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Abstract: Modeling the spread of wildland fires is essential for assessing and managing fire risks.
However, this task remains challenging due to the partially stochastic nature of fire behavior and
the limited availability of observational data with high spatial and temporal resolutions. Herein, we
propose an attention-based deep learning modeling approach that can be used to learn the complex
behaviors of wildfires across different fire-prone regions. We integrate optimized spatial and channel
attention modules with a convolutional neural network (CNN) modeling architecture and train the
attention-based fire spread models using a recently derived fire-tracking satellite observational dataset
in conjunction with corresponding fuel, terrain, and weather conditions. The evaluation results and
their comparison with benchmark models, such as a deeper and more complex autoencoder model
and the semi-empirical FARSITE fire behavior model, demonstrate the effectiveness of the attention-
based models. These new data-driven fire spread models exhibit promising modeling performances
in both the next-step prediction (i.e., predicting fire progression from one timestep earlier) and
recursive prediction (i.e., recursively predicting final fire perimeters from initial ignition points) of
observed large wildfires in California, and they provide a foundation for further practical applications
including short-term active fire spread prediction and long-term fire risk assessment.

Keywords: wildfire modeling; deep learning; remote sensing; fire risk assessment

1. Introduction

The western US is facing intensified fire risks stemming from increasing large wildfire
hazards [1,2] and escalating exposure levels [3] across the region. The observed increase
in the occurrence of hazardous wildfires and the associated socioeconomic burden on
infrastructure and livelihoods [4] have been attributed to a range of drivers, including
worsening fire-prone weather conditions [5] due to global climate change [6-8], increasing
contributions from human ignitions [9], the rapid expansion of the wildland-urban inter-
face (WUI) [10], and the failure of the longstanding wildfire suppression policy, causing the
accumulation of flammable fuel [11]. As society mitigates and adapts to these new threat-
ening conditions [12], it is necessary to understand the spatial and temporal changes in
evolving wildfire risks across the region. Both the public and private sectors are increasing
their investments in the above wildfire-related research fields to address the growing threat
of wildfire risks.

To meet the needs of fire risk assessment and prediction over daily to decadal timescales,
various modeling tools have been developed to simulate essential burning processes, en-
compassing fire ignition, spread, and associated impacts. These models utilize different
approaches, including physics-based models, data-driven models, or a combination of both,
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to capture the complexities of fire behavior and its spatiotemporal dynamics. Physics-based
fire models, as outlined in the referenced review paper [13], are based on mathematical
equations that describe fundamental combustion processes, including thermal radiation
and fluid dynamics. Developing and implementing these models typically require sig-
nificant computational resources due to their reliance on complex simulations. On the
other hand, data-driven models take an empirical approach to directly learn the intricate
relationships and patterns of fire behavior from observed data [14]. This allows data-driven
models to capture the complexities of fire dynamics without relying on explicit equations.
The data-driven models can be further categorized into statistical models, machine learning
models, and deep learning models based on the complexity and characteristics of the mod-
eling techniques employed. Some widely used fire spread models include semi-empirical
community-scale models like FARSITE [15] and FlamMap [16], a global-scale CESM fire
model [17], level-set models such as ELMFIRE [18] and WRF-SFIRE [19], Celluar Automata
models [20], and recently developed machine learning (ML)-/deep learning (DL)-based
models [21-24].

The rapid advances of ML-/DL-based fire spread models show intriguing advantages
in computational efficiency and flexibility, although their modeling capabilities for practical
applications still need to be improved. Both the limited availability of observational fire
data at high spatiotemporal resolutions and the lack of optimized modeling architectures
designed for learning complex fire behavior tend to hinder the further improvement of
data-driven fire spread models. To address these problems, we develop new modeling
architectures inspired by physical fire spread processes to learn how fire propagates in wild-
lands, as observed in a recently derived fire-tracking satellite observation dataset recorded
by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument [25]. This novel
object-based Fire Event Data Suite (FEDS), with continuous tracking of fire progression
throughout its lifetime, provides unprecedented opportunities to train new data-driven
fire spread models at a high spatiotemporal resolution. We tackle the fire spread modeling
problem via the following two steps: (1) next-step prediction that predicts fire progression
in subsequent timesteps based on model inputs from one step earlier (i.e., X,  — Y};el )
and (2) recursive prediction that predicts final fire perimeters from initial ignition points,
using next-step prediction recursively (i.e., X}‘?r .= Y}}r o Y}?r .)- The majority of the
previous ML-/DL-based fire modeling studies primarily focused on addressing the first
problem, while comparatively less attention have been provided to the second problem.
While recursive prediction poses greater challenges due to the accumulation and amplifica-
tion of modeling errors throughout the iterative process, it holds greater practical value for
simulating the complete lifecycles of fire events and assessing their comprehensive physical
and socioeconomic impacts. For instance, the capability to model complete fire events is
crucial for conducting tail risk assessment within the insurance industry. This is because
most fire losses are caused by catastrophic large wildfires, and historical data pertaining to
such extreme events are often limited in their availability. Furthermore, the evolving fire
weather conditions associated with climate change render fire risk factors non-stationary,
rendering historical loss records insufficient for accurate fire risk assessment. Therefore,
it is imperative to develop improved fire models that incorporate climate change factors,
enabling the simulation of growing extreme fire events for proactive risk assessment.

In this study, three convolutional neural network (CNN) models integrated with dif-
ferent fire attention mechanisms were developed to achieve the above goal. We trained and
evaluated these CNN fire models using the novel FEDS fire-tracking observational dataset
from 2012-2020 [25]. The training datasets and modeling architectures are described in
Section 2, with more details provided in Appendix A. Section 3 presents the model evalua-
tion results and their comparison with benchmark models, followed by more discussion in
Section 4 and conclusional remarks in Section 5.
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2. Materials and Methods
2.1. Observation-Based Model Inputs

We used model input settings in our CNN fire spread models that were similar to the
model input setting of the semi-empirical FARSITE fire behavior model [15], including 14
input features in 4 groups for fire, terrain, fuel, and weather conditions. The predictands
were fire polygons at the next timesteps (next-step prediction) or final timesteps (recursive
prediction). The model input data were collected from multiple sources, as listed below:

Observational fire data: The daily progression of 735 large wildfires (fire size > 4 km?)
during the period 2012-2020 in California were derived from VIIRS satellite observations
at a spatial resolution of ~375 m and a 12 h temporal resolution [25]. This object-based
FEDS dataset contains the direct serialization of all fire objects, core fire properties, and
vector geometries at each timestep, and it was used as one of model inputs to predict fire
polygons in next-step prediction as well as a ground truth to evaluate the predicted results.

Terrain data: Three topographic variables (i.e., Aspect, Elevation, and Slope) at a 30 m
spatial resolution were collected from the LANDFIRE program [26].

Fuel data: Five fuel variables (i.e., FuelModel, CanopyCover, StandHeight, Canopy-
BulkDensity, and CanopyBaseHeight) at a 30 m spatial resolution were also collected from
the LANDFIRE program [27]. Among these fuel variables, FuelModel is short for the 13
Anderson Fire Behavior Fuel Models (FBFM13), which represent distinct distributions
of fuel loading among surface fuel components, size classes, and fuel types. The other
four variables represent forest canopy characteristics such as canopy cover, canopy height,
canopy bulk density, and canopy base height, respectively. The LANDFIRE fuel products
were updated on a roughly biennial basis. We used the most recent fuel products before
each observed fire event to capture vegetation dynamics and prior fuel disturbances in the
model.

Weather data: Four daily weather variables (i.e., TMP: maximum air temperature;
HMD: relative humidity; PPT: precipitation; and SPD: wind speed) at a 1 km spatial
resolution were developed through the NEX-GDM program [28] and collected from the
NASA GeoNEX data portal [29]. Note that these NEXGDM weather data do not provide
wind direction. We collected 10 m u-/v-components of wind from the ERA5 hourly
reanalysis product [30] at a spatial resolution of 0.25° from the Copernicus Climate Change
Service website and then derived the surface wind direction (DIR: wind direction) as a
complement.

After data collection, we pre-processed all the input data and resampled them to
the same 1 km resolution on a daily basis. For example, the data at higher raw spatial
resolutions (e.g., the terrain and fuel variables) were aggregated from 30 m to 1 km using a
spatial mean for continuous variables or a spatial mode for categorical variables, while other
data at lower raw spatial resolutions (e.g., u-/v-components of wind) were interpolated to
the same 1 km resolution using the bi-linear interpolation method. The vectorized FEDS
fire-tracking data were rasterized as binary raster images, with 1 for burned pixels and 0 for
non-burned pixels. Other input data were scaled from 0 to 1 before feeding them into the
models. We then extracted and cropped these pre-processed data to images measuring 100
x 100 pixels (i.e., 100 km x 100 km tiles) with centers located around the ignition points
of corresponding fires. The static inputs (i.e., terrain and fuel) were concatenated to the
dynamically varying inputs (i.e., fire and weather) at each timestep. Figure 1 shows an
example of processed model inputs at one timestep.
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Figure 1. Examples of processed model input data for the Bobcat fire 10 days after its ignition. SPD:
wind speed; DIR: wind direction, TMP: maximum air temperature; HMD: relative humidity; PPT:
precipitation. The FuelModel variable represents distributions of fuel loading among surface fuel
components, size classes, and fuel types. Note that there is no precipitation in this example, and DIR
has a much coarser resolution than other input features.

2.2. Model Architectures

We developed three fire spread models by integrating different fire attention modules
with a multi-layer CNN architecture via skip connections (Figure 2). The fire and channel
attention modules were adopted and improved from a “Convolutional Block Attention
Module” (CBAM) [31] to enhance the feature representation in the CNNs at both the spatial
and channel levels. The fire attention modules apply spatial attention to different fire areas
to adjust 2D weights in the input feature maps in a spatially heterogeneous way during
model training and inferencing. The following two fire attention modules are available
as options: a module that concentrates on entire fire polygons from previous timesteps
(FirePolyAttn: Fire Polygon Attention Module) and another module that specifically focuses
on fire frontlines along the edges of fire polygons at previous timesteps (FireLineAttn: Fire
Line Attention Module). These two fire attention modules draw inspiration from physical
fire spread processes and are implemented by utilizing average pooling across different
areas of input fire polygons from previous timesteps. Specifically, the fire polygon attention
module employs average pooling over entire fire polygons, assigning higher weights to
interior areas and lower weights to the edges of the fire polygons (Figure 3a). Conversely,
the fire line attention module performs average pooling over both fire polygons and the
residual areas outside of the fire polygons, respectively, followed by the multiplication
of the pooling results to accentuate the edge areas of each fire polygon (Figure 3b). The
channel attention module is the same as the original one in CBAM, which adjusts weights
for different input features in a spatially homogeneous way. It uses the global average and
max pooling to capture the most salient features in each channel and then uses the resulting
1D attention weights to focus on important channels. By implementing different attention
modules in a basic CNN architecture, we developed three different fire spread models:
CNN_NonAttn, without any attention module, CNN_FirePolyAttn, with the channel and
fire polygon attention modules, and CNN_FireLineAttn, with the channel and fire line
attention modules. Figures A1-A3 show their architecture graphs, followed by more details
about the calculation of attention weights in Appendix A.

All the three CNN models employ a 3 x 3 kernel size and utilize “same” padding to
maintain consistent spatial dimensions between the inputs and outputs of each layer. A
rectified linear activation (ReLU) function is applied to the hidden layers, while a sigmoid
function is used for the output layers. It is worth noting that these CNN models, with or
without distinct fire attention modules, predict fire spread in different ways. For instance,
CNN_NonAttn and CNN_FirePolyAttn directly predict the entire fire polygon for next
timesteps (Yﬁgl) based on model inputs at previous timesteps (X’ i) (Figure 3a), while
CNN_FireLineAttn first predicts incremental changes in burned pixels between two con-
secutive timesteps (AY fire) and then derives fire polygons at the next timesteps by adding
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the predicted changes in burned pixels to the fire polygon inputs from previous timesteps
(Y};el fz o T AY fire) (Figure 3b). The distinction in model prediction approaches signifi-
cantly impacts the learning capabilities of these models, as evidenced by the evaluation
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Figure 3. Examples of fire prediction using different attention modules. (a) CNN_FirePolyAtin
with the fire polygon attention module (top-right) that uses X! e (top-left) to predict Y};f}

(bottom-left) directly. AY fire (bottom-right) is derived by subtracting Xt . from Yt in this case;

fire
(b) CNN_FireLineAttn, with the fire line attention module (top-right) that first uses X ire (top-left) to
In both

predict AY fire (bottom-right) and then derives Y]t,ltel (bottom-left) by adding AY Fire tO Xt Fire'
(a, b) the black color denotes burned fire pixels, the red color highlights the fire pixel changes between

fzr . and Y}tl, and the color gradient denotes spatial weights in the two fire attention modules.

2.3. Model Training, Validation, and Testing Methods

As previously mentioned, we adopted distinct prediction strategies for model training,
validation, and testing. Next-step prediction was used for model training and validation,
while recursive prediction was used for model testing. For model training and validation
in next-step prediction, we used pairs of input data for 623 large wildfires which occurred
during the 2012-2019 period in the FEDS data. Each pair represents data from two con-
secutive days coincident with fire observations. The data from the first day in the pair are
considered dynamical model inputs X’ dyn_var (dyn_var indicates fire or weather variables)
that exhibit spatiotemporal variations during fire simulations. These dynamical inputs
were then concatenated with the static model inputs Xt vqr (sta_var indicates terrain or
fuel variables), which remain constant during fire simulations, resulting in complete model
inputs comprising all 14 input features (Figure 1).
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In next-step prediction, the observed fire polygons at the second timestep (Y};el) in the

pair serve as the ground truth for validating the model outputs (Y}?;;). The total 4788 pairs
of consecutive frames from the 623 fires occurring in 2012-2019 were shuffled and split at
a 9:1 ratio for model training and validation, respectively. To explore the influence of the
training sample size on model performance, we employed a data augmentation technique
by rotating all the input data by 90 degrees for three repetitions. The rotated data were then
concatenated with the original non-rotated data to generate additional training samples.
Once the model training and validation were completed, we used the first (X}?y .) and final
frames (Y}’l?r .) of 103 large wildfires that lasted for at least two days in 2020 to test the
well-trained model in the recursive prediction of continuous fire progression processes. It
is worth noting that the chronological order of the model training and testing datasets is
important for fire spread models because of the memory effect resulting from the impacts
of previous fires on fuel input data such as reduced fuel loading and changes in fuel types
after burning. This memory effect in fuel data, as one of the model inputs, can persist
for several years and continuously influence future fire behavior in the years following
historical fires. Regular updates to fuel data would aid the model in capturing and adapting
to this memory effect in its fuel inputs.

Among all the model inputs, the fire feature is unique since its data sources are
different between next-step prediction and recursive prediction. In next-step prediction, all
fire inputs (X%, ) were from the VIIRS-derived satellite observations, which are one day
earlier than the model outputs (17;;61). In recursive prediction, we only used VIIRS-derived
fire ignition points at the very first timestep (X}?r .) as initial model inputs to predict model

outputs at the second timestep (X}?r .= Y;}r .)- We then repeated this next-step prediction
process recursively by using model outputs from previous timesteps as new model inputs
to sequentially predict fire in next days until the last day of each fire, as observed in the
FEDS fire-tracking data (?}}m — ?}%re e Y}?re .

For a model comparison, we used a simple persistent model assuming static fire
shapes between two consecutive timesteps (?;;;gl = th‘ir .), the semi-empirical FARSITE fire
behavior model [15], and a convolutional autoencoder model from Huot et al., 2021 [24]
as the benchmarks. The autoencoder model showed the best performance in comparison
with an additional three architectures presented in Huot et al., 2021 [24]. The model inputs
for the autoencoder model are identical to the CNN models, with the only difference
being that their spatial dimensions are cropped to images measuring 96 x 96 pixels to
suit the autoencoder model’s requirements. The FARSITE model also uses the LANDFIRE
fuel and terrain data, but at a considerably higher original resolution of 30 m. As for the
weather inputs used in the FARSITE simulations, they were obtained from the ground
weather stations nearest to the selected two fires. More detailed model information and the
simulation settings of the autoencoder and FARSITE models are provided in Appendix A.

All the model simulations were evaluated using four metrics: recall, precision, F-1,
and a precision-recall area under the curve (PR_AUC) score [32] if applicable. Here, the
recall score represents the misdetection rate of the model (i.e., a higher recall value indicates
a lower misdetection rate with fewer false negatives), the precision score represents the
false alarm rate (i.e., a higher precision value indicates a lower false alarm rate with fewer
false positives), and F-1 and PR_AUC represent combinations of the above two scores. The
equations of evaluation metrics are provided below.

TP
Recall = —— 1
T TP+ EN @
Precision = TP (2)

TP+ FP
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2 x Recall x Precision TP 3)

F— = ,
Recall 4 Precision TP+ } x (FP+FN)

here, TP stands for true positives, FN stands for false negatives, and FP stands for false
positives. All these variables are calculated at the pixel level, with a true positive defined
as an actually burned pixel that was correctly predicted to be positive, a false negative
defined as an actually burned pixel that was incorrectly predicted to be negative, and a
false positive defined as an actually non-burned pixel that was erroneously predicted to be
positive. Table A1 shows the corresponding confusion matrix for this binary classification
problem of fire spread prediction. In Table 1, all the metric scores were calculated by
comparing the predicted fires (?}2’7 .) with the observed fires (Y}’;r .) at the final timesteps
of each fire and then averaging the value over the 103 large wildfires in 2020. Similarly,
Table A2 lists the metric scores which were first calculated at each timestep of all wildfires
in 2020 and then averaged over all the timesteps of their lengths of duration.

Table 1. The averaged evaluation results of fire spread models in both next-step and recursive
prediction for final fire perimeters of the 103 wildfires in 2020. The highest scores for each metric are
highlighted in bold.

Metrics Model Next-Step Prediction Recursive Prediction
Model Name Parameters Recall Precision F-1 PR-AUC  Recall  Precision F-1 PR-AUC
Persistent model 0 0.79 1.0 0.82 N/A** 0.04 1.0 0.08 N/A**

Autoencoder 55M 0.71 0.74 0.69 0.60 0.31 0.76 0.38 0.06
CNN_NonAttn 8.8k 0.79 1.0 0.82 0.98 0.04 0.99 0.08 0.03
CNN_FirePolyAttn 12k 0.88 0.93 0.89 0.98 0.40 0.72 0.41 0.07
CNN_FireLineAttn 12k 0.91 0.81 0.83 0.95 0.55 0.57 0.42 0.08
CNN_FirePolyAttn_R * 12k 0.87 0.93 0.89 0.98 0.35 0.76 0.39 0.06
CNN_FireLineAttn_R * 12k 0.90 0.79 0.82 0.92 0.67 0.44 0.45 0.24

* Models trained with augmented input data via data rotation. ** Not available.

Since the binary fire data are highly imbalanced over the cropped 100 x 100 tiles,
especially during the early stages of fire propagation after ignition (e.g., 1 ignited pixel vs.
9999 unburned pixels at fire ignition), we used a focal Tversky loss (FTL) function [33] to
address this issue when training the models. This FTL function is a generalization of the
Tversky loss based on the Tversky index (TI). By tuning hyperparameters such as «, 8, and
7 in the function, we can adjust the sensitivity of the model to different misclassification
errors such as false negatives (FN) and false positives (FP).

FTL = (1—TI)", (4)

B TP
T TP+axEN+BxFP’

TI wherea + p = 1. (5)
Considering that the misdetection of active fires would cause more serious damage than
a false alarm in practice, we set a larger « than  in the TI during model training to give
a higher weight to recall than precision in our models. For simplicity, we used the same
hyperparameter setting (« = 0.75, = 0.25, ¢ = 1.0) in the FTL for all the models trained in
this paper.

3. Results
3.1. Metric Scores of Fire Spread Models

The distinction between model prediction approaches, as mentioned earlier, has a
substantial impact on the learning proficiency of each model, particularly given the non-
shrinking characteristics of fire. This is because an area burned by fire can only either
monotonically increase or remain the same from one step to the next. Given the relatively
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short time interval of a single day in next-step prediction, it is very likely that fire polygons
change marginally over two consecutive days (AY ¢, = Y}j;el - X}i o = 0) or even remain
the same (Yf(;el = X}ir .) due to slow spread rates or human suppression. In this case, a
persistent model with no predictability at all performs well given its static assumption
(Y};g = th‘ir .)- However, the persistent model fails completely in recursive prediction
due to the accumulation of modeling errors throughout fire progression. This limitation is
clearly demonstrated by the large differences in the recall and F-1 scores of the persistent
model for next-step and recursive prediction in Table 1. The almost zero recall and F-1
scores of the persistent model in recursive prediction suggest that this model misses many
burned grid cells in fire observations, although its precision scores remain the highest of 1
thanks to its conservativeness (Y”}r . = X“;r .)- Hence, considering the disparate outcomes
observed for the persistent model between next-day prediction and recursive prediction, it
is prudent to regard recursive prediction as a more useful and practical evaluation measure
for fire simulation.

Interestingly, the CNN_NonAttn model shows similar performance to the persistent
model, with good scores in next-step prediction but significantly degraded scores in re-
cursive prediction, suggesting that the CNN_NonAttn model learns to become a passive
persistent model during its training process in next-step prediction. This results in the
same failure in its recursive prediction during model testing. The other two CNN models
with fire attention modules (i.e., CNN_FirePolyAttn and CNN_FireLineAttn) show greatly
improved modeling performances, as suggested by their much higher recall and F-1 scores
for recursive prediction, with more aggressive fire spread behavior in CNN_FireLineAttn
(i.e., higher recall but lower precision) and more conservative fire spread behavior in
CNN_FirePolyAttn (i.e., higher precision but lower recall). The distinct characteristics of
these two models can be attributed to the fire attention modules integrated within them.
The fire line attention module highlights incremental changes in fire pixels, aligning with
its more aggressive fire spread behavior and resulting in higher recall scores, while the fire
polygon attention module emphasizes the consistency of fire polygons between two consec-
utive timesteps, aligning with its more conservative fire spread behavior and resulting in
higher precision scores. More importantly, these two fire attention models outperform the
much deeper and more complex autoencoder model with two orders of magnitude more
model parameters for both the next-step and recursive prediction of the 103 large wildfires.
This conclusion remains consistent and robust when assessing the average metric scores of
the model simulations for fire perimeters at each timestep, rather than solely focusing on
the final perimeters of all the tested wildfires (Table A2). Such promising results suggest
that the attention mechanism plays a significant role in enabling the learning of complex
fire behavior using relatively simpler and lightweight models.

We also assessed the influence of the size of the model training samples by compar-
ing the modeling performance of the same attention-based fire models trained with and
without data augmentation. This technique generally enhances the advantages of each
model. For instance, the CNN_FireLineAttn_R model trained with augmented model
input data demonstrates increased recall and PR-AUC scores in the recursive prediction
of most fires, while also showing a decrease in precision (Figure 4), which aligns with its
characteristics of more aggressive fire spread behavior, as discussed earlier. Similarly, the
CNN_FirePolyAttn_R model exhibits improved precision at the expense of lower recall after
data augmentation, although the improvement is less pronounced (Table 1). Considering
the greater importance of high recall (fewer misdetections) over high precision (fewer false
alarms), the improvement observed in the CNN_FireLineAttn_R model is highly valuable
for reducing potential fire losses in practical applications. Next, the CNN_FireLineAttn_R
model, hereafter referred to as CNN, was employed to investigate the spatial distributions
and temporal variations in fire simulations, which were then compared with the FARSITE
model simulations and the VIIRS observations.
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Figure 4. Histograms of the recall, precision, and F-1 scores of the CNN_FireLineAttn models trained
without (top) and with (bottom) data augmentation for the recursive prediction of the final fire
polygons of the 103 wildfires in 2020.

3.2. Spatial Distributions and Temporal Variations in Fire Simulations

The 2020 fire season resulted in nearly 10,000 registered fires and a total burned area
of 17,419 km?, a record high in California’s modern history since the 1800s [34]. Here, we
compare our recursive fire prediction results to the 103 large wildfires recorded by the
VIIRS fire-tracking dataset in 2020. These wildfires lasted at least 2 days, with final fire
sizes of no less than 4 km?. Additionally, we select two large wildfires to showcase the
modeling performance of daily fire progression throughout the entire life cycle of each
fire. The first example is the August Complex fire in northern California, which is a fire
complex consisting of more than 30 individual fires. The August Complex fire and its
main component, the Doe fire, are the largest fire complex and the single-largest wildfire in
California’s recorded history, respectively, and they burned more than 4000 km? in three
months [35]. The second example is the Bobcat fire in southern California, which is one of
the largest fires on record in Los Angeles County and burned more than 460 km? [36].

Figure 5 illustrates the comparison of the final fire polygons of the 103 large wildfires
in 2020 based on the VIIRS satellite observations and the CNN model simulations. The
insets in the figure provide an enlarged view of the comparison between the CNN and
FARSITE model simulations for the two selected large wildfire examples. Note that the
August Complex fire originated as multiple separate fires initiated by lightning strikes
on 16-17 August 2020, while the corresponding FARSITE and CNN fire simulations were
initialized from a single ignition point (the red star in Figure 5) on the first day of the Doe
fire as the main component of the August Complex fire. The CNN fire simulation extended
for the same duration as the VIIRS observations to capture the entire length of the fires,
while the FARSITE simulation for the August Complex fire was limited to the first 20 days.
This is because the FARSITE simulation (the yellow line in Figure 5) produced results that
were considerably larger than the observations, even surpassing the boundary of the 100
km x 100 km model domain after this time period. To ensure a fair comparison with the
fire simulations, the perimeter of the Doe fire on 7 September 2020, prior to its merging
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with other fires such as the Elkhorn fire and the Hopkins fire of the fire complex, is also
depicted on the map (the cyan line in Figure 5). After fire merging, the observed final burn
scar of the August Complex fire exceeds the boundary of the 100 km x 100 km tile centered
around the ignition point of the Doe fire. This can be solved by beginning fire simulations
from each ignition point of the individual fires of the fire complex in practical applications.

The August Complex Fire
(08/16/2020-11/03/2020)

7

42 A

Barren
Water

Agriculture

40 -
Snow/Ice

Urban

FBFM12
n August Complex Fire

Doe Fire on 09/07/2020
Ignition Point

FARSITE Simulation

CNN_FireLineAttn Simulation
[ Burned Grids

FBFM11

w
[oe]
1

FBFM10

Latitude

FBFM9

FBFM8

36
FBFM7

The Bobcat Fire

FBFM6

FBFM5
FBFM4
FBFM3

Bobcat Fire FBFM2
Ignition Point

FARSITE Simulation

& CNN_FireLineAttn Simulation
I Burned Grids

-124 —-122 -120 -118 -116 -114
Longitude

FBFM1
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Figure 5. Comparison of final fire perimeters from the VIIRS satellite observations (black lines) and
the CNN_FireLineAttn_R simulations (red polygons) for the 103 wildfires in 2020. Two examples of
large wildfires, the August Complex fire and the Bobcat fire, with corresponding ignition points (red
stars), intermediate VIIRS observations (cyan lines), FARSITE simulations (yellow lines), and FBFM
fuel models (color shading) are enlarged in the insets, respectively. FBEM1-12 represent different fuel
types in the 13 Anderson Fire Behavior Fuel Models.

Considering the extensive occurrence of fires throughout California, the 103 wildfires
selected for the model evaluation exhibit diverse burning conditions in terms of fuel
types, terrain, and weather. For example, the dominant vegetation type in the August
Complex fire region is a Mediterranean California mesic mixed conifer forest and woodland,
which is mainly characterized by quick surface and ground fires with frequent crowning
and spotting causing difficulties for fire control (FBFM10). In comparison, the dominant
vegetation types in the Bobcat fire region are southern California dry mesic chaparral and
mixed evergreen woodland, which are mainly characterized by low intensity surface fires
(FBFM5). Such diversity poses great challenges for the fire spread model in effectively
learning various fire behavior and progression characteristics. Figure 5 shows that the CNN
model generally captures the spatial patterns of most of the fires in 2020, with relatively
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larger discrepancies for those fires with larger sizes. This might be attributable to larger
accumulative biases as all the recursive fire simulations begin from the ignition day of
each fire. The large modeling biases are more significant in the FARSITE simulation results
for the two large wildfire examples shown in the insets. The FARSITE final perimeters
are much larger than both the CNN simulations and the VIIRS observations, especially
in the August Complex fire simulation that exceeds the boundary of the model domain.
Considering the much shorter simulation length of the FARSITE model, these results imply
an overestimation of the fire spread rates in the FARSITE model. Moreover, the actual
simulation cost of FARSITE is also significantly higher than the CNN model. FARSITE
took 1020 s and 366 s to finish the 20-day simulation of the August Complex fire and the
10-day simulation of the Bobcat fire, respectively, which are 2~3 orders of magnitude slower
than the CNN model. The much higher computational efficiency of the CNN model is
essential for massive fire event simulations and fire risk assessments using the Monte Carlo
approach.

To illustrate the temporal variations in modeling performance during fire progression,
we also present the time series of the three metric scores throughout the simulations of the
two large wildfire examples (Figures 6 and 7). In order to further examine the influence
of model initialization on the simulation results, the time series of the CNN model was
started on different initialization days, including the ignition day (day 0), the fifth day (day
5), the tenth day (day 10), and the twentieth day (day 20) after ignition. For comparison,
the time series of the FARSITE simulations starting from the ignition day (day 0) are also
included. The results show drastically fluctuating modeling scores during the early stage of
fire progression. This might result from rapid expansion and eruptive fire behavior during
the early fire growth stage. Then, the fluctuations in these scores gradually become less
volatile and flatten out in the end. This change can be attributed to relatively stable fire
behavior due to human suppression or natural burnout during the late stage.

1 —— FARSITE_InitDay0
—— CNN_InitDay0
—— CNN_InitDay5
— CNN_InitDay10
—— CNN_InitDay20

Recall

Precision

—— FARSITE_InitDay0
—— CNN_InitDayo
—— CNN_InitDay5
—— CNN_Initbay10
—— CNN_InitDay20

40 50 60 70 80

F1

—— FARSITE_InitDay0
—— CNN_InitDay0
—— CNN_InitDay5
—— CNN_InitDay10

09/07/2020 — CNNInitbay20

0 10 20 30 40 50 60 70 80
Day

Figure 6. Time series of recall, precision, and F-1 scores of the August Complex fire simulations by
the FARSITE and CNN models initialized with fire observations on different days. The red dashed
line denotes the date before the Doe fire merged with the Elkhorn fire and the Hopkins fire (see the
cyan polygons in Figure 5).
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Figure 7. Time series of recall, precision, and F-1 scores of the Bobcat fire simulations by the FARSITE
and CNN models initialized with fire observations on different days.

In the August Complex fire example, the recall and precision scores of the CNN model
vary in a negatively correlated way during the first few days after ignition. Its recall score
then recovers quickly, while its precision score remains relatively stable. Such nonlinear
fluctuations in recall and precision lead to the highest peak at around 20 days in its F-1
score as the combination of the above two scores. Note that this peaking time coincides
well with the merging time of the Doe fire with other separate fire incidents of the August
Complex fire. Since the ignition points for the other fires in the fire complex are missing in
this simulation, the modeling performance degrades gradually and finally becomes stable
after the first 30 days since the ignition of the Doe fire. This is consistent in all the time
series that began on different initialization days, although the modeling scores, especially
the precision scores, are slightly higher in those simulations that were started on later
initialization days, like day 20, due to their more precise model inputs from the later fire
observations. In comparison, the metric scores of the FARSITE model show overestimated
results that are consistent with its spatial pattern, characterized by relatively high recall
scores but much lower precision and F-1 scores throughout its simulation.

In the Bobcat fire case, the results are similar to the August Complex fire except for
the greatly improved modeling performance in the simulation initialized on day 20. The
simulations initialized before day 20 all show nonlinear large fluctuations in modeling
scores that reach similar stable levels after the first thirteen days. This change suggests fairly
slow rates of fire spread due to minimal active burning during the later stage of the fire. The
highest scores in the simulation initialized on day 20 are attributed to the most up-to-date
model input of the initial fire polygon during this fire decay stage. In comparison, the
FARSITE model achieves the highest recall score of 1 at a cost of continuously decreasing
the precision and F-1 scores after the first seven days, suggesting an overestimated fire
simulation result that is consistent with its spatial pattern in Figure 5.
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3.3. Feature Importance of Fire Simulations

The evaluation results presented above clearly demonstrate the benefits of incorpo-
rating the attention modules into the CNN fire spread models for modeling complete fire
events through recursive prediction. Moreover, these attention modules also improve the
model interpretability, which was often limited in previous date-driven fire models. By
applying spatial and channel attention, the weights assigned to each model input feature
can dynamically adapt to highlight critical spatial regions and channels as fire shapes
change during fire progression, effectively minimizing the loss function. Therefore, the
values of these weights can be interpreted as the relative importance or significance of each
feature in influencing the modeling accuracy of the attention-based fire spread models.
Larger weights indicate a higher degree of importance of the corresponding input features
in specific regions, while smaller weights indicate a lesser degree of importance.

While the interpretation of channel-wise and spatial-wise attention weights in our
attention-based fire spread models is generally consistent with that in the CBAM, there is a
key difference in the spatial attention modules. In our models, the locations with positive
spatial weights were pre-designed and prescribed based on an input fire perimeter map in
the fire attention modules (see examples in Figure 3) rather than dynamically learned, as in
the CBAM. This improvement was motivated by the understanding of physical fire spread
processes because fire spread is more significantly influenced by localized environmental
conditions around actively burning areas as opposed to remote conditions.

Regarding channel-wise attention, Figure 8 shows the averaged weights for each
input feature of the CNN model based on the 103 wildfires in 2020. Initially, all input
variables had equal weights of one, indicating no discrimination. However, during model
training, the model adjusted these weights to minimize the loss function. It is observed
that aspect has the lowest weight, followed by wind direction, slope, and canopy bulk
density (Figure 8). The remaining input variables have similar weights that are close to the
default value of one. While all the aforementioned factors associated with local terrain,
fuel, and weather conditions can influence fire spread, it is challenging for the model
to learn the complex effects of these variables at finer scales due to the relatively coarse
model resolution of 1 km. The downscaled resolution of 1 km smooths out the fine details
of terrain variables such as aspect and slope over complex terrains, potentially reducing
their weights in the model to minimize the negative impact of noisy model inputs on fire
simulations. Similarly, the moderate weight assigned to wind direction may be attributed
to the limited capability of low-resolution raw data to accurately represent fine details of
wind fields and their heterogeneous impacts on fire spread (see an example in Figure 1).

1.04

0.8

Weights

0.2 4

0.0 -

Input Variables

Figure 8. The averaged weights for the model input variables in the channel attention module.
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4. Discussion

The promising modeling results of recursive fire prediction demonstrate the high value
of our attention-based fire spread models for practical applications such as short-term fire
spread prediction and long-term fire risk assessment using the Monte Carlo approach. This
improvement results from both the high-resolution fire-tracking dataset with abundant fire
progression information for model training and the attention-based modeling architecture.
Fire spread mainly occurs in actively burning regions such as fire frontlines, a factor which
is captured well by the fire line attention module of our attention-based spread models to
aid in learning continuous fire progression from high-resolution fire-tracking data.

As discussed earlier, the recently developed ML-/DL-based fire spread models [21-24]
were primarily trained to predict fire spread over short timeframes (hours to days) rather
than to simulate complete fire events. On the other hand, while traditional semi-empirical
fire behavior models like FARSITE [15] and FlamMap [16] can simulate continuous fire
progression at a higher spatiotemporal resolution, they have higher computational costs
and require more model-tuning efforts to address potential modeling biases. It is noted
that the considerably larger FARSITE simulation results may be attributed to the overdried
fuel moisture estimates resulting from insufficient weather condition information from
limited ground observation stations. Although these biases could be partially alleviated
by manually adding fuel moisture adjustment factors in the FARSITE simulations, it is a
heuristic and empirical approach to compensate. For a direct comparison between all model
simulations, the optional fuel moisture adjustment factors were not used in the FARSITE
simulations in this study. It is essential to note that the comparison with FARSITE was
limited to two fire cases. Additionally, each of these models exhibits its unique advantages
and disadvantages, and improved modeling performance can be achieved via fine-tuning
in both semi-empirical and data-driven fire models, making them suitable for various
practical applications based on specific needs.

The attention-based fire spread models, particularly the one incorporating the fire line
attention module, as proposed in this study, achieve both balanced modeling performance
and high computational efficiency in simulating complete fire events. This capability is
highly advantageous for practical applications such as active fire prediction and fire risk
assessment. However, the current 1 km model resolution is insufficient for accurately
assessing fine-scale fire risks at the property level. In the future, the data-driven fire models
can be further improved by taking the following steps:

(1) Increasing the sample size and resolution for model training and testing. Currently,
there are 735 fires from 2012 to 2020 available for model training and evaluation.
Although this dataset can be augmented by data rotation, more training samples
at higher spatiotemporal resolutions across more diversified landscapes and fire
regimes could benefit the improvement of modeling performance, as we saw in the
experiments of this study. Meanwhile, the data quality of the corresponding fuel,
terrain, and weather conditions influencing fire spread should also be improved to
provide sufficient information for models to learn complex fire behavior.

(2) Adding new features as model inputs to take into account human effects on fire
control and suppression. The model inputs considered in this study are natural
factors representing terrain, fuel, and weather conditions. However, human activity
and land segmentation such as road and stream networks can also affect fire spread
in multiple ways. The human suppression effect is particularly significant in WUI
areas given the high prioritization of protecting people via firefighting activities.
Currently, such a suppression effect is implicitly learned by the model from observed
fire progression. More explicit model input features associated with human effects
might further improve the modeling capability in this regard.

(3) Refining the model architectures with improved model interpretability. The current
attention modules, especially the fire line attention module, enable the model to focus
on actively burning areas that are critical for fire spread. This learning approach
is also consistent with actual burning processes guided by the laws of combustion
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chemistry and physics. Further refinement can be informed by a more comprehensive
consideration of nonlinear physical fire progression processes in the model to improve
modeling performance and interpretability simultaneously.

(4) Integrating the model with other complementary models, such as fire ignition [37],
duration, and vulnerability models, for comprehensive fire risk assessment. Recogniz-
ing that fire spread is part of the entire burning process, it is essential to incorporate
this model into a broader modeling framework to simulate complete fire events, en-
compassing all burning processes from ignition to burnout. This integrated modeling
approach allows for scenario analysis in short-term fire spread prediction and fire
risk assessment at broader spatiotemporal scales, such as generating large numbers of
simulated fire events using Monte Carlo approaches and estimating fire losses with a
consideration for spatially heterogeneous vulnerability. Given the scarcity of extreme
fire events in observed history, this capability to model catastrophic extreme events is
particularly beneficial for tail risk analysis in the insurance industry.

5. Conclusions

We have developed multiple fire spread models that incorporate various attention
mechanisms and conducted a comprehensive evaluation for both next-step prediction
and recursive prediction. The attention-based CNN models were compared to a deeper
and more complex autoencoder model and the widely used semi-empirical FARSITE
fire behavior model in terms of computational accuracy and efficiency. The evaluation
results demonstrate that the inclusion of the attention modules and data augmentation
techniques significantly improves the modeling performance of the CNN models. Among
the models tested, the CNN model with the fire line attention module, which was trained
using augmented input data, achieved the most balanced performance, as measured by
the F-1 and PR-AUC scores. This highlights the effectiveness of the attention mechanism
in capturing complex fire behavior across diverse landscapes and fire regimes. These
attention-based fire spread models provide a solid foundation for various applications,
including short-term fire spread prediction and long-term fire risk assessment, to enhance
fire risk assessment and management capabilities.
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Appendix A

All the CNN models in this work were developed in the Keras API of TensorFlow 2.8.
Figures A1-A3 show graphs of the model architectures for all the three CNN models in the
main text.

Both the CNN_FirePolyAttn and CNN_FireLineAttn models share the same channel
attention module, which was computed in the same way as in Woo et al., 2016 [31], as
follows:

M (F) = oc(MLP(AvgPool(F)) + MLP(MaxPool (F))), (A1)

where M, € RE¥1%1 jg a 1D channel attention map, F € REXHXW js 4 3D input feature map,
o denotes the sigmoid function, AvgPool and MaxPool denote the average and max pooling
operations, and MLP denotes a shared network composed of a multi-layer perceptron with
one hidden layer.

In the CNN_FirePolyAttn model, the 2D fire polygon attention map Mfire poly €
RUHXW g computed as follows:

Meire._poly (F};el) =0 (Angool (F;;‘}) ) , (A2)

where F};el € RI¥HxW jg 3 2D binary fire feature map generated from the last timestep as
input, and ¢ denotes a rescaling function that rescales the weights into the [0, 1] range.

In the CNN_FireLineAttn model, the 2D fire line attention map Mgire jine € RVH*W
is computed as follows:

Mire_line (F;;el) =0 (Angool (F};el) ® AvgPool (1 — F};el) ) , (A3)
where @ denotes element-wise multiplication, and F;;el and ¢ are the same as in Mire_poly-

After obtaining these attention maps, we then multiply them with input feature maps
(F) sequentially to generate refined feature maps (F”) as follows:

F = Mc(F) @F, F' = Mire_poiy (Fire ) QF 0r ' = Miice_tne (Fle ) QF. (A4)
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Figure A1. The graph of the CNN_NonAttn model.
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Figure A2. The graph of the CNN_FirePolyAttn model.
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Figure A3. The graph of the CNN_FireLineAttn model.

In addition to the CNN models, we also used a persistent model, an autoencoder
model [24], and the FARSITE fire behavior model [15] for model comparison and bench-
marking. The persistent model is simple and straightforward and assumes unchanging
fire shapes between two consecutive timesteps, which leads to identical fire polygons
throughout its simulation. The autoencoder model first encodes the input features into
a bottleneck feature representation and then decodes them through up-sampling. We
used the same number of filters (32, 64, 128, 256, 256) as the modeling setting selected in
Huot et al. [24]. The 100 x 100 pixel input features were cropped to 96 x 96 pixel tiles by
dropping the two pixels around the boundary of the input images for down-sampling and
up-sampling in the autoencoder model. We then trained and evaluated this autoencoder
model in the same way as the CNN models. The FARSITE model is different from the
other models implemented in this study because it is a two-dimensional semi-empirical
model that simulates fire growth and the behavior of surface and crown fires based on
Huygen’s principle of wave propagation and the Rothermel fire spread equations. The
spotting feature was disabled in the FARSITE simulations in this study. To simulate the
two large wildfires in the main text, we used the LANDFIRE terrain and fuel input data at
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the original 30 m resolution for FARSITE simulations. The weather inputs were prepared
based on the in-situ observations of the two remote automatic weather stations (RAWSs)
closest to the two fires (the Mendocino Pass station for the August Complex fire and the
Tanbark station for the Bobcat fire).

After the model simulations, we used the confusion matrix in Table A1 to calculate
metric scores for model evaluation. These scores were calculated for each timestep of the
103 fires in 2020 after their ignition days. The average scores for final timesteps of these
fires are listed in Table 1 of the main text, while the average scores for all timesteps of the
same fires are listed in Table A2 herein.

Table A1l. Confusion matrix for the binary classification of fire prediction in this study.

Prediction Truth Prediction False
Ground truth TP FN
Ground false FpP TN

Table A2. The averaged evaluation results of fire spread models in next-step and recursive prediction
for all timesteps of the 103 wildfires in 2020. The highest scores for each metric are highlighted in

bold.

Metrics Model Next-Step Prediction Recursive Prediction
Model Name Parameters Recall Precision F-1 Recall Precision F-1
Autoencoder 5.5M 0.68 0.72 0.65 0.38 0.74 0.40
CNN_NonAttn 8.8k 0.67 1.0 0.71 0.08 0.98 0.13
CNN_FirePolyAttn 12k 0.84 0.86 0.81 0.49 0.67 0.43
CNN_FireLineAttn 12k 0.90 0.69 0.71 0.63 0.51 0.41
CNN_FirePolyAttn_R * 12k 0.82 0.87 0.81 0.45 0.71 0.43
CNN_FireLineAttn_R * 12k 0.88 0.71 0.74 0.70 0.46 0.47

* Models trained with augmented input data via data rotation.
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