
Int. J. Production Economics 265 (2023) 109005

A
0

Contents lists available at ScienceDirect

International Journal of Production Economics

journal homepage: www.elsevier.com/locate/ijpe

On the equivalence of the proportional and damped trend order-up-to
policies: An eigenvalue analysis
Qinyun Li a,∗, Gerard Gaalman b, Stephen M. Disney c

a Logistics Systems Dynamics Group, Cardiff Business School, Cardiff University, Colum Drive, Cardiff, CF10 3EU, United Kingdom
b Department of Operations, Faculty of Economics and Business, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
c Center for Simulation, Analytics and Modelling, University of Exeter Business School, Streatham Court, Exeter, EX4 4PU, United Kingdom

A R T I C L E I N F O

Keywords:
Damped trend forecasting
Order-up-to policy
Bullwhip
Proportional order-up-to policy
Eigenvalue analysis
Quadratic cost function

A B S T R A C T

We investigate the equivalence of the order-up-to (OUT) replenishment policy with damped trend forecasting
(OUT-DT) to the proportional OUT (POUT) policy via an eigenvalue (zero-pole) analysis. We show when
the damped trend forecasting parameters are selected from a specific region of the parameter space, the
Bullwhip Avoidance () region, the OUT-DT policy potentially possesses some desirable characteristics. Under
an independent and identically distributed (i.i.d.) random demand (the simplest random demand) we show
the OUT-DT policy: (a) can eliminate the bullwhip effect, (b) has the same dynamic response as the POUT
policy (because of the superposition principle, this holds true for all demands, not just i.i.d. demands), (c)
forecasting parameters can be set so as to minimize the sum of the inventory and order variances, and (d)
has a similar order and inventory variance as the POUT policy when non-linear constraints are present. We
investigate the case when the forecasting parameters are selected from the  region and correlated demand
with one auto-regressive term, one integrated term, and two moving average terms, ARIMA(1,1,2), is present.
We reveal the effect of finite lead times on the bullwhip effect (order variance) using an approach based on
the order of the eigenvalues (the zeros and poles). We reveal either: (a) the bullwhip effect is always present
and always increasing in the lead time or (b) a smoothing effect can be present with short lead times (and the
order variance may even be decreasing in the lead time) but the bullwhip effect may return with long lead
times.
1. Introduction

We study the dynamic behaviour of the order-up-to (OUT) policy
when the damped trend (DT) forecasting method is used to predict the
lead time demand. In particular, we investigate the Bullwhip and net
stock variance amplification (NSAmp) generated by this replenishment
system. Bullwhip is usually defined as the ratio of the variance of the
replenishment orders, V[𝑜𝑡], to the variance the demand, V[𝑑𝑡]; V[⋅] is
the variance operator. NSAmp is the ratio of the variance of the net
stock levels, V[𝑛𝑠𝑡], to the variance of the demand:

Bullwhip =
V[𝑜𝑡]
V[𝑑𝑡]

and NSAmp =
V[𝑛𝑠𝑡]
V[𝑑𝑡]

. (1)

The bullwhip effect is an important phenomenon in supply chains, de-
scribing how demand fluctuations are amplified as orders pass echelon-
to-echelon up the supply chain. Bullwhip creates the undesirable con-
sequences of excessive capacity investment, inefficient transport use,
labour idling and over-time, and increased safety stock requirements (Lee
et al., 1997). NSAmp is related to the popular safety stock and fill-rate
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concepts in the inventory literature (Zipkin, 2000; Disney et al., 2015).
It is commonly understood that a small NSAmp ratio leads to high
levels of customer service and increases the effectiveness of inventory
investments in supply chains (Costantino et al., 2016; Khosroshahi
et al., 2016; Lin et al., 2017). Both the Bullwhip and NSAmp metrics
are prevalent in studies that investigate the costs in, and dynamics of,
supply chains and are highly interrelated as production will eventually
(after the lead time) become inventory and the inventory deviations
from a target safety stock are added to production (Shaban et al., 2019;
Ponte et al., 2022).

Li et al. (2014) show the bullwhip effect can be avoided by using
unconventional (with negative forecasting parameters) DT forecasting
parameters within the OUT-DT policy. This analysis was extended
by Li and Disney (2018) where the inventory implications of the OUT-
DT policy were explored. By investigating the relationship between
stability and invertibility, Li and Disney (2018) showed the DT stability
region is the same as its invertability region, further justifying the
use of unconventional DT parameter values. Li and Disney (2018) also
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Fig. 1. Sequence of event in the OUT policy.
characterized the frequency response of the inventory levels maintained
by the OUT-DT policy, finding good inventory control when the fore-
casting parameters were selected from within an identified Bullwhip
Avoidance () region. The  region is a set of DT parameters where
it is possible some demand processes result in the OUT-DT order vari-
ance being less than the demand variance. Similar bullwhip avoidance
behaviour has been recorded in the proportional order-up-to (POUT)
policy literature. The POUT policy contains a proportional feedback
controller to effectively balance the trade-off between inventory and
capacity costs, Chen and Disney (2007).

First, we study how the OUT-DT policy reacts to the i.i.d. de-
mand process. Herein, we relax the unit lead-time assumption in Li
et al. (2014) and investigate the behaviour of the OUT-DT policy
for i.i.d. demand with arbitrary lead times, and obtain expressions
for the order and inventory variances. The superposition principle
means, in linear systems, all demand time series can be made up of
scaled and delayed impulses. The unit impulse is closely related to the
i.i.d. demand process and understanding the OUT-DT policy’s response
to the unit impulse allows one to gain structural insight for all demand
processes. We study the eigenvalues (the poles and zeros) of the OUT-
DT policy and show when they are equivalent to the eigenvalues of
the POUT policy. If the two systems (OUT-DT and POUT) have the
same eigenvalues, they will have the same dynamic response to all
demand processes, Nise (2004). We verify this claim numerically for
the first-order auto-regressive (AR(1)) demand process and the auto-
regressive, integrated, moving average (with one auto-regressive. term,
one integrative term, and two moving average terms, ARIMA(1,1,2))
demand process. That the OUT-DT and POUT policies are equivalent is
an interesting and practically useful insight as it means we can incorpo-
rate the POUT policy into an enterprise resource planning (ERP) system
without having to create User-Defined Functions in the production
planning module. Instead, we can obtain the same dynamic response in
the production orders and inventory levels by setting the parameters in
the forecasting module appropriately. Potentially this offers an easier
implementation route for the POUT policy.

Secondly, we study the OUT-DT policy’s behaviour when ARIMA
(1,1,2) demand is present. DT is known to produce minimum mean
squared error (MMSE) forecasts of demand 𝑘-periods ahead for the
ARIMA(1,1,2) demand process, Roberts (1982). However, in principle,
DT can be used to forecast any demand process (just as exponential
smoothing is optimal for the IMA(0,1,1) demand processes but can
be used, rightly or wrongly, to forecast other demand processes). As
ARIMA(1,1,2) demand is non-stationary, our preferred method for ob-
taining variance expressions, Tsypkin’s Relation (Tsypkin, 1964), is not
valid as the both demand and order variance is infinite. However, we
are able to obtain the inventory variance expression and we adapt the
approach of Gaalman et al. (2022) to investigate whether the difference
between the order and demand variance is increasing in the lead time
for ARIMA(1,1,2) demand.

1.1. Structure of our paper

The paper is organized as follows. After reviewing relevant liter-
ature in Section 2, we present the OUT policy and the POUT policy
2

in Sections 3 and 4 respectively. We revisit the concepts of stability
and invertibility of the DT method in Section 5. We study the OUT-
DT policy under i.i.d. demand and compare it to the POUT policy in
Section 6. Section 7 studies the OUT-DT policy under non-stationary
ARIMA(1,1,2) demand where we reveal how the bullwhip effect is
influenced by the lead time. Section 8 includes additional numerical
analysis to verify the previous analysis on the OUT-DT and POUT
policies and ARIMA(1,1,2) demand. Section 9 concludes.

2. Related literature

The DT forecasting method, often attributed to Gardner and McKen-
zie (1985), is an exponential smoothing based forecasting method
based on three steps. The first step produces an exponential smoothing
forecast of the level of the demand. The second step produces an
exponential smoothing forecast of the rate of change in the demand,
the trend. The third step produces a future projection, the forecast.
The nature of the future projection depends on the observed demand
and 𝛾, the damping parameter. Damped future projections eventually
flatten out to a constant level, 0 < 𝛾 < 1. The future projection could
also exhibit linear (𝛾 = 1) or exponential (𝛾 > 1) growth. The future
projections could also oscillate over time when −1 < 𝛾 < 0, which
may be useful for negatively correlated demand. DT is a generalization
of Holt’s method which has linear future projections, Roberts (1982)
and Gardner and McKenzie (1985) argue that sustained linear future
projections is unrealistic and demand is more likely to flatten out,
suggesting 0 < 𝛾 < 1 should be used.

We have elected to study the DT forecasting method as it is rela-
tively under-studied in the supply chain dynamics literature and the M3
competition showed DT outperformed many other forecasting meth-
ods, Makridakis and Hibon (2000). Only a few methods requiring
significant additional effort (and cost) were able to consistently produce
forecasts with better accuracy than DT. However, those improvements
are small and, in most cases, not statistically significant, Makridakis
and Hibon (2000). Gardner and McKenzie (2011) show DT forecasting
is also a generalization of eleven other forecasting methods, that can be
accessed by setting the forecasting parameters to specific values. Using
the monthly industry series from the M3 competition data, Petropoulos
et al. (2019) explored the implications of various forecasting methods
on both order and inventory variance in the OUT policy and confirmed
DT’s robust inventory performance.

Dejonckheere et al. (2003) found, for all lead times and all possible
demand processes, the OUT policy with exponential smoothing fore-
casts always created the bullwhip effect. Li et al. (2014) showed the
OUT policy with Holt’s forecasts also created bullwhip for all lead times
and all demand processes, but DT does not always create bullwhip. In
addition, Li et al. (2014) proved the bullwhip effect cannot be avoided
when the forecasting parameters were selected from the [0,1] region,
i.e. when 0 ≤ {𝛼, 𝛽, 𝛾} ≤ 1. This was later verified in an empirical
analysis by Chiang et al. (2016) on the monthly unit sales of Chevrolet
automobiles from 1991–2008, where they found the DT parameters
values in the [0,1] range always generated the bullwhip effect.

A considerable amount of literature studies the bullwhip effect
under a finite variance stationary demand. For instance, Gaalman
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(2006) considers the closely related stationary ARMA(2,2) demand
process where it was possible to obtain both demand and order variance
expressions. Bullwhip investigations for non-stationary demand is more
challenging as the demand and order variances are infinite. Gaalman
et al. (2022) present a novel method to determine whether the bull-
whip effect generated by OUT policy reacting the ARMA(𝑝, 𝑞) demand
process is increasing in the lead time or not. The influence of the lead
time on the bullwhip effect was shown to depend upon the order of the
eigenvalues.

A stream of research has shown the POUT policy is effective at
smoothing the bullwhip effect. The POUT is an implementable and
linear generalization of the OUT policy, often employed in the real
world (Potter and Disney, 2010; Cannella and Ciancimino, 2010; Dis-
ney et al., 2013). Unlike the OUT policy, where the complete dis-
crepancy between the target and actual inventory (and the target and
actual WIP) is corrected in each order, the POUT policy’s order only
corrects a fraction of the discrepancy between the target and actual
inventory (and WIP) in each order. One of the earliest studies of the
POUT policy with discrete control theory (z-transform) was conducted
by Deziel and Eilon (1967). John et al. (1994) provides one of the
first studies with continuous control theory (Laplace transform). The
behaviour of the POUT policy was studied by Gaalman and Disney
(2009) under ARMA(2,2) demand with arbitrary lead times. They show
the bullwhip effect can be avoided by carefully calibrating the feedback
controller. Li and Disney (2017) find, when retailers adopt the POUT
policy and supply advanced order information to the manufacturer, the
bullwhip effect, the supply chain inventory costs, and the manufac-
turer’s MRP nervousness can all be reduced. We are unaware of any
paper considering the OUT-DT policy, or indeed a bullwhip study, with
an ARIMA(1,1,2) demand process.

Recent studies have revealed the superiority of POUT on bullwhip
and inventory performance in closed-loop supply chains, Cannella et al.
(2021). They find when tuning the feedback controller based on the
cost structure and the average return rate, the POUT policy brings
larger cost savings than the OUT policy in a hybrid manufacturing/re-
manufacturing system. The POUT policy is also studied in other con-
texts; for example, in a dual sourcing setting by Boute et al. (2022),
with machine learning by Priore et al. (2019) and with low volume
intermittent demand by Rostami-Tabar and Disney (2023). For a com-
plete review of the applications of proportional control to operations
and supply chain management, we refer readers to Lin et al. (2017)
and Ivanov et al. (2018).

3. The order-up-to policy

The OUT replenishment policy is frequently applied in industry,
especially in high volume settings (Li and Disney, 2017; Huang et al.,
2021). We follow the assumptions and notation used in Li et al. (2014)
except now we consider a general lead time 𝑇𝑝 ∈ N0, rather than 𝑇𝑝 = 1
as in Li et al. (2014). The sequence of events within each time period
is illustrated in Fig. 1. First, the order placed 𝑇𝑝 + 1 periods ago is
received sometime during the period; demand is satisfied from finished
goods inventory (we prefer to use the moniker net stock as negative
inventory represents a back-order) during the period, 𝑛𝑠𝑡. Demand is
tallied, future forecasts determined, and replenishment orders 𝑜𝑡 are
generated at the end of the period with

𝑜𝑡 = 𝑑𝑡+𝑇𝑝+1|𝑡 + ns
∗ − ns𝑡 +

𝑇𝑝
∑

𝑖=1

(

𝑑𝑡+𝑖|𝑡 − 𝑜𝑡−𝑖
)

. (2)

Here, 𝑑𝑡+𝑇𝑝+1|𝑡 is a forecast of demand in the period 𝑡 + 𝑇𝑝 + 1, made
(and using only information available) at time 𝑡. That is, 𝑑𝑡+𝑇𝑝+1|𝑡 is a
forecast of demand in the period after the lead time. ∑𝑇𝑝

𝑖=1 𝑜𝑡−𝑖 is the
work-in-progress. The time-varying target work-in-progress, ∑𝑇𝑝

𝑖=1 𝑑𝑡+𝑖|𝑡,
is the sum of the demand forecasts made at time 𝑡 for the periods from
𝑡 + 1 to 𝑡 + 𝑇 . The target net stock (ns∗) is a safety stock used to
3

𝑝

ensure a strategic level of inventory availability; ns∗ =
√

V[𝑛𝑠𝑡]𝐹−1 [𝑝].
ere 𝐹−1[𝑝] is the inverse of the cumulative inventory distribution
valuated at the target availability 𝑝 (Hosoda and Disney, 2009). If per
nit, per period, inventory holding (ℎ) and backlog costs (𝑏) exist, then
= 𝑏∕(𝑏 + ℎ), and 𝑛𝑠∗ minimizes inventory costs, Churchman et al.

1957). The inventory balance equation,

s𝑡 = ns𝑡−1 − 𝑑𝑡 + 𝑜𝑡−𝑇𝑝−1, (3)

ompletes the OUT policy specification.
In order to preserve linearity of the system and to allow for a

ractable analysis, the following assumptions are made: Negative de-
and quantities indicate that customers are free to return products

o suppliers (this can become negligible when the mean demand is
ufficiently larger than the standard deviation of demand). Negative
rders indicate that finished goods are disassembled into raw material
this can become negligible when the mean of the orders is sufficiently
arger than the standard deviation of the orders). There are no capac-
ty constraints in the system unless specified, and unmet demand is
acklogged. We refer readers to Disney et al. (2021) and Wang et al.
2022) for more discussion on these factors. Boute et al. (2022) provide
he following generic z-transform transfer function for the orders in the
UT policy,

𝑂(𝑧)
𝜖(𝑧)

=
𝐷(𝑧)
𝜖(𝑧)

⎛

⎜

⎜

⎝

1 +
𝑇𝑝
∑

𝑘=1

�̂�𝑘(𝑧)
𝜖(𝑧)

(

1 − 1
𝑧

)
⎞

⎟

⎟

⎠

, (4)

where 𝑧 is the z-transform operator, Nise (2004), 𝐷(𝑧)∕𝜖(𝑧) is the
ransfer function of the demand generation process (in relation to the
hite noise input 𝜖𝑡) and �̂�𝑘(𝑧)∕𝜖(𝑧) is the transfer function of the
-periods ahead forecast. These will be defined in later sections.

A general form of the net stock transfer function, NS(𝑧)∕𝜖(𝑧), is given
y

NS (𝑧)
𝜖(𝑧)

= 𝑧
𝑧 − 1

(

𝑧−𝑇𝑝−1
𝑂(𝑧)
𝜖(𝑧)

−
𝐷(𝑧)
𝜖(𝑧)

)

. (5)

Here, 𝑧∕(𝑧−1) is the z-transform of the integration operator and 𝑧−𝑇𝑝−1

is the z-transform of the delay operator. By convention, lower case
letters are used for variables in the time domain and equivalent upper
case letters are used for the corresponding variables in the frequency
domain.

4. The proportional order-up-to (POUT) policy under i.i.d. de-
mand

The POUT policy is the optimal linear replenishment rule for mini-
mizing the weighted sum of order and inventory variance (Chen and
Disney, 2007) and is an appropriate benchmark for this study. The
POUT policy (Boute et al., 2009) is defined as

𝑜𝑡 = 𝑑𝑡+𝑇𝑝+1|𝑡 +
1
𝑇𝑖

⎛

⎜

⎜

⎝

ns∗ − ns𝑡 +
𝑇𝑝
∑

𝑖=1

(

𝑑𝑡+𝑖|𝑡 − 𝑜𝑡−𝑖
)

⎞

⎟

⎟

⎠

. (6)

𝑇𝑖 is a proportional feedback controller with which we can alter the
dynamic behaviour of the OUT policy, Disney and Towill (2003). When
an i.i.d. demand is present, MMSE forecasts of future demands are given
by

∀𝑖, 𝑑𝑡+𝑖|𝑡 = 𝑑𝑡+1|𝑡 = 𝜇𝑑 . (7)

Eqs. (6) and (3) can be converted into a block diagram (see Fig. 2)
which can be rearranged using common control theory techniques (we
refer interested readers to Nise (2004) for more on this aspect) to yield
the following z-transform of the POUT policy,

𝑂 (𝑧)
𝜖 (𝑧)

|

|

|

|POUT
=

1
𝑇𝑖
𝑧

𝑧 − 𝑇𝑖−1
(8)
𝑇𝑖
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hich is in zero-pole form. The transfer function of the net stock levels
aintained by the POUT policy can be written as

NS (𝑧)
𝜖 (𝑧)

|

|

|

|POUT
=

∑𝑇𝑝−1
𝑖=0 𝑧𝑖 + 𝑧𝑇𝑝𝑇𝑖

𝑧𝑇𝑝−1(𝑇𝑖 − 1) − 𝑧𝑇𝑝𝑇𝑖
=

1−𝑧𝑇𝑝
1−𝑧 + 𝑧𝑇𝑝𝑇𝑖

𝑧𝑇𝑝−1(𝑇𝑖 − 1) − 𝑧𝑇𝑝𝑇𝑖
. (9)

The lead time 𝑇𝑝 clearly has an impact on the order of the net stock
transfer function.

4.1. Stability of the POUT policy

Stability is concerned with a system’s response to a bounded system
input. If the system produces a bounded output, the system is consid-
ered to be stable. If the system’s response diverges exponentially, or
oscillates with ever increasing amplitude, the system is unstable. For
stability, the eigenvalues (the zeros and poles) of the POUT policy must
lie within the unit circle in the complex plane, Nise (2004) and Jury
(1974). Eq. (8) shows the POUT policy has one real zero at 𝜆𝜃1 = 0 and
ne real pole at 𝜆𝜙1 = (𝑇𝑖 − 1)∕𝑇𝑖. The pole is inside the unit circle in
he complex plane if 𝑇𝑖 > 0.5, indicating the stability criteria, Disney
2008).

.2. Variance ratio analysis of the POUT policy under i.i.d. demand

For a linear system reacting to an i.i.d. random (white noise) input
𝑡, the long-run variance of the system’s output 𝑥𝑡, can be calculated

via Tsypkin’s Relation, (Disney and Towill, 2003):

V[System output, 𝑥𝑡]
V[White noise input, 𝜖𝑡]

=
∞
∑

𝑡=0
(�̃�𝑡)2 (10)

where �̃�𝑡 is the response of the system when demand is given by the
unit impulse (Dirac delta) function; i.e. 𝜖𝑡 = 1 if 𝑡 = 0, 𝜖𝑡 = 0
otherwise, Gaalman et al. (2022). Consider first the Bullwhip ratio. The
relevant system output is the orders 𝑜𝑡, those impulse response �̃�𝑡 can
be obtained by taking the inverse z-transform of (8),

̃𝑡 = 𝑍−1
⎡

⎢

⎢

⎣

1
𝑇𝑖
𝑧

𝑧 − 𝑇𝑖−1
𝑇𝑖

⎤

⎥

⎥

⎦

= 1
𝑇𝑖

(

𝑇𝑖 − 1
𝑇𝑖

)𝑡
. (11)

Using (11) in (10) yields the Bullwhip ratio for the POUT policy under
.i.d. demand1:

ullwhip =
V[𝑜𝑡]
V[𝑑𝑡]

=
∞
∑

𝑡=0

(

�̃�𝑡
)2 =

∞
∑

𝑡=0

(

1
𝑇𝑖

(

𝑇𝑖 − 1
𝑇𝑖

)𝑡
)2

= 1
2𝑇𝑖 − 1

. (12)

1

4

As demand is i.i.d., 𝑑𝑡 = 𝜖𝑡 and V[𝑑𝑡] = V[𝜖𝑡]. m
Note, Bullwhip = 1 when 𝑇𝑖 = 1, Bullwhip is decreasing convex in 𝑇𝑖,
nd Bullwhip = 0 when 𝑇𝑖 → ∞.2 Notice that, under i.i.d. demand the
ullwhip produced by the POUT policy is independent of the lead time.
he NSAmp ratio can be obtained by first taking the inverse z-transform
f (9) to yield the net stock impulse response,

𝑛𝑠𝑡 = 𝑍−1
⎡

⎢

⎢

⎣

∑𝑇𝑝−1
𝑖=0 𝑧𝑖 + 𝑧𝑇𝑝𝑇𝑖

𝑧𝑇𝑝−1(𝑇𝑖 − 1) − 𝑧𝑇𝑝𝑇𝑖

⎤

⎥

⎥

⎦

=

⎧

⎪

⎨

⎪

⎩

−1 if 𝑡 ≤ 𝑇𝑝,

−
(

𝑇𝑖−1
𝑇 𝑖

)𝑡−𝑇𝑝
if 𝑡 > 𝑇𝑝.

(13)

Using (13) in (10) provides NSAmp for the POUT policy under i.i.d. de-
mand:

NSAmp =
V[𝑛𝑠𝑡]
V[𝑑𝑡]

=
𝑇𝑝
∑

𝑡=0
(−1)2 +

∞
∑

𝑡=𝑇𝑝+1

(

−
(

𝑇𝑖 − 1
𝑇 𝑖

)𝑡−𝑇𝑝
)2

= 1 + 𝑇𝑝 +
(𝑇𝑖 − 1)2

2𝑇𝑖 − 1
.

(14)

SAmp is convex in 𝑇𝑖, with an asymptote to infinity when 𝑇𝑖 ↓ 0.5,
nd is increasing in 𝑇𝑖 when 𝑇𝑖 > 1; a global minimum of NSAmp =
+ 𝑇𝑝 exists at 𝑇𝑖 = 1. The POUT policy represents the optimal linear
uadratic regulator for minimizing the sum of the inventory and order
ariances, Chen and Disney (2007). The aim of the next section is to
etermine if the OUT-DT policy can match, or better, this performance.

. Damped trend forecasting

We now turn our attention to the DT forecasting mechanism. Gard-
er and McKenzie (1985) provide the following recurrence form of the
T forecasting method:

�̂�𝑡 = 𝛼𝑑𝑡 + (1 − 𝛼)
(

�̂�𝑡−1 + 𝛾�̂�𝑡−1
)

, (15)

�̂�𝑡 = 𝛽
(

�̂�𝑡 − �̂�𝑡−1
)

+ (1 − 𝛽)𝛾�̂�𝑡−1, (16)

�̂�+𝑘|𝑡 = �̂�𝑡 + 𝜑 [𝑘] �̂�𝑡. (17)

ere, 𝑑𝑡+𝑘|𝑡 is the forecast of the demand 𝑘 periods ahead, 𝑑𝑡+𝑘, made
t time 𝑡. 𝑑𝑡+𝑘|𝑡 is the sum of a level, �̂�𝑡, and a trend, �̂�𝑡, component and

[𝑘] =
𝑘
∑

𝑖=1
𝛾 𝑖 =

𝛾
(

1 − 𝛾𝑘
)

1 − 𝛾
. (18)

2 Note, ↑ means approach from below, ↓ means approach from above, and →

eans tends to.
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Fig. 3. Characterization of the DT parameter space when 0 < 𝛾 < 1.
Source: Adapted from Li and Disney (2018).

𝛼, 𝛽, 𝛾} are the DT forecasting parameters. 𝛼 is a smoothing constant
pplied to the level �̂�𝑡, 𝛽 is a smoothing constant applied to the trend
̂ 𝑡, and 𝛾 shapes the forecasts as they are projected into the future.
he trend is damped when 0 < 𝛾 < 1, although 𝛾 can take on other
alues. If 𝛾 = 0, there is no trend and the forecasting system acts as
xponential smoothing would react. If 𝛾 = 1, the model is equivalent
o Holt’s method (with linear future forecast projections). When 𝛾 > 1,
he forecasts exhibit exponential growth; −1 < 𝛾 < 0 can be used to
reate future projections which contain period-to-period oscillations.

Li et al. (2014) provide the following second order transfer function
f (17), the 𝑘-period ahead DT forecast,

�̂�𝑘 (𝑧)
𝜖 (𝑧)

=
𝑧2𝛼 (1 + 𝛽𝜑 [𝑘]) − 𝑧𝛼 (𝛾(1 − 𝛽) + 𝛽𝜑 [𝑘])
𝑧2 − 𝑧(1 + 𝛾 − 𝛼(1 + 𝛽𝛾)) − 𝛾(𝛼 − 1)

. (19)

5.1. Invertibility and stability of damped trend forecasting

The concept of invertibility is concerned with the ability to identify
the demand process structure from past demand observations. Invert-
ibility is related to linear moving average (MA) models or the MA part
of auto-regressive integrated moving average (ARIMA) models, Box
et al. (2008). All exponential smoothing forecasting methods (of which
DT is one) can be converted into an equivalent ARIMA model. If the MA
part of an ARIMA model can be expressed as an auto-regressive (AR)
model of infinite order, the model is deemed invertible and implies
all relevant state variables are directly observable, Box et al. (2008).
For the DT model, the invertibility region is the same as the stability
region, Li and Disney (2018).

The DT stability region has been studied by others. Gardner and
McKenzie (1985, p. 1239) provided a stability region for DT, but it is
only valid for 0 ≤ 𝛾 ≤ 1; they do however acknowledge that stable
parameters exist outside of their stated stability region. Hyndman et al.
(2008a, p. 412) studied the stability of the state space representation
of the ETS(A, Ad, N) model when 0 < 𝛾 ≤ 1 only. The ETS(A, Ad, N)
model is equivalent to DT after a suitable change of notation. Hyndman
et al. (2008b) also provided stability boundaries under the condition
that 0 < 𝛾 ≤ 1. Li et al. (2014, pp. 5–6) studied the stability of DT
5

via Jury’s Inners approach (Jury, 1974) and visualized the complete
stability boundaries for all 𝛾. For convenience we repeat them here:
When 𝛾 ≠ 0, the following relations must be satisfied for stability,

𝛾 − 1 < 𝛼𝛾 < 𝛾 + 1 and 𝛼(𝛾 − 1) < 𝛼𝛽𝛾 < (2 − 𝛼)(𝛾 + 1). (20)

When 𝛾 = 0, 0 < 𝛼 < 2 is required for stability. Eq. (20) is equivalent
to the result of Hyndman et al. (2008a) when 0 < 𝛾 ≤ 1 and their trend
smoothing parameter is set to 𝛼𝛽𝛾.

Eq. (20) offers a much wider range of values to the parameter
set {𝛼, 𝛽, 𝛾}, compared to the traditional [0, 1] interval suggested in
the literature, see for example Winters (1960) and Gardner (1990).
Commercial software such as SAP and Forecast Pro® also selects 𝛼
and 𝛽 between 0 and 1 (SAP, 2016; Stellwagen and Goodrich, 2011),
SAS/ETS® considers 0 < 𝛾 < 1, 0 < 𝛼 < 2, and 0 < 𝛾𝛽 < (4∕𝛼 − 2), SAS
(2018). We emphasize, these do not include {𝛼, 𝛽} < 0 and are only
part of the complete stability region identified in (20) and characterized
(when 0 < 𝛾 < 1) in Fig. 3.

6. The OUT policy under i.i.d. demand with damped trend fore-
casting

To study Bullwhip and NSAmp behaviour of the OUT-DT policy, we
will need the transfer function of the replenishment orders and the net
stock levels. The transfer function of the orders can be obtained by
using 𝐷[𝑧]∕𝜖[𝑧] = 1 (the transfer function for i.i.d. demand) and (19)
(the transfer function for DT forecasts) in (4) and simplifying:

𝑂 (𝑧)
𝜖 (𝑧)

= 1 +
𝛼(𝑧 − 1)

(

𝛽𝜁 (𝑧 − 1) +
(

𝑇𝑝 + 1
)

(𝑧 − (1 − 𝛽)𝛾)
)

𝑧2 + 𝑧(𝛼𝛽𝛾 + 𝛼 − 𝛾 − 1) + (1 − 𝛼)𝛾
, (21)

here

= 𝛷
[

𝑇𝑝
]

+ 𝜑
[

𝑇𝑝 + 1
]

. (22)

ecall, 𝜑[𝑘] was given in (18), and

[

𝑇𝑝
]

=
𝑇𝑝
∑

𝑘=1
𝜑[𝑘] =

𝛾
(

𝛾𝑇𝑝+1 + 𝑇𝑝(1 − 𝛾) − 𝛾
)

(1 − 𝛾)2
. (23)

Eq. (21) concurs with the transfer function reported in Li et al. (2014)
who conducted a frequency analysis of the OUT-DT policy. The net
stock transfer function can be found by substituting (21) into (5) and
simplifying to yield,

NS (𝑧)
𝜖 (𝑧)

=
𝛼
(

𝛽𝜁 (𝑧 − 1) +
(

𝑇𝑝 + 1
)

(𝑧 − (1 − 𝛽)𝛾)
)

𝑧𝑇𝑝
(

𝑧2 + 𝑧(𝛼𝛽𝛾 + 𝛼 − 𝛾 − 1) + (1 − 𝛼)𝛾
)
−

𝑧−𝑇𝑝 (𝑧1+𝑇𝑝 − 1)
𝑧 − 1

. (24)

These transfer functions will be used to study the Bullwhip and NSAmp
behaviour under i.i.d. demand in Section 6.1; Section 6.2 considers the
equivalence of the dynamic response of OUT-DT and POUT policies.

6.1. OUT-DT variance ratio analysis under i.i.d. demand

Although DT is the optimal forecast for ARIMA(1,1,2) demand, it is
insightful to first investigate its performance under i.i.d. demand. We
use the same procedure outlined in Section 4.2 to obtain the variance
ratios. We take the inverse z-transform of (21), sum its square via
(10), and divide by the demand variance, to provide the following
expression for the Bullwhip ratio when i.i.d. demand is forecasted via
the DT method:

V[𝑜𝑡]
V[𝑑𝑡]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2𝛼2𝛽𝜁 (1 + 𝛾(2 − 3𝛽(1 − 𝛾) + 𝛾) + 2𝑇𝑝(1 − 𝛾)(1 + (1 − 𝛽)𝛾)) + 4𝛼2𝛽2𝜁2(1 − 𝛾)+
2 − 2𝛾2 − 2𝛼3(𝛽𝛾 + 𝛾 + 1)(𝛽𝜁 + 𝑇𝑝 + 1)(𝛽(𝛾 − 𝜁 ) − (1 − 𝛽)𝛾𝑇𝑝)+

𝛼
(

4𝛽
(

1 − 𝛾2
)

𝜁 + 𝛾(𝛽𝛾 − 𝛽 − 𝛾 + 2) + 4
(

1 − 𝛾2
)

𝑇𝑝 + 3
)

+
𝛼2𝛾2

(

3 + 𝛽 + 2𝑇𝑝(𝛽 − 𝑇𝑝 + 1) + 2𝛽2(𝑇𝑝 + 1)2
)

+
𝛼2(𝛾(2(2 − 𝛽)(𝑇𝑝 + 1) − 1) + 2𝑇𝑝(𝑇𝑝 + 1))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(1 − 𝛾(1 − 𝛼))((2 − 𝛼)(𝛾 + 1) − 𝛼𝛽𝛾)
.

(25)
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Li and Disney (2018) identified a region of the parametric plane
where it is possible for the OUT-DT to avoid creating bullwhip for any
lead time. The region was specified by:

0 < 𝛾 < 1,
(

𝛼min =
𝛾−1
𝛾

)

< 𝛼 < 0,
(

𝛽min =
−
(

𝑇𝑝+1
)

(𝛾+1)(1−𝛾)2

(𝛾−𝛾3)𝑇𝑝+𝛾2
(

2𝛾𝑇𝑝+1−𝛾−2
)

+𝛾

)

≤ 𝛽 ≤
(

𝛽max =
𝛾−1
𝛾

)

.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(26)

The lower bound, 𝛽min in (26), is increasing in the lead time 𝑇𝑝.
When (26) holds, we say the parameter set is a member of the Bullwhip
Avoidance () area, {𝛼, 𝛽, 𝛾} ∈ . The area was found by Li and
Disney (2018) in a frequency response analysis that considered how
the harmonic frequencies in demand were amplified by the OUT-DT
policy. Note, (26) does not guarantee Bullwhip < 1, only that there
exists a demand pattern that could have Bullwhip < 1. In this study,
we sharpen and refine the analysis of Li and Disney (2018) by focusing
on the characterizations of Bullwhip and NSAmp within the  region
under i.i.d. demand and ARIMA(1,1,2) demand.

Studying the Bullwhip ratio of the OUT-DT policy (25), we found
it has no stationary points within the stability region and is always
differentiable within the  region. Thus, any local minima and max-
ima must exist on the boundaries of the  region. The same prop-
erties were found in the NSAmp ratio. Taking each boundary into
consideration, we find a minimal Bullwhip of

Bullwhip =
V[𝑜𝑡]
V[𝑑𝑡]

=

(

1 + 𝛾
(

2𝛼2𝛾2
(

𝛾𝑇𝑝 − 1
)

(

𝛾𝑇𝑝+1 − 1
)

+
𝛼(𝛾 − 1)

(

𝛾
(

2(𝛾 + 1)𝛾𝑇𝑝 − 3
)

− 1
)

+ (𝛾 − 1)𝛾 − 1
)

)

(𝛾 − 1)2(1 + (1 − 𝛼)𝛾)

(27)

exists when 𝛽 ↑ 𝛽𝑚𝑎𝑥. Eq. (27) has a value between 0 and 1, ∀𝛾 when 𝛼 ∈
 and 𝑇𝑝 ∈ N0. That V[𝑜𝑡]∕V[𝑑𝑡] < 1 implies that a smoothing effect
is present under i.i.d. demand. It is also interesting that Bullwhip → 1
when 𝛼 ↑ 0. This suggests when capacity costs dominate, a small
negative 𝛼 and/or a small negative 𝛽 should be adopted due to its
ullwhip avoidance behaviour.

Using Tsypkin’s relation, the NSAmp ratio can be obtained from
24). We proceed in exactly the same manner: first take the inverse
-transform of (24) to obtain the impulse response and then sum the
quared impulse response over 𝑡 = 0 to infinity to yield the variance of
he net stock levels. The only complication is the need to specify a lead
ime to be able to take the inverse z-transform. Repeating the procedure
or 𝑇𝑝 = {0, 1, 2...} and using induction provides

V[𝑛𝑠𝑡]
V[𝑑𝑡]

= 1 + 𝑇𝑝+ (28)

𝛼

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝛾 − 1)2
(

−𝑇 2
𝑝

)

((𝛽 − 1)𝛾 + 1)
(

𝛾
(

(𝛼 − 1)𝛾2 − 𝛼 − 2𝛼𝛽𝛾 + 𝛾 + 1
)

− 1
)

+
𝛾
(

𝛼 + 𝛽(𝛾 + 1)(𝛾 − 1)4 − 𝛾3((𝛾 − 4)𝛾 + 5) + 𝛼𝛾
(

𝛾((𝛾 − 2)(𝛾 − 1)𝛾 + 2)+
2𝛽2𝛾2

(

𝛾𝑇𝑝 − 1
)(

𝛾𝑇𝑝+2 + 1 − 2𝛾
)

+ 𝛽(𝛾 − 1)2
(

𝛾
(

−𝛾 + 2(𝛾 + 1)𝛾𝑇𝑝 − 4
)

+
1
)

− 3
)

− 4 + 5𝛾
)

− 2(𝛾 − 1)𝑇𝑝((𝛽 − 1)𝛾 + 1)
(

𝛾
(

𝛼 −
(

(𝛾 − 2)𝛾2
)

+
𝛼𝛾

(

𝛽 + (𝛾 − 1)𝛾 + 𝛽𝛾
(

(𝛾 + 1)𝛾𝑇𝑝 − 3
)

− 1
)

− 2
)

+ 1
)

+ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(𝛾 − 1)4((1 − 𝛼)𝛾 − 1)(𝛾(𝛼𝛽 + 𝛼 − 2) + 𝛼 − 2)
.

A minimal NSAmp of 1 + 𝑇𝑝 occurs when 𝛼 ↑ 0. This means when
i.i.d. demand is present, NSAmp ≥ 1 + 𝑇𝑝 in the OUT-DT system for
{𝛼, 𝛽, 𝛾} ∈ . Further, when the inventory variance is minimized,
Bullwhip = 1. We can conclude, when inventory costs are significantly
larger than capacity costs and i.i.d. demand is present, 𝛼 = 0 is
recommended. Setting 𝛼 = 0 results in MMSE forecasts of demand (that
s, all future forecasts equal the mean of the i.i.d. demand).

Fig. 4 illustrates Bullwhip and NSAmp via contour plots of the {𝛼, 𝛽}
plane for various lead times. When 𝛽 ↓ 𝛽𝑚𝑖𝑛 and 𝛼 ↓ 𝛼𝑚𝑖𝑛, both Bullwhip
and NSAmp ratios increase dramatically. Furthermore, the Bullwhip
value is rather insensitive to the lead time, similar to the behaviour
6

of the POUT policy, while the lead time has a significant influence on
NSAmp. These imply, in the long lead time cases, 𝛽 ↓ 𝛽𝑚𝑖𝑛 and 𝛼 ↓ 𝛼𝑚𝑖𝑛
needs to be avoided; the top right quarter of the  plane is always
superior.

Note, when 𝛽 ↑ 𝛽𝑚𝑎𝑥, 𝛼 ↓ 𝛼𝑚𝑖𝑛 and 𝛾 ↓ 0, the bullwhip effect reaches a
global minimum (of V[𝑜𝑡]∕V[𝑑𝑡] = 0), but NSAmp → ∞. In other words,
the order variance can be reduced to zero for i.i.d. demand at the cost
of increased inventory variance, indicating that a trade-off exists, just
as it does for the POUT policy. When the business objective is to reduce
both inventory and capacity costs, a 𝛾 close to 0 and a small negative 𝛽
are recommended as it is guaranteed to eliminate the bullwhip effect;
we can then optimize 𝛼 to minimize the sum of inventory and capacity
costs.

Inspired by the Linear Quadratic Gaussian (LQG) approach (with
a linear system, a quadratic objective function, and a Gaussian input
signal), Fig. 5 considers the trade-off between NSAmp and Bullwhip as
a convex combination of a single weight, 𝑤, via the following objective
function,

𝐽 = (1 −𝑤)V[𝑛𝑠𝑡] +𝑤V[𝑜𝑡]. (29)

olt et al. (1955) also assumed costs to the linear weighted sum of the
ariances. This cost function is also similar to the inventory holding and
acklog cost and installed capacity and over time approach of Boute
t al. (2022), except there the objective function reduces to a weighted
um of the net stock and order standard deviations. When the weight

increases (in other words, when more emphasis is placed on the
rder variance (bullwhip costs) rather than on the net stock variance
inventory costs)) the optimal solution moves from the right of the
arametric plane (see Fig. 5a) to the top the parametric plane (see
ig. 5c). This further verifies our recommendations that 𝛼 = 0 can be
sed to minimize inventory costs, while 𝛽 ↑ 𝛽𝑚𝑎𝑥 is required if it is
mportant to minimize the costs associated with the bullwhip effect.

.2. Comparison between the OUT-DT policy and the proportional OUT
olicy

Fig. 6a shows the inventory and order impulse responses for 𝛾 ↓ 0,
↑ 𝛽𝑚𝑎𝑥, and 𝛼𝑚𝑖𝑛 < 𝛼 < 0. They are quite different to the impulse

esponses from the conventional [0, 1] parameter region as shown in
ig. 6b. Our recommended  region produces a smoothed, damped,
nd exponential increasing (or decreasing) impulse response, rather
han an under-damped oscillatory response (seen in Fig. 6b). These are
esirable dynamic properties which further strengthens our argument
or selecting parameters from the  region. Bullwhip and NSAmp
atios are also noted in Fig. 6 where we can see Bullwhip = 0.4 and
SAmp = 1.25 for the  system in Fig. 6a. Both these measures
ominate the non- settings in Fig. 6b where Bullwhip = 2.21 and
SAmp = 1.31.

That the OUT-DT policy is capable of eliminating bullwhip effect
ithout using a proportional controller in the inventory position feed-
ack loop is astonishing. Visually, the character of the impulse response
n Fig. 6a is similar to the POUT policies (Dejonckheere et al., 2003;
aalman and Disney, 2009) and the closely related automatic pipeline

nventory and order based production control system (Disney and
owill, 2003). These insights motivate us to investigate the similarity
etween the OUT-DT policy and the POUT policy. In this section, we
ompare the poles and zeros of POUT and OUT-DT policies and show
hen they are equivalent. To avoid lengthy equations, we assume
𝛼, 𝛽, 𝛾} are selected from the  region where 𝛽 ↑ 𝛽max = (𝛾 − 1)∕𝛾.

Writing (21), the OUT-DT order transfer function, in pole-zero form
o match (8) gives

𝑂 (𝑧)
=

𝛼𝛾−𝛼𝛾𝑇𝑝+2−𝛾+1
1−𝛾

(

𝑧 −
𝛾
(

𝛼𝛾−𝛼𝛾𝑇𝑝+1−𝛾+1
)

𝛼𝛾−𝛼𝛾𝑇𝑝+2−𝛾+1

)

. (30)

𝜖 (𝑧) 𝑧 − (1 − 𝛼)𝛾
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Fig. 4. Bullwhip and NSAmp in the OUT-DT policy when 𝛾 = 0.1.
Fig. 5. Contour plots for the weighted convex sum of the order and inventory variances given by (29), maintained by the OUT-DT policy when 𝛾 = 0.1 and 𝑇𝑝 = 1. Note, when
→ 0 inventory costs dominate, when 𝑤 → 1 capacity costs dominate.
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hen

=
𝑇𝑖(𝛾 − 1) + 1

𝑇𝑖𝛾
, 𝛽 ↑ 𝛽max = (𝛾 − 1)∕𝛾, and 𝛾 ↓ 0, (31)

e may re-write (30) into the following form

𝑂 (𝑧)
𝜖 (𝑧)

=

1−(1−𝑇𝑖)𝛾
𝑇𝑝+1−𝑇𝑖𝛾

𝑇𝑝+2

𝑇𝑖(1−𝛾)

(

𝑧 −
𝛾
(

1−(1−𝑇𝑖)𝛾
𝑇𝑝−𝑇𝑖𝛾

𝑇𝑝+1
)

1−(1−𝑇𝑖)𝛾
𝑇𝑝+1−𝑇𝑖𝛾

𝑇𝑝+2

)

𝑧 − 𝑇𝑖−1
. (32)
7

𝑇𝑖
Both (8) and (32) are first-order systems with a single pole at 𝑧 =
(𝑇𝑖−1)∕𝑇𝑖 and have a geometrically decreasing impulse responses when
𝑇𝑖 > 1. When 𝛾 = 0, the order transfer function of the OUT-DT policy
has a zero at 𝑧 = 0. Although 𝛾 cannot be 0 if we wish to select the

T parameters from the  region, the zeros of the order transfer
unctions in OUT-DT and POUT policies can be very close to each
ther if 𝛾 ↓ 0 (as when 𝛾 > 0, the  region exists). Therefore,
y letting 𝛼 = (𝑇𝑖(𝛾 − 1) + 1)∕(𝑇𝑖𝛾), 𝛽 ↑ 𝛽𝑚𝑎𝑥 and 𝛾 ↓ 0, the order
ransfer function in both the OUT-DT and POUT policies will have,
or all intents and purposes, identical poles and zeros. If the poles
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Fig. 6. The impulse response of inventory and order in the OUT-DT system, 𝑇𝑝 = 0. Panel a: A damped impulse response. Panel b: An undamped impulse response.
Fig. 7. Impulse responses of the POUT (with 𝑇𝑖 = 4) and OUT-DT (with {𝛾 = 0.1, 𝛼 = −6.5, 𝛽 = −9}) systems and their differences when 𝑇𝑝 = 3. Note: Inventory Delta
= 𝑛𝑠𝑡|OUT-DT − 𝑛𝑠𝑡|POUT, Order Delta = 𝑜𝑡|OUT-DT − 𝑜𝑡|POUT.
and zeros are identical, the order transfer functions are identical, both
systems respond to demand in exactly the same way, and their order
and inventory responses will be identical. Fig. 7 provides an example
of the system impulse response when 𝑇𝑝 = 3. Fig. 7 confirms the order
and inventory impulse responses in the OUT-DT system approximate
the POUT’s system responses. Note, we could have set 𝛾 closer to zero
in Fig. 7 and this would have resulted in a pair of impulse responses
that are indistinguishable from each other. However, we elected to use
𝛾 = 0.1 to demonstrate how small the discrepancy is.

It is interesting to note we can always set the eigenvalues of the
OUT-DT policy arbitrarily close to the eigenvalues of the POUT policy.
In this case, the two systems will have the same dynamic response and
the same variance ratios. Thus, as the POUT policy’s Bullwhip ratio
(under i.i.d. demand) is independent of the lead time, so can be the
OUT-DT policy’s Bullwhip ratio.

The golden ratio in production and inventory control. Assuming the
objective function stated in (29), Disney et al. (2004) studied the POUT
system and found the optimal 𝑇𝑖 is given by

𝑇 ∗
𝑖 = 𝑤 − 1 −

√

1 + 2𝑤 − 3𝑤2

2𝑤 − 2
, (33)

which is easily recognized as having the same form as the golden ratio
when 𝑤 = 1∕2. Substituting (33) into (31), we obtain the optimal
forecasting parameters to use in OUT-DT policy for minimizing the
8

objective function (29) are

𝛼 = 1 − 𝑤 −
√

1 + 2𝑤 − 3𝑤2 + 1
2𝑤𝛾

, 𝛽 ↑ 𝛽𝑚𝑎𝑥, and 𝛾 ↓ 0. (34)

In summary, we have shown the OUT-DT replenishment policy has
(almost) the same dynamic behaviour as the POUT policy but without
introducing proportional feedback controllers into the replenishment
policy.

6.3. Impact of capacity constraints

Having established the OUT-DT policy can be made to have the
same response as the POUT policy, this section will consider if this
equivalence holds when we have the following non-linear capacity
constraint on the orders,

𝑜𝑡 = min
[

𝑑𝑡+𝑇𝑝+1|𝑡 + ns
∗ − ns𝑡 +

𝑇𝑝
∑

𝑖=1

(

𝑑𝑡+𝑖|𝑡 − 𝑜𝑡−𝑖
)

, 𝑘

]

. (35)

Here min[𝑥, 𝑘] returns the minimum of 𝑥 and 𝑘 where 𝑘 is the capacity
limit (the maximum quantity that can be produced). Studying this type
of policy is very difficult; only limited theoretical progress has been
made in the literature. For example, see Disney et al. (2021) for issues
with non-linear effects placed on the inventory levels and Wang et al.
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(2022) for results on non-linear effect placed on the production orders.
Hence, we will proceed via a simulation analysis.

We set up a Monte Carlo simulation (one in Excel and another
in Python to verify our work), 10 000 time periods in length, and
average the results from 1000 replications. Fig. 8 shows how order
and inventory variances of the two replenishment policies change with
capacity constraints and the value of 𝑇𝑖. Here, the 𝛼 in the OUT-DT
olicy adapts to the POUT policy’s 𝑇𝑖 value using (31). Fig. 9 illustrates
he performance of the OUT-DT and POUT systems via the order and
nventory variances under different capacity constraints and lead times.

Both figures show the variance of the orders and the variance of
he inventory maintained by the OUT-DT is very similar to the POUT
olicy. When the capacity constraint is tight (that is, when 𝑘 is close
o, but higher than the mean demand, 𝜇), the order variance is small
nd the inventory variance is very high. When the capacity constraint is
ufficiently large, the capacity limit no longer constrains the production
nd the order and inventory variances matches those predicted by
12), (14), (27) and (28). The sum of an increasing concave function
the order variance) and a decreasing convex function (the inventory
ariance) results in a convex weighted sum of the two variances. This
as also noted by Ponte et al. (2017). The natural consequence is that

he capacity constraint can also be used as a mechanism to balance the
rade-off between the order and inventory variances.

We find when capacity constraint is tight, the order variability in the
UT-DT policy is slightly higher than the POUT policy, see panels A1-
4 in Fig. 8, a larger value of the feedback controller 𝑇𝑖, increases the
ifference between the two systems’ order variances. The two systems’
rder variance are the same when 𝑇𝑖 = 1, see panel A5 in Fig. 8, or
hen the capacity constraint is sufficiently large.

Fig. 9 shows both policies’ order variance and inventory variance
nder capacity constraints and for different lead times. The trade-off
etween the order and inventory variances exists for any lead time.
he marginally higher OUT-DT’s order variances with tight capacity
onstraints are also observed under different lead times. Thus, we con-
lude whatever the feedback controller value the POUT policy adopts,
here is always an equivalent OUT-DT policy, reacting to i.i.d. demand
imilarly to the POUT policy, with or without capacity constraints, and
or all lead times.

As the order and inventory variances for the POUT and DT-OUT
olicies, in both the linear and non-linear setting, are similar we can be
onfident the dynamic behaviour of an ERP system can be manipulated
y altering how forecasts are made without any unpredicted or unusual
onsequences. We do not need to incorporate the POUT policy into the
RP system’s planning book. The damped trend forecasting mechanism
ffers an easy implementation route as changes to the planning book
an be done by the commercial forecasting department alone.

. The OUT policy under ARIMA(1,1,2) demand with damped
rend forecasting

In Section 6 we revealed the OUT-DT system can avoid the bullwhip
ffect when an i.i.d. demand is present. The DT forecasting system
s not an optimal forecasting system for the i.i.d. demand process;
T is the optimal forecasting method for predicting ARIMA(1,1,2)
emand, Gardner and McKenzie (1985). In Section 7.1 we explore
he ARIMA(1,1,2) demand process; in Section 7.2 we investigate the
ullwhip-lead time behaviour of the OUT-DT policy.

.1. Eigenvalue analysis of ARIMA(1,1,2) demand

The ARIMA(1,1,2) demand process is given by,
9

𝑡 = 𝑑𝑡−1 + 𝜙1(𝑑𝑡−1 − 𝑑𝑡−2) − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2 + 𝜖𝑡. (36)
ardner and McKenzie (1985) also show the damped trend forecast
roduces a MMSE forecast of ARIMA(1,1,2) demand when

𝜃1 = 1 + 𝛾 − 𝛼 − 𝛼𝛽𝛾,
𝜃2 = 𝛾(𝛼 − 1),
𝜙1 = 𝛾.

⎫

⎪

⎬

⎪

⎭

(37)

Given a set of ARIMA(1,1,2) parameters, perhaps identified from a real
time series, we can solve the simultaneous equations in (37) for the
damped trend parameters:

𝛼 = 𝜃2+𝜙1
𝜙1

,

𝛽 =
𝜙21−𝜃2−𝜃1𝜙1
𝜃2𝜙1+𝜙21

,

𝛾 = 𝜙1.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(38)

ater, we will exploit the eigenvalues of the ARIMA(1,1,2) demand
rocess to make some bullwhip predictions. The eigenvalues can be
dentified from the z-transform transfer function of the ARIMA(1,1,2)
emand process,
𝐷ARIMA(1,1,2)(𝑧)

𝜖(𝑧)
=

𝑧2 − 𝑧𝜃1 − 𝜃2
𝑧2 − 𝑧(1 + 𝜙1) + 𝜙1

. (39)

Eq. (39) has the following eigenvalues:

𝜆𝜃1 = 1
2

(

𝜃1 −
√

𝜃21 + 4𝜃2

)

, 𝜆𝜃2 = 1
2

(

𝜃1 +
√

𝜃21 + 4𝜃2

)

,

𝜆𝜙1 = 𝜙1, and 𝜆𝜙2 = 1.
(40)

ere, 𝜆𝜃{1,2} are the zeros, the roots of the numerator of (39) w.r.t. 𝑧;
𝜙
{1,2} are the poles, the roots of the denominator of (39) w.r.t. 𝑧. Note,
he largest pole, 𝜆𝜙2 = 1, implying the system is non-stationary. The
mpulse response, while it does not escape to infinity or oscillate with
ver increasing amplitude, it does not return to zero. Rather it has an
ff-set, implying the demand has infinite variance, see (10). The order
ariance is also infinite, so the Bullwhip ratio V[𝑜𝑡]∕V[𝑑𝑡] is undefined;
ater we will show that the positivity of the difference V[𝑜𝑡] −V[𝑑𝑡] can
e used to determine if the infinite order variance is larger than the
nfinite demand variance. The variance of the net stock levels is finite
nd is given by:

V[𝑛𝑠𝑡]
V[𝜖𝑡]

=(−1)2 +
𝑇𝑝
∑

𝑡=1
(𝑛𝑠𝑡)2

=
𝑇 3
𝑝 (𝜃1 + 𝜃2 − 1)2

3(𝜙1 − 1)2
+

𝑇 2
𝑝 (𝜃1 + 𝜃2 − 1)(𝜙1(3𝜃1 + 𝜃2 − 5) − 𝜃1 + 𝜃2 + 3)

2(𝜙1 − 1)3
+

⎛

⎜

⎜

⎜

⎝

𝑇𝑝(𝜙2
1(13𝜃

2
1 + 𝜃1(8𝜃2 − 44) + (𝜃2 − 14)𝜃2 + 37)+

4𝜙1(2𝜃1(𝜃2 + 5) − 2𝜃21 + (𝜃2 − 2)𝜃2 − 11) + 𝜃21 − 4𝜃1𝜃2 − 8𝜃1+
𝜃22 + 10𝜃2 + 13) − 12𝜙𝑇𝑝+1

1 (𝜙1(𝜃1 − 𝜙1) + 𝜃2)(𝜃1 + 𝑇𝑝(𝜃1 + 𝜃2 − 1) − 2)

⎞

⎟

⎟

⎟

⎠

6(𝜙1 − 1)4
+

(

𝜙1(𝜃21𝜙
3
1 − 2𝜃21𝜙1 − 2𝜃1𝜃2 − 4𝜃1𝜙3

1 + 2𝜃1𝜙2
1 + 4𝜃1𝜙1 − 𝜃22𝜙1 + 2𝜃2𝜙3

1−
4𝜃2𝜙2

1 + 4𝜃2 + 𝜙2𝑇𝑝+1
1 (𝜙1(𝜃1 − 𝜙1) + 𝜃2)2 + 5𝜙3

1 − 4𝜙2
1 − 5𝜙1 + 4) − 1

)

(𝜙1 − 1)5(𝜙1 + 1)
.

(41)

The variance of the net stock levels maintained by (correctly specified)
the OUT-DT policy under ARIMA(1,1,2) demand is increasing in the
lead time 𝑇𝑝 and always greater than V[𝜖𝑡]. However, NSAmp = 0 under
ARIMA(1,1,2) demand as the demand variance is infinite.

7.2. Bullwhip-lead time behaviour of the OUT-DT policy under ARIMA
(1,1,2) demand

The ARIMA(1,1,2) demand process is non-stationary and as such
the demand and order variances are infinite; the Bullwhip ratio does
not exist. However, Gaalman et al. (2022) has investigated how the
bullwhip produced by the OUT policy is affected by the lead time. Their
study contains two important innovations that allow us to gain some
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Fig. 8. Order (left column) and inventory (right column) variances under different capacity constraints and different feedback controller values (rows). Note, in all panels:
𝑇𝑝 = 1, 𝛾 = 0.000001, i.i.d. demand with 𝜇 = 10, 𝜎 = 2.
insight into bullwhip behaviour, despite the non-stationary nature of
demand. First, they show how one may use the difference between
the order variance and the demand variance to determine whether a
bullwhip effect is present or not under non-stationary demand. As the
10
difference between the two infinite variances is finite, the positivity of
this difference can indicate whether a bullwhip effect is present or not.
That is, they show bullwhip effect is present if CB[𝑇𝑝] = (V(𝑜𝑡)−V(𝑑𝑡))∕
V(𝜖𝑡) > 0, where CB[𝑇𝑝] is the critical bullwhip metric for lead time 𝑇𝑝.
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Q. Li et al.

Fig. 9. Order (left column) and inventory (right column) variances under different capacity constraints and different lead times (rows). Note, in all panels: 𝑇𝑖 = 3, 𝛾 = 0.000001,
i.i.d. demand with 𝜇 = 10, 𝜎 = 2.
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w

Fig. 10. Possible eigenvalue orderings. Panel (a) All possible eigenvalue ordering for second order demand processes. Panel (b) Possible eigenvalue orderings under ARIMA(1,1,2)

ith parameters selected from the |𝛾↓0 region.
Source: Adapted from Gaalman et al. (2022).
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Using the demand impulse responses and Tsypkin’s Relation, they show
the critical bullwhip metric CB[𝑇𝑝] becomes

CB[𝑇𝑝] =
(𝑇𝑝+1
∑

𝑗=0
𝑑𝑗

)2
−

𝑇𝑝+1
∑

𝑡=0
𝑑2𝑡

=
2𝛼2𝛽2𝛾5

(

𝛾𝑇𝑝 − 1
)

(

𝛾𝑇𝑝+1 − 1
)

(𝛾 − 1)4(𝛾 + 1)
−

2𝛼𝑇𝑝(𝛾(𝛽 − 1) + 1)
𝛾 − 1

− (42)

𝛼2𝑇𝑝((𝛽 − 1)𝛾 + 1)
(

𝛾
(

𝛽(1 − 3𝛾 + 2𝛾𝑇𝑝+2) + 𝛾 − 2
)

+ 1
)

(𝛾 − 1)3
+

𝛼
(

𝛼((𝛽 − 1)𝑇𝑝𝛾 + 𝑇𝑝)2 + 2𝛾
(

𝛽
(

𝛾𝑇𝑝+2 − 2𝛾 + 1
)

+ 𝛾 − 2
)

+ 2
)

(𝛾 − 1)2

when the OUT-DT policy is used to place replenishment orders. It is
profound that the question of whether bullwhip exists or not depends
on only the demand process and its parameters up until the period
after the lead time. Gaalman et al. (2022) also reveal that if the
demand impulse was always positive (∀𝑡, 𝑑𝑡 > 0) the bullwhip effect
is always produced by the OUT-DT policy and that it increases in the
lead time. We repeat their results in our notation to make this paper
self-contained:

Theorem 1 (Necessary-Sufficient Condition for a Bullwhip Effect that is
Increasing the Lead Time, Gaalman et al. (2022)). CB[𝑇𝑝] is always positive
and increasing in the lead time ∀𝑇𝑝 iff {𝑑1, 𝑑2,… , 𝑑𝑇𝑝+1} > 0.

Proof. We refer readers to Gaalman et al. (2022) for the proof of
Theorem 1. □

Theorem 1 shows that bullwhip is always present and always in-
creasing in the lead time if, and only if, the demand impulse response
𝑑 is positive for all 𝑡; that is, CB[𝑇𝑝] is increasing in 𝑇𝑝 iff ∀𝑡, 𝑑𝑡 > 0.
There is one important subtlety to consider that Gaalman et al. (2022)
capture in the following Corollary.

Corollary 1 (Necessary-Sufficient Condition for an Order Variance that is
Increasing in the Lead Time, Gaalman et al. (2022)). The order variance
is increasing in the lead time 𝑇𝑝 iff {𝑑2,… , 𝑑𝑇𝑝+1} > 0 and 𝑑1 > −1.

Proof. We refer readers to Gaalman et al. (2022) for the proof of
Corollary 1.

Corollary 1 shows that an order variance (which may be less than
the demand variance when 𝑇𝑝 = 0 if −1 < 𝑑1 < 0) is increasing in the
lead time if ∀𝑡 > 1, 𝑑𝑡 > 0. Thus, the bullwhip effect may not be present
with short lead times but may re-emerge as the lead time increases.
12
The positivity of the demand impulse can be determined by the
order (location) of the eigenvalues (poles and zeros) of the demand
process. Eq. (39) gave the transfer function of the ARIMA(1,1,2) de-
mand; it is a second order transfer function with six possible eigenvalue
orderings (Cases 𝐴, 𝐵, . . . , 𝐹 , see Fig. 10). Then, within each ordering, a
further three sub-cases were present depending on how many poles are
positive or negative. Assume, from (40), the larger pole 𝜆𝜙2 ↑ 1 (i.e. 𝜙
is very slightly smaller than unity) to ensure stability. This implies that
cases 𝐶, 𝐷, and 𝐸 cannot exist when we have ARIMA(1,1,2) demand,
as those cases have a zero above the largest pole.

Let |𝛾↓0 denote the  area defined by a small positive 𝛾, i.e. 𝛾 ↓
0, the  area where the OUT-DT policy mimics the POUT policy. In
the |𝛾↓0 area, the smaller pole lies at 𝜆𝜙1 =↓ 0. That is, the smaller
pole is positive, implying that the |𝛾↓0 region contains only the sub-
ases 𝐴1, 𝐵1, and 𝐹1 which have two positive poles, see Gaalman et al.
2022). In cases A and F, as the two zeros do not have a poles between
hem, Cases A and F can have complex zeros and we need to consider
hen the real part of the largest zero is negative for case A and when

he real part of the smallest zero is positive for case F.
Case 𝐴1 exists if the largest zero 𝜆𝜃2 is less than 𝜆𝜙1 =↓ 0. This is

quivalent to

1 < 0 ∧ 𝜃2 < 0, (43)

here ∧ is the logical and operator. When case 𝐴1 exists, the demand
mpulse, 𝑑𝑡+1 > 0, and the bullwhip is always present and it increases in
he lead time (Gaalman et al., 2022). In the |𝛾↓0 region, the 𝜃1 < 0
onstraint is equivalent to

∈ (−∞, (1 − 𝛼 + 𝛾)∕(𝛼𝛾)). (44)

he topological spaces in (44) and (26) are disjoint, thus case 𝐴1 cannot
xist in the |𝛾↓0 area.
Case 𝐵1 exists if the largest zero 𝜆𝜃2 is greater than 𝜆𝜙1 =↓ 0 and

he smallest zero 𝜆𝜃1 is less than 𝜆𝜙1 =↓ 0. This is equivalent to 𝜃2 > 0.
hen case 𝐵1 exists, the demand impulse, 𝑑𝑡+1 > 0 and the bullwhip is

lways present and increases in the lead time (Gaalman et al., 2022).
he constraint that 𝜃2 > 0 is equivalent to 𝛾(𝛼 − 1) > 0. However, this

s not possible in the |𝛾↓0 region as 𝛼 < 0 and 𝛾 > 0.
Case 𝐹1 exists if the smallest zero 𝜆𝜃1 is greater than 𝜆𝜙1 =↓ 0, which

s equivalent to

1 > 0 ∧ 𝜃2 < 0. (45)

ase 𝐹1 exists in the |𝛾↓0 region as it is the logical complement of
ase 𝐴1 and 𝐵1.

Gaalman et al. (2022) showed the case 𝐹 demand impulse has two
ssential characters:

• Case 𝐹1𝑎: If 𝑑1 = 1 + 𝜙1 − 𝜃1 < 0 then the demand impulse

is initially negative (i.e. CB[0] < 0) indicating bullwhip is not
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Fig. 11. Areas of increasing bullwhip over the lead time, Case 𝐹1, in the  region.
0

present when the lead time 𝑇𝑝 = 0. Gaalman et al. (2022) show
when 𝑡 becomes sufficiently large the demand impulse response
turns, and remains, positive after one change of sign. That is,
𝑑𝑡+1 > 0 when 𝑡 ≥ 𝜏, where

𝜏 =
ln(|𝑟2∕𝑟1|)
ln(|𝜆𝜙1 ∕𝜆

𝜙
2 |)

(46)

and

𝑟1 =
(𝜆𝜙1 − 𝜆𝜃1)(𝜆

𝜙
1 − 𝜆𝜃2)

(𝜆𝜙1 − 𝜆𝜙2 )
and 𝑟2 =

(𝜆𝜙2 − 𝜆𝜃1)(𝜆
𝜙
2 − 𝜆𝜃2)

(𝜆𝜙2 − 𝜆𝜙1 )
. (47)

The order variance can be increasing in the lead time if 𝑑1 ≥ −1
and ∀𝑡 ≥ 2, 𝑑𝑡 > 0, Gaalman et al. (2022). However, when 𝑑1 ≥ −1
and 1 < 𝑡 < 𝜏, 𝑑𝑡 < 0, the order variance is initially less than the
demand variance and is decreasing in the lead time until 𝑇𝑝 ≥ 𝜏
at which point the order variance will then increase in the lead
time.
There is a threshold, denoted by an inverse function of 𝛽, where
𝑑𝑛 = 0,

𝛽[𝑛] = −1
/ 𝑛

∑

𝑗=1
𝛾𝑗 =

1 − 𝛾
𝛾(𝛾𝑛 − 1)

, 𝑛 ∈ N+, (48)

where 𝑛 = ⌈𝜏⌉ − 1. Eq. (48) reveals that when 𝛽 > 𝛽[𝑛] there will
be 𝑛 periods with a decreasing order variance until 𝑇𝑝 = 𝑛 before
there being one period of no change in the order variance after
which the order variance will increase in the lead time. When
𝛽 = 𝛽[1] = −1∕𝛾, the order variance equals the demand variance
for 𝑇𝑝 = 0, and will be increasing in the lead time. For 𝛽 = 𝛽[𝑛],
𝑛 ≠ 1, the order variance will not change when 𝑇𝑝 is between
𝑛 − 2 and 𝑛 − 1. Before 𝑇𝑝 = 𝑛 − 2 there is an decreasing order
variance and after 𝑇𝑝 = 𝑛 − 1 the order variance is increasing
in the lead time. In Case 𝐹1𝑎, the bullwhip effect does not exist
when 𝑇𝑝 < 𝑛, but will emerge eventually. The lead time where the
bullwhip effect appears is determined by the parameter values in
13

the ARIMA(1,1,2) demand process.
• Case 𝐹1𝑏: The demand impulse is always positive if 𝑑1 > 0, which
is equivalent to 𝛽 < −1∕𝛾. In this sub-case, Bullwhip is always
increasing in the lead time.

From Theorem 1 and Corollary 1, it is easy to show 𝑑1 > 0 when

< 𝛾 < 1,
(

𝛼min =
𝛾 − 1
𝛾

)

< 𝛼 < 0, and 𝛽 < −1∕𝛾. (49)

Thus, when (49) holds, Case 𝐹1𝑏 is present. Furthermore, −1 < 𝑑1 < 0
occurs when

0 < 𝛾 < 1,
(

𝛼min =
𝛾 − 1
𝛾

)

< 𝛼 < 0, and

−1∕𝛾 < 𝛽 <
(

𝛽max =
𝛾 − 1
𝛾

)

(50)

holds, indicating that Case 𝐹1𝑎 is present. Together, this means in the
 region, either the bullwhip effect is always present and increases
in the lead time (case 𝐹1𝑏) or the bullwhip effect is initially not present
with a short lead time (and may even decrease in the lead time)
but with a long enough lead time, the order variance will become
increasing in the lead time (case 𝐹1𝑎). Fig. 11 maps these possibilities
to the  region.

8. Numerical confirmation of main results

In this section we will confirm our main results via a numerical
investigation. In Table 1, we detail the order response to i.i.d., AR(1),
and two different ARIMA(1,1,2) demand processes. For each demand
process we compare the POUT order’s response to the OUT-DT order’s
response. We also quantify the variance of the orders, the variance of
the inventory and the variance of the demand when they exist. In all
cases the OUT-DT policy uses 𝛼 = −0.65, 𝛽 = −99, 𝛾 = 0.01; the POUT
policy always uses 𝑇𝑖 = 1.081081, to reflect the equivalence in (31). The
lead time is always 𝑇𝑝 = 3.

Consider first, the i.i.d. demand. As 𝛾 = 0.01 the zeros of the
transfer function are very close together (closer than the zeros in the
impulse response detailed in Fig. 7), and the two impulse responses
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Table 1
Comparison of the POUT and OUT-DT responses to various different demand processes. The superposition principle means
the two policies respond to different demands in a similar manner. Notes: Lead time, 𝑇𝑝 = 3, POUT policy uses 𝑇𝑖 = 1.081081,
DT-OUT policy uses 𝛼 = −0.65, 𝛽 = −99, 𝛾 = 0.01.

Demand i.i.d. AR(1) (𝜙 = 0.5) ARIMA(1,1,2)a ARIMA(1,1,2)b

Impulse response POUT OUT-DT POUT OUT-DT POUT OUT-DT POUT OUT-DT

𝑡 = 0 0.9250 0.9343 0.9250 0.9343 0.9250 0.9343 0.9250 0.9343
𝑡 = 1 0.0694 0.0607 0.5319 0.5279 0.0093 0.0000 0.3719 0.3663
𝑡 = 2 0.0052 0.0046 0.2711 0.2685 0.0001 0.0000 0.3528 0.3526
𝑡 = 3 0.0004 0.0003 0.1360 0.1346 0.0000 0.0000 0.3716 0.3718
𝑡 = 4 0.0000 0.0000 0.0680 0.0673 0.0000 0.0000 0.3913 0.3915
𝑡 = 5 0.0000 0.0000 0.0340 0.0337 0.0000 0.0000 0.4091 0.4093
𝑡 = 6 0.0000 0.0000 0.0170 0.0168 0.0000 0.0000 0.4252 0.4254
𝑡 = 7 0.0000 0.0000 0.0085 0.0084 0.0000 0.0000 0.4397 0.4398
𝑡 = 8 0.000 0.0000 0.0043 0.0042 0.0000 0.0000 0.4527 0.4528
𝑡 = 9 0.0000 0.0000 0.0021 0.0021 0.0000 0.0000 0.4644 0.4646
𝑡 = 10 0.0000 0.0000 0.0011 0.0011 0.0000 0.0000 0.4750 0.4751
𝑡 = 11 0.0000 0.0000 0.0005 0.0005 0.0000 0.0000 0.4845 0.4846
𝑡 = 12 0.0000 0.0000 0.0003 0.0003 0.0000 0.0000 0.4931 0.4931

V[Orders] 0.86047 0.87671 1.23669 1.24794 0.85571 0.87300 ∞ ∞
V[Inventory] 4.00565 4.00433 11.2029 11.1767 3.62032 3.62023 ∞ ∞
V[Demand] 1.00000 1.00000 1.33333 1.33333 1.00423 1.00423 ∞ ∞
CB[𝑇𝑝] −0.13953 −0.12329 −0.09661 −0.08536 −0.14851 −0.13123 −0.12841 −0.11325
Bullwhip 0.86047 0.87671 0.92754 0.93598 0.85211 0.86932 Undefined Undefined

aARIMA(1,1,2) demand parameters: 𝜙1 = 0.01, 𝜃1 = 1.075, 𝜃2 = −0.075, a correctly identified ARIMA(1,1,2) process.
bARIMA(1,1,2) demand parameters: 𝜙1 = 0.9, 𝜃1 = 1.573, 𝜃2 = −0.63, an incorrectly identified ARIMA(1,1,2) demand process.
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re very similar. The i.i.d. demand has unit variance and as the im-
ulse responses return to zero over time, the variance of the orders,
nventory, and demand exist. CB[𝑇𝑝] is the difference between the
rder and demand variance, a negative number indicates the order
ariance is smaller then the demand variance. The Bullwhip ratio can
e calculated in this case, and is less than unity, also indicating that
he order variance is less than the demand variance for both the POUT
olicy and the OUT-DT policy. The difference between the POUT and
UT-DT bullwhip ratios is less than 1.9%, confirming that policies with
ear identical eigenvalues have a very similar dynamic responses.

The second demand process we studied is an AR(1) demand with an
uto-regressive co-efficient of 𝜙 = 0.5. Although we have only detailed
he order’s impulse response for first 12 time periods, the impulse
esponses return to zero over time. The demand is stationary and has
finite variance of 4∕3. The POUT and OUT-DT policy have almost

dentical dynamic responses and summary statics. The differences in
he two bullwhip ratios is less than 1%. That the AR(1) responses of the
wo systems (POUT and OUT-DT) are similar is a direct consequence
f the superposition principle in linear systems. The superposition
rinciple states that any demand process can be constructed from scaled
nd delayed unit impulses. Furthermore, the dynamic response to that
rbitrary demand, in a linear system, can be constructed from scaled
nd delayed impulse responses. Thus, if the impulse response is similar
n two linear systems, so will their dynamic response to any other
emand process.

The third demand process is an ARIMA(1,1,2) demand process that
atches the DT parameters used in the OUT-DT policy. Recall {𝛼, 𝛽, 𝛾}

an be mapped to {𝜙1, 𝜃1, 𝜃2} via the relations in (37) and (38). As
= 𝛽max = (𝛾 − 1)∕𝛾 then the demand impulse returns to zero and

he demand, order, and inventory variances exist and are finite. This
emand process is rather special; the ARIMA(1,1,2) is non-stationary in
eneral, but on the 𝛽max boundary of the  region, the ARIMA(1,1,2)
s stationary.

The forth demand process is an ARIMA(1,1,2) demand process
hich is not matched to the DT forecasting parameters in the OUT-DT
olicy. The demand process is non-stationary and does not return to
ero over time (there is an off-set of 𝛼(𝛾(1 − 𝛽) − 1)∕(1 − 𝛾)). Due to this
ff-set, the demand and order variances are infinite. However, there
s a finite difference between the two infinite variance as indicated by
14

r

he finite CB[𝑇𝑝] metric. CB[𝑇𝑝] < 0 indicating that the order variance
s smaller than the demand variance. Notice as this ARIMA(1,1,2) is
isspecified by the DT forecasting method here, the inventory levels
o not return to zero and inventory variance is infinite. That is, (41)
oes not hold here (it does hold for the third demand process though,
hich is correctly specified).

. Concluding remarks

The invertibility and the stability regions of the DT forecasting
echanism offered some theoretical support for exploring the perfor-
ance of the OUT-DT policy over a wider range of parameter values

han is usually recommended in the literature. While other research
as chosen DT parameter values from the [0, 1] interval, our work
hows that if unconventional {𝛼, 𝛽, 𝛾} values are selected the bullwhip
ffect can be avoided without unduly increasing the NSAmp ratio;
hese results hold for all lead times. This is interesting as closely
elated forecasting methods such as exponential smoothing and Holt’s
ethod are known to create bullwhip for all lead times and all demand
rocesses.

We studied the OUT-DT policy reacting to i.i.d. random demand
nd identified the variance ratios for Bullwhip and NSAmp. The OUT-
T policy was shown to have nearly identical poles and zeros to the
ell established POUT policy. The POUT policy, with its proportional

eedback controller, has long been known to avoid the bullwhip effect
hile maintaining reasonable inventory control. The OUT-DT policy
as no such proportional feedback controller; yet despite this, it is
ble to perform – for all practical purposes – identically to the POUT
olicy. This provides a new opportunity to reduce the bullwhip effect in
ractical situations. With only a change in the forecasting software one
an obtain a smooth production rate without the need to make changes
o an ERP system’s planning book (which we have done in the past
sing User-Defined Functions, a rather complicated programming task
s it requires extra rows in the MRP table and, of course, user training).
his has practically important managerial implications as it allows the
hange to be easily implemented in only the forecasting module of
opular ERP systems. In large ERP settings, access to different parts of
he ERP system is often limited to users from individual departments
ithin the company. Having only a need to alter the forecasting pa-
ameters in a forecasting module is likely to require only local changes
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within the forecasting/planning department. This also calls for ERP and
forecasting software providers to allow parameters to be set in this
unconventional region.

DT is structurally optimal for forecasting the non-stationary ARIMA
(1,1,2) demand process; the ARIMA(1,1,2) demand has infinite vari-
ance and because of this, so does the order variance. However, we
were able to obtain an expression for the net stock variance and were
able to adapt the eigenvalue ordering approach of Gaalman et al.
(2022) to investigate how the bullwhip effect (via the order variance)
was influenced by the lead time. Within the |𝛾↓0 area we found
the bullwhip effect either exists for all lead times or it is initially
not present with short lead times, but reappears when the lead time
becomes sufficiently long. Near the point of minimum order variance,
the order variance was found to be smaller than the demand variance
with lead time 𝑇𝑝 = 0. In some cases the order variance was found
to be decreasing in the lead time (with short lead times), but the order
variance always becomes increasing in the lead time when the lead time
is long enough. These facts emphasize the need for lead time reduction
in well-designed supply chains.

9.1. Further work

Future research could be directed to expanding our work on the
equivalence of OUT-DT and POUT policies by considering further the
impact of non-linearity’s such as forbidden returns, minimum order
quantities, and non-negative inventory constraints. Furthermore, study-
ing the use of the DT forecasting method in the POUT policy, or even
the full-state order-up-to policy, Gaalman (2006), would be interesting.
Finally, we should remember that we have only studied a subset of
the possible ARIMA(1,1,2) demands; those ARIMA(1,1,2) demands in
the  region. Understanding the nature of the OUT-DT policy for all
ARIMA(1,1,2) demands is worthy of consideration.

Data availability

No data was used for the research described in the article.
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