝑥11, . . . , 𝑥𝑘𝑒  , . . . , 𝑥𝐾2) with phylogeographic likelihood 𝑝(𝑌|𝛩, 𝑥11, . . . , 𝑥𝑘𝑒  , . . . , 𝑥𝐾2) where 𝛩 represents all model parameters and 𝑥𝑘𝑒  represents the vector 
of covariate values for covariate 𝑘 ∈ {1, . . . , 𝐾}  (𝐾 being the total number of predictors in the model) 
in epoch 𝑒 ∈ {1,2}, we define the deviance for this covariate as 𝑑𝑘𝑒 =𝑙𝑜𝑔 𝑝(𝑌|𝛩, 𝑥11𝜋 , . . . , 𝑥𝑘𝑒𝜋 , . . . , 𝑥𝐾2𝜋 )  −𝑙𝑜𝑔 𝑝(𝑌|𝛩, 𝑥11, . . . , 𝑥𝑘𝑒 , . . . , 𝑥𝐾2)  where 𝑥𝑘𝑒𝜋  is a random 
permutation of the observed covariate vector 𝑥𝑘𝑒 . To estimate the posterior distribution of 𝑑𝑘𝑒, we 

computed values of 𝑑𝑘𝑒 for each MCMC sample, 𝑠, with realised model parameters 𝛩(𝑠) by setting 𝛩 = 𝛩(𝑠), and randomly permuting 𝑥𝑘𝑒  with equal probability for all possible permutations. For each 
covariate and in each epoch, we estimated the posterior distribution of the likelihood-deviance 
resulting from a random permutation of the covariate values. We then compared the resulting 
posterior distributions and ranked the importance of each covariate in predicting the geographic 
locations 𝑌. The covariate marginal posterior modal (most probable) ranking was then reported, as 
shown in Fig. 4 and Fig. S14 (with 1 being most important). While this approach averages over all 
possible marginal permutations and therefore has improved performance over earlier permutation-
based measures in machine learning (74), it may nevertheless return limited discrimination among 
highly correlated covariates. Permute-and-relearn importance methods (75) are able to overcome this 
limitation but remain computationally impractical given the numbers of tips and the size of the state-
spaces considered in this study. 
 
Using the above approach, we find that the predictor rankings do not always reflect differences in 
absolute effect size and that they help to identify similarities and differences between transmission 
lineages, as well as between epochs for a given transmission lineage. In the two largest transmission 
lineages, the gravity model covariates are consistently the most important covariates, in both the 
early- and late-epoch. For Transmission Lineage-A, the Greater London origin predictor is the next 
important predictor throughout the study period. The Greater London origin predictor is also more 
important in Transmission Lineage-A than in Transmission Lineage-B, for which a change in 
importance of this predictor between the early- and late-epoch is observed. In Transmission Lineage-
B, the origin peak time predictor is the next important predictor after the gravity model predictors. For 
both transmission lineages, we observe a large and consistent increase in the importance of the 
mobility matrix predictor between the early- and late-epoch. 
 
We also note that the magnitude of the likelihood-deviance estimates scales with the size of the 
dataset (and therefore the number of tips in the transmission lineages). As such, the deviance 
estimates do not provide a relative measure of fit across transmission lineages. 
 

Branching process model and comparison of transmission lineage size distributions 
To verify that the time of importation is the key determinant of transmission lineage size, we 
compared the size distribution of empirically observed transmission lineages with that from a model 
that simulates the branching process of transmission lineages following importation. Simulated 
importation dates are set to the dates estimated from the phylodynamic analysis and simulated 
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transmissions occur at the spatially homogeneous growth rates estimated from the daily number of 
reported COVID-19 cases (from the GOV.UK COVID-19 Dashboard) and SGTF data in England. 
Due to the low number of Omicron BA.1 cases at the beginning of the epidemic, which can lead to 
unreliable estimates of the initial growth rate, we performed a series of simulations with a range of 
different starting growth rates (taken from estimates during early parts of the invasion). We computed 
the Kullback-Leibler (KL) distance between the size distribution of simulated lineages and that of 
lineages inferred from phylodynamic analysis (Table S1). The growth rate that minimised the KL 
distance was then used to impute the initial growth rate in the best-fit model. We note that, given the 
simple nature of the model, we did not take into account any uncertainties associated with the case 
growth rates but relied only on the central estimates. As a sensitivity analysis for the potential bias 
that might have resulted from this and also any changes in case reporting rate during the study period, 
we repeated the simulations using case incidence estimates from the UK Office of National Statistics 
(ONS) (see Fig. S10 for comparisons between case incidence data from UK.GOV COVID-19 
Dashboard and ONS estimates). We observed consistent results as those obtained using the case 
incidence data from the GOV.UK COVID19 Dashboard (Fig. S7 and Fig. S8). 
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Fig. S1: Outline of phylogenetic analysis pipeline. A high-level overview of the various processes 

and phylogenetic analyses performed, as well as any relevant programs and packages for each step. 

Note that each subtree (except for the subtree containing only Omicron BA.2 sequences which we 

have omitted from further downstream analysis) from the tree-partitioning procedure is passed onto 

further analysis independently. Please refer to materials and methods for a more detailed description 

of each analysis. 
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Fig. S2: Comparison of Omicron BA.1 importation intensity as observed empirically from Variant 

Mutation (VAM) line list versus estimates from phylodynamic analysis. Histogram (grey bars) 

shows the daily number of incoming travellers who were later tested positive for Omicron BA.1 under 

the UKHSA mass testing programme (by specimen date). Solid lines represent the daily frequency of 

importations (7-day rolling average) as inferred from the phylodynamic analysis, coloured according 

to the size of resulting local transmission lineages (with the black dashed line representing the total 

numbers irrespective of size); shading denotes the 95% HPD across the posterior tree distribution. 
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Fig. S3. Distribution of local transmission lineage sizes from phylodynamic analysis. Grey bars 

show the number of transmission lineages of different sizes; red error bars denote the 95% HPDs 

across the posterior tree distribution. Blue solid line represents the cumulative proportion of English 

Omicron BA.1 genomes in our dataset accounted for by transmission lineages up to a certain size; 

shading denotes the 95% HPD across the posterior tree distribution. 
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Fig. S4: Variations in case reporting rates between countries. (A) Weekly number of tests performed 

per capita (log-transformed) and (B) weekly number of reported cases per capita for 27 countries 

(including Scotland and Northern Ireland independently) with the highest air passenger volumes 

arriving in England between November 2021 and January 2022 (collectively accounting for ~80% of 

total air passenger volume in this period). Thick solid lines represent a subset of eight selected 

countries with notable contribution to the overall intensity of Omicron BA.1 importation into England 

at different points during the study period; thin grey lines represent all other countries. 
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Fig. S5: Components of Estimated Importation Intensity (EII). (A) Monthly number of air 

passengers arriving in England from all countries (N=217) between November 2021 and January 

2022. Area of each coloured block indicates the number of air passengers arriving from a given 

country (out of the 27 countries for which EIIs are calculated) during a given month; grey blocks at 

the bottom represent air traffic volume from all other countries (N=190). (B) Estimated weekly 

relative prevalence of Omicron BA.1 in the 27 selected countries during the study period; shaded 

region represents the 95% CI. (C) Weekly average test positivity rate in the 27 selected countries 

during the study period. Thick solid lines represent a subset of eight selected countries with notable 

contribution to the overall intensity of Omicron BA.1 importation into England at different points 

during the study period; thin grey lines represent all other countries. 
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Fig. S6: Estimated Importation Intensity (EII) of Omicron BA.1 from selected potential exporters, 

using case incidence per capita as proxy for underlying prevalence. Estimated weekly number of 

Omicron BA.1 cases arriving in England from 27 countries (including Scotland and Northern Ireland 

independently) with the highest air passenger volumes arriving in England between November 2021 

and January 2022 (collectively accounting for ~80% of total air passenger volume in this period), 

using weekly number of reported cases as a proxy for trends in the underlying prevalence. Thick solid 

lines represent EIIs from eight selected countries with notable contribution to the overall intensity of 

Omicron BA.1 importation into England at different points during the study period; thin grey lines 

represent all other countries. Inset shows a magnified view of early trends. Grey shaded region 

represents the period (26 November to 15 December 2021) when travel restrictions on international 

arrivals from multiple southern African countries were implemented. (B) Relative proportion of 

weekly EII of Omicron BA.1 by location/country among selected potential exporters. Areas 

representing countries highlighted in (A) are labelled. 
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Fig. S7. Comparison of transmission lineage size distribution from phylodynamic analysis versus 

simulated results from a branching process model. (A) Black and red solid lines represent the 

estimated daily and 7-day rolling average daily number of Omicron BA.1 cases in England. Grey 
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shaded region represents the 95% CI associated with the estimated daily number of Omicron BA.1 

cases. Blue solid line represents the estimated daily growth rate, with the initial values imputed using 

an estimate of the growth rate on 13 December 2021. (B and C) Weekly proportion of local Omicron 

BA.1 infections resulting from importations at different times throughout the epidemic, with 

comparison between empirical observations from the phylodynamic analysis (C, top) and predictions 

from the branching process model (C, bottom). 
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Fig. S8. Comparison of transmission lineage size distribution from phylodynamic analysis versus 

simulated results from a branching process model (sensitivity analysis using ONS case incidence 

estimates). (A) Black and red solid lines represent the estimated daily and 7-day rolling average daily 

number of Omicron BA.1 cases in England, from the UK Office of National Statistics (ONS). Blue 

solid line represents the estimated daily growth rate, with the initial values imputed using an estimate 

of the growth rate on 13 December 2021. (B and C) Weekly proportion of local Omicron BA.1 
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infections resulting from importations at different times throughout the epidemic, with comparison 

between empirical observations from the phylodynamic analysis (C, top) and predictions from the 

branching process model (C, bottom).  

 

 

 

 

 

 

 

 

Fig. S9. Correlation between estimated number of Omicron BA.1 cases and number of Omicron 

BA.1 genomes sampled across UTLAs in England. Circles are coloured by week commencing date. 

Solid black line represents the line of best-fit; shaded region represents the 95% CI. We note in 

particular the clustering of circles corresponding to the same week along the line of best-fit, 

indicating small changes in sequencing coverage across time but not across UTLAs. 
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Fig. S10: Comparison of case incidence from the GOV.UK COVID19 Dashboard against estimates 

from UK Office of National Statistics. (A) Weekly number of positive COVID-19 cases in England as 

reported by the GOV.UK COVID19 Dashboard (https://coronavirus.data.gov.uk/) (solid black line); 

weekly number of COVID-19 cases in England as estimated from positivity rates by the UK Office of 

National Statistics (ONS) (solid blue line; shading denotes the associated 95% CI). Vertical red 

dashed lines indicate the start date and end date of the period during which English genomes were 

sampled in proportional to weekly number of reported cases (see supplementary materials). (B) 

Weekly number of COVID-19 cases per 1000 people as estimated by ONS versus that from the 

GOV.UK COVID19 Dashboard, with (right) and without (left) smoothing over the preceding two 

weeks for each given date. Blue lines show the least-squares fit and the shading denotes the 95% CI. 

(C, D) Residuals from a linear regression between the weekly number of COVID-19 cases per capita 

as estimated by ONS versus that from the GOV.UK COVID19 Dashboard (during the period of 

interest from 28 November 2021 to 31 January 2022), with (D) and without (C) smoothing over the 

preceding two weeks for each given date. Error bars denote the 95% confidence interval associated 

with uncertainty in the ONS estimates; boxes are coloured red (negative) or blue (positive) according 

to the sign of the residuals. 
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Fig. S11. Within-location versus all viral lineage movements for major cities in England. Each 

solid line represents the ratio between the frequency of within-location and all viral lineage 

movements per week, as inferred from continuous phylogeography for 6 major cities in England. For 

Greater Manchester and Greater London, viral lineages associated with multiple lower tier local 

authorities were aggregated in the calculation of these ratios. The timing of each viral lineage 

movement was assumed to be half-way between the inferred time of the nodes corresponding to the 

origin and destination. 
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Fig. S12. Spatiotemporal dynamics of Omicron BA.1 transmission lineages in England 

(Transmission Lineage-B, D, F and H). Maps showing viral lineage movements inferred from 

continuous phylogeography for Transmission Lineage-B, D, F and H. Nodes are coloured according 

to inferred date of occurrence and the direction of viral lineage movement is indicated by edge 

curvature (anti-clockwise). 
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Fig. S13. Spatial variations in timing of first peak of Omicron BA.1 case incidence across England. 

Estimated daily number of Omicron BA.1 cases per 1000 people at the Lower Tier Local Authority 

(LTLA) level (7-day rolling average), coloured according to the timing of their first peak relative to 

Christmas 2021 (specifically, whether the interval during which the daily number of Omicon BA.1 

cases exceed 85% of the peak incidence lies entirely before (red), after(dark grey), or encloses 

(yellow) 25 December 2021 (Christmas). (B) Map showing the spatial distribution of the timing of the 

first peak in Omicron BA.1 case incidence at the LTLA level, following the same colour scheme as in 

(A). 
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Fig. S14. Predictors of Omicron BA.1 viral lineage movements in England in the time-

inhomogeneous discrete-phylogeography with GLM model. For each predictor, the box and 

whiskers show the posterior distribution of the product of the log predictor coefficient and the 

predictor inclusion probability; the left hand value represents the expansion period estimate and the 

right hand value the post-expansion period estimate. Top panel (A) shows estimates for Transmission 

Lineage-C and bottom panel (B) shows those for Transmission Lineages D, E, F, G, and H analysed 

in a joint model. Posterior distributions are coloured according to predictor type: geographic 

distances (geo distance, dark blue), population sizes at origin and destination (pop size ori & pop size 

dest, black), aggregated mobility (mobility mat, purple), mobility-based community membership level 

1 and level 2 (comm overlap l1 & l2, purple), Greater London origin and destination (gr LDN ori & 

gr LDN dest, red), time of peak incidence at the origin and destination (peak time ori & peak time 

dest, orange) and the residual of a regression of sample size against case count regression at either 

the origin and destination (sample res ori & sample res dest, yellow). Boxes at the bottom of each 

panel are numbered and shaded to represent the rank of predictors based on their deviance measure, 

with 1 indicating the largest (most important) and 12 indicating the smallest (least important). 
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Fig. S15. Predictors of Omicron BA.1 viral lineage movements in England in the time-

homogeneous discrete-phylogeography with GLM model. Each panel corresponds to an independent 

analysis for Transmission Lineage-A (A), Transmission Lineage-B (B), Transmission Lineage-C (C), 

and Transmission Lineages D, E, F, G and H together in a joint model (D). For each predictor within 

a panel, the box and whiskers show the posterior distributions of the product of the log predictor 

coefficient and the predictor inclusion probability. Posterior distributions are coloured according to 

predictor type: geographic distances (geo distance, dark blue), population sizes at origin and 

destination (pop size ori & pop size dest, black), aggregated mobility (mobility mat, purple), mobility-

based community membership level 1 and level 2 (comm overlap l1 & l2, purple), Greater London 

origin and destination (gr LDN ori & gr LDN dest, red), time of peak incidence at origin and 

destination (peak time ori & peak time dest, orange) and the residual of a regression of sample size 

against case count regression at either the origin and destination (sample res ori & sample res dest, 

yellow). 
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Fig. S16: Dependency of booster uptakes and cumulative Omicron BA.1 case counts on population 

age structure. (A, C) Distribution of the proportion of age-specific population in each Lower Tier 

Local Authority (LTLA) who have received a booster dose by 25 December 2021 and 31 January 

2022, respectively. Each box extends from the 25th to 75th percentile of the distribution for the 

corresponding age group; the midline within each box represents the median; the vertical lines 

represent the lower and upper limits and the dots denote the outliers. (B, D) Cumulative number of 

Omicron BA.1 cases per capita (log10-transformed) versus proportion of the population aged above 

65 (log10-transformed). Each dot represents an LTLA. Blue lines show the least-squares fit and the 

shading denotes the associated 95% CI. 
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Fig. S17: Booster uptake as a predictor of Omicron BA.1 viral lineage movements in England. (A) 

Map of age-corrected effective booster uptake at the Lower Tier Local Authority (LTLA) level, 

averaged over the early-phase (12 November 2021 to 25 December 2021) (left) and the late-phase of 

the epidemic (26 December 2021 to 31 January 2022) (right). The effective booster uptake is defined 

as the proportion of the population who would have received a booster dose having accounted for 

age-specific booster uptakes, assuming the national average population age structure. (B) For each 

predictor, the box and whiskers show the posterior distribution of the product of the log predictor 

coefficient and the predictor inclusion probability; the left hand value represents the expansion period 

estimate and the right hand value the post-expansion period estimate. Posterior distributions are 

coloured according to predictor type: geographic distances (geo distance, dark blue), population 

sizes at origin and destination (pop size ori & pop size dest, black), aggregated mobility (mobility 

mat, purple), mobility-based community membership level 1 and level 2 (comm overlap l1 & l2, 

purple), Greater London origin and destination (gr LDN ori & gr LDN dest, red), time of peak 

incidence at origin and destination (peak time ori & peak time dest, orange), the residual of a 

regression of sample size against case count regression at either origin and destination (sample res 

ori & sample res dest, yellow), and effective booster uptake at origin and destination (booster uptake 

ori & booster uptake dest, brown). 
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Fig. S18. Trends in human mobility across England. (A) Weekly human mobility flows relative to 

pre-pandemic levels (averaged over period from 3 November 2019 to 28 December 2019) across 

different spatial scales (red: <30 km, yellow: 30-60 km, blue: 60-100 km, dark grey: >100 km). (B) 

Weekly changes in within-LTLA mobility relative to pre-Omicron levels (averaged over period from 

12 September 2021 to 6 November 2021 for each LTLA individually). Thick black line represents the 

weekly mobility changes averaged over all LTLAs; each thin grey line represents the weekly mobility 

changes for a single LTLA. Vertical line shows 24th of December 2021. 
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Table S1. Imputation of initial growth rate in branching process model. Kullback-Leibler (KL) 

divergence values computed from comparisons of the weekly proportion of local Omicron BA.1 

infections resulting from importations at different times as inferred from the phylodynamic analysis, 

versus predictions from branching process models with a range of initial growth rates. The initial 

growth rates in the branching models were imputed using estimates taken from the early growth 

phase of the epidemic (between 2021-12-04 and 2021-12-15), and the growth rate that minimised the 

KL divergence (shown in bold) was used in the best-fit model. 

 

Initial growth rate taken from Kullback–Leibler divergence 

2021-12-04 2.84 

2021-12-05 2.04 

2021-12-06 1.33 

2021-12-07 1.42 

2021-12-08 2.95 

2021-12-09 12.54 

2021-12-10 13.13 

2021-12-11 8.31 

2021-12-12 2.02 

2021-12-13 0.81 

2021-12-14 2.76 

2021-12-15 5.17 
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Table S2. Imputation of initial growth rates in branching process model (sensitivity analysis using 

incidence estimates from the UK Office of National Statistics). Kullback-Leibler (KL) divergence 

values computed from comparisons of the weekly proportion of local Omicron BA.1 infections 

resulting from importations at different times as inferred from the phylodynamic analysis, versus 

predictions from branching process models with a range of initial growth rates. The initial growth 

rates in the branching models were imputed using estimates taken from the early growth phase of the 

epidemic (between 2021-11-20 and 2021-12-20), and the growth rate that minimised the KL 

divergence (shown in bold) was used in the best-fit model. Note that the UK Office of National 

Statistics (ONS) case incidence (central) estimates are used here for the estimation of daily case 

growth rates, instead of case incidence data from the GOV.UK COVID-19 Dashboard. 

 

Initial growth rate taken from Kullback–Leibler divergence 

2021-11-20 5.03 

2021-11-21 5.16 

2021-11-22 5.29 

2021-11-23 4.70 

2021-11-24 4.92 

2021-11-25 5.17 

2021-11-26 3.77 

2021-11-27 3.78 

2021-11-28 3.18 

2021-11-29 3.33 

2021-11-30 3.9 

2021-12-01 6.63 

2021-12-02 17.5 

2021-12-03 20.29 

2021-12-04 19.00 

2021-12-05 14.91 

2021-12-06 12.32 

2021-12-07 9.89 

2021-12-08 13.77 

2021-12-09 13.33 

2021-12-10 13.16 

2021-12-11 8.96 

2021-12-12 5.60 

2021-12-13 2.77 

2021-12-14 1.51 

2021-12-15 0.7 

2021-12-16 1.22 

2021-12-17 2.59 

2021-12-18 4.18 

2021-12-19 5.96 
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2021-12-20 7.24 

 

Table S3. Predictors of viral lineage movements in England. Summary table and descriptions of 

predictors considered in the discrete phylogeographic GLM analysis. For location-specific predictors 

(as indicated by an asterisk), we included both an origin and a destination covariate in the GLM 

model. 
 

Predictor Domain Time-varying Description 

Geographical 

distance between 

origin and 

destination 

Geography No Geographical distance between the origin and 
destination calculated using the Haversine 
formula in km 

Population size* Demography No Population size at the origin/destination, from 
population estimates obtained by the Office of 
National Statistics in mid-year 2020 

Aggregated mobility 

matrix 

Human mobility Yes Average weekly number of trips taken between 
origin and destination estimated from Google 
COVID-19 Aggregated Mobility Research 
Dataset; given that the mobility flux between two 
locations does not in general differ from 
symmetry in a statistically significant manner 
(i.e. the magnitude of mobility flux in either 
direction is generally very similar for a given 
connection), we considered a mobility matrix that 
was symmetrised 

Community 

memberships from 

mobility network 

(level-1/2)* 

Human mobility Yes A binary variable [0,1] indicating whether the 
origin and destination belong to the same 
community at level-1/2; community structures 
were identified from the human mobility network 
as described by the aggregated mobility matrix, 
using the community detection algorithm 
Infomap (76, 77), with level-1/2 corresponding to 
the tree-depth at which the communities were 
extracted; level-1 has a higher level of 
aggregation (fewer communities) compared to 
level-2 (more communities) 

Greater London / 

non-Greater London 

indicator* 

Geography/ 
Epidemiology 

No A binary variable [0,1] indicating whether the 
origin/destination is in the Greater London region 

Timing of peak in 

Omicron BA.1 case 

incidence* 

Epidemiology No Timing of first peak in Omicron BA.1 case 
incidence at the origin/destination, measured as 
the number of days from 1 December 2021 

Sampling residuals* Sampling No Residuals from a regression of sample size 
against Omicron BA.1 case count at 
origin/destination; time-invariant residuals were 

https://paperpile.com/c/ivsGqs/Tjlw2+6HIUB
https://paperpile.com/c/ivsGqs/Tjlw2+6HIUB
https://paperpile.com/c/ivsGqs/Tjlw2+6HIUB
https://paperpile.com/c/ivsGqs/Tjlw2+6HIUB
https://paperpile.com/c/ivsGqs/Tjlw2+6HIUB
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used due to the small number of samples in some 
locations during the post-expansion phase 

Table S4. Definitions of Lower Tier Local Authorities (LTLAs). Table of LTLAs that have been 

deprecated and aggregated into newly defined LTLAs, according to recent definitions used in the 

report of population estimates for the UK in mid-2020, compiled by the Office of National Statistics, 

UK. 

 

Most recent LTLA definition Deprecated LTLA definition(s) 

E06000058 

(Bournemouth, Christchurch and Poole) 
E06000028, E06000029, E07000048 

E06000060 
(Buckinghamshire) 

E07000004, E07000005, E07000006, E07000007 

E06000059 
(Dorset) 

E07000049, E07000050, E07000051, E07000052, 

E07000053 

E07000244 
(East Suffolk) 

E07000205, E07000206 

E07000244 
(West Suffolk) 

E07000201, E07000204 

E07000246 
(Somerset West and Taunton) 

E07000190, E07000191 
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Table S6. The COVID-19 Genomics UK (COG-UK) consortium, June 2021 V4 

 
The COVID-19 Genomics UK (COG-UK) consortium 

FINAL (06-2021 V4) 

 
Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples 

and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation: 

Samuel C Robson 13, 84 

 
Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples 

and logistics, Sequencing and analysis, and Software and analysis tools: 

Thomas R Connor 11, 74 and Nicholas J Loman 43 

 
Leadership and supervision, Metadata curation, Project administration, Samples and logistics, 

Sequencing and analysis, Software and analysis tools, and Visualisation: 

Tanya Golubchik 5 

 
Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, Sequencing 

and analysis, and Visualisation: 

Rocio T Martinez Nunez 46 

 
Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, 

Sequencing and analysis, and Software and analysis tools: 

David Bonsall 5 

 
Funding acquisition, Leadership and supervision, Project administration, Sequencing and analysis, 

Software and analysis tools, and Visualisation: 

Andrew Rambaut 104 

 
Funding acquisition, Metadata curation, Project administration, Samples and logistics, Sequencing and 

analysis, and Software and analysis tools: 

Luke B Snell 12 

 
Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Software 

and analysis tools, and Visualisation: 

Rich Livett 116 

 
Funding acquisition, Leadership and supervision, Metadata curation, Project administration, and 

Samples and logistics: 

Catherine Ludden 20, 70 

 
Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, and 

Sequencing and analysis: 

Sally Corden 74 and Eleni Nastouli 96, 95, 30 
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Funding acquisition, Leadership and supervision, Metadata curation, Sequencing and analysis, and 

Software and analysis tools: 

Gaia Nebbia 12 

 
Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, and 

Sequencing and analysis: 

Ian Johnston 116 

 
Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and 

Sequencing and analysis: 

Katrina Lythgoe 5, M. Estee Torok 19, 20 and Ian G Goodfellow 24 

 
Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and 

Visualisation: 

Jacqui A Prieto 97, 82 and Kordo Saeed 97, 83  
 
Leadership and supervision, Metadata curation, Project administration, Sequencing and analysis, and 

Software and analysis tools: 

David K Jackson 116 

 
Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and 

Visualisation: 

Catherine Houlihan 96, 94  
 
Leadership and supervision, Metadata curation, Sequencing and analysis, Software and analysis tools, 

and Visualisation: 

Dan Frampton 94, 95 

 
Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software 

and analysis tools: 

William L Hamilton 19 and Adam A Witney 41  
 
Funding acquisition, Samples and logistics, Sequencing and analysis, and Visualisation: 

Giselda Bucca 101 

 
Funding acquisition, Leadership and supervision, Metadata curation, and Project administration: 

Cassie F Pope 40, 41 

 
Funding acquisition, Leadership and supervision, Metadata curation, and Samples and logistics: 

Catherine Moore 74  
 
Funding acquisition, Leadership and supervision, Metadata curation, and Sequencing and analysis: 

Emma C Thomson 53  
 
Funding acquisition, Leadership and supervision, Project administration, and Samples and logistics: 

Teresa Cutino-Moguel 2, Ewan M Harrison 116, 102 

 
Funding acquisition, Leadership and supervision, Sequencing and analysis, and Visualisation: 

Colin P Smith 101  
 
Leadership and supervision, Metadata curation, Project administration, and Sequencing and analysis: 
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Fiona Rogan 77  
 
Leadership and supervision, Metadata curation, Project administration, and Samples and logistics: 

Shaun M Beckwith 6, Abigail Murray 6, Dawn Singleton 6, Kirstine Eastick 37, Liz A Sheridan 98, Paul Randell 
99, Leigh M Jackson 105, Cristina V Ariani 116 and Sónia Gonçalves 116  
 
Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis: 

Derek J Fairley 3, 77, Matthew W Loose 18 and Joanne Watkins 74 

 
Leadership and supervision, Metadata curation, Samples and logistics, and Visualisation: 

Samuel Moses 25, 106 

 
Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis 

tools:  

Sam Nicholls 43, Matthew Bull 74 and Roberto Amato 116  
 
Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis: 

Darren L Smith 36, 65, 66 

 
Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation: 

David M Aanensen 14, 116 and Jeffrey C Barrett 116 

 
Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis: 

Beatrix Kele 2, Dinesh Aggarwal 20, 116, 70, James G Shepherd 53, Martin D Curran 71 and Surendra Parmar 71  
 
Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools: 

Matthew D Parker 109 

 
Metadata curation, Samples and logistics, Sequencing and analysis, and Software and analysis tools: 

Catryn Williams 74 

 
Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: 

Sharon Glaysher 68 

 
Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation: 

Anthony P Underwood 14, 116, Matthew Bashton 36, 65, Nicole Pacchiarini 74, Katie F Loveson 84 and Matthew 
Byott 95, 96 

 
Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation: 

Alessandro M Carabelli 20 

 
Funding acquisition, Leadership and supervision, and Metadata curation: 

Kate E Templeton 56, 104  
 
Funding acquisition, Leadership and supervision, and Project administration: 

Sharon J Peacock 20, 70, Thushan I de Silva 109, Dennis Wang 109, Cordelia F Langford 116 and John Sillitoe 116 

 
Funding acquisition, Leadership and supervision, and Samples and logistics: 

Rory N Gunson 55 

 
Funding acquisition, Leadership and supervision, and Sequencing and analysis: 

Simon Cottrell 74, Justin O’Grady 75, 103 and Dominic Kwiatkowski 116, 108 
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Leadership and supervision, Metadata curation, and Project administration: 

Patrick J Lillie 37 

 
Leadership and supervision, Metadata curation, and Samples and logistics: 

Nicholas Cortes 33, Nathan Moore 33, Claire Thomas 33, Phillipa J Burns 37, Tabitha W Mahungu 80 and Steven 
Liggett 86 

 
Leadership and supervision, Metadata curation, and Sequencing and analysis: 

Angela H Beckett 13, 81 and Matthew TG Holden 73 

 
Leadership and supervision, Project administration, and Samples and logistics: 

Lisa J Levett 34, Husam Osman 70, 35 and Mohammed O Hassan-Ibrahim 99  
 
Leadership and supervision, Project administration, and Sequencing and analysis: 

David A Simpson 77  
 
Leadership and supervision, Samples and logistics, and Sequencing and analysis: 

Meera Chand 72, Ravi K Gupta 102, Alistair C Darby 107 and Steve Paterson 107 

 
Leadership and supervision, Sequencing and analysis, and Software and analysis tools: 

Oliver G Pybus 23, Erik M Volz 39, Daniela de Angelis 52, David L Robertson 53, Andrew J Page 75 and Inigo 
Martincorena 116 

 
Leadership and supervision, Sequencing and analysis, and Visualisation: 

Louise Aigrain 116 and Andrew R Bassett 116 

 
Metadata curation, Project administration, and Samples and logistics: 

Nick Wong 50, Yusri Taha 89, Michelle J Erkiert 99 and Michael H Spencer Chapman 116, 102  
 
Metadata curation, Project administration, and Sequencing and analysis: 

Rebecca Dewar 56 and Martin P McHugh 56, 111 

 
Metadata curation, Project administration, and Software and analysis tools: 

Siddharth Mookerjee 38, 57 

 
Metadata curation, Project administration, and Visualisation: 

Stephen Aplin 97, Matthew Harvey 97, Thea Sass 97, Helen Umpleby 97 and Helen Wheeler 97 

 
Metadata curation, Samples and logistics, and Sequencing and analysis: 

James P McKenna 3, Ben Warne 9, Joshua F Taylor 22, Yasmin Chaudhry 24, Rhys Izuagbe 24, Aminu S Jahun 24, 
Gregory R Young 36, 65, Claire McMurray 43, Clare M McCann 65, 66, Andrew Nelson 65, 66 and Scott Elliott 68 

 
Metadata curation, Samples and logistics, and Visualisation: 

Hannah Lowe 25 

 
Metadata curation, Sequencing and analysis, and Software and analysis tools: 

Anna Price 11, Matthew R Crown 65, Sara Rey 74, Sunando Roy 96 and Ben Temperton 105  
 
Metadata curation, Sequencing and analysis, and Visualisation: 

Sharif Shaaban 73 and Andrew R Hesketh 101 
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Project administration, Samples and logistics, and Sequencing and analysis: 

Kenneth G Laing 41, Irene M Monahan 41 and Judith Heaney 95, 96, 34 

 
Project administration, Samples and logistics, and Visualisation: 

Emanuela Pelosi 97, Siona Silviera 97 and Eleri Wilson-Davies 97  
 
Samples and logistics, Software and analysis tools, and Visualisation: 

Helen Fryer 5 

 
Sequencing and analysis, Software and analysis tools, and Visualization: 

Helen Adams 4, Louis du Plessis 23, Rob Johnson 39, William T Harvey 53, 42, Joseph Hughes 53, Richard J Orton 
53, Lewis G Spurgin 59, Yann Bourgeois 81, Chris Ruis 102, Áine O'Toole 104, Marina Gourtovaia 116 and Theo 
Sanderson 116  
 
Funding acquisition, and Leadership and supervision: 

Christophe Fraser 5, Jonathan Edgeworth 12, Judith Breuer 96, 29, Stephen L Michell 105 and John A Todd 115 

 
Funding acquisition, and Project administration: 

Michaela John 10 and David Buck 115 

 
Leadership and supervision, and Metadata curation: 

Kavitha Gajee 37 and Gemma L Kay 75 

 
Leadership and supervision, and Project administration:   

David Heyburn 74 

 
Leadership and supervision, and Samples and logistics: 

Themoula Charalampous 12, 46, Adela Alcolea-Medina 32, 112, Katie Kitchman 37, Alan McNally 43, 93, David T 
Pritchard 50, Samir Dervisevic 58, Peter Muir 70, Esther Robinson 70, 35, Barry B Vipond 70, Newara A Ramadan 
78, Christopher Jeanes 90, Danni Weldon 116, Jana Catalan 118 and Neil Jones 118 

 
Leadership and supervision, and Sequencing and analysis: 

Ana da Silva Filipe 53, Chris Williams 74, Marc Fuchs 77, Julia Miskelly 77, Aaron R Jeffries 105, Karen Oliver 116 
and Naomi R Park 116 

 
Metadata curation, and Samples and logistics:   

Amy Ash 1, Cherian Koshy 1, Magdalena Barrow 7, Sarah L Buchan 7, Anna Mantzouratou 7, Gemma Clark 15, 
Christopher W Holmes 16, Sharon Campbell 17, Thomas Davis 21, Ngee Keong Tan 22, Julianne R Brown 29, 
Kathryn A Harris 29, 2, Stephen P Kidd 33, Paul R Grant 34, Li Xu-McCrae 35, Alison Cox 38, 63, Pinglawathee 
Madona 38, 63, Marcus Pond 38, 63, Paul A Randell 38, 63, Karen T Withell 48, Cheryl Williams 51, Clive Graham 60, 
Rebecca Denton-Smith 62, Emma Swindells 62, Robyn Turnbull 62, Tim J Sloan 67, Andrew Bosworth 70, 35, 
Stephanie Hutchings 70, Hannah M Pymont 70, Anna Casey 76, Liz Ratcliffe 76, Christopher R Jones 79, 105, 
Bridget A Knight 79, 105, Tanzina Haque 80, Jennifer Hart 80, Dianne Irish-Tavares 80, Eric Witele 80, Craig Mower 
86, Louisa K Watson 86, Jennifer Collins 89, Gary Eltringham 89, Dorian Crudgington 98, Ben Macklin 98, Miren 
Iturriza-Gomara 107, Anita O Lucaci 107 and Patrick C McClure 113  
 
Metadata curation, and Sequencing and analysis: 

Matthew Carlile 18, Nadine Holmes 18, Christopher Moore 18, Nathaniel Storey 29, Stefan Rooke 73, Gonzalo 
Yebra 73, Noel Craine 74, Malorie Perry 74, Nabil-Fareed Alikhan 75, Stephen Bridgett 77, Kate F Cook 84, 
Christopher Fearn 84, Salman Goudarzi 84, Ronan A Lyons 88, Thomas Williams 104, Sam T Haldenby 107, Jillian 
Durham 116 and Steven Leonard 116 
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Metadata curation, and Software and analysis tools: 

Robert M Davies 116 

 
Project administration, and Samples and logistics: 

Rahul Batra 12, Beth Blane 20, Moira J Spyer 30, 95, 96, Perminder Smith 32, 112, Mehmet Yavus 85, 109, Rachel J 
Williams 96, Adhyana IK Mahanama 97, Buddhini Samaraweera 97, Sophia T Girgis 102, Samantha E Hansford 
109, Angie Green 115, Charlotte Beaver 116, Katherine L Bellis 116, 102, Matthew J Dorman 116, Sally Kay 116, Liam 
Prestwood 116 and Shavanthi Rajatileka 116 

 
Project administration, and Sequencing and analysis: 

Joshua Quick 43 

 
Project administration, and Software and analysis tools: 

Radoslaw Poplawski 43 

 
Samples and logistics, and Sequencing and analysis: 

Nicola Reynolds 8, Andrew Mack 11, Arthur Morriss 11, Thomas Whalley 11, Bindi Patel 12, Iliana Georgana 24, 
Myra Hosmillo 24, Malte L Pinckert 24, Joanne Stockton 43, John H Henderson 65, Amy Hollis 65, William 
Stanley 65, Wen C Yew 65, Richard Myers 72, Alicia Thornton 72, Alexander Adams 74, Tara Annett 74, Hibo Asad 
74, Alec Birchley 74, Jason Coombes 74, Johnathan M Evans 74, Laia Fina 74, Bree Gatica-Wilcox 74, Lauren 
Gilbert 74, Lee Graham 74, Jessica Hey 74, Ember Hilvers 74, Sophie Jones 74, Hannah Jones 74, Sara Kumziene-
Summerhayes 74, Caoimhe McKerr 74, Jessica Powell 74, Georgia Pugh 74, Sarah Taylor 74, Alexander J Trotter 
75, Charlotte A Williams 96, Leanne M Kermack 102, Benjamin H Foulkes 109, Marta Gallis 109, Hailey R Hornsby 
109, Stavroula F Louka 109, Manoj Pohare 109, Paige Wolverson 109, Peijun Zhang 109, George MacIntyre-Cockett 
115, Amy Trebes 115, Robin J Moll 116, Lynne Ferguson 117, Emily J Goldstein 117, Alasdair Maclean 117 and 
Rachael Tomb 117  
 
Samples and logistics, and Software and analysis tools: 

Igor Starinskij 53 

 
Sequencing and analysis, and Software and analysis tools: 

Laura Thomson 5, Joel Southgate 11, 74, Moritz UG Kraemer 23, Jayna Raghwani 23, Alex E Zarebski 23, Olivia 
Boyd 39, Lily Geidelberg 39, Chris J Illingworth 52, Chris Jackson 52, David Pascall 52, Sreenu Vattipally 53, 
Timothy M Freeman 109, Sharon N Hsu 109, Benjamin B Lindsey 109, Keith James 116, Kevin Lewis 116, Gerry 
Tonkin-Hill 116 and Jaime M Tovar-Corona 116  
 
Sequencing and analysis, and Visualisation: 

MacGregor Cox 20 

 
Software and analysis tools, and Visualisation: 

Khalil Abudahab 14, 116, Mirko Menegazzo 14, Ben EW Taylor MEng 14, 116, Corin A Yeats 14, Afrida Mukaddas 
53, Derek W Wright 53, Leonardo de Oliveira Martins 75, Rachel Colquhoun 104, Verity Hill 104, Ben Jackson 104, 
JT McCrone 104, Nathan Medd 104, Emily Scher 104 and Jon-Paul Keatley 116  
 
Leadership and supervision: 

Tanya Curran 3, Sian Morgan 10, Patrick Maxwell 20, Ken Smith 20, Sahar Eldirdiri 21, Anita Kenyon 21, Alison H 
Holmes 38, 57, James R Price 38, 57, Tim Wyatt 69, Alison E Mather 75, Timofey Skvortsov 77 and John A Hartley 96 

 
Metadata curation: 

Martyn Guest 11, Christine Kitchen 11, Ian Merrick 11, Robert Munn 11, Beatrice Bertolusso 33, Jessica Lynch 33, 
Gabrielle Vernet 33, Stuart Kirk 34, Elizabeth Wastnedge 56, Rachael Stanley 58, Giles Idle 64, Declan T Bradley 
69, 77, Nicholas F Killough 69, Jennifer Poyner 79 and Matilde Mori 110 
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Project administration: 

Owen Jones 11, Victoria Wright 18, Ellena Brooks 20, Carol M Churcher 20, Laia Delgado Callico 20, Mireille 
Fragakis 20, Katerina Galai 20, 70, Andrew Jermy 20, Sarah Judges 20, Anna Markov 20, Georgina M McManus 20, 
Kim S Smith 20, Peter M D Thomas-McEwen 20, Elaine Westwick 20, Stephen W Attwood 23, Frances Bolt 38, 57, 
Alisha Davies 74, Elen De Lacy 74, Fatima Downing 74, Sue Edwards 74, Lizzie Meadows 75, Sarah Jeremiah 97, 
Nikki Smith 109 and Luke Foulser 116  
 
Samples and logistics: 

Amita Patel 12, Louise Berry 15, Tim Boswell 15, Vicki M Fleming 15, Hannah C Howson-Wells 15, Amelia 
Joseph 15, Manjinder Khakh 15, Michelle M Lister 15, Paul W Bird 16, Karlie Fallon 16, Thomas Helmer 16, Claire 
L McMurray 16, Mina Odedra 16, Jessica Shaw 16, Julian W Tang 16, Nicholas J Willford 16, Victoria Blakey 17, 
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