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Summary of thesis

A major challenge in gravitational-wave astrophysics is the interpretation of obser-
vations, which requires accurate inference of the astrophysical parameters and a
rigorous statistical framework. The main focus of this thesis is the analysis of mod-
elled gravitational-wave sources and its enhancement with machine learning and
other statistical techniques. Bayesian statistics is at the base of gravitational-wave
analysis and interpretation since each observation is unique and can often be as-
sumed to be independent of all others. The unifying thread of this thesis is Bayes’s
theorem: how it is routinely leveraged for gravitational-wave analysis, allowing much
of the work presented here, and how its use can be extended to develop new analysis
techniques.

The most notable application of Bayesian statistics in the field is the param-
eter estimation of compact binary coalescence. Chapter 2 reports the work done
to reproduce the first Gravitational-Wave Transients Catalogue (GWTC-1) with
the Bayesian Inference Library: bilby. The rigorous comparison between previous
GWTC-1 results and the one presented here allowed bilby’s specific tuning towards
the gravitational-wave inference problem.

Chapter 3, presents the author’s work related to the discovery of the first neutron-
star black-hole (NSBH) mergers GW200105 and GW200115, where bilby was used
to estimate the parameter of the observed sources. This chapter also illustrates
the role of gravitational-wave observations in our understanding of the astrophysical
origins of binary sources.

Chapter 4 describes a novel effective likelihood method to quantitively compare
astrophysical distributions inferred from gravitational-wave observations and distri-
butions obtained with theoretical simulations. This method, which is driven by a
Bayesian philosophy, is applied to a set of globular cluster simulations and real data
from the third Gravitational-Wave Transients Catalogue (GWTC-3).

Chapter 5, presents a novel density estimation tool for parameter estimation
products from gravitational-wave observations, based on Gaussian Processes which
are a Bayesian machine learning technique. This density estimation method was
found to be advantageous over other traditional methods for several gravitational-
wave applications since we need both the accurate treatment of individual event
samples, e.g. standard siren analysis, but also robust propagation of systematics
when combining multiple observations, e.g. measure of systematic errors.

Finally, Chapter 6 presents a study that makes use of bilby to re-analyse the
binary neutron star (BNS) event GW190425, in light of its potential electromagnetic
counterpart FRB20190425A, and makes use of a Gaussian Process density estimator
to calculate the Bayesian odds of the claimed association. This work is extended
by performing a standard siren measurement for GW190425 and its potential host
galaxy to determine the value of the Hubble constant.
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Chapter 1

Introduction

1.1 Gravitational waves: an overview

In this introduction, gravitational-wave fundamentals are laid out, from basic inter-
ferometry to waveform modelling and to the wide range of potential astrophysical
sources1. Section 1.1.1 introduces gravitational-wave detection methods in the Ad-
vanced LIGO era. The essential quantities and concepts at the base of data analysis
for modelled gravitational-wave observations are introduced in Section 1.1.2. The
field of gravitational-wave astronomy is briefly introduced in Section 1.1.3 to con-
textualise this thesis and to highlight the relevance of this work for the broader
astrophysical community.

1.1.1 Detecting gravitational waves

Gravitational waves are a fundamental property of spacetime that arise from ex-
tremely massive astrophysical objects accelerating through space, given matter asym-
metries. The strength of the gravitational-wave radiation depends, primarily, on the
intrinsic properties of these objects, like their masses, and on the orientation and
distance with respect to the observer. However, even the loudest gravitational-wave
sources require extremely sensitive instruments to be detected.

Advanced LIGO is a network of two kilometre-scale Fabry-Perot Michelson’s
interferometers based in the United States, one in Livingston (Washington), and
one in Hanford (Louisiana) [8]. As illustrated in Figure 1.1, the interferometer can
be schematically described by the following sub-systems: a laser, a beam splitter,
four test masses (two for each “arm”) and finally a photodetector. Note, the space
between the test masses in each arm is a Fabry-Perot optical cavity. The laser
beam is reflected between the mirrors in each cavity, increasing its power and ef-
fective distance travelled (since the longer the interferometer arms, the smaller the
measurements they can make). Their characteristic L shape is designed to take

1A further overview of gravitational-wave detection and theory can be found in the textbook by
Anderson and Creighton [7].
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1.1. Gravitational waves: an overview

Figure 1.1 Illustration of a LIGO interferometer layout, characterised by two “light-
storage arms”. Shown at the top is the quadrupolar strain due to a gravitational-
wave incident from above the plane of the interferometer. The laser light (the carrier
wave) hits the beam splitter and heads through the first pair of mirrors, reduced by
the reflectivity of the beamsplitter. Upon reflection with the test masses, which are
affected by the gravitational wave, the carrier wave generates two sidebands, which
carry information about the gravitational-wave amplitude and phase.
Credits: LIGO Scientific Collaboration.
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advantage of the quadrupolar deformation (a pattern of alternating elongation and
compression) produced by a passing gravitational wave. The technique of interfer-
ometry for detecting gravitational-wave signals can be briefly summarised as follows:
as a wave passes through the Earth, the interferometer arm lengths change in dif-
ferent ways causing the interference pattern at the photodetector to change. The
signal is hence measured as the path length difference between the two arms, caused
by the distortion of space between the beam splitter and the test masses. The
first gravitational-wave observing run (O1) only included these two instruments.
Much of the technology present in the Advanced LIGO detectors was developed at
GEO600 (Hannover, Germany), a 600-meter long interferometer and key technology
development center [9, 10].

The existence of multiple detectors helps to distinguish real signals from transient
noise, known as glitches, which affect individual detectors. This is because a glitch
(e.g. from an Earthquake), despite potentially affecting multiple detectors would
be observed at a larger time separation than a gravitational-wave signal. The use
of multiple detectors also improves the ability to localise the source of the signal,
and for the second observing run (O2), the LIGO network was joined by a third
interferometer, Advanced Virgo (Cascina, Italy) [11]. The presence of Virgo allows us
to reduce the degeneracy between the two US-based detectors. The current network
of detectors also includes Kagra (Hida, Japan) [12] which was operational for the
second part of the third observing run (O3b)2 [13]. The ensembled network and
resulting international collaboration are referred to as LIGO-Virgo-Kagra (LVK).

The displacement caused by a typical gravitational wave of astrophysical origin
is in the order of O(10−21), hence the detector output is highly affected by several
noise sources, e.g. suspension thermal noise, quantum sensing noise, seismic noise
etc. A fundamental quantity is then our measurement of the detector’s sensitivity:
the noise power spectral density (PSD). This is based on accurate characterisations
of the detector’s noise sources. Assuming the noise is stationary, it can be defined
as a “realisation“ of the system given a time interval T:

1

2
Sn(f) = 〈|ñ(f)|2〉∆f (1.1)

where Sn(f) is the PSD, ñ(f) is the Fourier Transform of the time-dependent noise
n(t) and ∆f = 1/T is the frequency resolution 3. Since we assume the detector
noise to be dimensionless, then Sn(f) is measured in Hz−1.

As gravitational-wave signals are extremely weak, they require optimized statis-
tical methods of signal extraction to identify the astrophysical signature enveloped
in detector noise. We describe the gravitational-wave data d in the detector as the

2Together with GEO600 (O3GK).
3The factor of 1/2 comes from the fact that it is defined over the physical frequency range f > 0.
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linear sum of signal and instrumental noise, which we assume to be Gaussian:

d(t) = h(t) + n(t) (1.2)

where h(t) is the true gravitational-wave waveform and n(t) is the noise in the
detector. The assumption of Gaussianity is motivated primarily by standard noise
processing practices, as this allows us to take a zero mean as a baseline and add
additional noise “modes” to it. Since generally h(t) << n(t), we need to know an
approximate form of the signal to be able to detect values of h(t) much smaller than
the floor of the noise. A technique called matched filtering is the optimal statistic to
extract the signal from the noise [14]. This involves a “filtering” function K which,
if we assumed n(t) to simply be white Gaussian noise, would simply be given by the
template waveform used to filter the data stream [15]

A =

∫ ∞

−∞
K(t)d(t)dt =

∫ ∞

−∞
d(t)h(t)dt (1.3)

where A is the filtered value of d(t). In reality, the detector noise is “coloured”, thus
the detection condition is frequency-dependent. For compact binary coalescence,
it can be shown4 [16] that the optimal filter for a signal embedded in stationary,
Gaussian noise is

K̃(f) = constant · h̃(f)
Sn(f)

(1.4)

where h̃(f) is the Fourier Transform of the time-dependent waveform h(t). Each
time we apply this filter to detect a gravitational-wave signal we implicitly perform
a “whitening” operation (i.e. removal of noise correlations) since we weigh the data
with the inverse of the PSD of the noise [17]. When the noise is coloured (Sn not flat),
it tells us that the frequency regions where the detector is noisier should be weighed
less (i.e. less signal is detectable there). The detectability of a gravitational-wave
signal is then often quantified in terms of its signal-to-noise ratio (SNR):

(S/N)2 ≡ ρ2 = 4

∫ ∞

0

|h̃(f)|2

Sn(f)
df (1.5)

where the factor of 4 comes from the fact that we only integrate over the physical
range of frequencies (0 ≤ f ≤ ∞) and that Sn is single-sided (see Eq. 1.1).

Given a three-detector Hanford (H) Livingston (L) Virgo (V) network at design
sensitivity, the detection threshold is often defined as:∑

i=H,L,V

ρ2i > 8 and ρi=H,L,V > 5 (1.6)

and it is empirically chosen [18].

4Using the Cauchy-Schwarz inequality.
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1.1.2 Gravitational-wave models

The LVK broadly searches for four kinds of gravitational waves: continuous waves [19],
stochastic gravitational-wave background [20], transient bursts [21, 22] and compact
binary coalescences (CBCs). For some gravitational-wave sources, it is not possible
to model h(t): this is the case for some bursts, for which we dont know enough
about the physics of a system to predict its waveform5. In this thesis, only CBCs
are considered, such as binary black holes (BBH), binary neutron stars (BNS), and
neutron star-black hole pairs (NSBH), for which the waveform can be modelled.

Gravitational waves can be thought of as deformations of space that stretch
the wave’s polarisations first in one direction, then in the perpendicular one. The
direction of propagation of the wave (i.e., from where in the sky the signal originates)
and the polarisation state of the signal are determined by the amplitude, phase, and
time-of-arrival of the signals observed in each detector. Assuming a stationary phase
approximation, we can write the waveform as

h(t) = A(t)cos(Φ(t)) (1.7)

where A(t) is the instantaneous amplitude, Φ(t) is the gravitational-wave phase.
The phase evolution is most commonly computed with a perturbative expansion in
powers of the orbital velocity v/c (post-Newtonian approximation) and it is driven
by a combination of the component masses and the angular momentum spins of the
binary system. The chirp mass M ≡ (m1m2)3/5

(m1+m2)1/5
(where m1,m2 are the primary

and secondary masses of the compact objects in the binary and we define m1 ≥ m2)
governs the frequency evolution of the signal, such that higher chirp mass leads to
faster orbital evolution of the system [7]. The spins affect the frequency evolution
by delaying (or accelerating) the time to merger (“orbital hang up” [23]). What is
modelled, in practice, is the symmetric mass ratio η ≡ m1m2/M

2 and a combination
of the individual spins (see full parameters list in Table A.5).

According to General Relativity, there exist two gravitational-wave polarisa-
tions: “cross” (×) and “plus” (+), rotated by 45 degrees with one another. The
gravitational-wave signal at each interferometer I can then be written as:

hI(θ) = F
(+)
I (α, δ, ψ, t)h+(t− τI , dL, ι,M)

+ F
(×)
I (α, δ, ψ, t)h×(t− τI , dL, ι,M) (1.8)

where F (+,×)
I are the antenna response functions [24, 25], which depend on the sky

location of the source (here denoted as right-ascension α and declination δ), the
polarisation angle ψ and the time of arrival of the transient t (these all depend on
the orientation between a detector and the source); the polarisations components
h+,× depend on the travel time of the signal from the geocenter to the detector

5Bursts searches also include entirely un-modelled waves from unknown sources.
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τI = τI(α, δ, τI), the luminosity distance dL, the inclination of the orbital plane of
the binary system ι and on the chirp mass.

Accurate waveform templates are necessary for both the detection and parameter
estimation of CBCs. Waveforms are usually constructed by modelling three stages:
inspiral, merger and ringdown (IMR). The inspiral can be analytically approximated
with post-Newtonian (PN) expansions (at least to the 3.5th order6), whereas numer-
ical relativity (NR) is used to model the merger of the two bodies and ringdown
(together with black hole perturbation theory) [26, 27]. Depending on how these are
combined, two main waveforms “families” can be distinguished. The phenomenolog-
ical (Phenom) family is based on matching PN to NR with a phenomenological fit
and has the advantage of being analytical and fast to evaluate [28, 29]. The effective-
one-body (EOB) family is based on a resummed extension of PN approximants using
terms that are tuned to NR waveforms. Since this family is slow to evaluate, a com-
mon modelling modification for this family is the reduced-order model (ROM), a
faster surrogate of the waveform [30].

1.1.3 Gravitational-wave Astronomy

Gravitational-wave astronomy was expected to be a groundbreaking field before the
turn of the millennium [31]. Historically, the fields of astrophysics and cosmology
relied primarily7 on electromagnetic (EM) observations. This “messenger” how-
ever comes with its own limitations, for instance, the fact that not all astrophysical
objects are luminous. Moreover, gravitational waves weakly interact with matter,
unlike EM radiation, hence they can travel virtually unimpeded providing undis-
torted information on their sources. In this sense, the gravitational-wave messenger
opens a new window on the observable Universe that not only complements EM
observations but also can lead to entirely new discoveries.

The first direct observation in 2015 [32] made by Advanced LIGO [33] and Ad-
vanced Virgo [34] truly sparked a new era of astronomy. Several years on from
that event the number of detected gravitational waves keeps increasing [35–37] and
within this decade the LVK expects to observe O(103) signals [38]. Time-domain
astronomy studies transient astronomical events, which for gravitational waves in-
clude unmodelled transients. However, our current searches for burst signals have
been inconclusive [39]. Similarly, other non-transient sources of gravitational radi-
ation, such as continuous waves and stochastic gravitational-wave background have
remained elusive to searches [40, 41].

Gravitational-wave astronomy presents a revolutionary opportunity to probe fun-
damental physics and astrophysics, ranging from the neutron star equation of state
and stellar evolution to the expansion of the Universe. Gravitational-wave signals
encode information about their sources which can be difficult, if not impossible, to

6Corrections of order ( v
c
)2n to the Newtonian gravity, see Blanchet [26].

7Notable exceptions are neutrinos and cosmic rays.
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otherwise obtain. Extracting information from the observed signals requires careful
statistical inference. This is made possible thanks to accurate modelling of the wave-
form morphology. The inferred source parameters can inform our understanding of
binary stellar evolution [42–48], the equation of state of neutron-star matter [49–52],
and the nature of gravity [53–57]. Multimessenger observations of gravitational and
electromagnetic radiation [6] can give an even richer understanding, enabling mea-
surements of cosmological parameters [58–63], insights into the structures of gamma-
ray bursts [64–68], and identifying the origins of heavy elements [69–73]. However,
electromagnetic emission can fade rapidly, necessitating rapid and accurate locali-
sation of the gravitational-wave source [74].

During the latest LVK observing run (O3), 32 BBHs were detected, making up
the majority of GWTC-3 [75]. Two NSBHs were detected for the first time [76],
and Chapter 3 reports on the analysis of their source properties. Finally, a BNS
was also detected, and a study on its potential association with an electromag-
netic counterpart is presented in Chapter 6. To maximize the scientific return of
gravitational-wave observations, it is therefore of paramount importance to make use
of and continue to develop efficient, reliable, and accurate computational inference.

1.2 Interpreting observations: Bayesian techniques

The gravitational-wave subfield of this research work, namely parameter estimation
of compact binary coalescences, is outlined and contextualised in Section 1.2.1. This
short overview of the Bayesian statistical framework is at the base of Chapters 2
and 3. The concepts of the previous Section are expanded on in Section 1.2.2:
from Bayesian inference for parameter estimation to hierarchical Bayesian inference
for astrophysical and cosmological studies. This places Chapter 4 in context and
introduces some of the use cases for the work presented in Chapter 5. The work
presented in the latter is further introduced in Section 1.2.3, which presents some
of the current and future data analysis challenges in gravitational-waves astronomy
and specifically in density estimation for posterior samples. All of the above are
necessary to introduce the work shown in Chapter 6, which presents components
from parameter estimation, cosmology and density estimation.

1.2.1 Parameter estimation of modelled sources

One can distinguish between intrinsic source parameters (e.g. component masses),
which determine the evolution of the binary and its waveform independently from
the observer; and extrinsic source parameters (e.g. source location) which leave the
basic waveform unchanged but influence the antenna response function (F (×), F (+))
and the relative phase of the signal as observed by the detectors.

The primary objective of gravitational-wave inference for compact binary merger
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signals is to recover posterior probability densities for the source parameters θ (de-
fined in Appendix A.5), like the masses and spins of the binary components, given
the data and a model hypothesis. The posterior can be computed using Bayes’
theorem [77],

p(θ|d,H) = L(d|θ,H)π(θ|H)
Z(d|H)

, (1.9)

where L(d|θ,H) is the likelihood, π(θ|H) is the prior, Z(d|H) is the evidence, and
H is the model. The likelihood represents the probability of the detectors measur-
ing data d, assuming a signal (described by the model hypothesis H) with source
properties θ. The prior is chosen to incorporate any a priori knowledge about the
parameters. The evidence, or marginalized likelihood,

Z(d|H) =
∫
p(d|θ,H)π(θ|H) dθ, (1.10)

serves as a measure of how well the data is modelled by the hypothesis; in param-
eter estimation, it acts as a normalization constant and, since we are interested in
densities, it can be ignored, but is important in model selection.

The standard likelihood function used to analyse gravitational-wave transients
is defined in, e.g., [78, 79], where both the data and the model are expressed in
the frequency domain. This likelihood has stationary Gaussian noise, which is a
reasonable approximation in most cases [e.g., 80–82] unless one of the instruments
is affected by a glitch [83, 84]. We assume the PSD is independent of the model
parameters and therefore ignore the normalization term, yielding

lnL(d̃|θ) ∝ − 1

T

∑
k

2|d̃k − h̃k(θ)|2

Sk
, (1.11)

where k is the frequency bin index, S is the PSD of the noise, T is the duration
of the analysis segment. The data d̃ and waveform model h̃(θ) are the Fourier
transforms of their time-domain counterparts. Given the likelihood and the prior,
we can calculate the posterior probability distribution for the source parameters.

There are multiple approaches to calculating the posterior probability distribu-
tion. For example, RapidPE [85] and its iterative spin-off RIFT [86] separate
intrinsic and extrinsic parameter searches and use highly-parallelised grid-based
methods to compute the posterior probability distribution; while BAYESTAR
[87, 88] rapidly localises gravitational-wave sources, calculating probabilities on a
multi-resolution grid of the sky. Bayesian inference schemes using various machine-
learning algorithms are also being developed [89, 90]. However, the majority of
Bayesian inference analysis is done by stochastically sampling the posterior proba-
bility distribution.

Over many years, Markov-chain Monte Carlo (MCMC) [91–96] and nested sam-
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pling [97, 98] algorithms for gravitational-wave inference have been developed. This
work resulted in the development of LALInference, a Bayesian inference library
using custom-built MCMC and nested sampling algorithms [99].8 Though this is
not a comprehensive list, these efforts culminated in the development of the python-
based library bilby [105], the current state-of-the-art used by the LVK collaboration.
A detailed comparison between LALInference and bilby is covered in Chaper 2,
which reproduced GWTC-1, originally composed only of LALInference results,
using bilby. The library was also used for the analysis performed in Chapter 3 and
Chapter 6.

1.2.2 Hierarchical inference for astrophysics and cosmology

To make statements about the ensemble of astrophysical sources that we detect,
we have to statistically infer their underlying distribution. This distribution, which
is typically modelled parametrically, is commonly referred to as a “population”.
Using the hierarchical Bayes theorem, the posterior distribution of some population
parameters Λ, also called hyper-posterior, can be written as:

p(Λ|d) = L(d|Λ)π(Λ)∫
L(d|Λ)π(Λ)dΛ

(1.12)

where L(d|Λ) is the hyper-likelihood, π(Λ) is the hyper-prior and the quantity in the
denominator is the hyper-evidence ZΛ [106]. This quantity heavily depends on the
posterior samples from each individual observation and relies on the assumption that
each observation is independent of all others. To better illustrate the dependence
on the parameter estimation results, let’s consider a population model for a mock
BBH parameter m: fΛ(m) ≡ p(m|Λ). Given n = {1, .., N} observations, and Kn

samples of the posterior p(θn|dn), it is demonstrable that the hyper-posterior can
be evaluated via Monte Carlo integral approximation:

p(Λ|{dn}Nn=1) = π(Λ)
N∏

n=1

∫
dθn p(θn|dn)

fΛ(mn)

π0(mn)

≈ π(Λ)

N∏
n=1

1

Kn

Kn∑
k=1

fΛ(m
(k)
n )

π0(m
(k)
n )

, (1.13)

where π0(mn)
9 is the prior on the parameter m and the last term is just the sum of

the ratio of fΛ(mn)/π0(mn) evaluated at the posterior samples set p(θn|dn). It is
clear how the calculation is dependent on the number of samples of each event, such
that Kn is determined by the smallest sample set. Only loud “enough” gravitational-

8In this thesis, the focus is on Bayesian inference for ground-based gravitational-wave detection.
Similar techniques have been developed for studying the gravitational-wave observations of other
instruments, such as pulsar timing arrays [100, 101] and future space-based detectors [102–104].

9This assumes the property: π0(θn) = π0(mn)π0(θn\mn)
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wave sources will be observed, according to a threshold like Eq. 1.6. The standard
approach to take this selection bias into account is to add a “selection factor” to the
hyper-likelihood [107]. This factor is the population averaged sensitive time-volume
〈V T 〉, which, following our convention for a single parameter m, can be written as

〈V T 〉 ≈
∫
T · fΛ(m) · pdet(z,m)dmdz (1.14)

where pdet(z,m) is the probability of detecting a signal, called the selection function,
and T is the time during which N observations are made. The sensitive time-volume
is usually calculated with stochastic sampling by randomly drawing synthetic BBH
events [108, 109].

Hierarchical Bayesian modelling techniques have been thoroughly explored to
infer the global parameters of BBH populations. Both using model-independent
inference techniques [110] and employing specific models from the canonical BBH
formation scenarios [111]; adopting astrophysically motivated parametrisations [112]
and accounting for uncertainties in each binary’s individual parameters [113]. A
novel framework to quantitatively compare such observation-based models to purely
theoretical astrophysical simulations is presented in Chapter 4.

The hierarchical formalism can also be used in cosmology with gravitational-wave
observations. Since gravitational-wave sources provide a direct measurement of their
luminosity distance, they are standard sirens [114, 115]. An independent redshift
measurement of the source can constrain cosmological parameters such as the Hubble
constant, H0. Uniquely associated EM counterparts can provide this independent
redshift measure, as was the case for the BNS associated with GW170817, commonly
referred to as the first “bright” siren [116]. Using Bayes theorem, we can write the
joint posterior on H0 as,

p(H0|dGW, dEM) =
L(dGW, dEM|H0)π(H0)

β(H0)
(1.15)

where L(dGW, dEM|H0) is the joint likelihood on H0 given the multi-messenger data,
π(H0) is the prior distribution over H0 and β(H0)

10 is a scaling factor encoding our
observational biases. Now, the likelihood L(dGW, dEM|H0) relates the location of
the EM counterpart with the GW localization volume as follows,

p(θGW, θEM|H0) = δ(dL − dL(zEM|H0))δ(α− αEM)δ(δ − δEM) (1.16)

where dL(zEM|H0) is the probability density function (PDF) of the luminosity dis-
tance obtained from the gravitational-wave data, but evaluated at the measured EM
redshift zEM. In the absence of a uniquely identified host galaxy, a galaxy survey
can also be used as prior information on the potential host galaxies of the event, in

10Following Fishbach et al. [117] this term can be approximated as β(H0) ∝ H3
0 .
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combination with its gravitational wave localization volume, to estimate cosmolog-
ical parameters [118–122]. During O3, no gravitational-wave event was found to
have confidently associated EM counterparts in low latency. In this scenario, the
hierarchical formalism can be used such that BBH observations are stacked together
and their redshift estimated via: (i) a population model or (ii) a galaxy catalogue.
In the first scenario, we can update the set of hyper-parameters Λ

′
= {H0,Λ} and

recompute the hyper-posterior as:

p(Λ
′ |{dn}Nn=1) ∝ β(Λ

′
)−N

N∏
n=1

[∫
L(dn|θn)fΛ(θn, z)dθn

]
π(Λ

′
) (1.17)

where fΛ(θn, z) is the redshift-dependent population model of the sources 11. Jointly
estimating cosmological and population parameters while also using galaxy cata-
logues as redshift prior information is currently unexplored due to scalability issues,
but a framework that exploits all available information would improve the quality
of dark siren cosmology.

Despite the large number of dark sirens, the most stringent gravitational-wave
constraint of H0 so far was given by the multi-messenger analysis of GW170817. The
prediction for O4, is that we will observe O(10) of such bright sirens [38]. Hence,
careful assessment of the association probability between BNSs and EM counterparts
is going to be increasingly important for cosmology. An example of such a study is
presented in Chapter 6.

1.2.3 On using Bayesian inference results

The challenges related to analysing gravitational-wave data can be broadly cate-
gorised into those that require high accuracy and those that require fast processing.
To address these computational challenges, machine learning techniques are being
increasingly investigated within the field of gravitational-wave physics [123]. Many
studies have focused on speeding up parameter estimation of the source parameters
of the signals with various deep learning techniques, such as convolutional neural
networks [89], variational autoencoders [90], autoregressive neural flows [124] and
normalising flows [125, 126]. Other work has focused on combining detection and
parameter estimation with deep neural networks [127] as well as using neural net-
works to rapidly generate surrogate waveforms [128, 129]. While the research efforts
to speed up or completely revolutionise parameter estimation are ongoing, the is-
sue of how to effectively deal with a large number of results from different events
remains. Since most astrophysical post-processing analysis in the field is based on
parameter estimation samples, it’s essential to effectively streamline the analysis of
large numbers of results from different events, while maintaining accuracy.

The output of parameter estimation analysis consists of a set of discrete point
11The redshift dependence comes from the mass-spectrum, since Mz = (1 + z)M.
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samples. To visualise the data and give a rough sense of the density of its underlying
distribution, histograms are often used. It is often the case that we need (or prefer)
an analytical version of the marginalised PDFs, such that they can be evaluated
continuously across the parameter space. This is in essence an interpolation problem,
for which Kernel Density Estimators (KDE) are the simplest, most common solution.
For a set of samples ~x drawn from an unknown distribution f , a general KDE
function can be written as:

f̂h(~x) =
1

nh

n∑
i=1

K

(
~x− ~x′

h

)
(1.18)

where n is the number of samples, h is the bandwidth (a smoothing parameter) and
K is the kernel. Note the kernel for a Gaussian KDE is simply K(~x;h) ∝ exp(− ~x2

2h2 ).
Gaussian KDEs are generally effective in low-dimensional problems and can accu-
rately represent the set of samples. Like for histograms, where a bin width too large
can hide the true morphology of the posterior, a wrong choice in the bandwidth
parameter can smooth out important features in the data. Moreover, in higher
dimensions, KDEs rely on the assumption that parameters are fairly linearly corre-
lated [130]. This is often not the case for gravitational-wave parameters, hence more
sophisticated interpolation techniques are required, e.g. multivariate KDEs, where
each dimension has a separate bandwidth. If the samples are bounded by a given
domain, sharp boundaries can arise and both Gaussian and multivariate KDEs will
fail to accurately capture the shape of the distribution at the bounds. In such cases,
additional transformations can be applied to the KDE [131], however, these trans-
formations will cause artefacts on the “easy” cases where Gaussian KDEs work well.
This revealed the need for a single density estimation technique able to address all
interpolation scenarios. In Chapter 5 an alternative machine learning-based density
estimation technique, tailored to the gravitational-wave analysis requirements, is
presented.
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Chapter 2

Bayesian inference for compact
binary coalescences with bilby:
reproducing the first
gravitational-wave catalogue

This Chapter is based upon the work presented in [132], published as MNRAS Vol.
499, Issue 3. The analysis was based on the collaborative efforts of LVK researchers
within the parameter estimation (PE) group and was led by Dr Isobel Romero-Shaw,
Dr Sylvia Biscoveanu and the author. As part of the leading team, the author was
involved in organising the structure and content of the paper, coordinating multi-
ple authors from different institutions and collecting feedback from the wider LVK
collaboration. The author’s main contributions to the analysis are in Sections 2.2.2,
2.3.1 and 2.4.7. The author produced Figures 2.1, 2.7, 2.8 and Table 2.1. Finally,
only Sections led or directly contributed to by the author are included in this Chap-
ter.

Note that Section 2.4.6 has been added and was not present in the published
work. Also note that Table A.5 provides a useful reference for symbols and units
throughout the remainder of this thesis. The original first column of this table,
containing the Bilby code name for the parameters, has been deleted for formatting
reasons; see the original text for the full table.
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2.1. Introduction

2.1 Introduction

Gravitational-wave signals encode information about their sources which can be
difficult, if not impossible, to otherwise obtain. Extracting information from the
observed signals requires careful statistical inference.

bilby is a user-friendly Bayesian inference library that can be used to analyse
gravitational-wave signals to infer their source properties [133]. bilby is modular
and can be easily adapted to handle a range of inference problems in gravitational-
wave astronomy and beyond [e.g., 134–137]. In the context of gravitational-wave
astrophysics and compact binary mergers, it has been used to extract information
about short gamma-ray burst properties [68], neutron star parameters [138–141],
the formation history of binary compact objects [142–146], population properties
using hierarchical inference [147–150], and test general relativity [151–156]. This
Chapter concentrates on using bilby to infer the properties of individual signals
from CBCs—the inspiral, merger and ringdown of binaries composed of neutron
stars and black holes.

We outline the developments included in the bilby software to accurately and
efficiently infer the properties of CBC signals, and demonstrate their validity both
through tests using simulated signals and via comparisons to existing observational
results. In Section 2.2, we describe the applications of Bayesian inference to CBC
events detected via gravitational waves. In Section 2.3 we focus on the bilby pack-
age and in Section 2.3.1 we emphasise the improvements on its priors methods made
since the publication of [133]. We outline our code validation tests in Section 2.3.2,
and describe the automation of bilby—allowing for efficient and immediate analysis
of gravitational-wave event candidates—in Section 2.3.3. In Section 2.4, we reanal-
yse the eleven signals from GWTC-1, ensuring that we use both identical data and
identical data processing techniques as used to produce the public GWTC-1 results
obtained using the Bayesian parameter estimation package LALInference [99].
We cross-validate our results for GWTC-1 against these previous results. In Sec-
tion 2.4.6, the author presents the details of the analysis upon which the similarity
measure between LALInference and bilby results is built. Results of the analyses
presented here, in a format matching previous releases of LIGO–Virgo posterior sam-
ples, are provided as accompaniments to the original manuscript. Our investigations
confirmed the effectiveness of bilby as it started being used as LIGO–Virgo parame-
ter estimation standard at the beginning of the third observing run (O3a) [157, 158].
Throughout this Chapter, we use notations for CBC source parameters that are de-
fined in Appendix A.5.
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2.2 Bayesian Inference for Compact Binaries

In this Section, we outline the fundamental procedures carried out by bilby and
provide a summary of new astrophysical prior features implemented since the first
bilby paper [133]. For a thorough and up-to-date description of bilby, the reader
is directed to the bilby documentation.1

2.2.1 Applications of Bayesian Inference to Compact Binary Coa-
lescences

LALInference has been the workhorse of gravitational-wave inference since the
initial LIGO–Virgo era [159], through the first observation [160] to the produc-
tion of GWTC-1 [35]. Other stochastic sampling packages used for gravitational-
wave inference include PyCBCInference [161] and [162], which uses relative-
binning [163, 164] to reduce the computational cost of the likelihood. In addi-
tion to these sampling packages which fit CBC waveform templates to the data,
BayesWave [165] uses a trans-dimensional MCMC to fit an a priori unknown
number of sine-Gaussian wavelets to the data. BayesWave also implements the
BayesLine algorithm [166] to generate a parameterised fit for the interferometer
noise PSD. Power spectral densities produced by BayesLine are widely used in
gravitational-wave parameter estimation and are used in this work. bilby has been
designed to adapt to the changing needs of the gravitational-wave inference commu-
nity, emphasizing modularity and ease of accessibility.

While LALInference implements customized stochastic samplers, bilby em-
ploys external, off-the-shelf samplers, with some adaption. This allows the user to
easily switch between samplers with minimal disruption: a useful feature for cross-
validating results using different samplers. Typically, external samplers need to be
tuned and adapted for use in gravitational-wave inference. In some cases, this is
a simple case of choosing sensible settings; we provide details of the settings that
have been verified for gravitational-wave analysis in Section 2.4 and Appendix A.2.
However, we also find cases where the off-the-shelf samplers themselves need to be
adjusted. Where possible, we propagate those proposed changes to the original sam-
pling packages. Alternatively (e.g., when the change is perhaps gravitational-wave
specific), we adjust the sampler from within bilby.

2.2.2 Stochastic Sampling

Various Monte Carlo sampling schemes have been developed to solve the Bayesian
inference problem and estimate the posterior distribution described by Eq. (1.9). For
low-dimensional problems, a solution might be to estimate the best-fit parameters
by computing the posterior probability for every point on a grid over the parameter

1lscsoft.docs.ligo.org/bilby/
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space. However, as the number of dimensions increases, this becomes exponentially
inefficient.2 The common alternative to solve this problem has been to use stochastic
samplers, which fall broadly into two (not mutually exclusive) categories: MCMC
[167, 168] and nested sampling [169]. In general terms, independent samples are
drawn stochastically from the posterior, such that the number of samples in the
range (θ,θ +∆θ) is proportional to p(θ|d,H)∆θ.

MCMC methods generate posterior samples by noting the positions of particles
undergoing a biased random walk through the parameter space, with the probability
of moving to a new point in the space given by the transition probability of the
Markov chain. Sampling is completed once some user-specified termination condition
is reached, usually a threshold for the number of posterior samples that should be
accumulated to provide an accurate representation of the posterior.

Nested sampling methods generate posterior samples as a byproduct of calcu-
lating the evidence integral Z(d|H). A set of live points is drawn from the prior
distribution, and at each iteration, the live point with the lowest likelihood is re-
placed by a new nested sample that lies in a part of the parameter space with a
higher likelihood. The evidence is approximated by summing the products of the
likelihood at the discarded point and the difference in the prior volume between
successive iterations. The nested samples are converted to posterior samples by
weighting by the posterior probability at that point in the parameter space. The
nested sampling algorithm stops once a predefined termination condition has been
reached. The most commonly used termination condition is when the fraction of
the evidence in the remaining prior volume is smaller than a predefined amount.

For more details on both MCMC and nested sampling methods, we refer the
reader to [170] and [171], respectively.

2.3 The bilby Package

bilby has a modular structure, allowing users to extend and develop it to suit their
needs; examples include online bilby (Section 2.3.3), bilby_pipe (Section 2.3.3)
and parallel bilby [pbilby; Section 2.3.3; 172], amongst others [e.g., 148]. bilby
comprises three main subpackages. The core subpackage contains the basic imple-
mentation of likelihoods, priors, sampler interfaces, the result container class and a
host of utilities. The gw subpackage builds on core and contains gravitational-wave
specific implementations of priors and likelihoods. These implementations include
a detailed detector and calibration model, an interface to waveform models, and
a number of utilities. Finally, the hyper subpackage implements hyper-parameter

2Quasi-circular BBH coalescence waveform models typically have ndim = 15, depending on the
number of spin orientations included in the waveform model. BNS coalescence models include
an additional two parameters that describe their tides. There are further ≈ 20 parameters per
interferometer that describe uncertainties in detector calibration.
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estimation in bilby, which in the gravitational-wave context is used for population
inference.

2.3.1 Changes within bilby: astrophysical priors:

Since the original bilby paper [133], there have been a number of significant changes
and added features to the code package. Here we describe changes pertaining to the
implementation of prior methods specific to gravitational-wave analyses. Here we
discuss prior constraints, conditional priors and the implementation of cosmological
priors. We also present the various available prior boundary conditions. A full and
up-to-date list of changes can be found in the bilby changelog.3

Constrained priors

Each time the sampler chooses a new point to test from the multi-dimensional pa-
rameter space, it selects this point from within the region specified by the multi-
dimensional prior. It is often advantageous to be able to cut out parts of the prior
space by placing restrictions on relationships between parameters. For example,
in gravitational-wave inference we frequently wish to specify a prior on the binary
component masses, m1 and m2, while enforcing that m1 ≥ m2, which is equivalent
to the constraint that the mass ratio q = m2/m1 ≤ 1.

In bilby, the collection of priors on all parameters is stored as a PriorDict

object. In order to enforce a constraint, a bilby user can add a Constraint prior
object to the PriorDict. It is necessary to tell the PriorDict how to convert be-
tween its sampled parameters and its constrained parameters; this is done by passing
a conversion_function at instantiation of the PriorDict. The bilby default BBH
and BNS prior set classes (BBHPriorDict and BNSPriorDict, respectively) can im-
pose constraints on any of the known binary parameters. This ensures that users can
sample in the set of parameters that best suits their problem while ensuring that the
relevant indirectly-sampled quantities are constrained. Without applying any prior
constraints, all bilby prior distributions are correctly normalised. When constraints
are imposed on the prior distribution, the updated normalisation is approximated
using a Monte Carlo integral.

Conditional priors

One may choose to make the prior for one parameter conditional on the value of an-
other. This can increase efficiency, particularly if large parts of the prior space would
be forbidden by an equivalent constraint prior. A commonly used parameterisation

3git.ligo.org/lscsoft/bilby/blob/master/CHANGELOG.md
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of the population distribution of binary black hole masses is

p(m1|mmin,mmax, α) = (1− α) m−α
1

m1−α
max −m1−α

min

,

p(q|m1,mmin, β) = (1 + β)
m1+β

1 qβ

m1+β
1 −m1+β

min

,

(2.1)

where mmin and mmax are the maximum and minimum allowed masses for the pri-
mary component, and α and β are power-law indices [147, 173]. If we wish to use
a similar prior to analysing individual BBH coalescences, we require a prior for the
mass ratio which is conditioned on the primary mass. We provide a ConditionalPriorDict

and conditional versions of all implemented priors within bilby to facilitate analy-
ses of this kind. Further, bilby is able to handle nested and multiple dependencies,
and automatically resolves the order in which conditional priors need to be called.
The conditional relationship between different priors can have any functional form
specified by the user.

Cosmological priors

Most previous parameter estimation analyses of CBCs have assumed a prior on
luminosity distance dL which is π(dL) ∝ d2L [e.g., 35, 160]. A π(dL) ∝ d2L prior would
distribute mergers uniformly throughout a Euclidean universe. This is an adequate
approximation at small redshifts, as illustrated in Figure 2.1; however, beyond a
redshift of ∼ 1, the difference between a prior which is uniform in the comoving
(source) frame volume and uniform in luminosity volume is large. We therefore
implement a range of cosmologically-informed prior classes.

The Cosmological base class allows the user to specify a prior in either lumi-
nosity distance, comoving distance, or redshift using any cosmology supported in
Astropy [174, 175].4 Additionally, users can specify the prior in terms of redshift
and then convert to an equivalent prior on luminosity distance if desired. We im-
plement two new source distance priors: a UniformComovingVolume prior, defined
as

π(z) ∝ dVc
dz

, (2.2)

where Vc is the comoving volume, and a UniformSourceFrame prior, defined as

π(z) ∝ 1

1 + z

dVc
dz

. (2.3)

The additional factor of (1 + z)−1 accounts for time dilation.
Additional Cosmological prior classes of the form

π(z) ∝ dVc
dz

f(z) (2.4)

4By default, bilby uses the [1] cosmology.
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can be defined by providing f(z).

Joint priors

In cases where one requires more complex priors that depend on multiple parameters,
we implemented the JointPrior class in which the user can define a distribution
that describes the prior on multiple parameters. This is implemented in bilby in
the MultivariateGaussian prior that lets the user define multi-modal and multi-
variate Gaussian priors. It is also used in the HEALPixMap prior in which a user can
implement a prior on the sky position and optionally distance according to a given
HEALPix [176, 177] map.

Boundary conditions

For many parameters, such as the mass ratio q and spin magnitudes a1, a2, posterior
distributions have significant support close to the prior boundaries. This is expected
behaviour and a direct result of the choice of prior (e.g., the choice to fix m1 ≥ m2

ensures q ≤ 1). In bilby, Prior objects have boundaries that can be specified by the
user as None, reflective, or periodic. For samplers which support these settings,
these options specify the behaviour of the sampler when it proposes a point that is
outside of the prior volume. For a None boundary, such a point is rejected. Priors
that have reflective boundaries are reflected about the boundary (a proposed
mass ratio of 1 + ε is reflected to 1− ε) while periodic boundaries wrap around (a
proposed phase of π + ε is wrapped to ε).

The dynesty sampler [171] supports all available parameters boundary settings.
The pymultinest sampler [178–181] can implement periodic boundary conditions,
but not reflective, which are treated as None. All other samplers implemented in
bilby treat all prior boundaries as None.

While reflective boundaries are implemented, their usage is not recommended
due to concerns that they break detailed balance [e.g., 182]. When using the
dynesty sampler, we recommend using periodic boundaries for relevant parame-
ters (e.g., the right ascension and phase). These recommendations are mirrored in
our choices of default priors, discussed in Section 2.4.1.

2.3.2 Validation of bilby

A common consistency test of the performance of sampling algorithms is to check
that the correct proportion of true parameter values are found within a given prob-
ability interval for simulated systems [183, 184]—i.e. that 10% of events are found
within the 0.1 probability credible interval, 50% are found within the 0.5 probability
credible interval, etc. We generate a set of CBC signals with true parameter values
drawn from our prior probability distributions and inject these into simulated noise.
Parameter estimation is then performed on each signal to determine the credible
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Figure 2.1 Comparison of distance priors out to redshift z = 0.10 (top panel) and
z = 1.02 (bottom panel), respectively corresponding to dL = 500 Mpc and dL =
7000 Mpc, according to [1] cosmology. The upper and lower panels show the range
of the luminosity distance priors for the default 128 s and high-mass prior sets,
respectively. We display priors that are uniform in luminosity volume, comoving
volume, and the (comoving) source frame. The probability density of each curve is
normalized with respect to the upper limit cut-off displayed in that panel.
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level at which the true value of each parameter is found. This test is traditionally
used in validating gravitational-wave inference codes [80, 85, 87, 99, 161, 185, 186].

To test bilby’s parameter estimation, we simulate 100 synthetic CBC signals
for a two-detector Hanford–Livingston network and add the signals to Gaussian
noise coloured to the Advanced LIGO design sensitivity [74]. The parameters of the
simulated events are drawn from the default 4 s prior set, detailed in Section 2.4.1.

Parameter estimation is performed using the dynesty sampler with the distance,
time, and phase-marginalized likelihood. Analysis of the performance of other sam-
plers is left to future work. Results of the test are shown in Figure 2.2, where the
fraction of events for which the true parameter is found at a particular confidence
level is plotted against that particular confidence interval.5 We also show the indi-
vidual parameter p-values representing the probability that the fraction of events in
a particular confidence interval is drawn from a uniform distribution, as expected for
a Gaussian likelihood, and the combined p-value quantifying the probability that the
individual p-values are drawn from a uniform distribution. The combined p-value
obtained with the latest version of bilby is 0.7206 and the minimum is 0.183 for
φ, which is entirely consistent with chance for the set of 15 parameters, indicating
that the posterior probability distributions produced by bilby are well-calibrated.
The grey regions show the 1, 2, and 3σ confidence intervals so we expect the lines
to deviate from this region approximately 0.3% of the time, which is consistent with
what we see.

In addition to the procedure described above, we verify the suitability of the
sampler settings for the problem of sampling the CBC parameter space using a
series of review tests. These are described in detail in Appendix A.1. The settings
used for each of the tests described here are provided in Appendix A.2. In addition
to these review tests, bilby has an extensive set of unit tests, which scrutinize the
behaviour of the software in high detail every time a change is made to the code;
these unit tests can be found within the bilby package.6

2.3.3 Automation of bilby for gravitational-wave inference

With the improvement in sensitivity and expansion of the gravitational-wave obser-
vatory network comes an increasing rate of detections. Streamlining the deployment
of bilby analysis is therefore vital. We introduce bilby_pipe, a Python package
providing a set of command-line tools designed to allow performance of parameter
estimation on gravitational-wave data with all settings either passed in a configura-
tion file or via the command line.7 This tool was used to perform the analyses of the

5These plots are referred to as P–P plots, where P could stand for probability, percent or
proportion. Instructions for generating P–P plots are provided in the bilby documentation at
git.ligo.org/lscsoft/bilby_pipe/wikis/pp/howto.

6git.ligo.org/lscsoft/bilby/tree/master/test
7The source-code is available on the git repository git.ligo.org/lscsoft/bilby_pipe.

Specifics about the installation, functionality and user examples are also provided lsc-
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Figure 2.2 Results of 100 injections drawn from the four-second prior defined in Sec-
tion 2.4.1. The grey regions cover the cumulative 1-, 2- and 3-σ confidence intervals
in order of decreasing opacity. Each coloured line tracks the cumulative fraction
of events within this confidence interval for a different parameter. The combined
p-value for all parameters, over all tests, is 0.7206, consistent with the individual
p-values being drawn from a uniform distribution. Individual parameter p-values are
displayed in parentheses in the plot legend. The marginalised parameters—geocenter
time tc, luminosity distance dL and phase φ–are reconstructed in post-processing.
Other parameters provided in the plot legend are defined in Appendix A.5.
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GWTC-1 catalogue events presented in Section 2.4, and is integral to the automatic
online parameter estimation that is triggered by potential gravitational-wave events.

The bilby_pipe workflow consists of two key stages: data generation, and data
analysis. These steps are outlined in Section 2.3.3. The pipelines provided by
bilby_pipe can be utilized to distribute analysis of a single event over multiple
CPUs using pbilby [172], which is described in Section 2.3.3. The workflow for
the automated running of bilby on gravitational-wave candidates is detailed in
Section 2.3.3.

Data generation and analysis

Gravitational-wave detectors record and store time-domain strain data and infor-
mation about the behaviour internal to the detectors, as well as data from a suite
of environmental sensors. To obtain gravitational-wave strain data, we recommend
using the GWpy library [187]. GWpy can retrieve both public data from the Grav-
itational Wave Open Science Center [188], and proprietary data using the Network
Data Server protocol (NDS2) to acquire data from LIGO servers. Given a GPS
trigger time and a required data duration, bilby_pipe uses GWpy to extract an
analysis segment of strain data around the trigger, as well as a segment of strain
data used to estimate the noise PSD. The default duration for the analysis segment
is T = 4 s, which is considered adequate for sources with detector-frame chirp masses
M & 15M�. Sources with lowerM have longer signals, so longer analysis segments
should be used. A portion of data following the trigger time is required to encompass
the remaining merger and post-coalescence ringdown signal; this is 2 s by default.

A bilby_pipe user can provide pre-generated PSDs, and a range of design-
sensitivity noise spectra for current and future detectors are available as part of
the bilby package. For the analyses we present in Section 2.4, we use event-
specific PSDs produced using BayesWave [165]. When a PSD is not provided,
bilby_pipe uses the median-average power spectrum method described by [189],
and implemented in GWpy, to calculate the PSD; this method has the advantage
of down-weighting outliers in the off-source data [99, 189]. In order to avoid includ-
ing any signal in the PSD calculation, bilby_pipe uses a stretch of data preceding
the analysis segment. Following [99] and [190], we use data stretches of length
min(32T, 1024 s) by default, although both of these values can be altered by the
user. The upper limit of 1024 s is required because the PSD of gravitational-wave
detectors is non-stationary over long time-periods [190]. To further mitigate this
issue, the data is divided into segments of length T , with each segment overlapping
50% of the previous segment; this allows a shorter total stretch of data to be used
to calculate the PSD. Following [189], segments are Tukey windowed with a 0.4 s

roll-off to suppress spectral leakage [82], before computing their one-sided power

soft.docs.ligo.org/bilby_pipe.
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spectra.
The priors for the analysis can be specified by the user, either by providing a

path to a file containing the priors in bilby syntax or by giving the name of one
of the default bilby_pipe priors described in Section 2.4.1. By default, the bilby
GravitationalWaveTransient likelihood is used with the waveform template gener-
ated by LALSimulation [191]. However, users can specify their own source models
and modified likelihoods in the configuration file. After saving the necessary data,
bilby_pipe launches parameter estimation on the analysis segment in accordance
with the procedure outlined in Section 2.2.1.

Parallel bilby

Parallel bilby [172] is a parallel implementation of bilby which uses Message Pass-
ing Interface [MPI; 135] to distribute the dynesty nested sampling package over
a pool of CPUs. Nested sampling requires drawing successive samples satisfying
a likelihood constraint from the prior. Faithfully drawing samples from this con-
strained prior requires many likelihood evaluations. We use a CPU pool to draw
prior samples in parallel at each iteration of the algorithm to reduce the wall-time
needed to complete an analysis.

Qualitatively, pbilby works by using a pool of ncores CPUs to draw ncores − 1

samples from the prior in parallel at each iteration of the sampling algorithm. The
ncores − 1 proposed samples are ranked by likelihood and the lowest-likelihood live
point is replaced. The prior volume is then updated on all ncores processes and
the sampling step is repeated until the algorithm is converged. The speedup S of
the parallel implementation is a function of the number of live points nlive and the
number of parallel processes [172]:

S = nlive ln

(
1 +

ncores
nlive

)
. (2.5)

Currently, pbilby only supports the dynesty and ptemcee sampling packages.
All of the functionality of bilby, is supported by pbilby.

pbilby is highly scalable and is thus well suited to accelerating applications in
which the gravitational-wave signal or noise models are computationally expensive
to evaluate, e.g., time-domain signal models such as spin-precessing EOB models
with higher-order modes [192, 193], numerical-relativity surrogate models [194] and
models including tidal effects [195, 196]. Other well-suited applications include those
where sampling convergence can be slow due to the high dimensionality of the pa-
rameter space, e.g., when calibration [197] or beyond-general-relativity parameters
are used [54, 56], or when a large number of live points is required to effectively
estimate the evidence.

In order to facilitate efficient inter-CPU communication with MPI, pbilby is a
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stand-alone package, though it still uses the underlying bilby modules.
In addition to the hugely parallel pbilby, many of the implemented sampling

packages support parallelization through a user-specified pool of processes. For these
samplers bilby natively supports local parallelization using the Python multipro-
cessing package. When available, the number of parallel computational threads to
use is specified using the nthreads argument.

Online bilby

The gravitational-wave candidate event database GraceDB8 provides a centralized
location for collecting and distributing gravitational-wave triggers uploaded in real-
time from search pipelines. Once uploaded, each trigger is assigned a unique iden-
tifier, and LIGO–Virgo users are notified via an lvalert (LIGO–Virgo Alert Net-
work). GWCelery [198], a Python-based package designed to facilitate interactions
with GraceDB, responds to an alert by first creating a Superevent, which groups
triggers from multiple search pipelines and then chooses a preferred event based
on the SNR ratio of the triggers. If the preferred candidate has a false-alarm-rate
(FAR) below a given threshold, GWCelery automatically launches multiple pa-
rameter estimation jobs. For the case of bilby, this involves making a call to the
bilby_pipe_gracedb executable.

The bilby_pipe_gracedb executable takes the GraceDB event ID as input and
generates a configuration file based on the trigger time of the candidate. A prior file
is selected from the set of default priors using the chirp mass of the gravitational-
wave signal template that triggered the lvalert. Further details about the default
priors can be found in Section 2.4.1. These files are then passed to the bilby_pipe

executable, which runs parameter estimation on the event. PESummary [199],
a Python-based package designed to post-process inference package output in a
number of formats, then generates updated source classification probabilities and
webpages displaying diagnostic plots. Once this step is complete, GWCelery up-
loads the posterior samples, post-processing pages and updated source classification
probabilities to GraceDB. Figure 2.3 illustrates the process of automated parameter
estimation from the trigger of a gravitational-wave event to the upload of bilby
parameter estimation results to GraceDB.

Run times

The overall run time of a bilby parameter estimation job depends on the specific in-
put data and can vary considerably based on the chosen sampler settings and signal-
to-noise ratio. The overall wall time can be reduced by allowing for marginalization
over certain parameters, as described in Section 3.1.8 of the original manuscript, or

8gracedb.ligo.org
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Figure 2.3 Workflow for online bilby parameter estimation.

by using the parallelization methods described in Section 2.3.3. For a GW150914-
like BBH merger, the expected run time for a time, distance and phase marginalized
bilby analysis using the default waveform model IMRPhenomPv2 [200] is O(10)
hours. The waveform models needed to analyse BNS merger events are much longer
than those required for BBHs, and therefore are more computationally expensive.
Hence, for a GW170817-like BNS merger event, we use pbilby to distribute the
analysis over a pool of CPUs, as described in Section 2.3.3; the expected run time,
in this case, is O(10) hours.

2.4 Gravitational-wave Transient catalogue

This Section contains our run settings for performing parameter estimation on
GWTC-1 events using bilby, in addition to the results we obtain from this anal-
ysis. We describe our default priors and sampler settings in Sections 2.4.1–2.4.4.
Further details about these settings are given in Appendix A.2. We provide our re-
sults in Section 2.4.7, where we assess their statistical similarity to those published
in GWTC-1 [35].9 All bilby_pipe configuration files, posterior samples and bilby
results files are made available online [202].

9The LALInference posterior samples that we show in this Section are taken from the Parame-
ter Estimation Sample Release for GWTC-1 [201]. The posterior samples from LALInference are
obtained using a mixture of the nested sampling algorithm of LALInferenceNest and the Markov-
chain Monte Carlo algorithm of LALInferenceMCMC [99].
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2.4.1 Default priors

The default prior distributions contained in bilby_pipe are predominantly tailored
to specific signal durations, with the exception of a high-mass prior tailored to
particularly heavy sources with detector-frame chirp mass M up to 175M�. For
each event in GWTC-1, we choose the default prior that best covers the prior volume
studied using LALInference for the original samples release. This means that two
events (GW150914 and GW151012) are analysed using priors suited to signals of
duration T = 4 s, even though we match the data duration to that used in the
original LALInference analysis (T = 8 s). The prior on M is uniform in the
detector frame, while the prior on dL is uniform in comoving volume and source
frame time, as implemented in the UniformSourceFrame prior class described in
Section 2.3.1. The M, dL and spin magnitude prior limits vary between prior sets,
while the other source parameters are assigned priors that are consistent between
sets. The shapes and limits of all priors are defined in Appendix A.2.2. The prior
files can be found in the bilby_pipe git repository.7

2.4.2 Likelihood

Our likelihood is marginalized over reference phase and source luminosity distance,
as described in Section 3.1.8 of the original manuscript. For BBH merger analyses,
we use the waveform model IMRPhenomPv2 [200, 203–205] as our signal template.
For the BNS GW170817, we use the IMRPhenomPv2_NRTidalv2 waveform model
with tidal effects [206].

2.4.3 Sampling

We use dynesty [171] as our sampler; see Appedix A.2.1 for the detailed sampler
settings. We use the static version of dynesty, as is default for bilby_pipe. For
each event, we run five analyses in parallel, merging the resultant posterior samples
in post-processing. When combining results, care must be taken to weigh each set
of samples appropriately by its relative evidence. The weight applied to the ith
component of N sets of posterior samples is given by

wi =
Zi∑N
j=iZj

, (2.6)

where Zi is the evidence of the ith set of samples.

2.4.4 Data used

We use detector noise PSDs and calibration envelopes data from the data releases
accompanying GWTC-1 [35, 207, 208]. The data for each event are obtained through
bilby_pipe using methods from the GWpy [187] package as outlined in Sec-
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tion 2.3.3. Appendix A.2 contains details of the trigger times and data segment
durations specified for each event, which we choose to match those used in the
original LALInference analysis.

2.4.5 Analysis of binary neutron star merger GW170817

The first observation of a BNS coalescence, GW170817, by LIGO–Virgo [209] pre-
sented a new challenge for gravitational-wave transient inference. The longer signal
durations increase the typical computing requirements, and for systems containing a
neutron star, tidal effects become important in waveform models. The original dis-
covery [209] and subsequent follow-up studies [210] analysed the data with a variety
of waveform models and under differing assumptions.

We employ pbilby for this analysis, with bilby_pipe default sampler settings.
We use priors chosen to match those of the LVC analysis [210], but sample in chirp
mass and mass ratio rather than component masses. Our likelihood is computed
using the tidal waveform model IMRPhenomPv2_NRTidalv2 [206]. This pbilby
analysis took approximately 11 hours on 560 cores.

2.4.6 Similarity measures for posterior distributions

To quantitatively assess the similarity between bilby and LALInference posterior
samples, we measure their Jensen–Shannon [JS; 211] divergence:

JS =
1

2

(
DKL(ã ‖ m) +DKL(b̃ ‖ m)

)
(2.7)

where ã and b̃ are two normalised probability distributions, with mean m = 1
2(ã +

b̃) and DKL(ã ‖ m), DKL(b̃ ‖ m) are the Kullback–Leibler divergence [KL; 212]
measures defined below

DKL(ã ‖ m) =
∑

ã log

(
ã

m

)
(2.8)

DKL(b̃ ‖ m) =
∑

b̃ log

(
b̃

m

)
(2.9)

The JS divergence is a symmetrized extension of the DKL that is used to quantify
the information gain going between two distributions. This measure is defined to be
between 0 bit and 1 bit, where 0 bit represents no additional information going from
one distribution to the other (the two distributions are identical) and 1 bit represents
maximal divergence. Our goal is to use the JS divergence as a quantitative indicator
that the bilby GWTC-1 samples are in agreement with those produced by LALIn-
ference. As we are comparing sample sets with different numbers of samples, we
randomly choose a fixed number of points from each distribution and compute the
JS divergence over that subset. Due to the random selection of samples, the JS value
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Figure 2.4 Spread of JS divergence between bilby and LALInference results,
obtained by randomly drawing 10,000 samples over 100 iterations. Posterior samples
are obtained from the analysis of GW150914.

fluctuates, as shown in Figure 2.4 for the right ascension of GW150914. Bootstrap-
ping10 was used to generate 100 posterior realizations from each run, which were
used to obtain a distribution of JS divergences for each of the binary parameters
included in the public LALInference GWTC-1 posterior sample release. Due to
the subtle differences in the PDFs caused by the random nature of the stochastic
samplers, it was necessary to determine the ad-hoc measure of whether two sets
of parameter estimation samples could be considered drawn from the same under-
lying distribution. To investigate the typical distributions of JS divergence values
due to sampling error, we calculated JS values for posteriors from a distinct LAL-
Inference run on GW150914 with identical configurations. Figure 2.5 shows the
JS divergence of LALInference and bilby right ascension samples against them-
selves. As an additional check, we also compute the JS divergence between two
additional LALInference runs for the same event, using the same waveform ap-
proximant and identical settings. The results are shown in Figure 2.6. The low
JS divergence between samples from the same sampler suggests that these samples
are somewhat correlated, i.e. the autocorrelation length is not sufficient. The need
for a thorough investigation of sampler comparisons seems to be warranted by such
findings. For different sets of samples drawn from the same Gaussian distribution,
we find JS divergence values of . 0.0010 bit while the number of samples N & 2000,
and JS divergence values of . 0.0004 bit when N & 5000. To compare bilby and

10Without replacement, such that the statistical error is not underestimated (i.e. independent
samples).

– 30 –



Chapter 2. Bayesian inference for compact binary coalescences with bilby:

reproducing the first gravitational-wave catalogue

Figure 2.5 JS divergence between bilby and LALInference results, as a function
of the number of samples. Median values and errors are obtained over 100 iterations.
Posterior samples are obtained from the analysis of GW150914.

Figure 2.6 JS divergence between bilby and LALInference results, as a function
of the number of samples. Median values and errors are obtained over 100 iterations.
Additional LALInference runs are included for baseline comparisons. Posterior
samples are obtained from the analysis of GW150914.
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LALInference results, we use N = min(NLI, 10000), where NLI is the number
of samples left in the LALInference posterior after the reweighting procedure.
Across different parameters, we typically found mean values of 0.0007 bit, with a
maximum of 0.0015 bit. As such, we determined the following naive criteria for eval-
uating the JS divergence values when comparing the bilby and LALInference
GWTC-1 posteriors. For a JS divergence value less than 0.0015 bit, we conclude the
samples are, within statistical uncertainties, drawn from the same distribution, and
values larger than 0.0015 bit require manual inspection.

Finally, the author notes that the Kolmogorov-Smirnov (K-S) test was initially
investigated for comparing different sets of parameter estimation samples. This
is a well-known non-parametric test of the equality of continuous one-dimensional
probability distributions. However, K-S values were found to be highly dependent
on the random realisation of the samples and their number, more so than the JS
divergence, making this measure too unstable for our use case.

2.4.7 Results

We make posterior samples and bilby_pipe configuration settings files available
online [202, 213]. To directly compare bilby posterior samples to those obtained
using LALInference, we reweight the LALInference posterior distributions by
bilby_pipe default priors. Appendix A.3 contains the details of this reweighting
procedure.

In Table 2.1, we list the maximum JS divergence for the model parameters for
each event. Of these, six pass our naive criterion described above. For the remaining
events, we manually inspect the posterior distributions to look for discrepancies. The
parameter with the largest JS divergence value across all BBH events is the right
ascension, α. Events with large sky areas, such as GW170729, suffer from large
deviations between the bilby and LALInference posteriors in the sky position
parameters. The sky position was fixed on the location of the EM counterpart for
GW170817. We show the difference between the bilby and LALInference poste-
rior cumulative density functions (CDFs) for α in Figure 2.7 and for the luminosity
distance dL, which passes the naive criterion on the JS divergence for all events, in
Figure 2.8. For GW170818, α has the largest JS divergence value (0.006 bit) despite
the fact that the bilby and LALInference CDFs match at the 2σ level. This is
because the distribution is approximated using a KDE in order to compute the JS
divergence, and the posterior for this particular event has a sharp drop-off, which is
difficult to model faithfully using the KDE.

Upon manual inspection, we find that the posteriors with JS divergence values
up to ∼ 0.002 bit are consistent between the LALInference and bilby samples.
The remaining parameters with significant deviations between the two samplers are
the sky position parameters for GW170729. The differences between the bilby and
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Figure 2.7 Difference between the right-ascension (α) samples recovered by bilby
and LALInference for all BBH events. This is the worst recovered parameter
according to the JS-divergence. Labels show the mean JS-divergence between α
samples, evaluated by random re-sampling over 100 iterations.

LALInference CDFs for all events and all parameters are shown in Appendix A.4.
A similar comparison was made in [35] analyzing the posterior distributions obtained
using two different waveform approximants for each event. The maximum difference
between the posteriors assuming the two different waveform models in that work is
typically ∼ 0.02 bit, an order of magnitude larger than the differences here.

As another way to visualize the differences between the bilby and LALInfer-
ence samples, in Figure 2.9, we compare the 90% credible areas of the two posteriors
on the source-frame primary mass msource

1 and secondary mass msource
2 for all GWTC-

1 events. As indicated by the low JS divergence values for the mass parameters, the
two samplers produce posteriors on these parameters that agree within expected
statistical fluctuations.

We compare bilby posteriors on source-frame chirp mass Msource and luminos-
ity distance dL for the first observed gravitational-wave event, GW150914 [214], in
Figure 2.10. The LALInference distance posterior here matches the bilby pos-
terior more closely than was demonstrated in Figure 2 of [133]. This is due to an
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Figure 2.8 Difference between the luminosity distance (dL) samples recovered by
bilby and LALInference for all events. Labels show the mean JS-divergence
between dL samples, evaluated by random re-sampling over 100 iterations.
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Figure 2.9 Comparison of the posterior distributions between the LALInference
(grey) and bilby (colored) packages over the source primary mass msource

1 and source
secondary mass msource

2 parameter space. Each contour shows the 90% credible area,
with the LALInference posterior samples reweighted to the bilby priors.

issue in the application of the time-domain window being fixed in LALInference,
which had affected the distance posterior [215].

For the first observed binary neutron-star merger event, GW170817, we compare
the bilby posterior distributions on tidal parameters Λ̃ and δΛ̃, as well as θJN and
dL, to those obtained using LALInference in Figure 2.11. The maximum JS
divergence for this event is JSq = 0.0017 bit. Additional posterior probability plots
for all parameters of all eleven CBC events can be found within the online resources
that accompany the original manuscript [202].

Based on these results, we conclude that bilby and LALInference produce
statistically indistinguishable results for all parameters and all events reported in
GWTC-1 with the exception of the sky area for GW170729 and GW151226. We
emphasize that the differences in the CDFs for these parameters are still small
compared to other sources of error such as waveform systematics [35] and uncertainty
in the power spectral density [216]. We provide PESummary comparison pages
between bilby and reweighted LALInference posteriors for all GWTC-1 events
online.11

11bilby-gwtc1.github.io
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Figure 2.10 Posterior probability distributions for source-frame chirp massMsource

and luminosity distance dL for GW150914. We display posteriors obtained using
bilby in orange, and LALInference posteriors in blue. We reweight the LAL-
Inference posteriors to the bilby default priors using the procedure outlined in
Appendix A.3. The one-dimensional JS divergence on chirp massM and luminosity
distance dL for this event are JSM = 0.0017 bit and JSdL = 0.0015 bit.
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Figure 2.11 Joint posterior distributions for parameters of GW170817, comparing
pbilby posteriors in orange and LALInference posteriors in blue. Left: Pos-
terior probability distributions for tidal parameters Λ̃ (JSΛ̃ = 0.0019 bit) and δΛ̃
(JSδΛ̃ = 0.0008 bit). Right: Posterior probability distributions for inclination angle
θJN (JSθJN = 0.0009 bit) and luminosity distance dL (JSdL = 0.0008 bit).
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2.5 Summary

bilby is a modern and versatile Bayesian inference library and has been primed
for analysis of gravitational-wave observations. We have outlined the new set of
methods to encode the Bayesian priors, which are a fundamental component of the
astrophysical analysis, as will be best evident in Chapters 3 and 6. Using individual
and combined p-values testing, we showed that bilby performs reliably, produc-
ing accurate and unbiased parameter estimation results when analysing simulated
signals. The re-analysis of real GWTC-1 events required the authors to modify
the sampler’s default settings to be more “aggressive” (see Appendix A.2), such
as increasing the number of steps taken in each chain (i.e. chain thinning via the
number of autocorrelation times nact). As an example, we found this necessary for
events with a large sky localisation region, where we observed issues with chains
convergence in the right ascension and declination parameters.

We validated bilby results for GWTC-1 using the JS divergence statistic between
posterior distributions obtained using bilby and the previously published LALIn-
ference results, finding a maximum JS value of JSα = 0.0026 bit for GW170729.
The JS divergence is commonly used in probability theory to measure the similarity
between two probability distributions. Its non-symmetric version (the K-S diver-
gence test) was also investigated for comparison, but the results were found to be
more unstable than its symmetrised equivalent. The 90% credible intervals were
compared up to two significant figures, however, this measure does not account for
the specific features of the individual posterior distributions. Alternatively, plotting
the residuals difference between sample sets to check for consistency with Gaussian
noise (by performing an Anderson-Darling test [217]) could have also provided a
useful quantitive measure of similarity. We found the J-S divergence to be more
easily interpretable and this was the first time such validation was performed for
gravitational-wave parameter estimation results. The similarity between the two re-
sults indicates that both the bilby samples obtained with dynesty and the LALIn-
ference samples are well-converged, and we have laid the path to further validate
these results using alternative samplers within bilby. Posterior probability distri-
butions generated by bilby and LALInference, when run on the same GWTC-1
data and using identical analysis settings, are consistent with the level of sampling
noise.

The bilby posterior samples for events in GWTC-1 are available online [213]. We
concluded that bilby was made well-suited to meet the challenges of gravitational-
wave parameter estimation thanks to this analysis, which set the standard for future
Bayesian inference methods in the field.
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First gravitational-wave
observations of neutron-star
black-hole mergers

The following Chapter is based on [76] and presents the analysis of the first two
NSBH gravitational-wave signals confidently detected. This work was conducted
cooperatively by a team of nine experts and the author was one of the three leading
contributors to the source properties study. Due to the wide range of expertise
required for this work, Section 2 in the original manuscript was excluded from this
thesis, as it covers in detail the status of the detectors at the time of these events.
Section 3.4.1 was shortened from the original manuscript.

As the principal analyst of GW200115 for both the Science Case Team and the
Paper Writing Team, the author produced and documented the scripts employed to
run parameter estimation with bilby and pbilby. Finally, the author’s contribu-
tions to the paper included joint writing of Section 3.2 and production of Figures 3.2
and 3.5. The author also supported making the other source properties figures, as
well as providing suggestions and modifications to the introduction and conclusion
Sections. Note that Section 3.2.1 has been added and was not present in the pub-
lished work.

DISCLAIMER: This Chapter presents results and text that was previously pub-
lished as R. Abbott et al 2021 ApJL 915 L5. Some of the plots in this Chapter have
not previously been published and therefore have not been through a rigorous review
process. Consequently, these plots and associated text do not reflect the scientific
opinion of the LIGO-Virgo-KAGRA collaborations.
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3.1 Introduction

Detections of NSBHs have so far remained elusive in both EM and GW surveys.
In the past four decades, surveys have identified 19 BNS systems in the Galaxy
[218, 219]; however, the discovery of a pulsar in an NSBH binary remains a key
objective for current and future radio observations [220, 221].

Similarly, GW observations of LIGO and Virgo through the first part of the O3
run (O3a) have led to the identification of 48 BBH [36, 222] and two BNS candidates
[116, 223]. Independent analyses of the public detector data identified additional GW
candidates [224–231]. The absence of NSBH candidates in LIGO and Virgo’s first
and second observing runs (O1 and O2, respectively) led to the upper limit on the
local merger rate density of NSBH systems of RNSBH ≤ 610 Gpc−3 yr−1 at the 90%
credible level [222].

During O3a, two events were notable as possible NSBH candidates. First,
GW190426_152155 was identified as a marginal NSBH candidate with a false alarm
rate (1.4/yr) so high that it could also plausibly be a detector noise artefact. Second,
GW190814 [232] may have been an NSBH merger. Although GW190814’s secondary
mass of m2 = 2.59+0.08

−0.09M� likely exceeds the maximum mass supported by slowly
spinning NSs [233–236], such as those found in known binaries that will coalesce
within a Hubble time, the secondary could conceivably be an NS spinning near its
breakup frequency [233, 235, 237, 238].

The existence of NSBH systems has long been conjectured. Observations in
the Milky Way reveal high-mass X-ray binaries composed of a massive star and a
compact object [239–243]. Binary evolution models show that X-ray binaries with
a black hole component are possible progenitors of NSBH systems [244, 245].

Major uncertainties regarding massive binary evolution, such as mass loss, mass
transfer and the impact of supernova explosions result in a wide range of merger
rate predictions: 0.1–800 Gpc−3 yr−1 [246–257]. Comparable NSBH merger rates
are predicted from young star clusters [258, 259] while NSBH merger rates in glob-
ular and nuclear clusters are predicted to be orders of magnitude lower [260–264].
Measuring the NSBH merger rate and properties such as masses and spins is crucial
in determining formation channels.

The detection of GW200105 and GW200115 was presented for the first time in
[76]. GW200105 is effectively a single-detector event observed in LIGO Livingston
with an SNR of 13.9. It clearly stands apart from all recorded noise transients,
but its statistical confidence is difficult to establish. GW200115 was observed in
coincidence by the network with an SNR of 11.6 and FAR of <1/(1× 105 yr).

In Section 3.2 the analysis performed to infer the main properties of the two
events is presented and in Section 3.3 the nature of the secondary components is
discussed. Finally, the astrophysical implications, including merger rates of this new
class of GW source, are outlined in Section 3.4. Final remarks and conclusions are
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drawn in Section 3.5.

3.2 Source properties

We infer the physical properties of the two GW events using a coherent Bayesian
analysis following the methodology described in Appendix B of [222]. For GW200105,
data from LIGO Livingston and Virgo are analyzed, whereas for GW200115, data
from both LIGO detectors and Virgo are used.

We inspected the appropriate maximum frequency to use such that the segment
of data analysed included the signal entirely. Due to power spectral density roll-
off, it is standard practice to include ∼ 2 seconds on either side of the signal to
avoid data corruption. For instance, for GW200115, the event was dominated by
the (l = 3,m = 3) mode, so the maximum frequency was set to 4096 Hz. The time
it takes for the system to evolve from its low frequency to the merger frequency
is the true segment length of the signal, called chirp time. Owing to the different
signal durations, we analyze 32 s of data for the higher-mass event GW200105 and
64 s of data for GW200115. All likelihood evaluations use a low-frequency cutoff of
flow = 20Hz, except for LIGO Livingston for GW200115, where flow = 25Hz avoids
excess noise localized at low frequencies. The power spectral density used in the
likelihood calculations is the median estimate calculated with BayesLine [265].

The parallel Bilby (pbilby) inference library, together with the dynesty nested
sampling software [266–269] is the primary tool used to sample the posterior distri-
bution of the sources’ parameters and perform hypothesis testing. In addition, we
use RIFT [270] for the most computationally expensive analyses and LALInfer-
ence [271] for verification. Note, the length of the signals made the computational
costs unfeasible for samplers without high parallelisation available. For instance,
using waveforms with precession and higher modes, the runtime for the longer event
GW200115 was ∼ 6 days on 800 CPU with pbilby on the Hawk Computing cluster
(Cardiff)1.

We base our main analyses of GW200105 and GW200115 on BBH waveform
models that include the effects of spin-induced orbital precession and higher-order
multipole GW moments, but do not include tidal effects on the secondary. Specifi-
cally, we use two signal models: IMRPhenomXPHM [Phenom PHM; 272] from the
phenomenological family and SEOBNRv4PHM [EOBNR PHM; 273] from the effec-
tive one-body numerical relativity family. The acronym PHM stands for Precessing
Higher-order multipole Moments. Henceforth, we will use the shortened names for
the waveform models.

In order to quantify the impact of neglecting tidal effects, we also analyze
GW200105 and GW200115 using two NSBH waveform models that include tidal

1The author compelled the use of this cluster and was responsible for all of the production runs
performed with it.
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Table 3.1 Source properties of GW200105 and GW200115. We report the median
values with 90% credible intervals. Parameter estimates are obtained using the
Combined PHM samples.

GW200105 GW200115
Low Spin High Spin Low Spin High Spin

(χ2 < 0.05) (χ2 < 0.99) (χ2 < 0.05) (χ2 < 0.99)
m1/M� 8.9+1.1

−1.3 8.9+1.2
−1.5 5.9+1.4

−2.1 5.7+1.8
−2.1

m2/M� 1.9+0.2
−0.2 1.9+0.3

−0.2 1.4+0.6
−0.2 1.5+0.7

−0.3

q 0.21+0.06
−0.04 0.22+0.08

−0.04 0.24+0.31
−0.08 0.26+0.35

−0.10

M/M� 10.8+0.9
−1.0 10.9+1.1

−1.2 7.3+1.2
−1.5 7.1+1.5

−1.4

M/M� 3.41+0.08
−0.07 3.41+0.08

−0.07 2.42+0.05
−0.07 2.42+0.05

−0.07

M(1 + z)/M� 3.619+0.006
−0.006 3.619+0.007

−0.008 2.580+0.006
−0.007 2.579+0.007

−0.007

χ1 0.09+0.18
−0.08 0.08+0.22

−0.08 0.31+0.52
−0.29 0.33+0.48

−0.29

χeff −0.01+0.08
−0.12 −0.01+0.11

−0.15 −0.14+0.17
−0.34 −0.19+0.23

−0.35

χp 0.07+0.15
−0.06 0.09+0.14

−0.07 0.19+0.28
−0.17 0.21+0.30

−0.17

dL/Mpc 280+110
−110 280+110

−110 310+150
−110 300+150

−100

Source redshift z 0.06+0.02
−0.02 0.06+0.02

−0.02 0.07+0.03
−0.02 0.07+0.03

−0.02

effects and assume that spins are aligned with the orbital angular momentum: IM-
RPhenomNSBH [Phenom NSBH; 274] and SEOBNRv4_ROM_NRTidalv2_NSBH
[EOBNR NSBH; 275]. We restrict the NSBH analyses to the region of applica-
bility of the NSBH models, i.e. χ1 < 0.5, χ2 < 0.05 for Phenom NSBH and
χ1 < 0.9, χ2 < 0.05 for EOBNR NSBH. We also perform aligned-spin BBH waveform
analyses and find good agreement with the analyses using NSBH waveform models
(see Section 3.2.6 below), validating the use of BBH waveform models. Specifically,
we use the aligned-spin BBH models IMRPhenomXAS [Phenom; 276] and SEOB-
NRv4 [EOBNR; 277], which only contain dominant quadrupole moments, and IM-
RPhenomXHM [Phenom HM; 278] and SEOBNRv4HM [EOBNR HM; 279, 280],
which contain higher-order moments.

The secondary objects are probably NSs based on mass estimates, as discussed
in detail in Section 3.3. As in earlier GW analyses [116, 281], we proceed with
two different priors on the secondary’s spin magnitude: a low-spin prior, χ2 ≤ 0.05,
which captures the maximum spin observed in Galactic BNSs that will merge within
a Hubble time [282], and a high-spin prior, χ2 ≤ 0.99, which is agnostic about the
nature of the compact object. The two priors allow us to investigate whether the
astrophysically relevant subcase of low neutron star spin leads to differences in the
parameter estimation for the binaries. All other priors are set as in previous analyses
[e.g., 36]. Throughout, we assume a standard flat ΛCDM cosmology with Hubble
constant H0 = 67.9 km s−1 Mpc−1 and matter density parameter Ωm = 0.3065 [283].

For each spin prior, we run our main analyses with higher-order multipole mo-
ments and precession for both waveform families, EOBNR PHM and Phenom PHM.
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Figure 3.1 Effective inspiral spin component χeff obtained with two distinct sampling
parameterizations for the component masses. Results from SEOBNRv4 waveforms
are obtained with RIFT, while Phenom waveforms are employed in pbilby.

The EOBNR PHM model is used in combination with RIFT and the Phenom PHM
model with pbilby.

3.2.1 Choice of parametrisation for the component masses

In theory, the parametrisation of the posterior surface should not affect the correct
recovery of the posterior parameters, but only the sampling efficiency. In the case
of a low SNR event such as GW200115, however, sampling in component masses
rather than in chirp mass and mass ratio led to non-negligible differences in the
posterior distributions. In particular, it affected the recovery of the effective spin
parameter χeff, as shown in Figure 3.1. The differences are more pronounced when
using waveform models containing higher modes, likely an effect of the model being
more “complex”. The difference between EOBNRHM (m1,m2) and PhenomXHM
(M, q) are smaller than the difference between PhenomXHM (M, q) and (m1,m2).
We note that all EOBNR results are obtained with RIFT, while all Phenom results
are obtained with the dynesty sampler bilby. This might suggest that a nested
sampler is more affected by the parametrisation than RIFT, but a careful study is
warranted to quantify the impact on both. Having had only bilby results available,
a possible strategy to investigate whether (M, q) or (m1,m2) were the “correct
results” would have been to perform an injection study in this particular part of the
parameter space. The ideal strategy, however, is to implement more robust sampling
statistics in the sampler itself. Since the waveform strain is directly proportional to
the chirp mass, as seen in Eq. 1.8, it is advisable to use a parametrisation in M, q

when performing parameter estimation of CBCs. All results presented within the
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rest of this chapter (and thesis) use this parameterization of the component masses.
The parameter estimation results for the individual precessing waveform models

yield results in very good agreement; the median values typically differ by 1/10 of
the width of the 90% credible interval. Nevertheless, in order to alleviate potential
biases due to different samplers or waveform models, we combine an equal number
of samples of each into one data set for each spin prior [232, 284, 285] and denote
these as Combined PHM. The quoted parameter estimates in the following Sections
are the Combined PHM high-spin prior analyses. In the figures, we emphasize the
high-spin prior results. The values of the most important parameters of the binaries
are summarized in Table 3.1, and we will present details in the following Sections.

3.2.2 Masses

Figure 3.2 shows the posterior distribution for the component masses of the two
binaries. Defining the mass parameters such that the heavier mass is the primary
object, i.e. m1 > m2, our analysis shows that GW200105 is a binary with a mass
ratio of q = m2/m1 = 0.22+0.08

−0.04, with source component masses m1 = 8.9+1.2
−1.5M�

and m2 = 1.9+0.3
−0.2M�. Similarly, GW200115 is a binary with a mass ratio of q =

0.26+0.35
−0.10, with source component masses m1 = 5.7+1.8

−2.1M� and m2 = 1.5+0.7
−0.3M�.

The primary components of GW200105 and GW200115 are identified as black
holes from their mass measurements. For GW200115, we find that the probability of
the primary falling in the lower mass gap [3M�.m1.5M�; 286, 287] is 30% (27%)

for high-spin (low-spin) prior. For context, Fig. 3.2 also includes two potential NSBH
candidates discovered previously; GW190814 [232] is a high-SNR event with well-
measured masses that has a significantly more massive primary and a distinctly more
massive secondary than either GW200105 or GW200115, and the marginal candidate
GW190426_152155 [36], has (if of astrophysical origin) m1–m2 contours that overlap
those of GW200115. The masses of GW190426_152155 are less constrained than
those of GW200115 due to its smaller SNR. To highlight how the secondary masses
of GW200105 and GW200115 compare to the maximum neutron star mass, we also
show two estimates of the maximum neutron star mass based on an analyses of
non-rotating [2] and Galactic [3] NSs.

The secondary masses are consistent with the maximum neutron star mass, which
we quantify in Section 3.3.2.

3.2.3 Sky location, distance, and inclination

We localize GW200105’s source to a sky area of 7200 deg2 (90% credible region).
The large sky area arises due to the absence of data from LIGO Hanford. The
luminosity distance of the source is found to be dL = 280+110

−110 Mpc. For the second
event, GW200115, we localize its source to be within 600 deg2. It is better localized
than GW200105 by an order of magnitude, since GW200115 was observed with three
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Figure 3.2 Component masses of GW200105 (red) and GW200115 (blue), repre-
sented by their two- and one-dimensional posterior distributions. Coloured shading
and solid curves indicate the high-spin prior, whereas dashed curves represent the
low-spin prior. The contours in the main panel, as well as the vertical and horizontal
lines in the top and right panels, respectively, indicate the 90% credible intervals.
Also shown in grey are two possible NSBH events, GW190814 and the marginal
candidate GW190426_152155, the latter overlapping GW200115. Lines of constant
mass ratio are indicated in dashed grey. The green shaded curves in the right panel
represent the one-dimensional probability densities for two estimates of the maxi-
mum neutron star mass, based on analyses of nonrotating NSs [Mmax,TOV; 2] and
Galactic NSs [Mmax,GNS; 3].
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Figure 3.3 Two- and one-dimensional posterior distributions for distance dL and
inclinaton θJN . The solid (dashed) lines indicate the high-spin (low-spin) prior
analysis, and the shading indicates the posterior probability of the high-spin prior
analysis. The contours in the main panel and the horizontal lines in the right panel
indicate 90% credible intervals.

detectors. We find the luminosity distance of the source to be dL = 300+150
−100 Mpc.

The luminosity distance is degenerate with the inclination angle θJN between the
line of sight and the binaries’ total angular momentum vector [288, 289]. Inclination
θJN = 0 indicates that the angular momentum vector points toward Earth. The
posterior distribution of the inclination angle is bimodal and strongly correlated
with luminosity distance, as shown in Figure 3.3. The inclination measurement for
GW200105 equally favours orbits that are either oriented toward or away from the
line of sight. In contrast, GW200115 shows a modest preference for an orientation
θJN ≤ π/2.

3.2.4 Spins

The angular momentum vector ~Si of each compact object is related to its dimen-
sionless spin vector ~χi ≡ c~Si/(Gm

2
i ). Its magnitude χi ≡ |~χi| is bounded by 1. For

GW200105, we infer χ1 = 0.08+0.22
−0.08, which is consistent with zero. For GW200115,

the spin magnitude is not as tightly constrained, χ1 = 0.33+0.48
−0.29, but is also consis-

tent with zero. The spin of the secondary for both events is unconstrained.
One of the best-constrained spin parameters is the effective inspiral spin pa-
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Figure 3.4 Two-dimensional posterior probability for the spin-tilt angle and spin
magnitude for the primary objects (left hemispheres) and secondary objects (right
hemispheres) for both events. Spin-tilt angles of 0◦ (180◦) correspond to spins
aligned (antialigned) with the orbital angular momentum. The colour indicates the
posterior probability per pixel of the high-spin prior analysis. For comparison with
the low-spin analysis, the solid (dashed) lines indicate the 90% credible regions of
the high-spin (low-spin) prior analyses. The tiles are constructed linearly in spin
magnitude and the cosine of the tilt angles such that each tile contains an identical
prior probability. The probabilities are marginalized over the azimuthal angles.

rameter χeff [290–294]. It encodes information about the binaries’ spin components
parallel to the orbital angular momentum, χeff =

(
m1
M ~χ1 +

m2
M ~χ2

)
· L̂, where L̂ is the

unit vector along the orbital angular momentum.

For GW200105, χeff = −0.01+0.11
−0.15 and we find the effective inspiral spin param-

eter to be strongly peaked about zero, with roughly equal support for being either
positive or negative. For GW200115, we find modest support for negative effective
inspiral spin: χeff = −0.19+0.23

−0.35. Negative values of χeff indicate binaries with at
least one spin component negatively aligned with respect to the orbital angular mo-
mentum, i.e. χi,z ≡ ~χi · L̂ < 0. We find χ1,z = −0.19+0.24

−0.50, and a probability of 88%
that χ1,z < 0.

The joint posterior probability of the dimensionless spin angular momentum
magnitude and tilt angle for both components of both events is shown in Fig. 3.4.
The tilt angle with respect to the orbital angular momentum is defined as arccos

(
L̂.χ̂i

)
.

Deviations from uniform shading indicate a spin orientation measurement. The spin
orientation of the primary of GW200105 is unconstrained, whereas the orientation
of GW200115 shows support for negatively aligned primary spin.

Orbital precession is caused by a spin component in the orbital plane of a binary
[295], which we parameterize using the effective precession spin parameter 0 ≤ χp ≤
1 [296]. We infer χp = 0.09+0.14

−0.07 for GW200105 and χp = 0.21+0.30
−0.17 for GW200115.

To assess the significance of measurement of precession, we compute a Bayes factor
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between a precessing and nonprecessing signal model and the precession SNR ρp [297,
298]. For GW200105, we find a log Bayes factor in favour of spin precession of
log10 B = −0.24 and precession SNR ρp = 0.74+1.35

−0.61. For GW200115, log10 B =

−0.12 and ρp = 0.97+1.57
−0.79. For both events and both diagnostics, this indicates

inconclusive evidence of precession. This result is expected given the SNRs and
inferred inclination angles of the binaries [299–301].

Low values of the primary mass of GW200115 (m1 . 5M�) are strongly cor-
related with negative values of the primary parallel spin component χ1,z, as shown
in Fig. 3.5. The astrophysical implications of the mass and spin correlation are
discussed in Section 3.4. Figure 3.5 also shows the in-plane spin component χ⊥,
which is peaked about zero. The lack of conclusive evidence for spin precession in
GW200115 is consistent with the measurement of χ⊥. Apparent differences between
the probability density of the primary spin in Fig. 3.4 and the posteriors of χ1⊥–χ1,z

in Fig. 3.5 arise from different choices in visualizing the spin orientation posteriors.

3.2.5 Remnant properties

Under the hypothesis of NSBH coalescence for the two events, estimates for the final
mass and final spin of the remnant black hole can be made using the models of Zappa
et al. [302]. We use samples obtained by combining those from Phenom NSBH and
EOB NSBH. For GW200105, the remnant mass and spin are Mf = 10.4+2.7

−2.0 and
χf = 0.43+0.04

−0.03, while for GW200115, Mf = 7.8+1.4
−1.6 and χf = 0.38+0.04

−0.02. We do not
investigate any post-merger GW signals. The SNRs of GW200105 and GW200115
are around a factor of 3 less than that of GW170817, for which there was no evidence
of GWs after the merger [303]. In the absence of tidal disruption, the postmerger
signals of GW200105 and GW200115 would likely resemble a black hole ringdown
[304]. The numerical ringdown frequencies2 would be ∼ 1400Hz and ∼ 1900Hz for
GW200105 and GW200115 respectively [76]. Hence, the GW signal associated with
such ringdowns would appear outside of LIGO’s and Virgos sensitive bandwidth
given the remnant masses and spins of the systems [305].

3.2.6 Waveform systematics

Our primary results are obtained using precessing BBH models with higher-order
multipole moments, Phenom PHM and EOBNR PHM. We now justify this choice
by investigating potential systematic uncertainties due to our waveform choice.

First, we investigate the agreement between independent waveform models that
incorporate identical physics. Figure 3.6 shows the two-dimensional m2–χeff posteri-
ors for both events obtained using a variety of NSBH and aligned-spin BBH models.
Because some NSBH models only cover χ1 < 0.5, we restrict the prior range of all
models to χ1 < 0.5 for consistency.

2For the lowest quasi-normal mode ringdown, as calculated with Eq.1 from [305].
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Figure 3.5 Properties of the primary component of GW200115. The corner plot
shows the one-dimensional (diagonal) and two-dimensional (off-diagonal) marginal
posterior distributions for the primary’s mass and perpendicular and parallel spin
components. The shading indicates the posterior probability of the high-spin prior
analysis. The solid (dashed) lines indicate the 50% and 90% credible regions of
the high-spin (low-spin) prior analyses. The vertical lines indicate the 90% credible
intervals for the analyses with high-spin (solid lines) and low-spin (dashed lines)
prior.
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Figure 3.6 Comparison of two-dimensional m2–χeff posteriors for the two events
reported here, using various NSBH and BBH signal models. The vertical dashed
lines indicate several mass-ratio references mapped to m2 for the median estimate
of the chirp masses of GW200105 and GW200115.

The main panels of Fig. 3.6 are dominated by a correlation of the effective inspi-
ral spin parameter χeff with the secondary mass m2 [288, 306]. Both NSBH models
(Phenom NSBH and EOBNR NSBH) give consistent results with each other, as
do both BBH models (Phenom and EOBNR), both with and without higher-order
multipole moments, with the most notable difference being that EOBNR HM yields
tighter posteriors than Phenom HM. This demonstrates that waveform models in-
cluding the same physics give comparable results, but more studies are warranted
to improve the understanding of the BBH waveform models in the NSBH region of
parameter space. While not shown in Fig. 3.6, we also find good agreement between
the primary precessing BBH waveform models; see Section 3.2.

Second, comparing the NSBH models with the BBH models without higher-
order multipole moments (Phenom and EOBNR), the NSBH models recover similar
posterior contours in the m2–χeff plane. This is expected given the asymmetric mass
ratio and low SNR of these NSBH observations; see, e.g. [307] for a demonstration
that higher SNRs would be needed to see notable systematic effects. We observe
differences at the extreme ends of the m2–χeff contours (i.e. at the smallest and
largest values of m2). The construction of the NSBH waveform models used here
did not rely on numerical relativity results at mass ratios q . 1/8, nor did they
include simulations with χ1z < 0 or neutron star masses m2 > 1.4M� [274, 275].
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Therefore, some differences should be expected, especially for largem2 in GW200105.
Furthermore, for GW200105, the tails of the m2–χeff distribution for Phenom NSBH
and EOB NSBH at highm2 are also impacted by the inability of the data to constrain
the tidal deformability. Hence, the posterior samples include combinations of high
m2 with large Λ2, despite such combinations being unphysical. This effect is not
apparent for GW200115 because of its smaller secondary mass. The isolated islands
of probability in the extreme tails of the distributions are due to sampling noise.

Last, when adding the extra physical content of higher-order multipole moments
in BBH models (through Phenom HM and EOBNR HM), the extreme ends of the
m2–χeff contours are excluded, while the bulk of the distributions are consistent with
the posteriors obtained with the NSBH models. Including higher-order modes helps
break degeneracies between parameters, resulting in tighter posterior distributions.
In summary, these comparisons indicate that (i) waveform models including the
same physics give comparable results; (ii) going from NSBH models to comparable
BBH models changes the results only marginally, i.e. any effects of tides are small;
and (iii) inclusion of higher-order multipole moments changes the posterior contours
more substantially than the inclusion of tides. We conclude that the inclusion of
higher-order multipole moments afforded by the BBH waveform models is more
important than the impact of tides in the NSBH models3.

3.3 Nature of the secondary components

In this Section, we describe the investigations to establish the nature of the sec-
ondary objects. In Section 3.3.1, we look for imprints of tidal deformations of the
secondaries and conclude that the masses, spins, distances and SNRs of the detec-
tions make definitive identifications of neutron stars unlikely, both in GW and EM
measurements. However, in Section 3.3.2, we show that the posterior distributions
of the secondary masses agree with those of known neutron stars.

3.3.1 Tidal deformability and tidal disruption

The tidal deformability of neutron stars is imprinted in the GW signal, and is in-
vestigated using the parameter estimation techniques of Section 3.2. In contrast,
black holes have zero tidal deformability [308–312]. We infer the tidal deformability
Λ2 of the neutron stars in GW200105 and GW200115 using the NSBH waveform
models that include tides. We find that the tidal deformabilities are uninformative
relative to a uniform prior in Λ2 ∈ [0, 5000]. This measurement cannot establish the
presence of neutron stars, which is expected given the mass ratios and the SNR of
the detections [304, 313–315].

3Note, the inclusion of precession does not make any substantial difference at this SNR.
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Toward the end of the inspiral, the black hole may tidally disrupt the NS and
form an accretion disk [316, 317]. This is hypothesized to drive a relativistic jet
[318, 319]. Given the mass ratios for both events and the aligned spins χ1,z of their
primaries (near zero for GW200105, probably negative for GW200115), we do not
expect tidal disruption to occur, which would require more equal masses or more
positive χ1,z [316, 317, 320–324].

To quantitatively confirm this expectation, we use the spectral representation of
equations of state from [325], which uses an SLY low-density crust model [326] and
parameterizes the adiabatic index into a polynomial in the logarithm of the pressure
[327–329]. Following [330], we marginalize the parameter estimation samples from
the NSBH analyses over these equations of state. For a fixed equation of state, we
compute the maximum Tolman–Oppenheimer–Volkov (TOV) mass, allowing us to
infer the nature (NS or black hole) of the lighter binary compact object, as well as
its radius R2, compactness C2 = Gm2/(R2c

2) and baryon mass. Based on these, we
define a total ejecta mass mej [331] as the sum of dynamical ejecta [332] and 15% of
the mass of disk winds [317]. For both events, we find that mej < 10−6M� for 99%
of the samples.

The absence of ejecta is compatible with the lack of observed EM counterparts.
However, given the large distances of the mergers (' 300 Mpc) and the large un-
certainties of their sky localization, EM emission would have been difficult to detect
and associate with these GW events.

Estimating the impact of nonlinear p–g tidal coupling [333], we find that it would
produce a relative frequency-domain phase shift for GW200105 (GW200115) of ap-
proximately 134 (38) times smaller than the equivalent phase shift for GW170817.
This strongly reduced effect is caused by the larger chirp masses, more asymmetric
mass ratios, and the presence of only a single NS. Since p–g effects were not detected
for GW170817 [333], they will be unobservable within the new NSBH systems.

3.3.2 Consistency of component masses with the NS maximum
mass

Even without definite identification of matter signatures in the signals, we can
compare the observed m2 for GW200105 and GW200115 with the maximum NS
mass, Mmax. The existence of massive pulsars [334–336] places a lower bound of
Mmax & 2M� on the maximum NS mass. Studies of GW170817’s remnant typ-
ically suggest that the maximum mass of a nonrotating NS—the TOV mass—is
Mmax,TOV . 2.3M� [e.g., 337–339]. However, rapid rotation could support a larger
Mmax. Given the considerable uncertainty in Mmax, we examine three different
scenarios. Following Essick and Landry [233], we compute for each scenario the
probability p(m2 < Mmax) that the secondary mass is below the maximum NS
mass by marginalizing over the uncertainty in Mmax and the uncertainty of our m2
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Table 3.2 Probability that the secondary mass is below the maximum NS mass
Mmax for each event, given different spin assumptions and different choices for the
maximum NS mass. The values shown use a flat prior in m2; alternative, astrophys-
ically motivated mass priors, can cause the estimates to vary by up to 11% across
our chosen models.

p(m2 < Mmax)
spin prior choice of Mmax GW200105 GW200115
|χ2| < 0.05 Mmax,TOV 96% 98%
|χ2| < 0.99 Mmax(χ2) 94% 95%
|χ2| < 0.99 Mmax,GNS 93% 96%

measurement.
Supposing that the secondaries are slowly spinning, we consider in the first row

of Table 3.2 an estimate of Mmax,TOV from a non-parametric astrophysical inference
of the equation of state [2], which predicts Mmax,TOV = 2.22+0.30

−0.20M� and is shown
in Fig. 3.2. We then relax the low-spin assumption, estimating in the second row the
maximum rotationally supported mass Mmax(χ2), and the breakup spin χmax with
the universal relations from Breu and Rezzolla [340]. In this scenario, we require
m2 ≤ Mmax(χ2) and χ2 ≤ χmax for consistency with an NS. Finally, in the third
row, we consider a parametric fit to the entire distribution of observed Galactic
neutron stars, including rapidly rotating pulsars [3], which predicts Mmax,GNS =

2.25+0.71
−0.31M�, and is shown in Fig. 3.2. This scenario accounts for the possibility that

the maximum mass in the NS population is limited by the astrophysical processes
that form compact binaries. Assuming low spin (first row), we find probabilities
of 96% and 98% that the secondaries in GW200105 and GW200115, respectively,
are consistent with an NS assuming a uniform prior in m2. The possibility of large
secondary spin reduces these probabilities by up to 3% (second and third rows).

So far, this analysis has assumed priors that are uniform in component masses.
However, there is considerable uncertainty in the astrophysical mass priors of such
systems and different prior assumptions can affect the component mass posteriors
for detections with moderate SNR. To illustrate the impact of population assump-
tions, we consider three alternative priors: one based on Salpeter mass distributions,
p(m) ∼ m−2.3 [341], independently for each component; one based on an extrapola-
tion of the BBH mass model Broken Power Law from Abbott et al. [342] down
to 0.5M� for both components; and another based on a similar extrapolation of the
Power Law + Peak BBH mass model from the same study. We marginalize the
uncertainties in the latter two models, which are fit to the BBH population from Ab-
bott et al. [36], including the outlier event GW190814 with a secondary component
mass below 3M� [232].

These different mass priors change the numbers in Table 3.2 (obtained assum-
ing a flat population) by at most 11% (for the Broken Power Law based mass
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prior defined in the above paragraph), with the smallest values for GW200105 and
GW200115 being 89% and 87%, respectively. The decrease is due to the three priors
assigning more probability density to equal-mass systems, thus favouring larger m2.
Thus, the secondaries of both systems are consistent with neutron stars based on
our assumptions about the equation of state and the mass distribution.

However, consistency with the maximum NS mass does not exclude the possi-
bility that the secondaries could be black holes or exotic compact objects, if such
objects also exist within the NS mass range. For instance, models of primordial
black holes predict a peak in the primordial black hole mass function at ∼ 1M�

[343]. These models also predict that primordial black holes may form coalescing
binaries at mass ratios comparable to those reported here.

3.4 Astrophysical Implications

The first confident observations of NSBH binaries enable us to study this novel type
of astrophysical system in entirely new ways. We pursue three different avenues in
this Section. First, we infer the merger rate of NSBH binaries in the local universe.
We then place the inferred source properties and merger rate in the context of models
of NSBH formation channels and previous EM and GW observations of black holes
and neutron stars. Finally, we investigate to what extent the events reported here
can serve to measure the Hubble constant and whether lensing of GWs may have
played a role in the observations.

3.4.1 Merger rate density

We infer the NSBH merger rate density with our observations using two different
approaches.

In the first approach, we consider only GW200105 and GW200115. Following
the method of Kim et al. [344] as previously used in, e.g., Abbott et al. [232, 345], we
calculate an event-based merger rate assuming one Poisson-distributed count each
from GW200105- and GW200115-like populations. We find the total event-based
NSBH merger rate density RNSBH = 45+75

−33 Gpc−3 yr−1, plotted in green in Fig. 3.7.
The second approach to calculating a merger rate takes into account not only

GW200105 and GW200115, but also less significant search triggers with masses
consistent with the typical range associated with NSBH binaries. Specifically, we
consider triggers across O1, O2 and the first nine months of O3 with associated
component masses m1∈ [2.5, 40]M� and m2∈ [1, 3]M�, i.e. broader ranges than the
component mass posteriors for GW200105 and GW200115 obtained in Section 3.2.
The cut-off of m2 ≤ 3M� is chosen as a robust upper limit on the maximum NS
mass [346, 347]. This yields an estimated NSBH merger rate density of RNSBH =

130+112
−69 Gpc−3 yr−1, the black line in Fig. 3.7. While this rate is higher than our
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Figure 3.7 Inferred probability densities for the NSBH merger rate. Green line: rate
assuming one count each from an GW200105 and GW200115-like NSBH population.
Black line: rate for a broad NSBH population with a low threshold that accounts
for marginal triggers. The short vertical lines indicate the 90% credible intervals.

event-based rate, it considers a wider population that includes additional triggers;
for example, the component masses of GW190814 (although the nature of its sec-
ondary is uncertain) fall within this population. The calculation is also based on
the component mass values of GstLAL search triggers, adjusted with an analytical
model [348] of the response of the template bank to signals with a given distribution
of true masses. This procedure is expected to be less precise than Bayesian parame-
ter estimation, which is impractical for the large number of triggers involved. Taking
the extremes of these results, we arrive at a final NSBH merger rate measurement
of RNSBH = 6− 242 Gpc3yr1.

The merger rate density measured here is consistent with the upper bound of
610 Gpc−3 yr−1 derived from the absence of NSBH detections in O1 and O2 [222].
Revised merger rate estimates for all CBC sources are provided for the full O3 data
set in [37].

3.4.2 System origins

To understand the origin of GW200105 and GW200115, we compare their observed
masses and spins with theoretical predictions. Population synthesis studies mod-
elling the various formation channels of merging compact object binaries distinguish
between neutron stars and black holes with a simple mass cut, typically between
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2 and 3 M�. This is consistent with the secondary masses of both events being
classified as neutron stars, so for the purposes of discussing formation channels for
these events and predicted rates, we will discuss GW200105 and GW200115 in the
context of them being NSBHs.

Formation channels

Formation channels of NSBH can be broadly categorized as either isolated binary
evolution or one of several dynamical formation channels (e.g., globular clusters or
nuclear star clusters). Since isolated binaries form in young star clusters and can
be influenced by dynamical interactions before the cluster dissolves and the binary
effectively becomes isolated, rates from young star clusters naturally encompass rates
from isolated binaries. Predicted rates of NSBH mergers in the local universe vary
by orders of magnitude across the various formation channels.

Models of the canonical isolated binary evolution channel—in which stellar pro-
genitors evolve together, shedding orbital angular momentum through phases of sta-
ble and/or unstable mass transfer prior to compact object formation—predict NSBH
merger rate densities around 0.1–800 Gpc−3 yr−1 [246–257]. The high uncertainty
is driven by the lack of observed NSBHs and the wide range of model assumptions.
Merger rates are sensitive to the treatment of common envelopes, which may be a
necessary evolutionary phase for producing compact binaries in tight orbits capable
of merging in a Hubble time [349]. They are also sensitive to prescriptions for su-
pernova kick magnitudes. While moderate kicks can produce eccentric orbits that
merge on short timescales, high supernova kicks may disrupt the progenitor binaries
and suppress the merger rate [246, 350, 351].

Models of star formation in the dynamical environments of young star clusters
predict NSBH merger rate densities of 0.1–100 Gpc−3 yr−1 [259, 262, 263, 352]. In
this scenario, most systems that form merging NSBH (∼80%) are ejected without
undergoing dynamical exchanges, proceeding to merge in the field.

Models of dynamical formation channels in denser environments typically predict
much lower merger rates. For instance, in globular clusters and nuclear star clusters,
black holes segregate and dominate the core, where the bulk of dynamical interac-
tions occur [353, 354], so that encounters between neutron stars and black holes are
relatively rare, with NSBH merger rate densities on the order of 10−2 Gpc−3 yr−1

[260, 261, 264]. In disks of active galactic nuclei, the presence of gas could possibly
increase the NSBH merger rate density up to 300 Gpc−3 yr−1 [355].

NSBHs may also merge via hierarchical triple interactions, where inner NSBH
binaries are driven to high eccentricity by massive tertiary companions and merge
on rapid timescales [356, 357]. However, the predicted merger rates are negligible
unless supernova kicks are assumed to be zero [358].

A combination of the above channels likely contributes to the astrophysical
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NSBH merger rate. However, the isolated binary evolution, young star cluster,
and active galactic nuclei channels are capable of individually accounting for the
NSBH merger rate estimated here.

Masses

While there are no observed NSBHs in the Milky Way, we can place the compo-
nent masses of GW200105 and GW200115 in the context of the observed population
of BH and NS masses, as well as the predicted populations of NSBHs. Observa-
tions suggest that the mass distribution of the Galactic population of neutron stars
peaks around 1.33M�, with a secondary peak around 1.9M� [359, 360]. The sec-
ondary mass observed in GW200115 and marginal event GW190426_152155 are
consistent with the population peaking at 1.33M�, while the secondary observed in
GW200105 (' 1.9M�) and the primary component from BNS merger GW190425
[m1 = 1.60–1.87M�; 361] are consistent with the high-mass population. However,
a rigorous association of the events with different components of the NS population
would require a thorough population analysis. Radio observations of BNS systems
do not find such massive neutron stars, leading to speculation as to the origin of
GW190425 [362–365]. Stellar metallicities in the Milky Way are not representative
of all populations of GW sources [251, 254, 366–368].

The black hole masses observed in GW200105 and GW200115 (8.9+1.2
−1.5M� and

5.7+1.8
−2.1M�, respectively) are in line with predictions from population synthesis mod-

els for NSBH mergers from isolated binary evolution and young star clusters. In NS-
BHs, the current binary evolution models do not predict black hole masses above '
10 M� [251–253, 257], while Population III NSBHs [369] and dynamical interactions
in low-metallicity young star clusters allow for higher black hole masses [258, 259].

Electromagnetic observations of X-ray binaries have not uncovered black holes
between 3 and 5M�, leading to speculation about a mass gap [370–373]. Analysis of
GWTC-2 has also found evidence for a gap or dip in the black hole mass spectrum
between ∼2.6 and 4 M� [374]. For GW200115, we find nonnegligible support for the
primary lying in this mass gap, with p(3M�<m1<5M�) = 30% (27%) under the
high-spin (low-spin) priors. This low-mass region is correlated with negative values
of the parallel component of the primary spin.

In summary, the masses inferred for GW200105 and GW200115 are consistent
with expectations for NSBHs; their primary masses are in agreement with predic-
tions for black hole masses in population synthesis models of the dominant forma-
tion scenarios. Meanwhile, their secondary masses are compatible with the observed
population of Galactic neutron stars, as well as the masses inferred from GW obser-
vations of BNS mergers.
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Spins

Spin information encoded in GWs from binaries is a probe of their evolutionary
history [375–380]. The black holes in binaries are expected to exhibit a range of spin
magnitudes and orientations, depending on how they formed [253, 381–388]. The
highest dimensionless NS spin implied by pulsar-timing observations of binaries that
merge within a Hubble time is ∼0.04 [389, 390].

While the secondary spins of both events reported here are poorly constrained
due to the unequal masses, the primary spins of GW200105 and GW200115 can
be placed in the context of predictions for black hole spins from models of stellar
and dynamical evolution and EM observations of NSBH progenitors. As can be
seen in Fig. 3.4 and Fig. 3.5, the primary spins of GW200105 and GW200115 are
consistent with zero (0.08+0.22

−0.08 and 0.33+0.48
−0.29, respectively), but moderate values of

spin are not ruled out. The primary in GW200115 may even have relatively high
spin, with a 90% upper limit of 0.72. Several studies of the observed population of
high-mass X-ray binaries [239, 241, 243, 391] find that the black holes have large
spins [391–394]. Given the short lifetime of the secondary, mass transfer is argued
to be insufficient to generate black holes with such high spins, implying that the
black holes were born with high spins. Belczynski et al. [395] found that one such
high-mass X-ray binary, Cygnus X-1, is expected to form an NSBH with a black hole
that carries near-maximal spin, although it would not merge within a Hubble time.
However, following revised estimates of the component masses of Cygnus X-1 [396],
Neijssel et al. [397] found that it will most likely form a BBH. Meanwhile, analyses
of GWTC-1 and GWTC-2 have found evidence for black hole spin [342, 398–401],
though they do not determine whether those black holes may have been formed with
that spin. Altogether, these EM and GW observations of compact binaries and their
progenitors suggest a range of black hole natal spins in NSBH binaries.

Along with their magnitudes, the alignments of component spins with the overall
binary orbital angular momentum are of astrophysical interest. In particular, we find
evidence that the primary black hole spin in GW200115 is negatively aligned with
respect to the orbital angular momentum axis, with p(χ1,z<0) = 88% (87%) under
the high-spin (low-spin) prior and with the more negative values of χ1,z correlated
with smaller m1. This negative alignment is consistent with dynamical formation
channels, which typically form binaries with random spin orientations [383], but the
predicted rates from these channels, discussed in Section 3.4.2, are small. Bina-
ries born in isolation are expected to form with only small misalignments [. 30◦;
381], though they may become misaligned by supernova kicks at compact object
formation [383, 402, 403], and possibly during subsequent evolution via mass trans-
fer [404]. Meanwhile, NSBH progenitor binaries originating in young star clusters
can be perturbed via close dynamical encounters before being ejected into the field.
Therefore, a misaligned spin in the primary of GW200115 would not necessarily rule
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out any of the plausible NSBH formation channels.

3.4.3 Cosmology and lensing

Gravitational wave sources are standard sirens, providing a direct measurement of
their luminosity distance [114, 115], and they can be used to measure the Hubble
constant [405–407]. Due to the lack of a confirmed EM counterpart and large num-
bers of galaxies inside the localization volumes of each of the two events, we do not
obtain any informative bounds on H0 from these observations.

The detections of GW200105 and GW200115 are separated by only ∼10 days.
One explanation for the small time delay could be that the two events are created
by gravitational lensing by a galaxy [408]. Gravitational lensing is unlikely even a
priori [409, 410], and the nonoverlapping mass posteriors (Fig. 3.2) further exclude
it as a possible explanation [408]. While GW200115 and GW190426_152155 exhibit
agreement in their source mass posteriors, their sky localization areas do not overlap,
and their detector-frame (redshifted) chirp masses show only marginal overlap [36],
ruling out lensing as a possible explanation.

3.5 Conclusions

During its third observing run, the LIGO–Virgo GW detector network observed
GW200105 and GW200115, two GW events consistent with NSBH coalescences.

The source component masses of GW200105 and GW200115 make it likely that
these events originated from NSBH coalescences. Their primary masses are found
to be m1 = 8.9+1.2

−1.5M� and m1 = 5.7+1.8
−2.1M�, which are consistent with predictions

of black hole masses in population synthesis models for NSBHs. Their secondary
masses, inferred to be m2 = 1.9+0.3

−0.2M� and m2 = 1.5+0.7
−0.3M�, respectively, are

consistent with the observed NS mass distribution in the Milky Way, as well as
population synthesis predictions for secondary masses in merging NSBHs.

We find no evidence of measurable tides or tidal disruption for either of the
two signals, and no EM counterparts to either detection have been identified. As
such, there is no direct evidence that the secondaries are NSs, and our observations
are consistent with either event being a BBH merger. However, the absence of
tidal measurements and EM counterparts is to be expected given the properties and
distances of the two events. Moreover, the comparisons of the secondary masses
to the maximum allowed NS mass yield a probability p(m2 ≤ Mmax) of 89%–96%
and 87%–98% for the secondaries in GW200105 and GW200115, respectively, being
compatible with NSs (see Section 3.3.2).

The effective inspiral spin parameter of GW200105 is strongly peaked around
zero: χeff = −0.01+0.11

−0.15. For the second event, GW200115, the effective inspiral spin
parameter is inferred to be χeff = −0.19+0.23

−0.35. For GW200115, the spin component
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parallel to the orbital angular momentum of the primary is χ1,z = −0.19+0.24
−0.50, and we

find support for negatively aligned primary spin (χ1,z < 0) at 88% probability. More
negative values of χ1,z in GW200115 are correlated with particularly small primary
masses reaching into the lower mass gap. We find p(3M�<m1<5M�) = 30% (27%)
under the high-spin (low-spin) parameter estimation priors. We find no conclusive
evidence for spin-induced orbital precession in either system.

We estimate the merger rate density of NSBH binaries with two approaches.
Assuming that GW200105 and GW200115 are representative of the entire NSBH
population, we find RNSBH = 45+75

−33 Gpc−3 yr−1. Conversely, assuming a broader
range of allowed primary and secondary masses, and considering all triggers in O3,
we find RNSBH = 130+112

−69 Gpc−3 yr−1. These are the first direct measurements of
the NSBH merger rate, with a final combined estimate RNSBH = 6 − 242 Gpc3yr1.
This is broadly consistent with the rate predicted from NSBH formation in isolated
binaries or young star clusters (0.1 − 800 Gpc−3yr−11 and 0.1 − 100 Gpc−3yr−11

respectively). Formation channels in dense star clusters (globular or nuclear) and in
triples predict lower rates than those inferred from the two events and are unlikely
to be the dominant NSBH formation channels. The latest NSBH rate obtained with
the GTWC-3 catalog is between RNSBH = 7.8− 140 Gpc−3yr−11 [411]. The NSBH
rate posterior is likely contributed by a combination of the aforementioned formation
channels. Their individual contributions will be discriminated by observing more of
such events in future observing runs and by inspecting their source properties (such
as masses and spins).

The observations of GW200105 and GW200115 are consistent with predictions
for merging NSBHs and observations of black holes and NSs in the Milky Way.
Given their significantly unequal component masses, future observations of NSBH
systems will provide new opportunities to study matter under extreme conditions,
including tidal disruption, and search for potential deviations from GR.
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author, I have contributed to all Sections and produced all figures present in this
Chapter.
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4.1 Introduction

Collating gravitational-wave observations allows us to make statistical statements
about the distributional properties of the sources as a population. This is performed
within the realm of hierarchical Bayesian inference, introduced in Section 1.2.2. De-
termining the distribution and characteristics of this population of sources is crucial
to understand their formation history, and their environment and to studying the
evolutionary processes of their progenitors [412, 413]. The mass distribution of BBHs
determines the limiting distance to which they can be detected and their redshift
distribution, which allows distinguishing between different BBH formation chan-
nels [414]. The fiducial model choice for the BBH primary mass distribution is mo-
tivated by BBH stellar progenitors, which follow the initial mass function (IMF) as a
power-law with a Salpeter (1955) exponent [415]. Combining 73 gravitational-wave
observations with a false alarm rate (FAR) below 1 per year, the LVK collaboration
was able to infer the BBH mass spectrum using a Bayesian hierarchical framework.
Four parametric models were selected for the analysis: Powerlaw Peak (PP),
Powerlaw Spline (PS), Flexible Mixture (FM) and Binned Gaussian Pro-
cess (BGP) [411]. The key findings can be summarised as follows: (i) the distri-
bution of primary black-hole masses has a strong peak at about ∼ 10M�; (ii) there
is clear evidence for a secondary peak at ∼ 35M�; and (iii) there is no evidence
for any mass gap above ∼ 40 − 60M�, despite being predicted by stellar evolution
models due to pulsational pair-instability supernovae in massive stars. Due to the
nature of the hierarchical inference framework, as the number of BBHs increases to
O(103) events, the LVK’s population models become proportionally more informa-
tive. Improving the population models and the hierarchical statistical framework
itself ensures our astrophysical predictions are not biased [416]. Performing ac-
curate comparisons between different model assumptions and/or prior distributions
can lead to profound astrophysical insights [417–419]. Several studies have employed
Bayesian methods to draw conclusions on the origin of BBHs from the inferred dis-
tributions of their parameters [420, 421]. An overview of additional studies that
employ Bayesian methods, like model selection and hierarchical modelling, for com-
paring observed and modelled distributions can be found at [422]. In a few words,
the hierarchical inference framework allows estimating the best model parameters
that describe the population, while model selection is a straightforward comparison
of model evidences Z.

For theoretical models that are simulation-based, we don’t have access to a
parametrised model with a known functional form but only to a finite set of reali-
sations of it from which we calculate confidence intervals. Hence it is not straight-
forward to calculate the odds of one model versus the other via the usual Bayesian
evidence, i.e. the chances of LVK observations given a model. Similarly, since we
don’t have a parametrised model, the hierarchical inference framework is not ap-
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plicable. Other statistical tests that could be used to compare realisations of two
distributions, like the Jensen-Shannon divergence, are most meaningful when the
difference between them is small. For these reasons, simulation-based models of
BBHs formed dynamically in globular clusters (GC) have been compared primarily
in a qualitative fashion by Antonini et al. [423] to gravitational-wave observations.
Their study of cluster dynamics showed that prominent features of the inferred BBH
population, namely the peak at ∼ 10M� and the mass ratio and spin distributions,
are inconsistent with a pure cluster origin. The current understanding is that at
most ∼ 20% of BBH mergers come from globular clusters. Yet they can explain
both the peak at ∼ 35M� and the lack of an upper mass gap [419, 424].

The aim of this work is to define an ad-hoc ranking statistic that can be used to
quantitatively compare theoretical (simulation-based) and observed (inferred from
observations) distributions. This is not an optimal statistic, but unlike other mea-
sures, it provides us with the flexibility to control its asymmetry e.g. how much is
the difference in one direction being penalised. This can prove useful to identify the
parts of parameter space in which to perform subsequent simulations. The direction
of this approach is to better understand GC modelling given our gravitational-wave
observations. We define both an absolute and an effective ranking statistic that re-
flects and measures the similarity between distributions. We present the first of such
comparisons performed on real data: we investigate astrophysical predictions from
GC simulations against the LVK’s observation-based models. This method allows
us to formalise and automate the search for the GC’s model parameters that best
fit the observed population curves.

4.2 Methods

We employ a probabilistic approach to quantitatively assess the “compatibility”
of BBH parameter distributions from theoretical simulations and the astrophysical
inferred distributions from gravitational-wave observations. The methodology here
described is entirely general and can be applied to any theoretical model.

We begin in Section 4.2.1 by defining a similarity function to model the absolute
distribution of differences between two models. We then expand this in Section 4.2.2
to an ad-hoc ranking statistic, such that our astrophysical intuition of “good match”
is reflected in the comparison. In this work, we look at the distribution of primary
mass m1.

4.2.1 Modelling asymmetric differences

Let’s consider two distributions of BBH primary mass, one inferred from the observed
population and one from theoretical simulations. As shown in Figure 4.1, at a
given mass value, both the inferred distribution and the theoretical one have an
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Figure 4.1 Inferred population distribution of primary mass (blue) and theoretical
distribution from cluster simulations (orange). The mean of each model is shown as
a dashed line, while the 90% confidence band is shown as solid lines. For illustration
purposes, a subset of curves is also shown for each distribution.

asymmetrical error band. We can draw multiple curves (“realisations”) from each
distribution to take into account the 90% error band. Given fLVK(m1) is inferred
from gravitational-wave observations and ftheory(m1) is a simulation-based curve,
we can define their difference as Dm1 = fLVK(m1)− ftheory(m1). For a given pair of
“compatible” curves, the difference Dm1 should be close to zero for the entire range
of mass values considered, e.g p(Dm1 = 0). We define our statistic as the integral of
the probability density of the differences between the two curves over a given range
of primary mass values:

Labsolute(Dm1) =

=

∫
log[SN (Dm1 ;µ = 0, σ, α)]dm1

(4.1)

where we approximate the probability at each primary mass point as a skew-normal
distribution SN centred at zero and we perform a logarithm for numerical stability
considerations. We note the skew-normal distribution might be a simple modelling
choice and could be replaced with a more complex distribution in future work.
For the sake of this proof-of-concept, we empirically found it to be an exhaustive
approximation (see for example Figure 4.2). The probability density function of
a skew-normal, specified by location µ, scale σ and skewness parameter α, can be
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written as:

SN (Dm1 ;µ, σ, α) =
2

σ
· φ
(
Dm1 − µ

σ

)
· Φ
(
α ·
(
Dm1 − µ

σ

))
(4.2)

where φ is a normal distribution and Φ is its cumulative distribution function. The
normal distribution is recovered when α = 0. The distribution is right skewed if α >
0 and left skewed if α < 0. The values of α and σ are found from O(8000) randomly
chosen curves drawn from each distribution, via the method of moments [425]1.

We refer to this as an “absolute” statistic since the difference between distri-
butions is penalised in either direction. Our hypothesis for Labsolute is that the
two distributions are the same, hence that the observed distribution can be en-
tirely explained by our theoretical model. Note that this definition doesn’t exclude
the possibility that current observations are not sufficient to fully account for the
predicted rate. This is because according to this definition, it makes no difference
whether the theoretical distribution is over or under-estimating the observed merger
rate.

4.2.2 Definition of ad-hoc statistical ranking

Let’s now refine our similarity measure based on the hypothesis that the theoretical
distribution has a lower or equal value to the observed one, hence that the theoretical
model can partially explain our observations and that these are sufficient to draw
an upper limit to the merger rate. In other words, the hypothesis is that theoretical
models that don’t over-predict the inferred merger rate are more astrophysically
compatible. To encode this in our measure, we down-weight all over-predicting
theoretical models via a mass-dependent weight. Using Equation 4.1 ad a starting
point and given this definition of our “penalty”, we can write:

Leffective(Dm1) =

∫
log[SN (Dm1 ;µ = 0, σ, α) · wn

m1
]dm1 (4.3)

where we call this an “effective” statistic, since have introduced a weight wn
m1

at
each location where the difference is evaluated.

The weighting can be defined in a natural way as follows. Let’s consider the
point m1 = 25M� from the illustration in Figure 4.1. At this mass value the distri-
bution of differences, modelled with a skew-normal, is the one shown in Figure 4.2.
We calculate the mass-dependent weight as the area under the skew-normal corre-
sponding to negative differences. Given our definition of Dm1 this corresponds to
curves from the theoretical distribution that predict merger rates greater than the
observed ones. Mathematically, this can be written as the following:

1We use the implementation from [426].
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Figure 4.2 Probability density function for the distribution of differences between
two mass distributions. The differences for a randomly selected set of samples are
shown with a histogram in red. This distribution is approximated by a skew-normal,
shown as a black solid line. The area corresponding to negative differences is filled
in light blue.

wm1 = 1−
∫ min[0,max(Dm1 )]

min[min(Dm1 ),0]

SN (Dm1 ;µ = 0, σ, α)dm1 (4.4)

where wm1 = 1 if the simulated rate is lower or equal to the inferred one and
wm1 < 1 otherwise. It follows that mass points at which the difference is negative
are penalised by an amount proportional to the number of curves for which the rate
is over-estimated. To more neatly separate all over-estimating models, such that the
ranking of the most under-estimating curve is still greater than the ranking of the
least over-estimating one, we raise the weight to the power of n. We calculate the
exponent n by solving the following inequality,

max(SN (Dm1 < 0)) · wn
m1
≤ min(SN (Dm1 > 0)

wn
m1
≤ min(SN (Dm1 > 0)

max(SN (Dm1 < 0))

n ≤ log(w(m1))

min(SN (Dm1 > 0)

max(SN (Dm1 < 0))
(4.5)

where to simplify the notation we defined SN (Dm1 ;µ = 0, σ, α) ≡ SN (Dm1). In
other words, the ranking for the least overfitting curve has to be at least equal to
(or smaller than) the most underfitting curve. We note this prescription is quite
strict, but it allows us to cluster over-predicting models sharply and to maintain a
hierarchy of “compatibility” between models. We also note that this exponent is
dataset dependent and that here we used n = 30.
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4.3 Results

We show the first application of our ranking-based comparison method to real data.
In Section 4.3.1, we give a brief overview of the theoretical models investigated for
this work and we summarise our initial results. For comparison, we include ranking
numbers from both our absolute and effective statistic definitions. In Section 4.3.2,
we analyse our results in order to draw conclusions on the effects of the theoretical
model parameters on their rate predictions.

4.3.1 Comparing large numbers of models

We employ our similarity-based method to compare the primary mass distribution
predictions from GC models from the population synthesis code cBHBd [427] and the
populations inferred from GWTC-3 [411].

We consider 21 models with the following varying initial conditions on the GCs:
density of clusters (in the range [102 − 107]M�pc

−3), natal kick prescription on
the black hole after its core-collapse supernova (fallK: fall-back driven kick, momK:
momentum-driven kick, zeroK: no kick), and duration of the core-collapse supernova
(B2002 [428], B2008 [429], rapid and delayed [430])2. For more details on these
parameters, see Antonini and Gieles [427].

2The supernova type rapid assumes a fast explosion (∼ 250ms), while the delayed type assumes
a duration in the range O(min− hrs).
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Table 4.1. Asbolute and effective statistic results for the comparison between two
GWTC-3 population models and 21 theoretical models from cBHBd simulations.

The highest-ranking values are highlighted in bold.

Cluster model Leffective Labsolute

Powerlaw Peak Powerlaw Spline Powerlaw Peak Powerlaw Spline

(5, fallK, B2002) -5557.657 -5655.626 -385.825 -731.317
(5, fallK, B2008) -5109.854 -5494.371 -575.340 -636.229
(5, zeroK, rapid) -4428.152 -5318.198 -225.793 -216.950

(5, fallK, Delayed) -4227.316 -5264.064 -198.635 -216.382
(5, momK, rapid) -3594.929 -4836.548 -209.491 -186.902
(4, fallK, B2008) -3466.921 -4723.392 -243.698 -189.398
(5, fallK, rapid) -3396.968 -4248.780 -219.517 -318.573
(4, fallK, B2002) -2874.647 -3964.900 -137.403 -209.314
(6, fallK, rapid) -2661.530 -3828.086 -160.790 -174.980
(4, zeroK, rapid) -2220.976 -3728.549 -145.529 -157.421

(4, fallK, Delayed) -2100.938 -3410.463 -173.156 -140.256
(4, momK, rapid) -1843.772 -2931.162 -158.295 -132.076
(7, fallK, rapid) -1795.399 -2426.146 −109.422 -122.775
(4, fallK, rapid) -1721.185 -2421.696 -148.832 -103.110
(3, fallK, B2008) -959.361 -1490.632 -222.107 -136.184
(3, fallK, B2002) -760.406 -1102.878 -162.533 −85.628
(3, zeroK, rapid) -732.174 -1083.593 -179.778 -102.533
(3, fallK, rapid) -660.734 -1026.414 -197.786 -115.331

(3, fallK, Delayed) -654.905 -1000.366 -211.920 -126.904
(3, momK, rapid) -641.879 -966.227 -222.344 -109.338
(2, fallK, rapid) −292.203 −207.396 -345.110 -156.719

Each curve from a given GC model represents primarily two different assumptions
on the Universe: a) the stellar IMF (specified by randomly sampling 100 values for
its parameters), which can have an effect O(10) on the predicted merger rate and
b) the Dark Matter (DM) density, which can affect the predicted merger rate by
O(2). The second assumption can be explained as follows: given that we can obtain
viable DM densities from cosmological simulations, we infer the total mass density
of clusters using the relation of total cluster mass with DM.

Since the GC models employed don’t include hierarchical mergers, and we expect
these to matter a lot above 55M� [427], predictions of the mass distributions are
limited in the range m1 = [5, 55]M�. Finally, the GC simulations all assume an
equal mass ratio (q = 1). We limit our study to LVK Powerlaw-based models: PP
and PS, since i) they give the best fits (i.e. PP is the fiducial model) and ii) they
allow us to measure the impact of LVK’s fitting choice on the comparisons (i.e. PS
is a variation on the fiducial, useful for systematics).

The complete results for both our absolute and effective statistics are shown in
Table 4.3.1 and the highest ranking values are highlighted in bold for each column.
Each pair of distributions considered is also shown in Appendix B.1 for comparison.

This methodology allows us to easily compare a large number of models at a

– 67 –



4.3. Results

Figure 4.3 Effective statistic as a function of globular cluster density parameter
for fixed supernova type rapid. Different kick prescriptions are shown with different
markers. Blue markers correspond to comparisons over Powerlaw Peak (PP) models,
while yellow markers to Powerlaw Spline (PS).

glance. The highest ranking models from the absolute statistic differ between LVK
models. This is likely due to the fact that under and over-estimating models are
treated equally. For the practical purposes of our comparison, we focus solely on the
effective statistic. We note that our effective statistic highly favours cluster models
with very low initial density O(102)M�pc

−3 since these are the ones entirely not
over-predict the merger rate3. We also notice that the preferred kick prescription for
both ranking definitions and LVK models considered is fallK. This kick prescription
is commonly adopted in theoretical studies of cluster dynamics and a more detailed
investigation of this parameter is presented in Section 4.3.2.

4.3.2 Inspection of globular cluster parameters

The results obtained in the previous Section suggest that the supernova type rapid
and the kick prescription fallK have a higher ranking than other parameters. We
investigate these by plotting the effective statistic as a function of GC initial density
and fixing the supernova type to be rapid4, as shown in Figure 4.3.

The merger rate generally increases with the initial GC density, resulting in lower
ranking values (i.e. over-estimates of the observed rate). However, we see a clear
trend in the globular cluster’s initial density, where the ranking drops at density

3This sharp weighting rule could be easily modified at the discretion of the astrophysical expert:
for instance, the power of the weight could be calculated differently or removed altogether.

4This is a common choice for globular cluster models. For reference, the effect of supernova
types on the effective statistic is shown in Appendix B.2.
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Figure 4.4 Differential merger rate for BBH primary mass from the GWTC-3 pop-
ulation model Powerlaw Peak (PP) compared to: 1) a globular cluster (GC) model
with GC initial density 104M�pc

−3, fall-back kick prescription and rapid supernova
type (left panel); 2) a GC model with different GC density 107M�pc

−3 (right panel).
The shaded grey regions correspond to parts of the distribution where the difference
between the two GC models is less pronounced.

105M�pc
−3 and then rises again. At densities greater than 105M�pc

−3, the high
number of interactions between binaries suppresses the merger rate at low mass since
the majority of mergers would occur outside of the observable spacetime volume, i.e.
most low-mass mergers would occur at high redshift and not be observed. Hence
we observe how models with a GC initial density of 107M�pc

−3 have ranking values
comparable to GC with densities of 104M�pc

−3. This is shown in the non-shaded
regions of Figure 4.4, where the mean merger rate falls to zero below ∼ 13 M� for
the model with higher GC density, but the 90% upper limit is very similar to the
one for 104M�pc

−3.
The natal kick can cause disruption in the binary and hence also reduce the over-

all merger rate. Models with fallK and momK generally have very similar ranking
values, since the scaling of the kick is the only primary difference between the two.
The momentum kick simply depends on the ratio between the mass of the black hole
formed (mBH) and that of a typical neutron star (mNS):

vmomK = vNS ·
mNS

mBH
(4.6)

where we use the symbol v for velocity and generally mNS = 1.4M�. On the other
hand, fallK is dependent on the amount of material that has fallen back on the
proto-compact object, which is described by a “fall-back fraction” fb

5:

vfallK = vNS · (1− fb). (4.7)

5The fraction fb typically depends on the mass of the stellar core.
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Figure 4.5 Differential merger rate for BBH primary mass from the GWTC-3 pop-
ulation model Powerlaw Peak (PP) compared to: 1) a globular cluster (GC) model
with GC initial density 103M�pc

−3, fall-back kick prescription and rapid supernova
type (left panel); 2) a GC model with different kick prescription momentum-kick
(right panel). The shaded grey regions correspond to parts of the distribution where
the difference between the two GC models is less pronounced.

As a result, fallK leads to lower kick velocities and the lowest merger rate predictions.
As shown in Figure 4.5, it presents more variability in the merger rate at low mass,
where stellar winds have a non-negligible effect on the fall-back fraction.

In the absence of a natal kick, a lot more binaries are retained and the overall
merger rate increases, as confirmed by the fact that zeroK models have a much
lower ranking. This is most evident at GC initial density 105M�pc

−3, as shown in
Figure 4.6.

Finally, we notice that PP models have a higher ranking than PS models for all
GC densities considered besides for models with GC densities of 102M�pc

−3, where
they are almost equal. This is because the lack of structure in the PP model results
on average in smaller differences from the GC models. This effect is most evident
for models with GC initial density 105M�pc

−3, as shown in Figure 4.7. This type
of comparison between LVK models could help us identify systematic errors in the
models themselves.
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Figure 4.6 Differential merger rate for BBH primary mass from the GWTC-3 pop-
ulation model Powerlaw Peak (PP) compared to: 1) a globular cluster (GC) model
with GC initial density 105M�pc

−3, fall-back kick prescription and rapid supernova
type (left panel); 2) a GC model with no natal kicks (right panel). The shaded grey
regions correspond to parts of the distribution where the difference between the two
GC models is less pronounced.

Figure 4.7 Differential merger rate for BBH primary mass from: 1) the GWTC-3
population model Powerlaw Peak (PP) (left panel) and 2) Powerlaw Spline (PS)
(right panel), compared to a globular cluster (GC) model with GC initial density
105M�pc

−3, fall-back kick prescription and rapid supernova type. The shaded grey
regions correspond to parts of the distribution where the difference between the two
LVK models is less pronounced.

– 71 –



4.4. Conclusions

4.4 Conclusions

We developed an ad-hoc methodology to quantitatively compare astrophysical dis-
tributions of gravitational-wave sources, such as the BBH mass spectrum. The
method consists of defining an effective statistic tuned to assess the compatibility
of theoretical merger rate predictions to the observed LVK rate. We showed the
effectiveness of our statistics by comparing GC models to the inferred GWTC-3
Powerlaw-based distributions. We used these ranking results to investigate the ef-
fect of GC initial conditions on the predicted distributions of BBH primary mass.
The models used for this Chapter don’t include hierarchical mergers and assume an
equal mass ratio. However, these results show the potential of this technique for
applications in the astrophysical interpretation of the observed gravitational-wave
population. In particular, this approach aids the parameter choice for generating
theoretical simulations, such as the GC models of Antonini and Gieles [427].

The next step for this work is to re-compute the ranking for the latest GC models
from Antonini et al. [423] that contain hierarchical mergers. Since these models lift
the equal mass ratio assumption, we will include comparisons to other LVK models
and flexible mixture models such as the one developed by Tiwari [431].

This work can be the starting point to re-express this statistic as a full-fledged
Bayesian likelihood. This framework could also be used to compare GC models to
the observed distribution, i.e. non-inferred [413], of BBHs. By applying selection
effects to the predictions from globular clusters, such comparisons could allow us to
make quantitative statements about what fraction of the observations is produced
in GC. Finally, using this technique we could also check if the mass distributions
of the sub-populations obtained by Fishbach and Fragione [432] are consistent with
the globular cluster rates of Antonini et al. [423].

– 72 –



Chapter 5

Handling Bayesian inference
results with Gaussian Processes

This Chapter is based on [433], published as MNRAS Vol. 508, Issue 2. The project
was conducted in collaboration with Dr Rhys Green and Dr Vivien Raymond. The
author led the project and contributed to all Sections of the original manuscript and
to the paper writing. Note that Section 5.4 has been added and was not present
in the published work. Section 2.1 from the original manuscript was removed from
this Chapter.

– 73 –

https://academic.oup.com/mnras/article/508/2/2090/6372919


5.1. Introduction

5.1 Introduction

Post-processing parameter estimation results of CBCs is a common and important
task in gravitational-wave analysis. In this work, we demonstrate the efficiency and
usefulness of using Gaussian processes (GP) in this scenario. Applications of GPs
in the field of gravitational waves span a wide range of use cases, such as marginal-
ising waveform errors [434], regression of analytical waveforms [435], predictions of
population synthesis simulations [436], hierarchical population inference [437] and
equation of state calculations [438]. They have also been exploited for the develop-
ment of fast parameter estimation with RIFT sampler [439].

Here we exploit GPs to estimate PDFs from Bayesian inference of gravitational-
wave signals. Non-parametric density estimation from a finite set of samples is an
active research field in machine learning and statistics [130, 440, 441].

For most gravitational-wave analyses, histograms are usually the preferred esti-
mators to visualise the marginal posterior PDFs and to avoid over-smoothing sharp
features but often are not convenient for post-processing analyses such as popula-
tion inference. These sorts of analyses either re-weight the posterior samples directly
[442] or need to estimate a continuous representation of the gravitational-wave poste-
rior density surface. Several density estimation methods such as Dirichlet processes
[443], Gaussian Mixture Models [444] and others have been employed to address
this problem specifically for gravitational waves. As well as these, a closely related
method to GPs [445], KDEs are currently employed for the gravitational-wave post-
processing analyses [446–448].

These KDEs are often effective but they assume correlations between parameters
to be linear and smooth, making this method sometimes limited in flexibility. There
exist many variations of the KDE algorithm to take into account specific interpo-
lations problems, but there isn’t a single implementation that is guaranteed to be
robust against all possibilities. A specific KDE implementation might solve an issue
in one case and be the cause of some inaccuracies in another [449].

We implement a single technique that can interpolate arbitrary multi-dimensional
slices in parameter space, which can handle both simple and difficult space morphol-
ogy, such as sharp bounds and non-Gaussian correlations. Our modelling tool is
based on the histogram density estimate, combining the histogram’s accurate treat-
ment of the samples’ features with the predictive capabilities of GPs. An additional
advantage of this technique is that it can provide a Bayesian measure of uncertainty
from the finite (and sometimes small) number of samples for post-processing analy-
sis. This measure of model uncertainty could then be incorporated into any analysis
where the marginalised posterior density is used.

In Section 5.2 we describe our density estimation technique in the context of
gravitational-wave parameter estimation and machine learning. We propose a series
of example applications in Section 5.3, which allows us to discuss the advantageous
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features of our method. Finally, in Section 5.4 we summarise our findings and suggest
future extensions of this work.

5.2 Density estimation with Gaussian Processes

We introduce the mathematical framework of the statistical techniques discussed in
this Chapter. In Section 5.2.1, we outline the fundamentals of GPs and their inter-
pretation for interpolating a posterior density surface. We then describe the details
of our GP implementation and how to model probability densities from parameter
estimation in Section 5.2.2.

5.2.1 Definition and interpretation

GPs are interpolation methods with a probabilistic interpretation, they are built on
a Bayesian philosophy, which allows you to update your beliefs based on new ob-
servations. The process can be understood as an infinite-dimensional generalization
of multivariate normal distributions, such that any finite collection of points within
the domain of the process are related by a multivariate Gaussian distribution. As
data is observed, the GP is conditioned and the range of possible functions that can
explain the observations is constrained. As such a GP is defined by a mean, which
represents the expectation value for the best fitting function, and by a covariance
matrix, called a kernel, which measures the correlations between observations [450].
In the absence of observations, the GP predictions will revert to a prior mean func-
tion, which is usually chosen to be zero, and which properties are determined by the
kernel architecture. Mathematically this is written as:

f(~x) ∼ GP(m(~x), κ(~x, ~x′)) (5.1)

where the mean and covariance are denoted as the expectation values E below:

m(~x) = E [f(~x)]

κ(~x, ~x′) = E
[
(f(~x)−m(~x))(f(~x′)−m(~x′))

]
(5.2)

We can then model a surface y conditioned on our observations as:

y∗|f, x ∼ N (m(x∗), σ
2
∗) (5.3)

where, in this application, the dimensionality of f will depend on how many param-
eters p(θi|d) has been marginalised over.

The non-parametric nature of GPs makes this technique flexible, but it can be
computationally expensive as the whole training set needs to be taken into account
at each prediction. The standard implementation has O(N3) computations and

– 75 –



5.2. Density estimation with Gaussian Processes

O(N2) storage, this then becomes prohibitive for ∼ 10, 000 data observations or
more. To tackle this issue it is common to use sparse inference methods, which
approximate the conditioning of the GP over a set of M << N ‘inducing’ points.
The evaluation over the inducing points M is then much cheaper than for an ‘exact’
GP resulting in O(NM2) computations rather than O(N3) [451, 452]. As well as
sparse methods one can exploit multi-GPU parallelization and methods like linear
conjugate gradients to distribute the kernel matrix evaluations which then allows for
exact inference to be performed on a short time scale [453]. In this work, however,
we find that sparse approximations were accurate enough to effectively model the
marginalised posterior surfaces that we were interested in. Moreover, once a GP
has been ‘trained’ over the data, it is possible to draw infinitely many function
realisations from it without recomputing the expensive covariance matrix.

A recognised advantage of GPs is reliable uncertainty estimate when making
predictions over unseen data. In this application, we are not interested in predicting
the value of the posterior in unexplored regions of the parameter space, but only in
generating a faithful model where we have posterior samples. In regions within the
space of parameters, the GP variance depends on our choice of training points, which
is useful to assess the accuracy of our density estimation. In terms of uncertainty
estimation this can be explained as our model having very low epistemic uncertainty
everywhere, we then seek to estimate the aleatoric uncertainty due to our model fit
around the random fluctuations in the histogram densities which are used to train
the GP.

5.2.2 Model construction

In this application, we want to use a GP to estimate the marginalised posterior den-
sity for any subset of parameters. We train our GP using the normalised histogram
counts over a grid of points, i.e. the centroids of the histogram bins, that cover the
marginalised parameter space. We then fit our GP to this discrete set of points to
generate a continuous representation of the surface.

An important choice when modelling a system using GPs is the choice of kernel,
this encodes your assumptions about the relationship or covariance between data
points. In this work, we used a combination of the RBF and Matern(12 or 5

2) kernels.
In the case of periodic parameters (such as the sky location), the periodic version
of the chosen kernel [454] may be necessary. To account for exceptionally non-
trivial correlations between parameters, a non-stationary kernel, such as deep kernels
[455] can be used. Further technical details regarding this choice and our data pre-
processing scheme (which also had a significant impact on our model accuracy) are
included in Appendix C.1.

We employ TensorFlow and GPFlow to implement our GP training infrastruc-
ture, which includes two inference schemes: exact inference for 1-2 dimensional
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problems (O ∼ 1000 samples) and sparse inference for higher dimensionality due to
computational costs. As well as a difference in the inference scheme, when extend-
ing this method to higher dimensions, our choice of training data changes. When
creating the grid over four dimensions, due to the sparsity of the parameter space,
we find that the typical set has a volume of O(1%) relative to the total prior vol-
ume (this is a common problem associated with the curse of dimensionality [456]).
We, therefore, choose to discard the empty bins and encode our knowledge of these
points through the choice of prior over our GP.

Since the model is constructed with converged posterior samples, there is no
probability support where the histogram bins are empty. To encode this, we set the
mean of the GP to be equal to zero, such that far away from the training data the
model will have a high variance but a mean of zero.

To estimate the density for a given region of parameter space we then simply
evaluate the GP at those parameters, i.e.

p(~θ = ~x∗|d) ≈ y∗|f, x
∼ N (f( ~x∗), σ

2
∗)

(5.4)

The choice to set the GP prior to zero means that we would be allowing for
negative probability densities, to avoid this we apply the rectified linear activation
unit “ReLU” function1 [457] as a layer on top of the density evaluation. This sets
all negative values to zero meaning that some points in parameter space will be
distributed as a truncated Gaussian.

Due to bounded priors (e.g. at mass ratio m2/m1 := q = 1), the posterior
surface often presents sharp discontinuities and therefore the surface is only piece-
wise continuous. GPs are in principle flexible enough to model any surface including
piece-wise continuous ones, however, we found in practice that it is more favourable
to decompose our density function into two components, one smooth, continuous
function, and one step function. We do this by multiplying the density and our GP
estimate by a step function, which is zero at any discontinuities and 1 otherwise.

π( ~x∗) =

1 if xmin < ~x∗ < xmax

0 otherwise

Multiplying by this step function is then analogous to imposing a prior over our
posterior surface, i.e. it allows us to rewrite Eq. 5.4 as

p(~θ = ~x∗|d)π( ~x∗) ≈ (y∗|f, x)π( ~x∗)
p(~θ = ~x∗|d) ∼ N (f( ~x∗), σ

2
∗)π( ~x∗)

(5.5)

We are free to encode our knowledge in this way and perform the decomposition
1Given by the simple formula f(x) = max(0, x).
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as we do not change the original posterior surface that we would like to model in any
way. This enhances the robustness of the model against all discontinuities, including
artificial cuts in parameter space that might be required for post-processing analysis.

The variance of the GP depends on the kernel, but also on the noise variance
parameter of the likelihood. Usually, the noise variance is given by a single number,
i.e. homoskedastic noise, which reflects the random fluctuations of the posterior
samples. In low-dimensional examples, where we employ an exact inference scheme,
we can assign multiple values to the noise variance, i.e. heteroskedastic noise [458].
In such instances, we are then able to propagate the error from the histogram on
the density estimate, which is simply given by the Poisson noise in each bin σbin ∼√
Ncounts. Incorporating heteroskedastic errors within a sparse inference scheme is

an area of current research in the field of machine learning [459].
It is common practice to build an interpolation of a posterior surface in order

to draw more samples from it. As our model is implemented in TensorFlow we can
quickly draw more samples from the marginalised posteriors using the many samplers
available in the package library, such as Hamiltonian Monte Carlo (HMC) [456].

5.3 Results

We present our model and a series of example applications for gravitational waves.
In Section 5.3.1 we illustrate the method on a simple 1-dimensional analytical ex-
ample. In Section 5.3.2 we show examples of common post-processing applications
for our density estimation tool. Finally, we discuss our treatment of GP model
uncertainty and how we propagate it to produce uncertainty on the marginalised
posterior distributions.

5.3.1 Analytical one-dimensional example

Our proposed GP modelling technique is by construction flexible and robust against
all distribution morphologies. To illustrate this, we construct a non-trivial 1-dimensional
example: an inverse gamma function f(x, α) = 1√

2πx3
exp(− (x−α)2

2xα2 ), with shape pa-
rameter α = 2 and a sharp bound at x = 0.75 (where x ≥ 0).

In Figure 5.1 we show our GP model mean prediction and uncertainty, com-
pared to a Gaussian KDE from scipy.stats [460] and two KDE transformations
implemented in PESummary [461], a commonly used post-processing package in
gravitational-wave astronomy. The reflection and transform KDEs, are examples of
augmentations on the standard (Gaussian) KDE, and are generally used to model
difficult features introduced at the boundaries of posterior distributions. Both of
these improvements to the standard KDE apply a transformation at the boundary
which implicitly assumes some distributional features (see [461] for more details). A
Gaussian Process on the other hand makes no assumptions about the distributional
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Figure 5.1 Interpolation of a bounded one-dimensional inverse gamma density func-
tion (in solid black) with our GP-based method (in solid orange). The histogram
points used to generate the model and its uncertainty are shown as black points with
error bars. Alternative KDE methods are shown for comparison as coloured dashed
lines.
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shape and can in principle fit any distribution.
We show an example in Figure 5.1 where our GP is able to well model the

posterior and the reflection KDE provides a better fit than the other KDE methods.
The transform KDE is more sensitive to noisy features in the samples and can
present artefacts, while the Gaussian KDE over-smooths the sharp cut at 0.75.
Following this illustrative example, there are others where the reflection KDE is less
appropriate. This example was chosen to highlight a case where the choice of KDE is
important to fit the distribution well. While synthetic and not representative, it does
illustrate features that can and do happen in gravitational-wave astronomy when
analysing posteriors. In examples such as this our GP model provides an alternative
method to KDEs, requires less hand-tuning, and also provides a Bayesian estimate
of the error on the density estimate, as propagated from the histogram errors.

5.3.2 Applications for gravitational waves

We now look at a few important post-processing problems in gravitational-wave
astrophysics. The training time required to generate the models presented in this
Section is of the order ∼ 2 minutes, with variations due to the dimensionality of
the surface and to the inference scheme employed. To assess the quality of the
model in more than one dimension we decide to re-sample the surrogate surface
and compare the new samples to the original set, part of which has been used
for training. All samples used in the following Sections are taken from the bilby
GWTC-1 catalog [132].

Catalogue of gravitational-wave properties

Gravitational-wave detection parameters can be distinguished between those intrin-
sic to the sources, such as the component masses, and those extrinsic to them, such
as the sky location. Interpolating the marginal posteriors of combinations of these
parameters is often necessary for post-processing. The following example illustrates
a simple case where one can use a GP to interpolate the intrinsic parameters for
a given detection. In practice, this could then be repeated for entire gravitational-
wave catalogues so that these interpolated posterior surfaces are then combined for
population inferences on the sources of gravitational waves.

For this example, we interpolate the marginal posterior distribution of the intrin-
sic parameters of the first BBH detection GW150914 [462], parametrised as follows:
chirp massM, mass ratio q = m2/m1 (where m1 > m2), effective inspiral spin com-
ponent χeff and effective precession spin χp, defined by the spin components that
lie in the orbital plane [463]. In Figure 5.2 we compare the marginal distributions
sampled from our GP model to the original PE samples2. We can visually assess
that the correlations between parameters are accurately reconstructed as the 50%

2Note, the 2D contours are generated with the Python method contourf by the corner package.
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Figure 5.2 Corner plot of the intrinsic parameters of GW150914, drawn from our
GP surrogate (in orange) compared to the original PE samples (in black).

GP samples PE samples
Chirp mass M/M� 30.95+0.93

−0.97 30.96+0.86
−0.89

Mass ratio q 0.87+0.09
−0.12 0.87+0.09

−0.12

Effective precession spin component χp 0.33+0.26
−0.19 0.32+0.27

−0.19

Effective inspiral spin component χeff −0.04+0.07
−0.07 −0.04+0.06

−0.07

Table 5.1 Source properties of the intrinsic parameters of GW150914, original sam-
ples and samples from the GP interpolation.

and 90% contour lines overlap for each pair of parameters. In Table 5.1 we report
the mean and 90% confidence intervals of the samples drawn from our model and
which we find in agreement with the values from the original samples within the
expected uncertainty.

Accurate interpolation for conditional integrals

Many astrophysical inquiries in gravitational-wave astronomy require evaluating con-
ditional integrals 3 across parameter space, which in turn require sampling additional
posterior points constrained to a hyperplane. This is for instance the case when es-
timating the equation of state from BNS collisions, an important post-processing
analysis that allows us to probe extreme conditions of matter [464]. This is possible

3I.e. marginalising a probability density function at a specific conditional value,
say

∫
P (X|Y = y)dx.
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Figure 5.3 Corner plot of the mass and tidal parameters of GW170817, drawn from
our GP model (in orange), compared to original PE samples in black.

because the compactness of the objects is imprinted in the gravitational waveform
and can be measured by the tidal deformability parameters. The equation of state in-
tegral involves evaluating the marginal posterior distribution over the masses (M, η)

and tidal parameters (Λ̃, δΛ̃), subject to constraints between those parameters as
parametrised by the equation of state (see for example [465]).

There are instances where the marginal posterior for these parameters contain
non-linear correlations, as is the case for the first BNS event GW170817 [466]. We
test our interpolation model over this 4-dimensional surface. In Figure 5.3 we com-
pare the marginal distributions sampled from our GP model to the original PE
samples. We see that our GP is able to faithfully represent the marginalised pos-
terior surface, in particular, we see that there is good agreement between the 90%

credible intervals. When looking at the 2d contours see that the 50% and 90% levels
agree very well and that the GP model is able to capture degenerate features and
bi-modalities. Finally, our interpolation of the surface can be re-sampled efficiently
and for this example, we obtained 750k samples in ∼ 5 minutes, (depending on
hardware) using an HMC sampler. Hence this method can be advantageous over
traditional methods, where the interpolation is generally performed with a Gaussian
KDE by transforming the symmetric mass ratio parameter to be log(0.25− η) [447]
and there is no measure of statistical uncertainty over the fit.
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Propagating GP uncertainty

GPs provide a fully Bayesian estimation of the uncertainty over model predictions,
as the full covariance matrix between posterior samples is computed. In each of the
gravitational-wave applications shown so far we have utilised the mean prediction
of the GP function. This uncertainty measurement can be very important in many
cases, however here we illustrate with a single example how one can extract the
uncertainty from the modelling. Accurate localisation of a gravitational signal can
be of fundamental importance for multi-messenger astronomy [467, 468] and for
measurements of cosmological parameters with dark sirens [469]. As the localisation
accuracy decreases, the marginal posteriors for the sky location parameters can
look degenerate and non-Gaussian. We build an interpolation of the sky location
parameters, right ascension (ra) and declination (dec), of GW150914. This event
was observed by only two detectors, so despite its high SNR, its sky location presents
a typical ring-like shape.

The sky localization parameter space contains several interesting features, such
as the highly curved correlation which are in principle difficult to model. For this
particular example, the simple kernels used throughout the paper were sufficient and
used here for simplicity. Note that in general we formally encode periodic parameters
such as ra using a periodic version of the chosen kernel [454] (see C.1.2).

The uncertainty measure produced by the GP is a Gaussian distribution about
any given point on the surface, when considering the entire surface the combination
of these Gaussians can be interpreted as a range of plausible density surfaces for any
given confidence level (e.g. 2σ). The uncertainty on the 1D marginal distributions
can then be obtained from an upper and lower bound for each point in the surface
(given by the GP error σ, equation 5.3) and then marginalising these across one
of the dimensions to obtain an uncertainty estimate about the mean 1D predicted
posterior density. For brevity let ra = α, dec = δ.

p(α|d) =
∫
δ p(α, δ|d) dδ

p(α|d)± σ(α) =
∫
δ(p(α, δ)± σ(α, δ)) dδ

(5.6)

In 2D and especially when considering sky localisation, we are also interested
in the contours that enclose a given volume of probability density to plan optimal
observation strategies in the search for electromagnetic counterparts. We propagate
the uncertainty estimate produced by the GP (in the space of all realisations from
the GP) to the physical parameter space on credible interval contour levels. We
define a function, fq, which truncates the posterior density function as follows:

fq(α) =

p(α, δ|d) if p(α, δ|d) ≥ q

0 otherwise
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Figure 5.4 Illustration of the GP uncertainty propagation in 1D for a given contour.
The GP mean is reported as µ and the uncertainty intervals as σ+,−. The illustration
shows a mock parameter α. The desired confidence interval (CL) determines the
value of q which truncates the posterior.

Such that the integral of fq contains a given proportion of the total probability
mass determined by the desired confidence level i.e.∫

α,δ
fq(α, δ|d) dδ dα = cl (5.7)

For a given confidence level cl (usually the 50% and 90% levels), solving equation
5.7 for q gives qcl, the value of the posterior density of the relevant contour. In other
words, the 50% contour represents 50% of the volume enclosed by the probability
density surface starting from the peak, as illustrated in Figure 5.4. We obtain the
contour, and the error on the contour, by plotting the (ra, dec) values for which:

p(α, δ|d) = qcl

p(α, δ|d)± σ(α, δ) = qcl
(5.8)

In the central panel of Figure 5.5 we show the samples used to construct the
model as well as the 50% and 90%, contours of the GP interpolation in 2D with
their respective 2σ uncertainty (the shaded regions). The top and left panels of
Figure 5.5 show the mean prediction and its 2σ uncertainty marginalised over each
parameter by a simple integration of the density over its projection.

The inclusion of uncertainty highlights several features. On the central inset in
Figure 5.5 we see that the lower bound on the 50% contour is composed of three
islands which correspond to peaks, while for both the mean and the upper bound
these islands are connected to obtain a smooth surface at this contour level. For the
outer 90% contour we see that the differences mainly manifest in the tails, where
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Figure 5.5 Central panel: contours of the 2D sky-location of GW150914, the GP
model mean prediction and uncertainty (in orange) is compared to the points used to
construct the fit (black crosses). Top and left panels show the GP model projections
in 1D, compared to the original PE samples. All plots show the 2σ uncertainty
around the density estimate as a shaded band

as expected the upper bound follows the well-known ring around the sky slightly
further. This matches our intuition that there is possibly more density around the
ring than around the edges of the contour in the middle of the plot.

5.4 Discussion

The method of GP density estimation may be preferable to other methods such as
KDEs, a closely related method which is sometimes adopted in the field, depend-
ing upon the use-case requirements. It comes with three main advantages: a single
kernel design is suitable for most interpolation problems commonly encountered for
gravitational-wave marginal posteriors; it provides a Bayesian measure of uncer-
tainty over the model predictions; it allows to quickly re-sample the interpolation
using HMC and other samplers available in TensorFlow . We presented a series
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of examples where we know the accuracy of the interpolation is important, such as
equation of state calculations and sky localisation. As the number of events will
increase in the next observing run (O4), we need reliable tools to post-process the
large volume of results.

Possible directions: surrogate posterior models with deep kernels

This work has highlighted the power of GPs to fit a gravitational-wave posterior
surface, a natural extension of this work is to generate a surrogate for the entire
likelihood surface, similar to what was done by the authors of [470] using a random
forest regressor. Such use of GPs has been already investigated in the field of
cosmology to model the Planck18 posterior distribution [471]. This work has laid
the foundation for us to apply a similar methodology to the gravitational-wave
problem. The technique described in Section 5.2.2 can be modified such that the
points sampled from the posterior surface are interpolated directly. The kernel
determines the space of possible functions that the GP samples live in. It can be
understood as a similarity measure: the more flexible the kernel is, the more can be
learned across the input space. The RBF is an example of a stationary kernel, which
means that the kernel depends only upon the relative positions of two inputs rather
than their absolute position in parameter space. It is likely that for the posterior
surface that we would like to model, one must also consider the absolute positions
of the inputs. For example, closeness in the mass space may indicate similarity
more strongly than closeness in spin space. Because the ideal definition of similarity
in our parameter space is complicated we use a deep kernel [455]. Deep kernels
effectively utilise a neural network to map the original parameter space to a new set
of coordinates. This effectively induces a new metric, in this metric, we may then
use a simple stationary kernel. The inputs x are transformed starting from a base
kernel k(x, x′|~λ) with hyper-parameters ~λ such as

k(x, x′|~λ)← k(g(x,w), g(x′, w)|~λ,w) (5.9)

where g(x,w) is a non-linear mapping given by a deep architecture parameterised by
weights w. The overall kernel has properties of a non-stationary kernel, which allows
more flexibility in the interpolation. The base kernel described in Appendix C.1 is
augmented into a deep kernel with a shallow neural network made up of three layers
with nodes (128, 128, 32).

Based on the assumption that the stochastic sampler has converged, we would
like to model only regions of parameter space where we have posterior samples.
Empty regions correspond to points rejected by the sampler, i.e. that have zero
likelihood. To ensure the posterior surrogate is consistent with our physical under-
standing far away from observations, we need to set the GP mean to be approxi-
mately negative infinity. In practice, we want the surface to remain as smooth as
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Figure 5.6 Samples from a GP posterior surrogate model (orange), compared to
original PE samples (black). The GP uses a deep kernel architecture.

possible so we find it sufficient to approximate the empty regions to a small number:

m(~x) = min [log Λ(d|θ)]− 10 (5.10)

where the value of 10 was chosen by trial and error. By default, the GP assumes that
regions without samples are uncertain and in those areas, predictions will revert back
to the GP mean before observations, i.e. m(~x). Figure 5.6 shows samples from an
8D GP posterior surrogate, compared to the original parameter estimation samples
used for creating the interpolation. This was the highest dimensional case that gave
reasonable results with our kernel choice. Interpolating full 15D posteriors requires
further investigations. Likely a more sophisticated deep kernel infrastructure.

This has applications such as Bayesian quadrature [472], efficient jump propos-
als [473, 474] and more general use of the GP variance to guide the sampling process.
The surface learned by the GP can be evaluated directly for a given set of param-
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eters, therefore, avoiding the need to compute expensive waveforms. An example
where such likelihood surrogates could be exploited is fast re-sampling with new
astrophysical priors. This could replace an often difficult re-weighting procedure,
especially when a prior assumption limits the number of available samples in a re-
gion of interest [475].

5.5 Conclusions

We have presented an alternative method for density estimation of marginal PDFs
for gravitational-wave parameters. Our method combines the desirable features of
histograms with the extrapolation capabilities of KDEs, within a Bayesian frame-
work. The choice of histogram binning determines the resolution of the PDF, while
the kernel of the GP allows the interpolation to be flexible over non-Gaussian corre-
lations and yet smooth. The optimal GP kernel parameters are found with an Adam
optimizer, but could also be sampled stochastically for more complicated problems.
We note that the goodness of the GP interpolation relies on the adequate choice of
the underlying histogram binning. Appropriate histogram binning is a well-known
and non-trivial problem for density estimation. The short time scale needed to build
a GP mitigates this issue. However, the authors plan to explore in future work how
to overcome this manual tuning step.

GPs are fully described within a Bayesian framework and can provide an es-
timated measure of the interpolation uncertainty via the variance. This provides
a density estimation alternative, with considerable control over the interpolation
such that sharp features in the posterior are not smoothed out. The noise variance
parameter of the GP ensures that sources of stochastic noise from the histogram
density estimation are taken into account. In cases where we employ an exact infer-
ence scheme, this noise variance can be evaluated for each histogram bin and it is
equivalent to heteroskedastic errors over the density estimation. This allows us to
fully propagate the uncertainty from the PE samples. This method can be extended
to fully incorporate uncertainties, as we showed in this work for the sky localisation
example, over higher-dimensional posterior surfaces.
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Chapter 6

On the association of
gravitational waves from the
binary neutron star merger
GW190425 with the fast radio
burst FRB20190425A

This Chapter is based on a work in preparation led by Dr Ignacio Magaña and the
author. The author’s main contributions include the posterior odds analysis and
applying Gaussian Process density estimation techniques. The author generated
Tables 6.1 and 6.2, all of the figures and wrote Sections 6.2,6.5 and 6.6. The au-
thor was also responsible for presenting these results to the collaboration’s relevant
working group for feedback and co-wrote the introduction and conclusion Sections.
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6.1 Introduction

Following the BNS merger GW170817, a burst of short gamma rays (sGRB) was
detected by Fermi and INTEGRAL about 2 seconds after the GW emission [476].
As neutron star matter collided, a Kilonova (KN) was produced and was eventu-
ally observed 11.40 hours after GW170817 was detected [477, 478]. This allowed
for the unique identification of the host galaxy of GW170817, a relatively old and
massive galaxy, namely NGC4993. Follow-up, radio observations determined a radio
afterglow that was first observed around 100 days after GW170817 and that is still
detectable to date [479].

The detection of GW170817 and its many EM counterparts, in particular, GRB
170817A allowed for the study of the significance that both GW and sGRB data
were due to a common astrophysical source. Given the 2-second time delay and the
detectable sGRB rate from Fermi, it was concluded from timing considerations only
that the coincident hypothesis was favoured by around 106 times more than a chance
of random association. Further studies, used the small sky localization volume for
GW170817 and its host galaxy candidate at the time, NGC4993, to study the chance
of spatial association. These studies arrived at positive conclusions, however, we
note that the most stringent constraints were placed by the time delay between
GW170817 and GRB 170817A. With such strong odds, it is believed that these two
events and the follow-up EM observations were all due to the first detectable merger
of neutron stars.

During the first half of the third observing run (O3a) [480], GW190425 a sec-
ond high-confidence detection of GWs from a BNS merger was detected [481]. The
gravitational waves were observed initially by only one detector but Virgo was also
functional at the time. The two detector detection did not allow for precise sky
localization and GW190425 was localized to around 105 deg2. The large localization
region in the sky and the fact that this event happened at a distance of 200 Mpc
did not allow for the detection of any confidently associated electromagnetic coun-
terparts in low latency.

Recent work by Moroianu et al. [482], has found evidence at the 2.8σ level, for
the association between GW190425 and the fast radio burst FRB20190425A de-
tected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME) about
2.5 hours after the BNS merger. CHIME is a radio telescope with no moving parts;
it is characterised by a large instantaneous field of view (∼ 200 deg2) and broad
frequency coverage (400-800 MHz). Follow-up work by Panther et al. [483] used
the FRB20190425A sky localization region to independently identify a possible host
galaxy for the transient. The most plausible host galaxy candidate, consistent with
Moroianu et al. [482], as well as the expected host galaxies for FRBs and the mea-
sured properties of FRB20190425A was found to be UGC10667 with a probability
of association of 0.88 [483].
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GW190425 with the fast radio burst FRB20190425A

Since the total mass for GW190425 was found to be 3.4+0.3
−0.1 M�, the LVK collab-

oration argued that the merger of the two neutron stars promptly collapsed into a
black hole, given our current understanding of the equation of state (EOS) for dense
nuclear matter [484]. To explain the discrepancy with the LVK interpretation and
to suggest a mechanism for the potential FRB emission, Moroianu et al. [482] and
Zhang [485] put forward a proposed scenario for GW190425 that could have led to
the formation of a highly spinning hyper massive neutron star, in this case, a magne-
tar. In order for the proposed neutron star to not collapse directly into a black hole,
it is necessary to invoke a highly spinning remnant, as this might provide increased
mass support, as well as a stiffer EOS and potentially an exotic compact object as
one of the binary components, e.g., a quark star. The hypermassive neutron star
would then survive the direct collapse for about 2.5 hours until it collapses into a
black hole and ejects its magnetosphere in the process leading to the production of
FRB20190425A.

In this work, we re-examine the association between GW190425 and FRB20190425A
by considering spatial and temporal coincidences. We also assume that UGC10667
is the host for FRB20190425A and redo our calculations. We then perform GW
parameter estimation under the assumption that UGC10667 is indeed the host for
both GW190425 and FRB20190425A in order to have a direct measurement for the
viewing angle to the BNS event as well as improved mass estimates. With these
improved estimates, we assess the consistency of the measured viewing angle with
the lack of a short GRB and kilonova detection and calculate the probability of
prompt collapse as in [361, 486]. Finally, we compute a standard siren estimate
for the Hubble constant using GW190425 and its presumed candidate host galaxy
UGC10667.

6.2 GW190425 and FRB20190425A association

In order to examine the association between the gravitational-wave event GW190425
with its potential counterpart FRB20190425A, we follow the formalism in [487, 488]
to compute the posterior odds for a common source for the two transients. We briefly
summarize the formalism in this section and refer the reader to [487] for more details.
We compare two hypotheses: a common source C, in which the GW190425 post-
merger remnant produces an FRB counterpart by ejecting its magnetosphere before
collapsing onto a black hole; and a random coincidence R, in which both events are
entirely distinct.

The posterior overlap integral, for a given parameter θ, quantifies the agreement
between posterior distributions under the common source hypothesis C and can be
expressed as,

Iθ =
∫
p(θ|dGW, C)p(θ|dEM, C)

π(θ|C)
dθ. (6.1)
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where p(θ|dGW, C) and p(θ|dEM, C) are the posteriors for the gravitational-wave
data (dGW) and for the FRB counterpart (dEM) repectively. We defined π(θ|C) as
the common prior assumptions of the parameter θ. Considering both spatial and
temporal coincidence between the GW and FRB observations, the posterior odds
between the two competing hypotheses can then be calculated as,

OC/R = πC/RIdL,ΩItc ≈ πC/RIdLIΩItc (6.2)

where IdL and IΩ are the overlap integrals for the approximately disjoint luminosity
distance and sky localization Ω = (α, δ) and IdL,Ω is the overlap integral for the 3-
dimensional localization between the two transients. The temporal overlap integral is
denoted by Itc , and πC/R is defined as the ratio of probabilities for the two hypotheses
based solely on prior information, e.g., the detection rates for the transients.

6.2.1 Spatial overlap

To measure the posterior odds of GW190425 being associated with FRB20190425A
we use the publicly available LVK posterior samples on the parameters of GW190425
[481, 489].

The joint posterior overlap integral IdL,Ω requires interpolating the three-dimensional
posterior density p(dL,Ω|dGW, C). Since GW190425 was not a well-localized event,
the density surface presents degenerate correlations and non-Gaussianities. To en-
sure that these are not smoothed out, we interpolate the posterior distribution with
a GP density estimator [433]. To assess the goodness of the three-dimensional fit, we
look at a one-dimensional slice of the interpolation by marginalizing the GWTC-3
samples over the FRB sky location, as shown in Figure 6.1. For comparison pur-
poses, we also compute this with ligo.skymap’s ClusteredKDE [490] and with the
public LIGO 3D skymap1. As best illustrated by Figure 6.1, we believe the public
skymap interpolation to be inaccurate in three dimensions, hence we only report
numbers obtained with the ClusteredKDE and GP density estimates.

To better understand the individual contributions of the joint integral, we also
calculate the odds association by approximating IdL,Ω ≈ IdLIΩ. The IdL integral
is usually computed with a Gaussian KDE in one-dimension; while IΩ is generally
computed with the ligo.skymap package. We also compute both quantities with a
GP for completeness.

6.2.2 Instantaneous field-of-view of CHIME

In Earth-fixed coordinates, CHIME looks directly over LIGO Hanford and near the
region of the largest antenna response. Moreover, the LIGO-Virgo detector network
preferentially detects signals from directly overhead/underneath. Due to this, FRBs

1FITS file release at https://zenodo.org/api/files/ecf41927-9275-47da-8b37-e299693fe5cb/
IGWN-GWTC2p1-v2-PESkyMaps.tar.gz
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Figure 6.1 Posterior probability of the luminosity distance from GWTC-3 samples
marginalised along the FRB line-of-sightn(black line). The marginal distribution
is computed using public localisation FITS files (dotted line), a Clustered KDE
(dashed line) and a GP density estimator (solid line). The shaded band shows
the GP’s 2σ uncertainty. The fixed sky PE samples are also shown for comparison
(as histograms). The top panel shows low-spin results, bottom panel shows high-
spin results.

observed within a few hours of a GW trigger will have a higher probability of chance
sky position overlap than FRBs observed at other times. Therefore, we slightly
modify the above framework to account for this non-negligible correlation between
CHIME and the LIGO detectors due to CHIME’s instantaneous field-of-view (FOV).
We encode the correlations between instruments entirely in the spatial overlap prior,
such that it corresponds to the common CHIME-LIGO viewing window. We modify
the default full sky prior2 by assuming an overlapping window of [−2, 2.5h]3, which

2See Table A.3.
3The requirement for coincidence is a window of [−2, 24h].
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Figure 6.2 Skymap for GW190425 event, obtained both with high-spin and low-spin
priors. The location of FRB20190425A’s most probable host galaxy (UGC10667) is
annotated for comparison. The red box shows CHIME’s instantaneous FOV at the
time of GW190425. Interpolation was generated with a 2D GP density estimation
(contour lines).

we convert to right ascension coordinates:

π(Ω|CHIME-LIGO) = π(δ|CHIME-LIGO) · π(α|CHIME-LIGO)

= Cosine(90◦,−10◦) ·Uniform(260◦, 190◦) .

The LVK public sky localisation samples of GW190425 are shown in Figure 6.2,
where we have used a GP to interpolate the two-dimensional surface. The instanta-
neous FOV of CHIME at the time of the event is shown as a red box and coincides
with a large part of the gravitational-wave skymap. We also note that the location
of the presumed host galaxy falls just about within the 50% probability contours
when using a GP interpolant.

The complete results are shown in Table 6.1 for both low-spin and high-spin
samples. The GP’s high-spin results are consistent, within its uncertainty, with
the values obtained with KDEs. Since the posterior surface of low-spin results is
narrower, the FRB location lies on the edge of the 50% probability contours and
the resulting spatial overlap numbers present a larger discrepancy between GP and
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Table 6.1. Spatial overlap probabilities and constituent elements for two spin
priors, calculated assuming Planck 2015 cosmology and using GWTC-3 samples.
We report values obtained with two KDE methods (public LIGO FITS file for IΩ
and ligo.skymap’s ClusteredKDE for IDL,Ω and a Gaussian Process (GP) density

estimator.

Prior assumptions IDL,Ω IdL IΩ IdLIΩ

KDE GP KDE GP KDE GP KDE GP

Low-spin,
π(Ω|Full sky) 45.6 72.4+4.6

−4.6 12.8 12.7+6.1
−6.1 0.7 6.4+0.8

−0.8 9.5 81.3+40
−40

High-spin,
π(Ω|Full sky) 51.8 50.2+3.8

−3.8 13.4 13.4+5.0
−5.0 3.8 4.7+0.8

−0.8 51.8 63.3+26
−26

Low-spin,
π(Ω|CHIME-LIGO) 8.9 14.1+0.9

−0.9 ” ” 0.1 1.2+0.1
−0.1 1.8 15.7+7.9

−7.9

High-spin,
π(Ω|CHIME-LIGO) 10.1 9.8+0.7

−0.7 ” ” 0.7 0.9+0.1
−0.1 10.1 12.4+5.0

−5.0

KDE methods. We conclude the values obtained with the high-spin prior samples
are the most trustworthy and hence we take IdL,Ω ≈ 10.

6.2.3 Temporal overlap and prior odds

Following [487], we can write the temporal overlap integral for the time of coalescence
tc for GW190425 and FRB20190425A as,

Itc =

 T
∆t if (tc − tEM) ∈ [∆tmin,∆tmax]

0 otherwise
(6.3)

where ∆t is defined as the window used to search for GW and FRB coincident events
and where T is the total co-observation time for both transient surveys. Now, the
prior odds can be written in terms of the GW, EM, and joint detection rates as,

πC/R ≈
RGW,EM

RGWREMT
. (6.4)

For the special case in which RGW ≈ RGW,EM � REM, as is the case for FRB
signals detectable by CHIME, and for which we also have small information on the
rates of BNS detections with or without FRB counterparts, we must thus have,

πC/R ≈
1

REMT
. (6.5)

6.2.4 Posterior Odds

We can now write the posterior odds between the coincident hypothesis C and the
random association R by combining the spatial and temporal overlap integrals with
the prior odds πC/R. This choice leads to the posterior odds not explicitly depending
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Table 6.2. Posterior odds OC/R calculated using the joint overlap integral IdL,Ω
and the search window used by Morianu et al (2022), ∆t ≈ 26 hours.

Prior assumptions KDE GP

Low-spin, π(Ω|Full sky) 22.8 36.2+2.3
−2.3

High-spin, π(Ω|Full sky) 25.9 25.1+1.9
−1.9

Low-spin, π(Ω|CHIME-LIGO) 4.5 7.0+1.1
−1.1

High-spin, π(Ω|CHIME-LIGO) 5.0 4.9+0.3
−0.3

on the co-observation time T , by setting T = 1/REM, e.g., the time that one has to
wait between FRB detections (the majority having no GW counterparts). We can
therefore write the odds as,

OC/R ≈
1

REM∆t
IdL,Ω (6.6)

We proceed to estimate REM by using the observed CHIME Collaboration FRB
detection rate using the latest catalogue release [491]. Using the 536 FRBs observed
in 341 days, we estimate RCHIME ≈ 1.6 day−1, where we have made the simplifying
assumption that the CHIME instrument had no offline time (duty cycle of 1).

The analysis performed in [482] used an asymmetrical search window around
O3a GW triggers of ∆t ≈ 26 hours (2 hours in the past and 24 hours in the future,
to account for both pre-merger and post-merger emission theories). Using the same
search window we obtain (REM∆t)−1 ≈ 0.5. Consequently, assuming high-spin
priors and using our corrections for CHIME’s instantaneous FOV, the posterior
odds are OC/R ≈ 5. A complete overview of the posterior odds obtained using the
different density estimation methods and different spatial overlap prior assumptions
(described in Section 6.2) is provided in Table 6.1.

6.3 Parameter estimation with UGC10667 as the host

Bayesian parameter estimation was performed with the bilby library [492, 493]
using the dynesty nested sampler package [494]. The waveform model used in
the analysis is IMRPhenomPv2_NRTidal [495, 496], where we make use of the
reduced order quadrature technique [497, 498] to reduce the computational cost of
the waveform evaluations.

Following the LVK analysis conventions presented in [480], we performed two
sets of analyses with different spin priors, namely, a low-spin and a high-spin prior
where we assume uniform distributions on the dimensionless spin magnitudes for
both components to be within the ranges χ < 0.05 and χ < 0.89 respectively. The
prior probability distributions on the remaining binary parameters used in this work
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Figure 6.3 Posterior samples for GW190425 luminosity distance for high-spin and
low-spin priors. The GWTC-3 samples (LVC 2020) are compared to fixed sky pa-
rameter estimation samples. Solid lines show high-spin prior results, and dashed
lines show low-spin prior.

are the same as that used in [480], except that we generate two sets of parameter
estimation results: 1) Fixed sky location: We set the sky location to the location of
UGC10667, corresponding to fixing (α, δ) = (255.72◦, 21.52◦) [482], and 2) Fixed sky
position: we set the sky location to the location of UGC10667 and also fix the red-
shift in the parameter estimation to zEM = 0.03136± 0.00009, the spectroscopically
determined redshift of UGC10667 [499]4.

We provide a summary of the measured GW190425 parameters under the as-
sumptions described in this section for the low-spin and high-spin prior results with
both the fixed sky and fixed position in Table 6.3. We find that fixing the sky
location constrains the luminosity distance distribution to a single spin prior config-
uration, as shown in Figure 6.3. This effect can be understood as coming from the
antenna response function, which depends on the sky location, constraining how the
signal’s power is divided in the two polarizations.

We calculate the viewing angle, θv = min(θJN, 180
◦ − θJN), using the measured

inclination angles θJN for each of the cases considered. In particular, we note that
we can measure the viewing angle of GW190425 under the fixed position assumption
since the measured redshift to UGC10667 breaks the distance-inclination degeneracy.
We also compute the total mass, mtotal (in the source frame) for each case. We
report all viewing angle and total mass measurements in Table 6.3 and show the
marginalized posteriors on mtotal and θv for the high-spin prior cases in Figure 6.4.

4We note that the redshift uncertainty for UGC10667 does not affect the inference, hence we do
not include it.
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Table 6.3. Summary of updated parameters for GW190425 using both the
low-spin and high-spin priors under the fixed sky and fixed position assumptions as

described in Section 6.3. We report all mass measurements in the source frame
assuming a Planck 2015 cosmological model.

Low-spin Prior High-spin Prior
Fixed Sky Fixed Position Fixed Sky Fixed Position

m1/M� 1.74+0.17
−0.09 1.75+0.17

−0.09 2.01+0.53
−0.33 2.10+0.59

−0.40

m2/M� 1.55+0.08
−0.14 1.57+0.08

−0.13 1.35+0.26
−0.25 1.32+0.30

−0.26

M/M� 1.43+0.02
−0.02 1.442+0.001

−0.001 1.43+0.02
−0.02 1.442+0.001

−0.001

m2/m1 0.89+0.10
−0.15 0.89+0.10

−0.15 0.67+0.29
−0.24 0.63+0.32

−0.24

mtot/M� 3.30+0.06
−0.04 3.32+0.04

−0.01 3.37+0.28
−0.11 3.42+0.34

−0.11

χeff 0.01+0.02
−0.01 0.01+0.02

−0.01 0.06+0.08
−0.05 0.07+0.10

−0.06

dL 183.7+58.2
−75.3 Mpc − 183.2+57.8

−73.3 Mpc −
θv 37.8+42.4

−27.5 deg 56.1+14.3
−9.7 deg 37.8+41.3

−26.9 deg 55.6+14.3
−9.2 deg

6.4 Astrophysical implications

The lack [500] of a high confidence GRB detection associated with this event is
consistent with our parameter estimation results showing an off-axis (θv ∼ 60 deg)
binary system at the location of the FRB, assuming the GW-FRB association. Our
posteriors do in fact exclude an on-axis system, and an off-axis system similar to
GRB 170817A at p(θv > 40o) = 94%. This consideration also rules out a possible
GW-FRB association with the weak GRB detection by the Anti-Coincidence Shield
(ACS) on INTEGRAL [501], as opposed to the consistency with the GW-FRB as-
sociation, reported in Moroianu et al. [482]. On the other hand, it is worth noting
that the non-detection reported for Fermi [500] is inconclusive for this work as the
FRB location was in the Earth occultation zone for Fermi at the time of the GW
event.

Another consideration to take into account is that the only way an FRB from
a BNS merger could have been detected is if the ejecta mass encountered by the
burst was extremely low. This is only possible if i) the FRB is emitted close to
the jet axis, and ii) the ejected mass is low. The former case is ruled out by our
parameter estimation. The second possibility is actually reasonable: high-mass
mergers such as GW190425 are expected to promptly produce a black hole, resulting
in a small amount of ejecta, that are especially rich in lanthanides. This scenario
likely results in a faint, particularly red EM counterpart [502], hence explaining
the lack of kilonova detection. Near equal-mass systems, such as the one under
consideration (for fixed sky samples, q > 0.7 at 48% confidence), are also expected
to eject smaller amounts of matter compared to unequal-mass systems. A softer
equation of state may also cause a smaller ejecta mass compared to a stiffer one
[503]. However, a prompt black hole collapse is inconsistent with the FRB coming
from the BNS hours after the merger.
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To check this possibility, we repeat the analysis of Abbott et al. [484] and com-
pute the probability of prompt collapse as well as the threshold mass Mthreshold for
which BNS systems are expected to collapse into a black hole promptly after the
merger. We use the estimated maximum mass for GW190425 with the fixed po-
sition posterior samples to estimate these quantities. In Figure 6.5 we show the
distribution of the total masses for GW190425 compared to the inferred Mthreshold.
Following [486], the prompt collapse (PC) probability can be calculated as:

P (PCGW190425|dGW) = P (mtotal > Mthreshold)

= P (mtotal −Mthreshold > 0) (6.7)

When fixing the position of its host to UGC10667, the minimum total mass for
GW190425 increases and hence we find that the corresponding probabilities for
prompt collapse are above 89% for all spin priors. Specifically for aligned high spin
priors, we find 98% when assuming EOS constraints from GW170817 only and 92%
by additionally imposing Mmax

TOV ≥ 1.97M�
5.

Figure 6.4 Parameter estimation results for GW190425 with the high spin prior under
the fixed sky location and fixed position assumptions as described in Section 6.3.
Left panel: posterior distribution on the viewing angle θv for GW190425. Right
panel: posterior distribution on the total mass mtotal for GW190425.

6.5 Cosmological implications using updated parameter
estimation

If we were to believe in the association between GW190425 and FRB20190425A,
the subsequent step of our study would be to perform a bright siren cosmological
analysis to infer the Hubble constant H0. For the sake of completeness, we do so

5Tolman Oppenheimer Volkoff limit, see also Section 3.3.1.
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Figure 6.5 Posterior distributions on the prompt collapse threshold mass Mthreshold

for GW190425 using the fixed position parameter estimation results for both low and
high spin priors. We show constraints assuming EOS constraints from GW170817
and additional constraints assuming Mmax

TOV ≥ 1.97M�.

by using the parameter estimation results produced to investigate the association
in the first place. The bright siren analysis has been explored in several places
[114, 115, 120–122, 504] and thus we defer the reader to Appendix D.1 for a detailed
derivation of the method.

To perform the cosmological inference, we use the fixed sky position poste-
rior samples with the high spin prior 6. We calculate the posterior on H0 for
GW190425 and UGC10667 as its potential host and we find a posterior of H0 =

46.5+22.5
−6.8 km Mpc−1 s−1.
Similarly, using the publicly available parameter estimation samples for GW170817

and the location of its host galaxy NGC 4993, we re-compute the correspond-
ing H0 estimate (and add a redshift uncertainty due to the peculiar motion of
NGC4993, which we estimate to be 200 km s−1), obtaining a posterior with H0 =

70.9+23.4
−8.0 km Mpc−1 s−1 consistent with results in other work [504]. Finally, we

compute the joint posterior on H0 for both GW190425 and GW170817, and we get
a combined H0 posterior with H0 = 69.5+12.2

−6.4 km Mpc−1 s−1, where we note the
shoulder-like structure in the posterior of GW190425 (corresponding to the shoul-
der in its distance posterior) is what allows support for a larger value of the Hubble
constant. The results in this Section are shown and summarized in Figure 6.5. For
all of our results, we use a uniform prior on H0 throughout, i.e., in the range for

6The results in this Section are insensitive to the choice of spin prior.
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H0 ∼ U [10, 225] km Mpc−1 s−1. All the reported results on H0 in this Section are
quoted as maximum a posteriori with 68.3% highest density posterior interval. Fi-
nally, we note that these results can be weighted by their respective posterior odds,
as shown in Appendix D.2.
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Figure 6.6 Gravitational-wave measurements of H0 from the detections of the first
two BNS observations GW170817 and GW190425 observed by Advanced LIGO and
Virgo. In grey, we show the posterior on H0 for GW170817 re-analyzed with its host
galaxy NGC 4993. In blue, we show the posterior on H0 for GW190425 analyzed
with its potential host galaxy UGC10667. In red, we show the joint posterior for
both GW170817 and GW190425. We also show the latest constraints on H0 from
the CMB [Planck: 4] and Type 1A supernova observations [SH0ES: 5] for reference.

6.6 Cosmological implications using GWTC-3 samples

Re-running stochastic sampling for a fixed sky location can be computationally very
expensive, particularly for long signals, such as BNSs. In the scenario where one or
more observations have a counterpart candidate, particularly with low significance, it
is then convenient to have an alternative strategy to draw cosmological implications
without re-running parameter estimation. We show that marginalising a GP 3D
interpolation of the original LVK samples at the location of the counterpart allows for
approximately recovering the results obtained by re-running parameter estimation
with the sky location fixed. The results are shown in Figure 6.7 for both high-spin
and low-spin posterior samples. The analysis is also performed with ligo.skymap’s
ClusteredKDE method for comparison. The posterior on H0 using a GP density
estimator leads to H0 = 48.4+26.5

−8.0 km Mpc−1 s−1 which, within its uncertainty, is
consistent with the value obtained in Section 6.5.
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Figure 6.7 Posterior probability for the Hubble constant GW190425 as a potential
bright siren. The distribution is compared between two different interpolations of
GWTC-3 samples (LVC 2020) and the distributions obtained with fixed sky param-
eter estimation samples. The top panel shows low-spin prior results, and the bottom
panel shows high-spin priors.
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6.7 Discussion

In this work, we have investigated the association between the gravitational-wave
event GW190425 and its presumed electromagnetic counterpart FRB20190425A. We
have re-calculated the probability of association as a Bayesian odds comparison by
considering a common source hypothesis and a random association hypothesis for
the transients. To do this we have used a GP density estimator, which closely ap-
proximated the line-of-sight posterior samples obtained by fixing the sky location
with UGC10667 as the host. This observation highlighted the need for accurate den-
sity estimation techniques when post-processing parameter estimation results. The
posterior odds were calculated, following previous work, as a product of temporal
and spatial overlap integrals. The spatial overlap can marginally support a common
source hypothesis, yielding a total posterior odds value of O(25) if we naively ignore
correlations between the position of CHIME and LIGO detectors in Earth-fixed coor-
dinates. We found that when including corrections of CHIME’s instantaneous FOV,
the overall posterior odds are lowered to O(5) and do not support the association
claimed by [482].

We further investigate the association by re-running parameter estimation with
the sky location of UGC10667, the host galaxy for the FRB20190425A counterpart
identified by [483], as well as with its measured redshift. The end-to-end parameter
estimation analysis for the claimed associated transients is shown in this work for
the first time. The viewing angle obtained with our parameter estimation results
strongly excludes the association hypothesis. While the measured viewing angle is
consistent with the lack of GRB and kilonova counterparts, the measured total mass
of the remnant slightly increases but it’s consistent with the results of [505]. As a
consequence, the estimated probabilities for prompt collapse into a black hole have
increased compared to those first calculated in [505] for both EOS-informed and
agnostic priors.

In order for the association to make sense, one would require an exotic equation
of state, as suggested by [485], incompatible with the latest multimessenger EOS
constraints from GW170817, NICER, and the heaviest pulsars. We, therefore, argue
that GW190425 most likely promptly collapsed into a black hole, a possibility that
was also considered by [505]. For completeness, we also show that if these events
were to be associated, the cosmological implications would be unaffected. We find
the overall posterior probability for H0 from GW190425 to be consistent with the
value found from GW170817 alone. We also show that for such low-significance
associations, it is convenient to draw cosmological implications using an accurate
density estimator and avoid re-running costly parameter estimation. We do this by
using a GP density estimator over the three-dimensional posterior surface of the
original LVK samples.

To conclude, we bring forward a word of caution when performing GW and
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EM counterpart associations. As shown in this work, simple spatial and temporal
coincidences are useful and can in principle rule out potential associations (see [487]).
However, for the case considered, more observations of potentially associated GW
and FRB counterparts will be needed to potentially shed light on the possibility of
such transients having a common origin.
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Chapter 7

Conclusion

One of the great challenges of gravitational-wave astrophysics is the analysis and
interpretation of the detected signals. This requires precise signal modelling (both
waveforms and noise sources), accurate Bayesian Inference and rigorous statistical
treatment of uncertainty. In this thesis, the work to validate the Bayesian Inference
library bilby for the gravitational-wave problem was presented. In particular, the
author led the assessment of the systematic error in the astrophysical inference via
the JS divergence measure. An example of parameter estimation for gravitational-
wave CBC signals (which also required the use of bilby), was given in the following
chapter. As we observe several such CBC signals, it becomes apparent which sig-
nals are divergent from the overall population of sources and we can start probing
our theoretical astrophysics models (and simulations). In this thesis, a similarity
measure for unmodelled (simulations-based) theoretical predictions of BBHs formed
in GCs was presented. The development of new statistical techniques goes hand
in hand with our astrophysical data analysis needs. In this thesis, the author pre-
sented a novel interpolation technique aimed at improving statistical analyses, such
as population inference, where several Bayesian results of individual events need to
be post-processed and combined. To conclude, the final chapter presented a multi-
messenger cosmology analysis that combined several of the topics of the previous
chapter, exemplifying the common theme of this thesis.

7.1 Summary of main results

The first important result presented in this thesis is the analysis that quantita-
tively assessed the agreement between bilby and LALInference results, using the
Jensen-Shannon divergence metric. This was part of a team effort to reproduce
GWTC-1 using bilby, a study led by Dr Isobel Romero-Shaw, Dr Silvya Biscov-
eanu and the author. This work was an essential piece of evidence that the software
meets the requirements for being the state-of-the-art inference library for the official
analysis of gravitational-wave data. As such, bilby was used for the analysis of
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the GW events GW200105 and GW200115, the first claimed NSBH signals detected
by the LVK during O3. The author was a key member of the international Paper
Writing Team responsible for carrying out the final analysis reported by the LVK
Collaboration. This was the first direct measurement of GWs from NSBH signals
and the first GW-based NSBH merger rate estimate, which was found to be broadly
consistent with theoretical predictions and with Milky Way observations.

Comparing the observed merger rate of gravitational-wave sources with astro-
physical simulations guides our theoretical understanding of their stellar origin. The
ad-hoc ranking statistics method, developed by Mr Jordan Barber, Dr Vivien Ray-
mond, Dr Fabio Antonini and the author, was shown to be useful for quantitative
comparisons of globular cluster models of BBH formation against models based on
real data. The post-processing analysis that links parameter estimation results to
astrophysical studies is based on hierarchical Bayesian inference. In this hierarchical
regime, the parameter estimation results are “post-processed”, often by interpolat-
ing multi-dimensional distributions. This is common for many gravitational-wave
studies that rely on parameter estimation outputs, for which accuracy and treatment
of systematics can be of high importance. Dr Rhys Green, Dr Vivien Raymond and
the author developed a new density estimation method based on GPs to address
these requirements. Our key finding was that this method is advantageous over ker-
nel density estimators as it propagates interpolation errors. This method was found
more accurate than ClusteredKDEs for calculating the odds of association for the
BNS event GW190425 and its claimed counterpart FRB20190425A. The study, led
by Dr Ignacio Magana and the author, also provided an excellent use case for GPs
for cosmological analysis with bright sirens. We concluded that the O(5) posterior
odds for the association, the off-axis viewing angle, and the increased probability of
prompt collapse strongly disfavour GW190425’s association with FRB20190425A.

7.2 Common methods

The analysis and interpretation of gravitational-wave observations from CBCs em-
ploy fundamentally similar techniques. This allowed the author to span the multiple
topics covered in this thesis.

Bayesian statistics is at the foundation of most gravitational-wave data anal-
ysis for CBCs. This framework allows us to make use of our prior astrophysical
knowledge and intuition to solve otherwise intractable problems. Relying on prior
assumptions is really not a disadvantage, but a strength of Bayesian statistics that
allows us to make probabilistic statements that are otherwise impossible to make.
This statistic (and general philosophy) is also easily interpretable, as we can locate
what information is encoded in the data and which is driven by our assumption.

As we have seen, parameter estimation, which is at the base of all CBC-related
analyses (e.g. testing GR, cosmology, astrophysical populations etc.), is fundamen-
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tally a Bayesian inference task. It is then very little surprise that the Bayesian
framework is needed (or desirable) for all these post-processing analyses. We have
seen this being the case, for instance, for calculating the updated rates of NSBH
mergers. Hierarchical Bayesian inference allows us to infer the astrophysical pop-
ulation of BBHs, hence having a Bayesian-based method to compare such inferred
distributions to theoretical simulations fits quite naturally. Our ad-hoc ranking
statistics can be used to develop a fully-fledged effective likelihood for this purpose.
This philosophy also partly motivates the wide interest in the field for GPs since
they are an equally Bayesian technique. We saw an application of this method for
multi-messenger astrophysics with the BNS event GW190425 and FRB20190425A.
Finally, we found the assessment of their association to be best measured within
a Bayesian realm via the posterior odds, compared to the frequentist approach of
Morianu et al.

7.3 What next

One of the main takeaways from O3 was that we need faster parameter estimation for
the next observing run (O4). Several deep learning techniques have been developed
for this purpose, but their use case is currently limited to events with parameters
for which we can generate large training sets, e.g. equal mass non-spinning BBHs,
so-called “vanilla” events. Gravitational-wave observations in less well-explored ar-
eas of parameter space still rely heavily on stochastic sampling methods. GPs could
be used to interpolate the GW likelihood surface to help make “smarter” and hence
faster predictions when running the stochastic sampler, something that could be
implemented within the bilby sampling scheme. The same approach was taken
for a tool developed to address a similar problem in cosmology [506]. Unlike in
the aforementioned study, the GW inference task presents a degenerate and non-
Gaussian likelihood surface; hence performing its interpolation might require Deep
GPs and/or a reparametrisation of the multi-dimensional surface, e.g. [507]. Speed-
ing up stochastic sampling is particularly important for long-duration signals like
NSBH and BNS events, for which we expect to see increasingly more candidates in
future observing runs.

As a result, alleged claims of associations between gravitational waves and EM
counterparts are expected to increase over the next observation periods. Hence hav-
ing a robust and streamlined prescription (e.g. via an installable Python package)
to compute their association odds would be a valuable by-product of Chapter 6,
which the authors plan to submit for publication in the near future. We also plan
to investigate how the GP interpolation technique presented in Chaper 5 could be
used to enhance the hierarchical Bayesian analysis of dark siren cosmology, where
the possibility to draw an arbitrary number of samples from the interpolated poste-
riors can alleviate issues of small sample sets. Moreover, reliable density estimation
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over the intrinsic parameters of the sources could help improve the overall accuracy
of the analysis: given many observations, robust statistical treatment to accurately
propagate systematic errors from density estimation of posterior samples is impor-
tant. The GP measure of interpolation errors would be a valuable perk not just for
cosmology, but also for population inference, where the same hierarchical framework
is used.

To conclude, the comparison method presented in Chapter 4 is designed to take
into account uncertainty measures from the hierarchical Bayesian framework via
randomly drawing samples from the full distribution. The author and collaborators
plan to submit this work for publication in the near future and to investigate new
applications for population analysis with parametric and non-parametric modelling.
This method could also be applied to compare GC models directly to gravitational-
wave observations, instead of the inferred distribution. The subtle distinction would
allow us to investigate different formation scenarios independently of population
model assumptions.
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Appendix A

Notes on GWTC-1 with bilby

A.1 Additional bilby validation tests

In addition to the tests described in the main body of the paper, we performed
several additional validation tests which are standard benchmarks for stochastic
sampling codes.

A.1.1 Prior sampling

The initial distribution of samples drawn from the prior must faithfully represent
the shape of the prior function. In addition to being used for review, the prior sam-
pling test also forms part of bilby’s unit test suite. Prior samples can be obtained
using bilby via two different methods. The first is to use the sample method of
each Prior object, which generates samples by rescaling from a unit cube. The
second is to run the sampler with a null likelihood using the ZeroLikelihood ob-
ject so that the returned posterior samples actually reflect the prior. To test the
consistency of the two methods, we generate prior samples via both methods for a
standard 15-dimensional binary black hole signal injected into simulated Gaussian
noise. We perform a Kolmogorov–Smirnov test [508, 509] to evaluate the similarity
of the two sets of samples, calculating a p-value for each parameter, which quantifies
the probability that the two sets of samples are drawn from identical distributions.
A combined p-value is then computed, representing the probability that the ensem-
ble of individual-parameter p-values is drawn from a unit uniform distribution. We
consider the test to pass if this combined p-value is greater than 0.01. For a rep-
resentative run with the latest version of bilby, we obtain a combined p-value of
0.017.

A.1.2 15-dimensional Gaussian

Sampling an analytically-known likelihood distribution is an important test to verify
that we can recover the correct posterior. For this test, we choose the scipy imple-
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mentation of a multivariate normal distribution (scipy.stats.multivariate_normal)
as our likelihood. We choose the distribution to be 15-dimensional since this reflects
the typical number of dimensions we encounter in binary black hole problems. We
set the means of all parameters to be zero, and choose a covariance matrix COVij

with standard deviations for each of the parameters ranging between 0.15 and 0.25

to match past tests done with LALInference. Using the bilby default sampler
settings for a 15-dimensional problem, we test if we correctly recover the posterior
distribution by drawing samples from this 15-dimensional likelihood and comparing
the obtained means and standard deviations to the true values. Additionally, we
verify that we recover the expected evidence within the estimated error. Since the
likelihood distribution is normalized and we use uniform priors for each parameter
in the range [−5, 5], the evidence can be approximated by the prior volume, since
the standard deviations are small enough that the value of the likelihood evaluated
at the edges of the prior is negligible:

lnZ ≈ − lnX , (A.1)

where X is the prior volume. In Figure A.1 on the left-hand side we find the mea-
sured standard deviations and the evidence to be in broad agreement with analytical
expectations. While the evidence errors quoted by dynesty are not truly Gaussian,
the one-sigma credible interval is consistent with covering the true evidence 68% of
the time if one uses more than 1000 live points. Additionally, the overshoot at high
values of the credible interval indicates that there are fewer outliers than we would
for a Gaussian distribution. The right-hand side of Figure A.1 demonstrates that
the width of the posterior distribution is correctly recovered. We have thus shown
that the dynesty implementation in bilby has no significant issues in recovering
the shape of posterior distributions and the correct evidence for this fundamental
problem.

We performed the same test using a bimodal Gaussian distribution, with means
separated by 8 standard deviations in each dimension. While it is more difficult to
correctly sample a degenerate likelihood surface, we still find 1000 live points suffi-
cient to reasonably recover the evidence. Individual runs of the bimodal likelihood
may produce a biased set of posterior samples in favour of one of the modes over
the other, which is why multiple runs should be combined. We verified that none
of the modes is preferred if we use all 100 runs. Thus, there are also no substantial
issues that arise in sampling multimodal distributions with bilby.

A.1.3 Fiducial event simulations

We analyse two fiducial simulated signals; one binary black hole merger, and one
binary neutron star merger with tides. We use a LIGO Hanford–Livingston detec-
tor network and add the simulated signals into design sensitivity Gaussian noise.
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Figure A.1 Left: Illustration of the frequency with which the true evidence is within
a given credible interval for the unimodal Gaussian-shaped likelihood. The legend
shows how many live points are used to produce the individual curves. For a lower
number of live points, systematic errors in the evidence estimation cause significant
underestimates of the error. Starting at 1024 live points, the evidence error reason-
ably reflects the true uncertainty. The grey band shows the 90% confidence interval.
Right: Residuals of the true width of the analytical likelihood minus the average
recovered one for 1024 live points in each dimension based on 100 independent runs.
The error bars show the 90% confidence interval of the average mean of the distri-
bution. There is a small O(0.1%) systematic bias to underestimate the width, i.e.
the parameter is on average slightly overconstrained. However, this bias is negligibly
small compared to stochastic sampling uncertainties for individual runs.
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Table A.1 Our injected and recovered values for the two fiducial event analyses. Re-
covered median values are quoted with the symmetric 90% credible interval around
the median.

BBH BNS
Parameter Inject Recover Inject Recover
M/M� 15.53 15.4+0.3

−0.4 1.486 1.486+0.0001
−0.0001

q 0.52 0.7+0.3
−0.4 0.9 0.9+0.1

−0.2

a1 0.65 0.6+0.3
−0.5 0.04 0.02+0.02

−0.02

a2 0.65 0.5+0.4
−0.4 0.01 0.02+0.02

−0.02

θ1 1.24 1.1+0.8
−0.6 1.03 1.5+1.0

−0.9

θ2 0.80 1.3+1.1
−0.9 2.17 1.6+1.0

−1.0

φ12 1.5 3.1+2.9
−2.8 5.10 3.2+2.8

−2.9

φJL 3.01 3.2+2.8
−2.9 2.52 3.1+2.9

−2.8

dL/Mpc 614 1018+1147
−623 100 86+17

−26

δ 1.00 0.7+0.4
−1.6 0.2 0.3+0.1

−0.1

α 2.00 4.6+1.0
−2.7 3.95 3.9+0.1

−0.1

θJN 1.65 1.8+1.0
−0.8 0.25 0.6+0.7

−0.4

ψ 1.50 1.6+1.4
−1.4 2.70 1.5+1.5

−1.4

φ 2.00 3.1+2.8
−2.8 3.69 3.1+2.8

−2.8

tgeo/s 0.04 0.04+0.00
−0.02 −0.01 −0.01+0.00

−0.00

Λ1 − − 1500 752+915
−657

Λ2 − − 750 1437+1294
−1216

For the binary black hole, we use the IMRPhenomPv2 waveform and the default
4 s prior described in Table A.2. For the binary neutron star, we use the ROQ
implementation of the IMRPhenomPv2_NRTidalv2 waveform [498] with the 128 s
tidal low-spin prior. The binary black hole and neutron star systems have network
optimal SNRs of 8.8 and 27.9, respectively.1 In Table A.1, we show the true values
along with the recovered median and 90% credible interval values for each param-
eter. Nearly all the true parameter values for both systems are recovered within
the 90% credible interval, and those that are not are consistent with deviations due
to the Gaussian noise realization. Full corner plots for both simulated signals are
available online [202].

A.2 Run setting details

A.2.1 Sampler settings

The default sampler used by bilby is dynesty [171], an off-the-shelf nested sam-
pling [169] package. The first step in nested sampling is to draw N random live
points from the prior. At each iteration, the lowest-likelihood sample from the ini-

1The binary black hole analysis was performed using bilby version 0.6.3, while the neutron star
analysis used bilby 1.0.0. The default Advanced LIGO design PSD changed between these two
versions of bilby to reflect the updated detector sensitivity predictions [74]. Parameter estimation
is performed using dynesty with the default settings.
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Table A.2 Lower and upper limits on chirp mass M, luminosity distance dL and
dimensionless spin magnitude a1, a2 priors for each of the default prior sets contained
in bilby_pipe.

Prior M/M� dL/Mpc a1, a2
High-mass 25–175 100–7000 0–0.99

4 s 12.299703–45 100–5000 0–0.88
8 s 7.932707–14.759644 100–5000 0–0.8
16 s 5.141979–9.519249 100–4000 0–0.8
32 s 3.346569–6.170374 100–3000 0–0.8
64 s 2.184345–4.015883 20–2000 0–0.8
128 s 1.420599–2.602169 1–500 0–0.8

128 s tidal 1.485–1.49 1–300 0–0.89
128 s tidal low-spin 1.485–1.49 1–300 0–0.05

tial N points is discarded in favour of a higher-likelihood point, again randomly
chosen from the prior. After every step, the actively-sampled region of the prior
shrinks to the volume contained by the hyperplane of constant minimum likelihood
for the current population of live points. When the live domain has reduced suffi-
ciently, it becomes inefficient to select higher-likelihood points uniformly from the
restricted prior space.

After the uniform sampling becomes sufficiently inefficient, new points are se-
lected by randomly walking using a custom Markov-chain Monte Carlo algorithm
starting from the sample being replaced. The transition probability is determined
by the distribution of the set of current live points. The number of steps taken in the
chain is determined such that the length of the chain is at least some multiple nact
of the auto-correlation length of the chain [510]. For the analysis in this paper, we
require nact = 10. A Markov-chain Monte Carlo walker algorithm then takes at least
n steps to draw a new sample from the restricted prior. In order to reduce bottle-
necks while using multiprocessing we impose a maximum length of the chain. If no
point with a higher likelihood than the original point is found within this number of
steps, we return a random point from the prior distribution. Nested sampling is able
to well-resolve multimodal distributions, making it useful for exploring complicated
parameter spaces. For all events in GWTC-1, we give the sampler N = 2000 live
points and n = 100 steps.

A.2.2 Priors

We sample directly in M and q to avoid issues associated with sampling ex-
tremely thin regions of parameter space, which occurs when sampling in component
masses (bilby and bilby_pipe can easily be made to sample in other parameters
such as component masses; here we only discuss default parameters and priors used
for the analysis of the eleven events in GWTC-1). Our prior on mass ratio is uniform
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Table A.3 Default prior settings for 10 of the 17 parameters studied for CBCs
observed with gravitational waves. The settings given in this table are consistent
between all default prior sets contained in bilby_pipe.

Parameter Shape Limits Boundary
q Uniform 0.125–1 –

θ1, θ2 Sinusoidal 0–π –
φ12, φJL Uniform 0–2π Periodic
θJN Sinusoidal 0–π –
ψ Uniform 0–π Periodic
φ Uniform 0–2π Periodic
α Uniform 0–2π Periodic
δ Cosinusoidal −π/2–π/2 –

in the range 0.125 ≤ q ≤ 1.0, with the lower limit determined due to limitations of
the IMRPhenomPv2 ROQ.

Prior limits used forM, dL, a1 and a2 are provided in Table A.2. The chirp mass
prior limits are based on those stated in the ROQ git repository2. We use a lumi-
nosity distance prior that is uniform in the source frame, with limits motivated by
the scaling of gravitational-wave amplitude with both chirp mass and distance. The
uniform-in-source-frame prior, which indicates a uniform distribution of mergers in
our Universe [1], differs from the d2L power-law prior used in the LALInference
analyses, which indicates a uniform distribution in a Euclidean, non-expanding uni-
verse. We use dimensionless component spin priors that are uniform between 0

and an upper limit that is determined by the mass range assumed. For non-tidal
waveform models, we use an upper limit that is either 0.8, 0.88 or 0.99. For tidal
approximants, both a low-spin and a high-spin prior are available. Our component
spin prior upper limits are 0.05 (low-spin) and 0.89 (high-spin) in these cases. The
upper limits on spin magnitude are determined by the training range of the ROQ
basis [e.g., 511]. For analysis of binary neutron star coalescence signal GW170817,
we sample in the dimensionless tidal parameters Λ1 and Λ2, which describe the
deformability of the primary and secondary masses. If Λi = 0, the neutron star is
non-deformable and thus has no tides. We set our priors on Λ1 and Λ2 to be uniform
between 0 and 5000 to reflect our ignorance of the neutron star equation of state.
The remainder of our priors are standard and geometrically motivated.

A.2.3 Data

The data segments we use are accessed using the GWpy [187] method
TimeSeries.get(channel_name, start_time, end_time). The start_time tstart
and end_time tend are defined relative to the trigger_time ttrig of each event, such

2git.ligo.org/lscsoft/ROQ_data
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Table A.4 GPS trigger time and data segment duration used for each event. By
default, the data segment is positioned such that there are 2 s of data after the
trigger time.

Event GPS trigger time ttrig/s Data duration T/s

GW150914 1126259462.391 8
GW151012 1128678900.400 8
GW151226 1135136350.600 8
GW170104 1167559936.600 4
GW170608 1180922494.500 16
GW170729 1185389807.300 4
GW170809 1186302519.700 4
GW170814 1186741861.500 4
GW170817 1187008882.430 128
GW170818 1187058327.100 4
GW170823 1187529256.500 4

that

tend = ttrig + tpost−trig; tstart = tend − T. (A.2)

Here T is the total duration of the data segment and tpost−tri is the post-trigger
duration, which is 2 s in bilby by default. We provide the trigger times and data
segment durations for all GWTC-1 events in Table A.4. The channel_name used to
obtain strain data from both the LIGO Hanford and LIGO Livingston detectors is
DCS-CALIB_STRAIN_C02 for all events, with the exception of GW170817, for which
we use the channel_name of DCH-CLEAN_STRAIN_C02_T1700406_v3 to obtain glitch-
subtracted strain data from LIGO Livingston. We also obtain Virgo data for events
that occurred from July until mid-August 2017 (GW170729, GW170809, GW170814,
GW170817 and GW170818) using the channel_name of Hrec_hoft_V1O2Repro2A_16384Hz.

Strain data is available from the Gravitational Wave Open Science Centre [188]
sampled at both 16384Hz (the native sampling frequency of advanced LIGO and
advanced Virgo) and down-sampled to 4096Hz. We download the data sampled
at 16384Hz. The LALInference [191] analysis of binary black holes in [35] was
performed with data down-sampled to 2048Hz using a LAL down-sampling function
and integrated to the Nyquist frequency (1024Hz).

In bilby_pipe the user can choose to either not down-sample, down-sample
using the same LAL routine as done in LALInference and BayesWave [165],
or down-sample using the GWpy method. In general, we recommend users do not
down-sample the time domain data, but rather apply cuts directly in the frequency
domain. However, since the PSDs used in this analysis were made with BayesWave
and the LALInference analysis we compare with use the LAL down-sampling, we
also use this method.

The default method implemented in LAL and used by LALInference and
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BayesWave is done in the time domain and consists of two stages. First the
data are low-passed using a 20th-order zero-phase Butterworth filter. The filter is
customised such that the power at the low-pass frequency fc is reduced by a factor
of ten. The frequency response of the filter is given by

R(f ; fc, n, ac) =

[
1 +

(
a−1/2
c − 1

)( f
fc

)2n
]−1

. (A.3)

The data are then down-sampled by a factor of N by taking every Nth sample,
this aliases the data. This aliasing means that any signal close to the new Nyquist
frequency will be suppressed and aliased which may introduce a bias in our inference.
The final frequency domain strain after downsampling by a factor of N is given by

h̄(f ; fc, n, ac) = h(f)R(f ; fc, n, ac)

+

N∑
i=odd

h((i+ 1)fc − f)R((i+ 1)fc − f ; fc, n, ac)

+

N∑
i=even

h(ifc + f)R(ifc + f ; fc, n, ac). (A.4)

Here h(f) is the frequency-domain data without low-pass filtering or downsampling.
Of the events analysed in this work, the lowest mass events (GW151226, GW170608,
and GW170817) have frequency content close to or above the down-sampled Nyquist
frequency. We expect the bias introduced by this to be small.

In Figure A.2 we show the data containing GW170608 along with the PSD
produced by BayesWave with (left) and without (right) downsampling the data to
a new sampling rate of 2048Hz for the LIGO Livingston observatory. On the right
we can see the turnover in the data and the PSD close to the new Nyquist frequency
1024Hz.

A.3 Prior Reweighting

In order to compare posterior samples that are unbiased by differing prior choices,
we reweight samples obtained using LALInference priors πLI by bilby default
priors πB, with weights expressed as

W =
πB
πLI

. (A.5)

We must also account for the fact that bilby_pipe uses default priors that are flat
in M and q, whereas LALInference uses priors that are uniform in component
masses. We, therefore, rejection sample from the released posterior samples with
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Figure A.2 The data and PSD in the LIGO Livingston interferometer at the time
of GW170608. In the upper/lower panel, we show the data with/without being low-
pass filtered and down-sampled to 2048Hz. We can see the effect of the low-pass
filter in suppressing the data above ∼ 900Hz. The filtering and down-sampling were
applied when computing the PSD and so the data on the left better matches the
PSD.
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weights given by the inverse of the Jacobian given in Eq. (21) of [99],

J =
M
m2

1

. (A.6)

The complete reweighting procedure can be written

pπB =WJ pπLI , (A.7)

where pπB and pπLI are the posterior probabilities computed using bilby and LAL-
Inference priors, respectively. In practice, we reweight by rejection sampling in
order to preserve the independence of samples. We also account for a difference in
the definition of the Solar mass M� between the current version of bilby and the
version of LALInference used to produce the public GWTC-1 samples that we
compare against.

A.4 CDF Comparisons for GWTC-1 Events

In this Appendix we present the comparisons of the CDFs obtained using bilby
and LALInference for all parameters and for all events. The legend shows the
JS divergence and uncertainty for each parameter, and the shaded regions represent
the 1-, 2-, and 3-σ confidence intervals.
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Figure A.3 CDF comparison between bilby and LALInference for GW150914
and GW151012.
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Figure A.4 CDF comparison between bilby and LALInference for GW151226
and GW170104.

– 121 –



A.4. CDF Comparisons for GWTC-1 Events

Figure A.5 CDF comparison between bilby and LALInference for GW170608
and GW170729.
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Figure A.6 CDF comparison between bilby and LALInference for GW170809
and GW170814.
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Figure A.7 CDF comparison between bilby and LALInference for GW170817
and GW170818.
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Figure A.8 CDF comparison between bilby and LALInference for GW170823.
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A.5 Parameter definitions

bilby is able to sample in a range of different parameterisations of compact binaries.
In Table A.5, we describe the definitions of these parameters as implemented in
bilby. Unless otherwise specified all of these parameters can be sampled in, using
the standard waveform model, likelihood, and conversion functions.

Currently, there is a relative lack of support for sampling parameters describing
eccentric orbits: the eccentricity e and the argument of periapsis ω. This is because
the frequency-domain eccentric waveforms available in LALSimulation are less
complete than their quasi-circular counterparts, containing only the inspiral section
of the signal.

Table A.5: Definition of parameters typically considered for CBC inference. Sub-
script i = 1, 2 indicates whether the parameter pertains to the primary (1) or sec-
ondary (2) binary object. Subscript k = x, y, z refers to a quantity measured in the
x̂, ŷ or ẑ direction; ẑ points along the binary axis of rotation, while the x̂, ŷ directions
are orthogonal to each other and ẑ, defined at reference phase φ, and differ by phase
offset φ12 between the two objects. Additional subscripts: ∗ - defined at a reference
frequency, † - parameter cannot be sampled, only generated in post-processing, × -
parameter cannot yet be sampled or generated in post-processing.

Description LATEX label Units
Detector-frame (redshifted) mass of the ith object mi M�

Detector-frame chirp mass M = (m1m2)
3/5/(m1 + m2)

1/5

[512–514]
M M�

Detector-frame combined mass of the primary and sec-
ondary masses

M M�

The ratio of the secondary and primary masses q =

m2/m1 ≤ 1

q –

A definition of mass ratio which is independent of the iden-
tity of the primary/secondary η = q/(1 + q)2

η –

Source-frame mass of the ith object msource
i = mi/(1 + z)

[515]
msource

i M�

Source-frame chirp mass Msource =M/(1 + z) Msource M�

Source-frame total mass M source =M/(1 + z) M source M�

Dimensionless spin magnitude of the ith object ai –
Zenith angle between the spin and orbital angular momenta
for the ith object

θi rad

Cosine of the zenith angle between the spin and orbital an-
gular momenta for the ith object

cos θi –
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Difference between total and orbital angular momentum az-
imuthal angles

φJL rad

Difference between the azimuthal angles of the individual
spin vector projections onto the orbital plane

φ12 rad

ith object aligned spin: projection of the ith object spin onto
the orbital angular momentum χi = ai cos(θi)

χi –

ith object in-plane spin: magnitude of the projection of the
ith object spin onto the orbital plane χ⊥

i = |ai sin(θi)|
χ⊥
i –

Effective inspiral spin parameter χeff = (χ1 + qχ2)/(1 + q)

[516, 517]
χeff –

Effective precession spin parameter χp = max{χ⊥
1 , q(3q +

4)/(4q + 3)χ⊥
2 } [203, 518]

χp –

kth component of ith object spin in Euclidean coordinates Si,k –
Dimensionless tidal deformability of the ith object Λi –
Combined dimensionless tidal deformability [519, 520] Λ̃ –
Relative difference in the combined tidal deformability [520,
521]

δΛ̃ –

Orbital eccentricity defined at a reference frequency e –
The angle between the secondary mass and the ascending
node of the orbit when the secondary mass is at periapsis

ω rad

Right ascension α rad
Declination δ rad
Zenith angle in the detector-based sky parameterisation κ rad
Azimuthal angle in the detector-based sky parameterisation ε rad
Luminosity distance to the source dL Mpc
Comoving distance depending on specified cosmology dC Mpc
Redshift depending on specified cosmology z –
GPS reference time at the geocenter, typically merger time tc s

GPS reference time at the detector with name IFO, e.g.,
H1_time, typically merger time

tIFO s

Shift to apply for time array used in time marginalization δt s

Polarization angle of the source ψ rad
Binary phase at a reference frequency φ rad
Zenith angle between the total angular momentum and the
line of sight

θJN rad

Cosine of the zenith angle between the total angular mo-
mentum and the line of sight

cos θJN –

Zenith angle between the orbital angular momentum and
the line of sight

ι rad
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Cosine of the zenith angle between the orbital angular mo-
mentum and the line of sight

cos ι –
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Notes on model comparisons
with ranking statistics

B.1 Effective ranking results

The following comparison plots are ordered from highest effective ranking (best
compatibility) to lowest (worst compatibility). Note we draw (O)(500) curves from
each distribution for visualisation purposes, but the mean and 90% intervals are
evaluated with O(8000) draws. Also, note that we compute the ranking statistic
over a range of O(200) mass values, such that the distribution of differences, upon
which the similarity measure is based, is stable.

Since this is an ad-hoc measure, it is not possible to make absolute statements
about a given pair of models from different datasets1. However, it allows us to draw
conclusions in relation to the models analysed. If a new pair of models was present,
the ranking numbers would simply scale, as the relation between models is absolute.

The inclusion here of all pairs of distributions also allows us to assess that the
ordering found with our ad-hoc ranking is sensible and reflects our particular defini-
tion of “similarity”. The models ranked highest cannot be excluded as contributing
formation channels since they are well below the observed rate. While the models
that exceed the observed rate predictions are progressively ranked lower and lower.

1Where a dataset is specified by its components.
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Figure B.1 Differential merger rate for the primary mass from the GWTC-3 popula-
tion model compared to globular cluster simulation models with varying parameters:
initial density, kick prescription, supernova type.
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B.2 Effects of supernova types on ranking results

We can repeat our investigation from Section 4.3.2 by plotting the ranking statistic
results as a function of GC initial density and fixing the kick prescription to be fallK,
as shown in Figure B.2. This Figure highlights the effects of supernova type on the
merger rate and we notice that the largest difference for all GC initial densities is
between the types rapid and B2008. The authors plan to extend this analysis in
future work.

Figure B.2 Effective ranking as a function of globular cluster density parameter
for fixed kick prescription fallK. Different supernova types are shown with different
markers. Blue markers correspond to comparisons over Powerlaw Peak (PP) models,
while yellow markers to Powerlaw Spline (PS).
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Notes on GP density estimation

C.1 Technical details of the GP model

C.1.1 Data pre-processing

Data pre-processing, often referred to as data-set standardisation, is a common
practice within the realm of machine learning and it can have a very high impact on
the accuracy of the model. Our posterior samples have a wide range of values, some
having bounds [−1, 1] and some reaching O(103). We re-scale our posterior samples
such that each parameter ranges between [0, 1] by using the following transformation:

~̃
θd =

(~θd −min(~θd))
(max(~θd)−min(~θd))

(C.1)

where ~̃
θd is the vector of transformed samples and the min and max are evaluated

for each parameter (i.e. each dimension of the posterior samples vector). The
approximate marginalised posterior is scaled according to the z-score, such that it
has zero mean and unit variance:

p̃(θi|d) =
p(θi|d)− µp(θi|d)

σp(θi|d)
(C.2)

where p̃(θi|d) is the transformed marginalised posterior, µp(θi|d) and σp(θi|d) are re-
spectively the mean and standard deviation of the marginalised posterior points. All
pre-processing in this work is performed using Scikit-Learn [522].

C.1.2 Kernel design

The kernel is defined as the prior covariance between any two function values. Our
prior knowledge about the morphology of the posterior can be encoded via this
covariance, as it determines the space of functions that the GP sample paths live
in. The radial basis function (RBF) or squared exponential kernel is the most basic
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kernel and it’s given as:

κRBF(x, x
′) = σ2 exp(−1(x− x′)2

2`2
) (C.3)

where the Euclidian distance between (x, x′) is scaled by the length-scale parameter
` (measure of deviations between points) and the overall variance is denoted by σ2

(average distance of the function away from its mean). Functions drawn from a GP
with this kernel are infinitely differentiable.

For our application, a more complex kernel architecture that can capture the
correlations between parameters is needed. We need smoothness over small scale
features, such that we don’t model random noise fluctuations of samples, and flex-
ibility over the large scale characteristics of the posterior. For this purpose we
employ a combination of RBF and Matern, which is a generalisation of the RBF
kernel with an additional smoothness parameter ν. The smaller ν, the less smooth
the approximated function is:

κMν(x, x
′) = σ2

21−ν

Γ(ν)

(√
2ν

(x− x′)
`

)ν

Kν

(√
2ν

(x− x′)
`

)
(C.4)

We choose ν = (12 ,
5
2) depending on the specific morphology of the posterior, as this

kernel is responsible for encoding its overall shape such as sharp boundary features.
The resulting kernel equation is given by:

κGP (~θd, ~θd
′
) = κRBF × κM52

The kernel multiplication corresponds to an element-wise multiplication of their
corresponding covariance matrices. This means that the resulting covariance matrix
will only have a high value if both covariances have a high value. We also apply
automatic relevance determination (ARD), which modifies the kernel such that for
each dimension an appropriate length scale is chosen [523].

For certain functions, we observe periodicity 1 which can result in a wrapping
at the period boundary. As mentioned in the paper, this can be encoded into
our GP by using a periodic kernel [454, 524]. A periodic kernel maps the input
dimensions x (e.g. ra in this example) using the transformation u = (sin(x), cos(x))

and the original (e.g. the RBF) kernel response is computed in terms of u, this
therefore allows one to encode relationships such as wrapping and periodicity. For
the standard RBF kernel and a given periodicity, p, the periodic kernel is given by:

κPer(RBF)(x, x
′) = σ2 exp(−

2sin2(π|x−x′|
p )

`2
) (C.5)

In Figure C.1, we shifted the right ascension of GW150914 by π/2 to explicitly show
1Such as periodicity in the sky location posteriors due to the standard right ascension, declination

parameterization.
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that using a periodic kernel can provide accurate treatment of the periodic bound-
aries. The GP interpolation presents no extrapolations or artefacts. In particular,
we note that the gap of samples between ∼ 1.1− 2.4rad in the ra (which now looks
like a discontinuous function) is accurately modelled by the GP.

Figure C.1 Sky location of GW150914, where the ra has been shifted by π/2. The
periodic kernel of Equation C.5 was used to generate the GP fit. The contours show
the 50% and 90% confidence intervals.

– 140 –



Appendix D

Notes on bright siren formalism

D.1 Full Derivation for Bright Siren Formalism

The bright siren cosmological analysis relies on a common observation of GW data
xGW and EM data xEM. Using Bayes theorem, we can write the joint posterior on
H0 as,

p(H0|xGW, xEM) =
L(xGW, xEM|H0)π(H0)

β(H0)
(D.1)

where L(xGW, xEM|H0) is the joint likelihood on H0 given the multi-messenger data,
π(H0) is the prior distribution over H0 and β(H0) is a scaling factor encoding our
observational biases.

We can write the likelihood on H0 as,

L(xGW, xEM|H0) =

∫
L(xGW|θGW)L(xEM|θEM)p(θGW, θEM|H0)dθGWdθEM (D.2)

where θGW = {α, δ, dL} are the parameters describing the localization volume for
the GW event and θEM = {αEM, δEM, zEM} are the parameters for the potentially
associated EM counterpart.

Now, the population model relates the location of the EM counterpart with the
GW localization volume as follows,

p(θGW, θEM|H0) = δ(dL − dL(zEM|H0))δ(α− αEM)δ(δ − δEM) (D.3)

so that the likelihood on H0 becomes,

L(xGW, xEM|H0) = (D.4)∫
L(xGW|dL(zEM|H0), αEM, δEM)L(xEM|zEM, αEM, δEM)

p(zEM, αEM, δEM)dαEMdδEMdzEM

Assuming that the measurement error on the EM counterpart parameters is
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described by p(zEM|zobsEM) and that the sky position parameters have negligible un-
certainty, we write the EM likelihood as,

L(xEM|zEM, αEM, δEM) = p(zEM|zobsEM)δ(αEM − αobs
EM)δ(δEM − δobsEM) (D.5)

where we have explicitly written out the observed EM counterpart parameters by
the obs superscript.

Now for simplicity, suppressing the observed labels and marginalizing out over
the true EM parameters, we get the likelihood on H0,

L(xGW, xEM|H0) =

∫
L(xGW|dL(zEM|H0), αEM, δEM)p(zEM|zobsEM)p(zEM, αEM, δEM)dzEM

(D.6)
Now the detectable fraction is given by,

β(H0) =

∫
Pdet(xGW|dL(zEM|H0), αEM, δEM)p(zEM|zobsEM)p(zEM, αEM, δEM)dzEM

(D.7)
where Pdet(xGW|dL(zEM|H0), αEM, δEM) is the probability of detecting xGW as a
function of the redshift zEM and H0. Since this work deals with BNS sources only
we can approximate this term as β(H0) ∝ H3

0 .
Finally, this completes the full derivation for the bright siren posterior given an

appropriate prior onH0 which we take to be uniform, orH0 ∼ U [20, 220] kms−1Mpc−1.

D.2 Weighted cosmological implications

The posterior distribution for the Hubble constant from the BNS event GW190425
can be weighted by its posterior odds relative to GW170817. Taking the posterior
odds for GW170817 from Ashton et al. [487] to be OGW170817

C/R = 106 and the odds
for GW190425 calculated in Section 6.2 to be OGW190425

C/R = 5 (for high-spin priors),
we can scale our results as shown in Figure D.2.
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Figure D.1 Gravitational-wave measurements of H0 from the detections for the first
two binary neutron star observations GW170817 and GW190425 observed by Ad-
vanced LIGO and Virgo. All H0 posteriors distributions are weighted by their
relative posterior odds. We also show the latest constraints on H0 from the CMB
[Planck: 4] and Type 1A supernova observations [SH0ES: 5] for reference.
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