Journal of Intelligent & Robotic Systems (2023) 109:18

https://doi.org/10.1007/s10846-023-01950-y

REGULAR PAPER O‘)

Check for
updates

Deep Reinforcement Learning with Heuristic Corrections for UGV
Navigation

Changyun Wei' - Yajun Li' - Yongping Ouyang’ - Ze Ji?

Received: 13 March 2023 / Accepted: 7 August 2023
© The Author(s) 2023

Abstract

Mapless navigation for mobile Unmanned Ground Vehicles (UGVs) using Deep Reinforcement Learning (DRL) has attracted
significantly rising attention in robotic and related research communities. Collision avoidance from dynamic obstacles in
unstructured environments, such as pedestrians and other vehicles, is one of the key challenges for mapless navigation. This
paper proposes a DRL algorithm based on heuristic correction learning for autonomous navigation of a UGV in mapless
configuration. We use a 24-dimensional lidar sensor, and merge the target position information and the speed information of
the UGV as the input of the reinforcement learning agent. The actions of the UGV are produced as the output of the agent.
Our proposed algorithm has been trained and evaluated in both static and dynamic environments. The experimental result
shows that our proposed algorithm can reach the target in less time with shorter distances under the premise of ensuring safety
than other algorithms. Especially, the success rate of our proposed algorithm is 2.05 times higher than the second effective
algorithm and the trajectory efficiency is improved by 24% in the dynamic environment. Finally, our proposed algorithm is
deployed on a real robot in the real-world environment to validate and evaluate the algorithm performance. Experimental

results show that our proposed algorithm can be directly applied to real robots robustly.

Keywords Collision avoidance - Deep reinforcement learning - Heuristic correction learning

1 Introduction

Unmanned Ground Vehicles (UGVs) have been extensively
applied in the society for a large range of scenarios, such
as patrolling robots in public areas, logistics robots in smart
warehouses, service robots in shopping malls, and even assis-
tive robots in the medical field. In particular scenarios, UGVs
are required to operate in dynamic and unstructured envi-
ronments, such as food delivery in a restaurant or luggage

B ZeJi
jizl @cardiff.ac.uk

Changyun Wei
c.wei@hhu.edu.cn

Yajun Li
liyajun0908 @ gmail.com

Yongping Ouyang

yongping_ouyang @outlook.com

College of Mechanical and Electrical Engineering,
Hohai University, Changzhou, China

School of Engineering, Cardiff University,
Cardiff, Wales, UK

Published online: 06 September 2023

handling in an airport surrounded by pedestrian crowds.
UGVs that perform these tasks automatically need to be able
to find optimal paths for navigation and avoid dynamic obsta-
cles safely, when people are surrounding or approaching the
robot.

Many recent studies have addressed the autonomous nav-
igation and collision avoidance problem in the robot control
field in the past decades. In order to allow more gener-
alisability for autonomous navigation in multiple different
environments, various path planning algorithms have been
proposed by scholars. These path planning algorithms can
be categorized into map-known environment and mapless
environment depending on the availability of prior map
information of environment. Classical methods for robot
autonomous navigation in map-known environments are usu-
ally map-based algorithms, such as Dijkstra, A* [1] and
RRT* [2] that require pre-built maps using techniques, such
as simultaneous localization and mapping (SLAM) [3], so
that path planning can be carried out based on pre-known
environmental information.

However, in complex scenarios, such as large smart fac-
tories, UGVs need to not only observe the information of the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-023-01950-y&domain=pdf
http://orcid.org/0000-0002-8968-9902

18 Page2of17

Journal of Intelligent & Robotic Systems (2023) 109:18

surrounding environment, but also avoid factory employees
or pedestrians. It requires the UGV to be able to update the
map environment in real time. Considering the interaction
of social awareness between factory employees or pedestri-
ans and UGVs in indoor environment, the work [4] presents
a motion planner with social awareness based on deep rein-
forcement learning. The experimental results show that UGV
can autonomously navigate and avoid obstacles in indoor
environment, but it realizes navigation and dynamic obstacle
avoidance in indoor environment on the premise of estab-
lishing a global map. However, UGVs are unable to create
accurate global maps of the environment in many applica-
tion scenarios. When the environment is unknown, UGV
cannot construct the environment in advance and can only
move according to the relative position information of the tar-
get and its onboard measurement of the local surroundings.
Therefore, one of the major challenges for robot autonomous
navigation is to develop a safe and robust collision avoidance
policy for the robot navigating from its starting position to
its destination.

Since conventional approaches heavily rely on global
maps, specific rules and heuristics, they often necessitate
human intervention and are difficult to adapt to complex
and uncertain environments. Deep reinforcement learning
(DRL) has emerged as a promising approach to combin-
ing deep learning and reinforcement learning techniques.
Consequently, DRL allows robots to learn navigation and
obstacle avoidance policies through trial-and-error interac-
tions with unknown environments. Moreover, DRL allows
robots to sense unknown environments with collected data
and learn how to plan paths based on the measured data.
Deep neural networks can serve as function approximators
that can generalize to different environments. By interacting
with the environment, the robots can gradually improve the
performance of navigation and obstacle avoidance, and ulti-
mately learn the optimal policy to resolve this problem. DRL
algorithms have gained remarkable achievements for vari-
ous complex tasks, including the most notable match with
AlphaGo [5] and many video games [6, 7]. The emergence
of DRL algorithms provides another avenue for UGV navi-
gation in unknown scenes that would allow a robot to plan
its path without a pre-built map. On the other hand, many
DRL algorithms have been introduced in recent years, such
as Asynchronous Advantage Actor Critic (A3C) [8], Deep
Deterministic Policy Gradient (DDPG) [9], Trust Region
Policy Optimization (TRPO) [10], and Proximal Policy Opti-
mization (PPO) [11], and those algorithms have attracted
rising attention for solving robot control problems and
dynamic obstacle avoidance. DRL-based mapless navigation
algorithms [12, 13] are also proposed with stronger adaptabil-
ity and robustness to unknown environments. One notable
early work of mapless navigation [12] deploys the algorithm

@ Springer

named ADDPG [14], which, however, does not take dynamic
environments into consideration, and all experiments are car-
ried out in static environments.

Despite the great success of DRL algorithms in different
domains, DRL also faces several challenges related to its effi-
ciency and practicality, such as Sim-to-Real to transfer and
simulation-trained agents to real-world environments [9, 15].
Moreover, reward functions for DRL need to be defined for
specific tasks, where empirically determined constant values
are employed. In other words, the rewards usually need to
be pre-designed and regulated with fine-tuned parameters.
The rewards for UGV navigation tasks are usually related
to environmental states, e.g., the distance to the goal and
the obstacles surrounding the agent, which can be used to
construct a unified reward or two individual rewards. For
example, methods, such as [4, 13], combine the rewards
together as a single value function. However, the rewards
of a single valued function is not efficient for training the
model of DRL. Despite the final convergence of the train-
ing process, the learning speed is usually very slow. On the
other hand, raw measurement data of the surrounding envi-
ronments obtained by the sensors are directly used as the
state for reinforcement learning algorithms, and this usually
results in a long training time and poor training performance.

In this paper, we propose a novel reward value function
with a multi-objective constraint and a correction policy
based on sensor information to address the above issues.
Considering that the reward of each target task is processed
separately, corresponding constraint is added to each task to
ensure that the robot can reach the target quickly and accu-
rately. On the one hand, not only do we consider the above
rewards related to navigation planning and collision avoid-
ance, we also consider the reward related to the linear and
angular velocities of the UGV to regulate the motion. If the
speed of the UGV is lower than a threshold, we give it a
negative reward value. This would encourage the UGV to
learn to move faster for better efficiency. Similarly, a penalty
is given when the angular velocity is higher than a thresh-
old. As shown in Fig. 1, we propose a deep reinforcement
learning algorithm based on a Heuristic Correction Policy
(HCP) to improve the performance of obstacle avoidance.
In order to learn a better obstacle avoidance policy, we per-
form secondary processing on the lidar data by introducing a
potential field-based method. When the UGV performs rein-
forcement learning to output the action command, we correct
the actions through the processed lidar data, which enables
fast convergence of reinforcement learning during the train-
ing process. Finally, various simulation environments and
real-world experiments have been performed to verify the
algorithm.

The main contributions of this work are summarised as
follows.

Journal of Intelligent & Robotic Systems (2023) 109:18

Page3of17 18

Fig.1 The framework of our
method. The mobile UGVs
interact with the environment
and the sensors collect the
surrounding information, which
will be processed and passed to a
neural network. Then, based on
the current state, the TD3-HCP
algorithm outputs an optimal
action, which is executed by the
mobile UGVs to avoid obstacles

1. The methods described in the studies [1-3] typically
require pre-built maps to plan collision-free paths based
on the global information. However, building an accurate
map can be expensive due to the need of sensor fusion.
In contrast, our proposed method can allow the robot to
navigate effectively and efficiently in the absence of such
global maps.

2. The methods presented in the studies [12—14] mainly
address the navigation and collision avoidance mech-
anism for static obstacles. However, in many practical
applications, the environment can be dynamic, such as
workers moving in a factory. In this work, we propose
heuristic corrections based on local lidar measurement
to cope with a sudden potential collision state.

3. Inconventional reinforcement learning methods described
in the studies [8—11], the optimal control policy has to be
trained through excessive interactions with the environ-
ment, and exploring all the states in dynamic situations is
unaffordable in practical robotic domains. In this work, in
order to cope with dynamic uncertain obstacles, the DRL
based TD3 network combines with the heuristic correc-
tions to compete the best action to perform, which can
significantly improve the success rate, completion time
and trajectory costs.

The remainder of this paper is organized as follows.
Section 2 introduces the related work. Achieving the map-
less navigation and collision avoidance with our method is
detailed in Section 3, and the experiments and results are
provided in Section 4. Finally, we conclude this work in
Section 5.

2 Related Work

In recent years, the applications of unmanned systems have
gained significant attention because of its potential advan-
tages in various scenarios [16-18]. For example, in the
manufacturing industry, Unmanned Aerial Vehicles (UAVs)

ENV . State > Actor

» New State

Method ﬁ

Laser
24

TD3-HCP

Target
Positive
2

43

Velocity
2

]
Target

and UGVs are used for inventory tracking and monitor-
ing of equipment. In addition, unmanned systems are also
applied in fields such as healthcare [19] and sports-assisted
training [20]. However, with the widespread application of
unmanned systems, a series of challenges and issues have
emerged. Some scholars have conducted extensive research
on the problem of communication interference [21-24] and
data privacy [25, 26]. In these cases, unmanned systems need
to communicate and collaborate with other devices to achieve
more efficient and intelligent performance. However, when
unmanned systems perform complicated and practical tasks,
in addition to communication issues, they also need naviga-
tion and obstacle avoidance capabilities. Some studies are
dedicated to improving the localization accuracy during the
motion process of robots [27, 28]. The work [29] presents a
robot visual positioning method based on iterative Kalman
particle filtering, which achieves global localization and thus
improves the accuracy of trajectory tracking.

With the recent advancement of computational hard-
ware technologies, deep neural networks (DNN) have shown
great potential in solving complex tasks, such as computer
vision and navigation problems. Learning-based collision
avoidance techniques have been extensively studied for var-
ious robotics fields, such as monocular images [30], depth
images [31], as well as for static collision avoidance. In [30],
steering angles are generated directly by training a 6-layer
convolutional neural network from raw pixels in the static
environment, which would take a long time to train the net-
work model. Image semantic information extracted by DNN
can be used for autonomous navigation of UGVs towards
a target [32]. However, the work [32] is limited that it pro-
duces only discrete actions as the output for vehicle control,
which are not desirable for navigation and collision avoid-
ance tasks of UGVs. Behavioural models of other agents can
be learned [33], where Hamiltonian Markov Chain Monte
Carlo sampling is used to produce behaviours that meet social
requirements for UGV navigation. An end-to-end motion
planning method is proposed to train a navigation model
only by acquiring lidar information and target locations [34];

@ Springer

18 Page4of17

Journal of Intelligent & Robotic Systems (2023) 109:18

however, it would take significantly long time to collect data.
A mapless motion planner is proposed in [12], based on
end-to-end learning by using lidar data and relative target
information as input data. This policy outputs command data
directly and demonstrates its efficiency in unknown simula-
tion and real scenarios. A long-term path planning algorithm
is proposed [35] for agent navigation in unexplored environ-
ments by combining the deep reinforcement learning model
with a greedy strategy.

Deep Q-network (DQN) is used to train the robot navi-
gation policy based on depth images acquired by the vision
sensor via successor feature reinforcement learning [36]. A
strategy with long short-term memory (LSTM) is proposed to
enable autonomous agents to navigate through an arbitrary
number of agents in [37], extending previous work with a
fixed number of agents. A deep neural network based on the
Actor-Critic algorithm is introduced to train a determinis-
tic policy in a model-free manner [9], which is designed for
continuous space using raw pixels. A continuous variant of
DQN is introduced by deriving Q learning algorithm, which
calls the normalized advantage functions (NAF) [38]. The
introduction of the experience replay policy greatly improves
the success rate of deep reinforcement learning methods.
A DRL-based time-efficient navigation policy is proposed
with the aim to train an agent to comply with social norms
in [4]. It simulates human behaviours and navigation rules for
robot navigation, such as overtaking, crossing, and overtak-
ing. Crowd-aware navigation is introduced by incorporating
the self-attention mechanism and deep reinforcement learn-
ing algorithms for crowd-robot interaction, enabling agents
to learn from interpersonal interactions in dense crowds [39].
It turns out that an agent could eventually predict human
behaviour and navigate in a crowd. The framework of com-
pound reinforcement learning (CRL) is deployed to promote
DRL training in the real environment by combining prior
knowledge into the system [40]. In this framework, robots
learn appropriate social navigation through sensor input and
reward updates based on human feedback.

Despite many advantages of DRL-based planning, such
as generalizability, there remain many challenges with DRL
methods for mapless navigation. A robot control model based
on DDPG is proposed in [13], which constructs a navigation
policy that maps lidar measurement and position informa-
tion. However, the convergence rate of the algorithm is slow
and the training efficiency is low. An asynchronous version of
the normalized advantage functions for offline policy train-
ing based on deep Q-functions is proposed in [14], which can
be extended to complex 3D manipulation tasks and can be
trained on real robots. The asynchronous DDPG (ADDPG)
algorithm is proposed in [41], which uses multiple robots in
the same environment to improve the efficiency of experience

@ Springer

collection and shorten the algorithm training time. However,
it does not consider the navigation collision avoidance rules
of UGVs. In this work, we consider that combining tradi-
tional collision avoidance algorithms and DRL algorithms
would be a promising approach to achieve efficient dynamic
obstacle avoidance for mapless navigation.

In this paper, we propose a DRL algorithm based on a
heuristic correction policy. Our proposed method not only
reduces the training time, but also improves the performance
of the final trained model in terms of the success rate and effi-
ciency. In the evaluation experiments, the results show that
the model trained using our proposed method significantly
outperforms other models in terms of the mission success
rate, the completion time, and trajectory efficiency. Finally,
the trained model is transplanted to the real environment for
further validation. The experimental results show that the
proposed algorithm can be directly transplanted to the real
robot for experiments with highly promising performance in
collision avoidance.

3 Proposed Navigation Approach

In this section, we will introduce the DRL based approach
with heuristic corrections for UGV navigation. To this end,
we first present the implementation of DRL for UGV naviga-
tion, and then detail the network framework of our proposed
approach. Afterwards, the improved Prioritized Experience
Replay (PER) strategy is described, followed by our proposed
approach for UGV navigation with collision avoidance capa-
bilities.

3.1 Sensor-Level Navigation Problem

In this work, collision avoidance for UGVs is defined in the
context of an autonomous agent moving on the Euclidean
plane. At each time step ¢, the robot can acquire observation
information state s; from the surrounding environment by
sensors, and then the robot outputs an action command a;,
that encourages the robot to maneuver towards its goal. The
policy is represented by m. The relative distance from the
UGV to the goal is denoted by g;. Instead of having a perfect
observation of the whole environment, we assume that the
UGV has only partial observation s; within the range of the
lidar sensor and the relative goal position. This assumption
makes our method more applicable and realistic for the real
world environment. The action a;_1 of the previous time step
is also considered. Therefore, the problem can be formulated
as to find the policy function,

ar ~ 1o (S, ar—1) (D

Journal of Intelligent & Robotic Systems (2023) 109:18

Page50f17 18

where s; includes the lidar range data /; at time step ¢ and the
relative distance g;. The UGV executes action commands,
sampled from the policy function given the partial observa-
tion s;.

3.2 DRL for UGV Navigation

Robot navigation problems require making correct judge-
ments about dynamic environments in real time to avoid
collisions with obstacles. Although discrete action space can
be used for such problems, in our work, we only consider con-
tinuous actions to be generated by DRL agents for interacting
with the environment. Several DRL algorithms that support
continuous action space can be considered as the base to con-
struct our approach, such as the Deep Deterministic Policy
Gradient (DDPG) and Proximal Policy Optimization (PPO).
In particular, we consider the Twin Delayed Deep Deter-
ministic Policy Gradient (TD3) [42] as the main base for
modification. The TD3 algorithm is based on the actor-critic
architecture, which is suitable for agents with continuous
observation in action space. TD3 combines DDPG and the
double Q learning algorithm [43], and achieves promising
performance in many continuous control tasks. As an impor-
tant part of the TD3 algorithm, experience replay has proved
to be effective in solving various robot applications. TD3
accumulates environmental information and other data col-
lected by the robot during the task execution into the memory
as experience samples, which will be extracted from the
memory buffer for training during the learning process.

Our approach is implemented using Python with the Ten-
sorFlow and PyTorch frameworks. The UGV with a lidar
sensor is simulated in Gazebo, as shown in Fig. 2. The blue
lines visualize the lidar scanning beams around the UGV. The
simulation process of the UGV subscribes from the ROS sen-
sor node to obtain the lidar measurement, which has a 180°
field of view and its range is (0.12m, 3.5m). In this paper,
we use 24 lidar rays from (—90°, 90°) to collect data around
the robot.

Here we will detail the DRL-based framework for the
UGV navigation problem. The following four important
design specifications are introduced respectively: 1) obser-
vation space, 2) action space, 3) reward design and 4) actor
and critic neural network structure.

1) Observation space: The observation state s; consists of
lidar ranger data /;, velocity v, and relative target position
g:. Lidar data [, are pre-filtered and normalized by its max-
imum range. Velocity v; includes both the linear speed and
the angular speed of the agent. The relative target position g;
is calculated as the relative distance and angle with respect
to the current position.

2) Action space: There are two action values in our setting:
i) linear velocity /,, and ii) rotational velocity a,,. The range of

Fig.2 The simulated husky mobile robot with lidar scanning beams in
Gazebo

velocities are limited to /,€ (0, 1) m/s and ay€ (—m /2, 7/2)
rad/s to reflect the motion constraints of the robot. The neural
network outputs continuous velocity commands to control
the robot.

3) Reward Design: The reward function is constructed by
four main parts in our work, encouraging the robot to move
towards the goal while also avoiding collisions, as defined
below

F=rq+rc+roa+ro, (2)

where r stands for the total reward, r; denotes the distance
reward, . represents the collision reward, and r,, and r,; rep-
resent the angular velocity reward and linear velocity reward,
correspondingly. r4 is calculated using

N rar ifdg < dgmin
Td = { Ad, else, 3)

where d, denotes the distance to the goal. If d; is less than
the threshold dgi,, the Tobot will be considered to arrive
at the goal and it will receive a arrival reward. Ad, is the
difference between the distance at the last time step (d;—1)
and the distance at the current time step (d;). The collision
reward 7. can be calculated by

. {_e_kl(lmin_ol)/lmax if Lpin < kg @
7 1o else,

where I,,;, = min(l, I, .. .[4) is the minimum lidar range
value and &; and o; are the gain and distance offset used to
determine the curvature of the reward. ,,;,, is normalized by
its maximum range (L,). If Lyin < kg, ro will be calculated

@ Springer

18 Page6o0of17

Journal of Intelligent & Robotic Systems (2023) 109:18

by Eq. 4. Rewards r,, and r,; can be calculated by

_JTa if lay| > kyal@ymax|
fva = {0 else,)

(6)

_n if Ly < lymin
=10 else,

where ayqy represents the maximum angular velocity and
lymin denotes the minimum linear velocity. If the angular
velocity |a,| of the UGV is larger than ky,|aymax|, we will
give it a reward r,. If the linear velocity /,, of the UGV is
lower than l,,;,, a reward r; will be given. We make the
rewards r, and r; negative, so that the velocities will be con-
strained to desirable ranges, where slower rotations are more
encouraged and larger linear velocities are more desired.

3.3 Neural Network Architecture

In this work, the TD3 algorithm is applied as the base for
the modification of the UGV navigation approach. As shown
in Fig. 3, the framework of the TD3 algorithm is adapted
from the traditional Actor-Critic framework, i,e., the DDPG
algorithm, which includes three main parts:

1) Critic network: Similar to the double-Q network, the
deployed method can overcome the overestimation problem
of the standard DDPG algorithm that tends to overestimate
the Q values of actions by the critic network;

2) Delayed update: Similar to the target network update
method [9], after the critic network is updated for n times, we

delay the update of the actor network, which can effectively
improve the stability of the training of the actor network;

3) Noise: To enhance the stability of the algorithm, we
apply the same method as with the TD3 algorithm by adding
noises to the actor target network.

Figure 4 depicts the architecture of the actor network. The
input of the actor network is a multi-dimensional data vector,
including a 24-dimensional lidar ranger measurement, a 2-
dimensional relative goal position vector and a 2-dimensional
velocity vector. The input data are fed into three fully con-
nected layers, and the actor network produces the linear
velocity and angular velocity by a sigmoid function and a
hyperbolic tangent function, respectively.

Figure 5 shows the architecture of the critic network,
where the state input of the critic network is the same as
the input of the actor network, except that the two additional
velocity commands, produced by the actor network, are also
included as part of the input of the critic network. The out-
put of the actor network needs to be connected to the second
fully connected layer. Finally, the critic network generates
the Q-value through a linear activation function.

At the beginning of each episode, the states of the robot s;,
along with its previous states s;_1, actions a;_1, and rewards
of the action r,_1, will be sent to the PER buffer for storing
the transitions and the controller to generate the subsequent
action a,. Once the capacity of the PER buffer exceeds the
batch size of the samples, while learning from the PER buffer,
the actor neural network g will start to produce actions for

h

y
Ry

Fig. 3 The architecture of the TD3 algorithm. The goal of the Actor
network is to learn an optimal policy that maximizes the long-term
cumulative reward from the current state. The Critic network has two
outputs representing two Q-value functions, and its objective is to learn
an accurate Q-value function to evaluate the actions generated by the

@ Springer

Actor network. When calculating the target Q-value in the TD3 algo-
rithm, the minimum Q-value among the two target Critic networks is
used as the target Q-value to reduce the risk of overestimation. Then,
this target Q-value can be used to calculate the loss function of the Critic
network, and update the parameters of the Critic network accordingly

Journal of Intelligent & Robotic Systems (2023) 109:18

Page70f17 18

State28

Y
Laser
24

—

Fig.4 The architecture of the
actor network

SR

Relative

Positive
2

——

)
Velocity
2

—

Imput V———————

the robot. At the same time, when new state transitions are
added to the buffer, those transitions with lower probabilities
will tend to be replaced.

3.4 Improved Prioritized Experience Replay

Usually, experience transitions are uniformly sampled from
a memory buffer without considering their significance that
would lead to low efficiency in experience sampling. Instead
of uniform sampling of historical data, in order to accel-
erate training, the PER algorithm [44] is applied to ensure
important historical data to be sampled more frequently. Con-
ventionally, the PER algorithm is used as a sampling method
aiming to improve the effectiveness in reducing the loss of
the critic network in the model.

When a transition is selected for training, the Temporal
Difference (TD) error of the transition can be calculated using
Eq. 7, which will be recorded as the importance sampling
weight of the transition. Along with the experience buffer,
priority information of each transition is calculated by Eq. 8

State28

—
Laser

24
—/

Fig.5 The architecture of the
critic network

S
Relative
Positive
2
—

G
Velocity

2
———

Input

Linear Velocity

Output

Angular Velocity

and is stored in the priority tree.

Loss = E[Q* (51, a;) — OQ(ss, a)]?, 7
) pi®

P = , 8
(i) S)

where Q*(s;, a;) denotes the Q-value output of the target
Critic network, while Q (s;, a;) represents the Q-value output
of the current Critic network. L, indicates the TD error, p;
denotes the sampling probability of the i** transition, and «
is an indicator of the priority for the corresponding transition,
where uniform sampling is applied when & = 0 and greedy
strategy sampling is applied when o = 1. p; stands for the
priority of a set of transition data, formulated in Eq. 9.

DPi = |Loss| + €, 9

where € represents a small positive sampling probability for
each transition, which ensures that all buffered transition
experience can still be sampled. However, priority sampling
will also compromise the sampling diversity.

Ve

2)
Actor_network
Input

Output

@ Springer

18 Page8of 17

Journal of Intelligent & Robotic Systems (2023) 109:18

In order to deal with the above issue, in our work, the
selection process uses stochastic priorities. We consider that
the information level contained in each transition should
be an indicator for deciding the sampling probability. The
more information the transition contains, the more likely it
should be selected. In the current implementation (Eq. 9), the
informative transitions are not necessarily always selected,
as they may not always have high sampling probabilities to
be selected. In this regard, in order to consider the informa-
tion of transition, we optimize Eq. 9 by adding the loss of the
actor network, so that the new priority can be calculated by,

Pi = Loss + A|Aloss|n + € (10

where the second term Aj,s; denotes the loss of the actor
network, weighted by A, and n is a bias. Each transition is
evaluated by,

1 1
w; = (= -

B
B P(i)) an

where w; denotes the sampling weight for updating the net-
work, indicating the importance of each transition data, B
stands for the batch size, § is an coefficient, and 8 € [0, 1].
It should be noted that 8 affects the degree to which PER
cancels out on the convergence. Therefore, we address the
diversity loss problem by increasing the information of the
transition and sampling weight.

3.5 Algorithm of TD3-HCP

In this work, we propose a local collision avoidance pol-
icy based on local lidar measurement, named the Heuristic
Correction Policy (HCP). The dynamic obstacle avoidance
policy of the HCP is to process the information obtained
by the current lidar sensor, when the UGV enters a certain
state. In such cases, motion instructions for the UGV will be
selected based on a heuristic policy to avoid obstacles. First,
we use the distance information obtained by the lidar sensor
to define the risk factor f;sr, which determines whether the
UGYV has entered a dangerous state. The risk factors f;sk
can be calculated by

i = Lm0 (12)
where [; denotes the value of the i-th lidar ranger, /4, repre-
sents the maximum measurable distance of the lidar sensor,
ki denotes the offset of the risk factor, and k; is a bias. As
shown in Fig. 6, we apply the clipping operation on frii sk
to limit the risk factors to fall in the range of [0, 1]. When

Yisk = 1, it means that the UGV is facing a dangerous

@ Springer

0.8 +

0.6 1

0.4 +

Risk factor

0.2

0.0 4

T T T T

T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
Laser values

Fig.6 The risk factor of laser values

state and needs to perform emergency collision avoidance.
In this case, the distance from the robot to the nearest target is
defined as the safe distance threshold d,,;, and any distance
below the threshold is considered a dangerous area.

When the UGV enters a dangerous state, due to the nature
of randomness of DRL, the action output by the DRL agent
cannot be always optimal and stable. In such safety-critical
situations, it is costly for a robot to rely on a DRL policy.
Therefore, we propose the heuristic correction policy that
will be executed when the UGV enters an emergency colli-
sion avoidance area, i.e., distance below than d,;;;,.

When the UGV enters the emergency collision avoidance
area, we build a potential field around the UGV to charac-
terize the local environment information. The attractive and
repulsive potential fields can be calculated by

1 — — m
Uarr = 5;(d goal — d robor)", (13)
1 1 1 \n ;
sy — =) it l; < dpin
U — 2 lt dmm 14
ree {O else, 14

where U, denotes the attractive potential fields, ¢ means
the attractive factor, ?l) goal and 7mb0, indicate the goal
(Xgoal> Ygoar) and the UGV location (X,opor» Yrobor) in the
world coordinate system, respectively. m and n are adjustable
parameters, and /; denotes the distance to the nearest obstacle.
U,p represents the repulsive potential fields, and » denotes
repulsive factor.

In situations of more obstacles, the potential field for the
robot can be complicated. When a robot moves to a position
between the obstacles and the goal, the attractiveness and the
repulsive potential forces of the robot may cancel each other
out. In this case, the robot may encounter a local minimum
problem. Therefore, we improve Eq. 14 to calculate the new

Journal of Intelligent & Robotic Systems (2023) 109:18

Page9of17 18

repulsive potential field, as below,

1.1 L \n/ 7 — k-
U — jn(ﬁ - dmin) (d goal — d robor)" it li < dpin
rep =
0 else.

15)

—
The new formula has an extra component, (d goas —

7,0;,0,)", which is used to encourage the robot to move
towards the goal by assigning a variable weight to the original
repulsive force defined in Eq. 14. Intuitively, when a robot
moves toward the goal, while also trying to avoid obstacles,
the repulsive force potential field will be decreased accord-
ingly. This enables the robot to approach the target point
faster when it gets closer to its destination.

The direction of the potential field for a robot is calculated
in the robot’s coordinate system. Therefore, before calculat-
ing the motion direction, we first need to get the position of
the goal relative to the robot, which can be calculated by

(xgoal> = Ry (Xgoal - Xrubot)

Ygoal Yg()al — Yrobor)’
where (Xgoal, Ygoar) denotes the position of the goal relative
to the robot and R7 is the coordinate transformation matrix.

The angle 0,4 of the goal relative to the robot can be cal-
culated by

(16)

Ygoal
0g0ql = arctan 8o,

Xgoal

7)

Then, we can calculate the direction of the resultant force
based on the established potential field. First, the magnitudes
of the gradients of both the attractive and repulsive potential
fields can be calculated by

—
F = VU =) VUrep, (18)

—
where F denotes the magnitude of the resultant force. The
angle 6y of the resultant force can be obtained by

Fy
0y = arctan T (19)
X

where Fy and F), represent the resultant forces along the x
and y directions, respectively. Finally, we normalize 6y by
Eq. 20 to get the radians of rotation of the robot.

Lo 0

—e 2 if Oy >

ORH =1)02 " (20)
e 22 —1else,

where gy denotes the radian of the next movement direc-
tion. We can also find the specific values of Ogg in Fig. 7.
Since DRL algorithms also output action commands
according to the current state, to decide on better actions
for the robot, we compare the two action instructions as fol-
lows. We input the two angle values into a critic network
respectively to get the value of the immediate reward so as to
judge the optimality of the corresponding angle. The larger
the reward value is, the more favourable it is for the robot to
avoid obstacles and approach the goal. Figure 8 depicts the
network architecture of our proposed TD3-HCP algorithm
for the UGV navigation problem. To be specific, if the dan-
ger factor in the robot’s environment is less than 1, the TD3
network outputs the action. When the danger factor is equal
to 1, the heuristic correction policy outputs an angle, which
is used to generate a Q-value by inputting the action into the
Critic network. The Q-value generated by the heuristic cor-
rection policy is compared with the Q-value generated by the
Actor network’s output action, and the action with the higher
Q-value is selected as the robot’s action instruction.

Fig.7 The radian of the next
movement direction (Ogg)

1.00 A

0.75 1

0.50 1

0.25 1

0.00 -

-0.25 4

-0.50 A

The radian of theta heuristic

-0.75 1

-1.00 1

= theta>0
—— theta<0

2150 2100 50 0 50 100 150

The angle of theta heuristic

@ Springer

18 Page100f17

Journal of Intelligent & Robotic Systems (2023) 109:18

Fig.8 The proposed TD3-HCP
algorithm consists of the TD3
network and a heuristic
correction policy

Target

4 Experiments and Results

In this section, we describe the experiments carried out in the
work, including both simulation and real-world experiments.
We quantitatively compare our method with other methods
for performance benchmarking in the Gazebo simulation
environments. Finally, real robot experiments are also per-
formed to verify the transferability of the proposed approach.

4.1 Training Configuration

The training process is performed on a computer with Intel
Xeon(R) Platinum 8251 CPU and NVIDIA GeForce RTX
3060 GPU. The training process is undertaken in the Gazebo
environment on Ubuntu 18.04 as shown in Fig. 9 that sim-
ulates the dynamics of the UGV [45]. We expect that the
learned policy from the simulations can be transferred to real-
world experiments using a real robot with minimal effort.

In the simulations, the green cubes are static obstacles,
and the white cube represents the target, which is initialized
randomly in the environment for each episode. If the robot
hits an obstacle or reaches the target area, the white cube will
reset its position to start a new training round.

4.2 Experiment in Static Environments
As shown in Fig. 9, during the training phase, the robot is

placed in the center of the map, and the position of the target is
randomly initialized to the diagonal area of the environment.

@ Springer

established

We use this static environment to evaluate the performance
of training and testing phases.

4.2.1 Evaluation During the Training Phase

The reward of our proposed method and other algorithms in
the training phase are recorded for comparison, as shown in

Fig. 9 The Gazebo simulation environment for the UGV navigation
problem

Journal of Intelligent & Robotic Systems (2023) 109:18

Page110f17 18

|Average rpward

= DDPG-PER
— =301 — TD3
—— TD3-HCP

0 20000 40000 60000 80000 100000

Step

Fig. 10 The reward comparison of the proposed method with other
methods

Fig. 10. The average reward of 1000 continuous steps are
applied to reduce the effect of the random mission problem.
In our work, three algorithms are tested using the same reward
function, including the standard Deep Deterministic Policy
Gradient (DDPG) with PER (named DDPG-PER), TD3, and
our proposed method, i.e., TD3-HCP. We count the average
reward value obtained by the three algorithms over 110,000
steps. It can be seen that the average reward value obtained by
DDPG-PER training begins to converge after about 10,000
steps, and the reward reaches a stable range of about [4, 6].
The average reward of TD3 algorithms remains between 6
and 8 after only about 40000 steps. In contrast, the average
reward of our proposed method TD3-HCP is slower but con-
sistently growing to exceed both the other two algorithm, at
about the 60000-th step, reaching the range of from 8 to 10. It
is clear that the reward is following an upward trend. Because
of the existence of the PER algorithm, DDPG-PER converges
quickly compared to other algorithms, but the average reward
value it obtains is not as high as ours. As mentioned, overall,

Table 1 Comparison of navigation performance in static environments

Method Success Completion Trajectory
Rate Time(s) Efficiency(m)
DDPG-PER 25% 73.55+£1.20 14.64+0.75
TD3 79% 64.36£10.29 11.11£1.52
HCP-TD3 93% 60.70+8.78 10.25+1.48

our proposed algorithm is slower than other algorithms to a
certain extent at the beginning of training, however, the final
results are considerably better than other algorithms.

4.2.2 Evaluation During the Testing Phase

After training the three DRL policies, we also carry out eval-
uation experiments for further testing. Figure 11 and Table 1
show the performance of those algorithms in the static envi-
ronment. We consider three performance metrics in our work,
including 1) success rate, ii) completion time, and iii) tra-
jectory efficiency. The success rate refers to the percentage
of total rounds in which the mobile robot successfully can
reach the target point without any collisions. The comple-
tion time and trajectory efficiency refer to the average time
and distance without collision by a mobile robot to reach
the target location, respectively. Thus, task success rate is
an indicator of the robustness of the controller, while task
completion time and trajectory efficiency could represent the
performance optimality of each training strategy. The mean
and standard deviation of each indicator are calculated for a
total of 100 runs.

As detailed in Table 1, in terms of success rate, our
method scores the highest rate (93%), while DDPG-PER
and TD?3 score far lower than our method, at 25% and 79%,
respectively. In terms of the completion time, our method
consumes the least time (60.7048.78s) in comparison with

100 25

Fig. 11 Comparison of 100
navigation performance in static :
XX4 Time

environments Distance

80

i

XA
doSodel
o)

X
b0

,v
XX
Q58

v‘-
O
o
KKK

030020
KR
XXX
o

05
LKL
QLR

<

o
S
:9690%%%%

QL

%%

Success rate (%)
2

e
5K

IS

=3

T
KL

050
XX
QKKK

%
<

ST
R
QK

RIS
X
1929:0,0.0.0.0.0.9.9.9.9,

0000009006909 %0 %0%6%0%%0%%%%%

04
Sode

Q2

X

%
o

20

S

R
%

2L

XX

N

%
XX
XX

ST
$969%%%
9% %
:.0.0‘0

XX
ot
2R

KRR

X Success rate

=~

80 20

R 60 {15

etesess
eletetete!

O
9%
%S

96%6%%
bl

Time (s)
Distance (m)

40 10

9:0.0.0.0.9.9.9,
SEEERELELEEL

20 5

Do Sodetototetotetototetotetotetoteds

X 0‘:‘0 <

&
e%e

19006909090909:9:0.0,0,9.9.9.9.9,

oS
6%

ol

KKK
XK
QKL

S
Yo%

DDPG-PER

TD3-HCP

@ Springer

18 Page120f17

Journal of Intelligent & Robotic Systems (2023) 109:18

Fig. 12 Real robot testing of
collision avoidance in a static
environment

(i) 10s

TD3 (64.364+10.29s) and DDPG-PER (73.5541.20s). With
regard to the trajectory efficiency, our method shows a lower
mean value (10.25+1.48m) than both TD3 (11.1141.52m)
and DDPG-PER (14.6440.75m). Therefore, we can con-
clude that our method can ensure the shortest driving path
and the highest success rate under the premise of avoiding
potential collisions.

4.2.3 Real Robot Testing in Static Environments

After testing the trained models in the static simulation envi-
ronment, we have migrated the models trained in the virtual
environment to real robots to verify the robustness of the
proposed approach in real-world scenarios. The results are
shown in Fig. 12.

The conducted experiment is carried out in an indoor
setting, featuring a corridor containing four immovable
obstacles. Upon receiving the assigned target location, the
robot enters the testing area through the corridor entrance
in one second. Subsequently, within 2nd and 4th second,
the first obstacle is detected within the robot’s field of view,
prompting it to shift leftward to circumvent the obstacle. At
about the 5th second, another obstacle is detected on the
robot’s left side, causing it to change direction and move
rightward. This pattern repeats once more at about the 8th

@ Springer

(k) 11s (1) 12s

second, where yet another obstacle is detected and evaded.
Ultimately, in approximately 12th second, the robot safely
reaches the intended destination, having successfully nav-
igated around all of the static obstacles. The experimental
outcomes demonstrate that our proposed approach is capable
of transferring trained models from simulations to real-world
robots and effectually accomplishing navigation missions in
static environments.

4.3 Experiment in Dynamic Environments

We have also modified the original static environment for
simulations, and changed the original map size of 15 x 15 m?
to a map of 24 x 24 m?. As depicted in Fig. 13, in the dynamic
environment, the white cube still represents the target goal,
which is placed above the ground in the air, and the green
cubes indicate static obstacles. In addition, 12 randomly mov-
ing pedestrians are added to the map as dynamic obstacles.
During the algorithm testing in dynamic environments, the
robot is positioned randomly on the diagonal of the envi-
ronment at the start of each episode. The target location,
represented by a white cube, is then placed at a different
position also on the diagonal. This protocol for initializing
both the robot and the target ensures that the algorithm must

Journal of Intelligent & Robotic Systems (2023) 109:18

Page130f17 18

w

Fig. 13 The dynamic environment with randomly moving pedestrians

adapt to new scenarios and conditions in every episode, thus
enhancing its robustness and versatility.

4.3.1 Evaluation in Dynamic Simulated Environment

Figure 14 illustrates the performance metrics of three algo-
rithms. Detailed results are listed in Table 2, the success rate
of our method reaches 74%, which is considerably higher
than DDPG-PER (18%) and TD3 (36%). The results show
that our method can more effectively avoid obstacles in com-
plex dynamic environments. In other words, our method led
to score 2.05 times higher with regard to the success rate than
the TD3 and 4.1 times than the DDPG-PER.

With respect to the completion time to reach the tar-
get area, our method consumes substantially less time
(112.33+4.72s) than DDPG-PER (198.44410.35s) and TD3
(192.85+£21.73s). In terms of trajectory efficiency, our
method results in a considerably lower mean travel distance
(19.45+1.65m) than that of DDPG-PER (30.44+9.34m) and
TD3 (25.354+2.61m). This result clearly demonstrates that
the our proposed method produces more efficient trajecto-
ries in less time, while also ensuring path safety. Furthermore,
our method has a much lower standard deviations than other

KN Success rate

KRR Time

Distance 35
200

80,

§ 30

150 25
60

20

Success rate (%)
Time (s)
Distance (m)

40 100

20/

DDPG-PER TD3-

Fig. 14 Performance comparison in the dynamic simulated environ-
ment

Table 2 Performance comparison in the dynamic simulated environ-
ment

Method Success Completion Trajectory
Rate Time(s) Efficiency(m)
DDPG-PER 18% 198.44£10.35 30.44+9.34
TD3 36% 192.85+21.73 25.35+2.61
HCP-TD3 74% 112.33+4.72 19.15+1.65

methods in terms of task completion time and trajectory effi-
ciency. This clearly evidences that the model trained using
our method is more robust.

4.3.2 Evaluation in Dynamic Factory-Like Environment

In order to further verify the generalization of the proposed
approach, we conduct a second dynamic scenario in a factory-
like environment, as shown in Fig. 15. This environment has
more complicated settings, which includes obstacles of var-
ious shapes, such as shelves, and moving obstacles, such as
pedestrians. In each round, the robot’s initial position, tar-
get location, and obstacles in the environment will be set
randomly. Each method has been tested for 100 rounds.

Figure 16 and Table 3 show the performance of our pro-
posed method in comparison with other two methods in the
factory-like environment. We can find that the success rate
of our method is 82%; In contrast, the DDPG-PER (32%)
and TD3 (48%) are considerably lower than our method.
Moreover, our method consumes the least completion time
toreach the target area (103.3440.73s) among all three meth-
ods, where the DDPG-PER takes 121.81+1.33s and the TD3
needs 104.72+1.70s. In terms of trajectory efficiency, our
method results in a considerably lower mean travel distance
(33.18%+1.92m) than that of DDPG-PER (42.87+£3.02m) and
TD3 (36.73£2.54m).

Fig. 15 The factory-like environment with complicated configurations

@ Springer

18 Page 140f17

Journal of Intelligent & Robotic Systems (2023) 109:18

1
o [SY Success rate

X8 Time
vZZ) Distance
N 3 120 140

o]
2
oo

o
X
-

23S
e

%
XS

%

o

02!

XXX
3%
3RS

X

o2

2
3
X
w
X 5
Distance (m)

3%
2R

%%

QS
%S

b0%es
o220k

EY

2

o

8

%2

Success rate(%)

=
3
25
<X
R

XS
XXX

e
S
0959598

(REXTLLLRIRIKS
R,
2K

3%

ool

'S

X

%S

XS
R

XK
(20202

20

XK
XX

X
22

%

S
S

RRIIRK
s
e
X

%8
KKK

R

m
s
SRS
otetetetetetele!

plee

S

b

DDPG-PER TD:

Fig. 16 Algorithm performance comparison in dynamic environment

4.3.3 Real Robot Testing in Dynamic Environments

We further test the performance of the model trained from the
virtual environment on a real robot in a dynamic environment
so as to verify the robustness of our proposed algorithm. As
shown in Fig. 17, compared with the static environment, two
pedestrians will suddenly appear to block the robot’s path in
this dynamic environment. Of course, there are also multiple
static obstacles on the floor.

The experimental results reveal that, around the three-
second mark, the robot detects both a static obstacle on
its right and a dynamic obstacle ahead. To avoid collision,
between the 4th and 5th second, the robot executes turn-
ing and reversing manoeuvres. At the seven-second mark,

Fig. 17 Real robot testing in a
dynamic environment with two
pedestrians that will suddenly
appear to block the robot’s path

@) Is

Table 3 A performance compare between algorithms in smart factory

Method Success Completion Trajectory
Rate Time(s) Efficiency(m)
DDPG-PER 32% 121.81£1.33 42.87+3.02
TD3 48% 104.72£1.70 36.73+2.54
HCP-TD3 82% 103.34+0.73 33.18+1.92

the robot detects another dynamic obstacle and comes to
a halt while navigating through a turn. The robot’s avoid-
ance strategy successfully circumvents all obstacles, with the
task being completed around the nine-second mark. Partic-
ularly noteworthy is that the robot has demonstrated distinct
behaviours while encountering different types of obstacles.
Ultimately, the robot successfully accomplishes the assigned
task within 12 seconds.

4.4 Discussion

Overall, the conducted experiment showcases that the pro-
posed TD3-HCP approach offers promising performance.
Specifically, it not only considerably reduces the mission
completion time for the robot to reach the target area, but
also enables routes free of collision and shorter paths while
maintaining high success rates. Compared to the other DRL-
based algorithms, our method has the highest average reward,
indicating its better convergence in the training period. Addi-

:

(b) 2s (c) 3s

(g) 7s

(i) 10s

@ Springer

(h) 8s

(k) 11s (1) 12s

Journal of Intelligent & Robotic Systems (2023) 109:18

Page150f17 18

tionally, the results also show that the trained model from
virtual simulations can be directly transferred to real-world
scenarios, and the robot can demonstrate impressive ability to
avoid obstacles in a dynamic environment, even in response
to sudden obstructions.

Nevertheless, our proposed method has some limitations.
First of all, although our method does not require an accu-
rate global map for path planning and collision avoidance, the
robot still needs to know the precise location of the destina-
tion or estimate the distance from its current location to the
destination when designing the reward function. Secondly,
since our method only employs 2D lidar for environmental
perception, we do not consider the roughness of the ground
during planning efficient collision-free paths.

5 Conclusion and Future Work

In this paper, we propose a novel DRL-based approach to
address the problem of mapless navigation. The results show
that the proposed TD3-HCP approach effectively reduces the
training time compared to two poplar DRL-based methods,
namely DDPG-PER and TD3. We have tested the naviga-
tion performance in both static and dynamic simulations, in
which our TD3-HCP demonstrates a significant superior per-
formance in reducing the mission completion time for the
robot to reach the goal consistently than the baselines. In the
dynamic environment scenarios, the success rate is 2.05 times
higher than TD3 and the trajectory efficiency is improved by
24%, keeping the completion time to the minimum level.
Moreover, the results also reveal that our TD3-HCP requires
the shortest time and distance of the traversing trajectory
while also ensuring a high success rate and safety of colli-
sion avoidance. In addition, we migrate the control model
trained in the virtual environment to a real robot, further
verifying the generalization and robustness of the proposed
method.

In future studies, it is recommended to further investigate
the convergence speed while exploring multi-sensor informa-
tion fusion. Specifically, combining vision with lidar range
sensor may elevate the robustness of the method in practi-
cal applications. Moreover, we can allow multiple agents to
train asynchronously in various scenarios so as to improve
the learning efficiency.

Author Contributions All authors contributed to the study conception
and design. Changyun Wei and Yongping Ouyang performed material
preparation, data collection and analysis. Changyun Wei and Yongping
Ouyang wrote the first draft of the manuscript. Yajun Li and Ze Ji
revised the manuscript based on previous versions. All authors read
and approved the final manuscript.

Funding This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61703138.

Code Availability The simulation data will be available upon request.

Declarations

Ethical approval Not applicable. Our manuscript does not report results
of studies involving humans or animals.

Consent to participate Not applicable. Our manuscript does not report
results of studies involving humans or animals.

Consent for Publication All authors have approved and consented to
publish the manuscript.

Conflicts of interest The authors have no relevant financial or nonfinan-
cial interests to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Likhachev, M., Ferguson, D.I., Gordon, G.J., Stentz, A., Thrun,
S.: Anytime dynamic a*: An anytime, replanning algorithm. In:
International Conference on Automated Planning and Scheduling
(ICAPS), vol. 5, pp. 262-271 (2005)

2. Nasir, J., Islam, F, Malik, U., Ayaz, Y., Hasan, O., Khan, M.,
Muhammad, M.S.: Rrt*-smart: A rapid convergence implemen-
tation of rrt. Int J Adv Robot Syst 10(7), 1651-1656 (2013)

3. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and map-
ping: part i. IEEE Robot Autom Mag 13(2), 99-110 (2006)

4. Chen, Y.F, Everett, M., Liu, M., How, J.P.: Socially aware motion
planning with deep reinforcement learning. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp.
1343-1350 (2017). IEEE

5. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, ., Panneershelvam,
V., Lanctot, M., et al.: Mastering the game of go with deep neural
networks and tree search. Nature 529(7587), 484-489 (2016)

6. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement
learning (2013). arXiv:1312.5602

7. Ye, D., Liu, Z., Sun, M., Shi, B., Zhao, P, Wu, H., Yu, H., Yang,
S., Wu, X., Guo, Q., et al.: Mastering complex control in moba
games with deep reinforcement learning. In: AAAI Conference on
Artificial Intelligence, vol. 34, pp. 6672—-6679 (2020)

8. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep
reinforcement learning. In: International Conference on Machine
Learning (ICML), pp. 1928-1937 (2016). PMLR

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1312.5602

18

Page 16 of 17

Journal of Intelligent & Robotic Systems

(2023) 109:18

9.

10.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., Wierstra, D.: Continuous control with deep reinforce-
ment learning (2015). arXiv:1509.02971

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.:
Trust region policy optimization. In: International Conference on
Machine Learning (ICML), pp. 1889-1897 (2015). PMLR

. Wang, Y., He, H., Tan, X.: Truly proximal policy optimization. In:

Uncertainty in Artificial Intelligence, pp. 113-122 (2020). PMLR
Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learn-
ing: Continuous control of mobile robots for mapless navigation.
In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 31-36 (2017). IEEE

. Zhang, P., Wei, C., Cai, B., Ouyang, Y.: Mapless navigation for

autonomous robots: A deep reinforcement learning approach. In:
Chinese Automation Congress (CAC), pp. 3141-3146 (2019).
IEEE

Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement
learning for robotic manipulation with asynchronous off-policy
updates. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 3389-3396 (2017). IEEE

Chaffre, T., Moras, J., Chan-Hon-Tong, A., Marzat, J.: Sim-
to-real transfer with incremental environment complexity for
reinforcement learning of depth-based robot navigation (2020).
arXiv:2004.14684

Pakrooh, R., Bohlooli, A.: A survey on unmanned aerial vehicles-
assisted internet of things: A service-oriented classification. Wirel
Pers Commun 119, 1541-1575 (2021)

Alam, T.: Blockchain-enabled deep reinforcement learning
approach for performance optimization on the internet of things.
Wirel Pers Commun 126(2), 995-1011 (2022)

Swarup, A., Gopal, M.: Control strategies for robot manipulators-a
review. IETE J Res 35(4), 198-207 (1989)

An, X., Wang, Y.: Smart wearable medical devices for isometric
contraction of muscles and joint tracking with gyro sensors for
elderly people.] Ambient Intell Hum Comput, 1-12 (2021)

Ding, H.: Motion path planning of soccer training auxiliary robot
based on genetic algorithm in fixed-point rotation environment. J
Ambient Intell Hum Comput 11, 6261-6270 (2020)

Pawar, P., Yadav, S.M., Trivedi, A.: Performance study of dual
unmanned aerial vehicles with underlaid device-to-device com-
munications. Wirel Pers Commun 105, 1111-1132 (2019)

Alimi, I.A., Teixeira, A.L., Monteiro, P.P.: Effects of correlated
multivariate fso channel on outage performance of space-air-
ground integrated network (sagin). Wirel Pers Commun 106(1),
7-25 (2019)

Li, H., Luo, J., Li, J.: Reinforcement learning based full-duplex
cognitive anti-jamming using improved energy detector. Wirel Pers
Commun 111, 2107-2127 (2020)

Li, L., Mao, Y.: Autonomously coordinating multiple unmanned
vehicles for data communication between two stations. Wirel Pers
Commun 97, 3793-3810 (2017)

Praise, J.J., Raj, R.J.S., Benifa, J.B.: Development of reinforcement
learning and pattern matching (rlpm) based firewall for secured
cloud infrastructure. Wirel Pers Commun 115, 993-1018 (2020)
Tasgaonkar, P.P.,, Garg, R.D., Garg, PK.: Vehicle detection and
traffic estimation with sensors technologies for intelligent trans-
portation systems. Sens & Imaging 21, 1-28 (2020)

Annepu, V., Rajesh, A.: Implementation of an efficient artificial bee
colony algorithm for node localization in unmanned aerial vehicle
assisted wireless sensor networks. Wirel Pers Commun 114, 2663—
2680 (2020)

Kumar, A.: Real-time performance comparison of vision-based
autonomous landing of quadcopter on a ground moving target.
IETE J Res, 1-18 (2021)

@ Springer

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Li, X.: Robot target localization and interactive multi-mode motion
trajectory tracking based on adaptive iterative learning. J] Ambient
Intell Hum Comput 11, 6271-6282 (2020)

Muller, U., Ben, J., Cosatto, E., Flepp, B., Cun, Y.: Off-road obsta-
cle avoidance through end-to-end learning. Adv Neural Inf Process
Syst 18, 739-746 (2005). (MIT Press)

Tai, L., Li, S., Liu, M.: A deep-network solution towards model-
less obstacle avoidance. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 2759-2764 (2016).
IEEE

Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: Learn-
ing affordance for direct perception in autonomous driving. In:
IEEE International Conference on Computer Vision, pp. 2722—
2730 (2015). IEEE

Kretzschmar, H., Spies, M., Sprunk, C., Burgard, W.: Socially com-
pliant mobile robot navigation via inverse reinforcement learning.
Int J Robot Res 35(11), 1289-1307 (2016)

Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., Cadena, C.:
From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots. In: IEEE
International Conference on Robotics and Automation (ICRA), pp.
1527-1533 (2017). IEEE

Zhu, D., Li, T., Ho, D., Wang, C., Meng, M.Q.-H.: Deep rein-
forcement learning supervised autonomous exploration in office
environments. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 7548-7555 (2018). IEEE

Zhang, J., Springenberg, J.T., Boedecker, J., Burgard, W.: Deep
reinforcement learning with successor features for navigation
across similar environments. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 2371-2378
(2017). IEEE

Everett, M., Chen, Y.F., How, J.P.. Motion planning among
dynamic, decision-making agents with deep reinforcement learn-
ing. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3052-3059 (2018). IEEE

Gu, S., Lillicrap, T., Sutskever, 1., Levine, S.: Continuous deep
g-learning with model-based acceleration. In: International Confer-
ence on Machine Learning (ICML), pp. 2829-2838 (2016). PMLR
Chen, C., Liu, Y., Kreiss, S., Alahi, A.: Crowd-robot interaction:
Crowdaware robot navigation with attention-based deep reinforce-
ment learning. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 6015-6022 (2019). IEEE

Ciou, P-H., Hsiao, Y.-T., Wu, Z.-Z., Tseng, S.-H., Fu, L.-C.:
Composite reinforcement learning for social robot navigation. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 2553-2558 (2018). IEEE

Chen, Y.F,, Liu, M., Everett, M., How, J.P.: Decentralized noncom-
municating multiagent collision avoidance with deep reinforce-
ment learning. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 285-292 (2017). IEEE

Fujimoto, S., Hoof, H., Meger, D.: Addressing function approxi-
mation error in actor-critic methods. In: International Conference
on Machine Learning (ICML), pp. 1587-1596 (2018). PMLR
Hasselt, H.: Double g-learning. Adv Neural Inf Process Syst 23,
2613-2621 (2010)

Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experi-
ence replay (2015). arXiv:1511.05952

Koenig, N., Howard, A.: Design and use paradigms for gazebo,
an opensource multi-robot simulator. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, pp.
2149-2154 (2004). IEEE

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/2004.14684
http://arxiv.org/abs/1511.05952

Journal of Intelligent & Robotic Systems (2023) 109:18

Page170f17 18

Changyun Wei received the B.Eng. degree in mechanical engineer-
ing and automation and the master’s degree in mechanical engineering
from Hohai University, Nanjing, China, in 2008 and 2010, respec-
tively, and the Ph.D. degree in artificial intelligence (AI) from the Fac-
ulty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, Delft, The Netherlands, in 2015. He is
an Associate Professor with the College of Mechanical and Electrical
Engineering, Hohai University. His present research interests include
autonomous unmanned systems, intelligent robots, and multirobot sys-
tems.

Yajun Lireceived his B.Eng. degree in vehicle engineering from Ningbo
University of Technology, Ningbo, China, in 2019. He is currently pur-
suing the master degree with the College of Mechanical and Electrical
Engineering, Hohai University, Nanjing, China. His research inter-
ests include intelligent autonomous unmanned systems and distributed
control.

Yongping Ouyang received the B.Eng. degree in mechanical engi-
neering from Hohai University, Nanjing, China, in 2020, where he is
currently pursuing the master degree with the College of Mechanical
and Electrical Engineering. His research interests include intelligent
autonomous unmanned systems and multi-robot collaboration.

Ze Ji received the B.Eng. degree from Jilin University, Changchun,
China, in 2001, the M.Sc. degree from the University of Birming-
ham, Birmingham, U.K., in 2003, and the Ph.D. degree from Cardiff
University, Cardiff, U.K., in 2007. He is a Senior Lecturer (Asso-
ciate Professor) with the School of Engineering, Cardiff University,
U.K. Prior to his current position, he was working in industry (Dyson,
Lenovo, etc) on autonomous robotics. His research interests are cross-
disciplinary, including autonomous robot navigation, robot manipula-
tion, robot learning, simultaneous localization and mapping (SLAM),
acoustic localization, and tactile sensing.

@ Springer

	Deep Reinforcement Learning with Heuristic Corrections for UGV Navigation
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Navigation Approach
	3.1 Sensor-Level Navigation Problem
	3.2 DRL for UGV Navigation
	3.3 Neural Network Architecture
	3.4 Improved Prioritized Experience Replay
	3.5 Algorithm of TD3-HCP

	4 Experiments and Results
	4.1 Training Configuration
	4.2 Experiment in Static Environments
	4.2.1 Evaluation During the Training Phase
	4.2.2 Evaluation During the Testing Phase
	4.2.3 Real Robot Testing in Static Environments

	4.3 Experiment in Dynamic Environments
	4.3.1 Evaluation in Dynamic Simulated Environment
	4.3.2 Evaluation in Dynamic Factory-Like Environment
	4.3.3 Real Robot Testing in Dynamic Environments

	4.4 Discussion

	5 Conclusion and Future Work
	References

