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Quantification of microglial activation through morphometric analysis has long

been a staple of the neuroimmunologist’s toolkit. Microglial morphological

phenomics can be conducted through either manual classification or

constructing a digital skeleton and extracting morphometric data from it.

Multiple open-access and paid software packages are available to generate

these skeletons via semi-automated and/or fully automated methods with

varying degrees of accuracy. Despite advancements in methods to generate

morphometrics (quantitative measures of cellular morphology), there has been

limited development of tools to analyze the datasets they generate, in particular

those containing parameters from tens of thousands of cells analyzed by fully

automated pipelines. In this review, we compare and critique the approaches

using cluster analysis and machine learning driven predictive algorithms that

have been developed to tackle these large datasets, and propose improvements

for these methods. In particular, we highlight the need for a commitment to

open science from groups developing these classifiers. Furthermore, we call

attention to a need for communication between those with a strong software

engineering/computer science background and neuroimmunologists to produce

effective analytical tools with simplified operability if we are to see their wide-

spread adoption by the glia biology community.

KEYWORDS

microglia, microglia morphology, cellular morphological changes, machine learning,
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Introduction to microglia and the functional
relevance of their morphology

The central nervous system (CNS) is populated with tissue specific macrophages, termed
microglia, that comprise 10–15% of cells in the adult brain (Li and Barres, 2018; Morimoto
and Nakajima, 2019). In rodent studies (at E8 timepoint), primitive macrophages from a pool
in the yolk sac colonize the embryonic brain, whilst in humans their presence appears from
4.5 weeks into gestation (Monier et al., 2007; Thion et al., 2018). Upon maturation of the
blood brain barrier (BBB), microglia are confined to the CNS (providing BBB integrity is not
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compromised) and self-renew throughout adulthood (Daneman
and Prat, 2015; Lenz and Nelson, 2018). Microglia are susceptible
to a wide range of factors that can influence their function. Since
their turnover is slow, adverse deviations from the homeostatic
environment such as those observed in brain injury, neurological
disease and stress, can have long lasting effects on their functional
capacity in the brain (Ziebell et al., 2017b).

Historically, microglia in the healthy (non-diseased/injured)
adult brain have been termed “resting” which is a misnomer.
Microglia in a healthy adult brain participate in CNS
homeostasis and survey their local environment for pathogens,
apoptotic/necrotic cells, neurofibrillary tangles, amyloid plaques,
and deoxyribonucleic acid (DNA) fragments (Nimmerjahn et al.,
2005; Bolmont et al., 2008; Ohm et al., 2021). Furthermore, by
releasing diffusible factors (e.g., cytokines and trophic factors)
and conducting phagocytosis/trogocytosis, microglia directly
support healthy brain function and CNS development maintaining
homeostasis, support of neurotransmission, remodeling the
extracellular matrix, neuronal maintenance, the regulation of
neurogenesis and facilitation of synaptic pruning, long term
potentiation (LTP) and long-term depression (LTD) (Paolicelli and
Gross, 2011; Frost and Schafer, 2016; Salter and Stevens, 2017;
Madry et al., 2018b; Weinhard et al., 2018a; Crapser et al., 2020;
Nguyen et al., 2020; Venturino et al., 2021; Buchanan et al., 2022).
Homeostatic microglia react via their arrays of trans-membrane
receptors to damage or pathogen associated molecular pattern
(DAMPs or PAMPs) (Kyrargyri et al., 2020). Upon encountering
immunogenic stimuli, microglia synthesize and release cytokines
and migrate following chemotactic gradients to sites of injury
and/or damage where they modulate secondary injury and
facilitate repair (Thameem Dheen et al., 2007; Bachiller et al.,
2018).

Microglia are highly dynamic cells that display multivariate
ontogeny, morphology, motility, transcriptomes, and metabolic
profiles. The many layers of complexity, intrinsic and extrinsic
determinants and the spatiotemporal context confer microglial
functional roles. Despite this complexity morphological states of
microglia have often been used as a proxy measure of their
functional state. After over a century of study, the morphological
phenotypes of microglia, although diverse, can be loosely grouped
based on a variety of features into: homeostatic, hyper-ramified,
reactive, amoeboid and rod (Sierra et al., 2019). Most microglia
in the healthy adult brain display homeostatic morphologies
with numerous ramifications, small somas, long processes and
highly arborised branches surveying a relatively large area in the
search for signs of infections or neuronal distress (cell area: 200–
8,000 µm2, skeleton length: 200–350 µm and cell solidity: 0.25–0.3)
(Figure 1A; Glenn et al., 1992; Leyh et al., 2021). Upon detection
of a stimulus, the cytoskeleton rearranges driving microglia to
adopt a reactive morphology. During this transition microglia
adopt an intermediate morphology termed hyper-ramified or
“bushy” in which they exhibit increased process length, volume
and complexity (Figure 1D; Ziebell et al., 2015; Fernández-Arjona
et al., 2017). Reactive microglia are characterized by larger somas
and thicker less branched processes compared to the ramified
morphotype (cell area: 200–400 µm2, skeleton length: 100–300 µm
and cell solidity: 0.3–0.35) (Figure 1B; Tynan et al., 2010; Ziebell
et al., 2015; Madry et al., 2018a; Savage et al., 2019; Leyh et al.,
2021). The reactive morphotype is associated with microglia that

are no longer solely surveying for signaling molecules associated
with damaged neurons or pathogens, but also the production of
inflammatory cytokines, phagocytosing of cellular debris and/or
migrating to sites of injury (Li et al., 2007; Lynch, 2009; Lannes
et al., 2017). In scenarios such as neuroinflammation, where
immunogenic molecules are in high concentrations for a sustained
period of time, reactive microglia retract their processes entirely
and adopt a round amoeboid morphotype that is indistinguishable
(at least morphologically, there are some protein markers such
as Hexb which are microglia specific) from infiltrating peripheral
macrophages (cell area: 50–150 µm2, skeleton length: 25–50 µm
and cell solidity: 0.4–0.5) (Figure 1C; Giulian and Baker, 1986;
Parakalan et al., 2012; Jurga et al., 2020; Masuda et al., 2020; Leyh
et al., 2021). Microglia can also adopt another morphology; where
their processes are highly polarized with little arborisation and
their somas skinny and elongated, meaning the cells resemble rods
(cell area: 300–700 µm2, skeleton length: 200–350 µm and cell
solidity: 0.25–0.3) (Figure 1E; Leyh et al., 2021). Rod microglia
align in parallel with damaged neurons post-injury and appear to
facilitate either their repair or further breakdown (Taylor et al.,
2014; Holloway et al., 2019; Giordano et al., 2021). Historically,
the nomenclature used to describe microglial morphology has
been extremely varied with some terms being used interchangeably
and with some researchers preferring one term over another.
Recently, in an effort to achieve a degree of concordance in
microglial morphological nomenclature, researchers in the field
came together to standardize the terminology used to describe
microglial functional states (Paolicelli et al., 2022). In the course
of this review where appropriate we have adhered to this new
nomenclature. However, when presenting the work and models
developed by other researchers, we have retained their original
nomenclature. To avoid confusion Table 1 provides a summary of
terms used to describe microglial morphotypes during this review.

Given the well-established literature on microglial morphology
and its relation to function; researchers often use assessments of
microglial morphology as a proxy for assessing the functional
state of microglia in the brain during development, during
disease progression, post-injury, accompanying genetic alterations,
or following behavioral paradigms. Microglial morphological
phenomics can be combined with additional measures of microglial
activity such as assaying PSD95 (a post-synaptic scaffolding
protein) uptake to quantify microglial synaptic phagocytosis
and measuring increases in the expression of pro-inflammatory
markers such as: CD45, CD68 and MHCII (Tynan et al., 2010;
Morrison et al., 2017; Hopperton et al., 2018; Cengiz et al., 2019;
Paasila et al., 2019; Sellgren et al., 2019; Sinha et al., 2021).

Methods for labeling microglia

Morphological assessment of microglia requires a pan-
microglial marker which covers the entire cell (including
all processes and soma). Immunohistochemistry targeting the
cytoskeleton associated monocyte-specific marker ionized calcium
binding adaptor molecule 1 (IBA1) has long been considered the
gold standard for labeling microglia for morphometric analysis
(Ito et al., 1998; Ahmed et al., 2007). Other pan-microglial
markers include CD11b, CX3CR1, and CD68 all of which, like
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FIGURE 1

Representations of the five microglial morphologies. (A) Homeostatic microglia characterized by their long complex processes and small somas.
(B) Reactive microglia processes have retracted and decreased in number, somas also appear larger and rounder. (C) Amoeboid microglia lack any
processes and are morphologically indistinguishable from blood-borne macrophages. (D) Hyper-ramified “bushy” microglia an intermediate
morphology between homeostatic and reactive, in which microglia have retracted and begun to thicken their processes. (E) Rod-shaped microglia
adopt a highly polarized morphology characterized by their long thin somas and long extended processes.

TABLE 1 The varied names/nomenclature found within the literature
used to describe microglial morphotypes and how they relate to the
terms defined by Paolicelli et al. (2022).

Term defined by Paolicelli
et al. (2022)

Alternative names

Resting

Ramified

Homeostatic Non-active

Surveillant

M0

Hyper-ramified Bushy

Activated

Inflammatory

M1/M2

Reactive Hypertrophied

Deramified

Disease associated microglia
(DAM)

Amoeboid
Fully active

Phagocytic

IBA1, are expressed by infiltrating perivascular and meningeal
macrophages (Korzhevskii and Kirik, 2016). The non-specific
labeling of said markers does not always represent an issue for
morphological assessment as perivascular, meningeal and border-
associated macrophages are readily identifiable based upon their
localisation and peripheral macrophages are not present in the
healthy CNS thanks to the BBB (Zhao et al., 2015; Utz and
Greter, 2019; Yang et al., 2019). However, in models of disease,
injury and infection such as Alzheimer’s disease (AD), traumatic
brain injury (TBI), ischemia and streptococcal meningoencephalitis
where the BBB is compromised/leaky, peripheral macrophages

can enter the brain and thus can be misidentified as microglia
during morphological assessment (Polfliet et al., 2001; Chodobski
et al., 2011; Sweeney et al., 2018; Gres et al., 2019; Nian
et al., 2020). Recently TMEM119 (Satoh et al., 2016), P2RY12
(Butovsky et al., 2014) and SiglecH (Konishi et al., 2017) have
been identified as a microglial markers which are not expressed
by macrophages, however, they have not usurped IBA1 as the
microglial marker of choice for morphometrics in part due to
limited antibody availability and reports of down regulation post-
microglial activation (Bennett et al., 2016; Satoh et al., 2016).
Reporter knock-in animals where a microglial marker is co-
expressed/tagged with a fluorescent reporter such as GFP or
tdTomato can be used instead of immunohistochemistry for
labeling microglia for morphological assessment. Both myeloid
(CX3CR1GFP) and microglial (TMEM119GFP, Sall1GFP, IBA1-
EGFP, and HexbTdTomato) specific reporter mice have been
developed (Garcia et al., 2013; Koso et al., 2016; Kaiser and Feng,
2019; Masuda et al., 2020; VanRyzin et al., 2021). However, care
must be taken to select a suitable marker whose expression is
relatively consistent between experimental groups (i.e., naïve vs.
injured). TMEM119 and Sall1 expression have both been shown
to decrease during prolonged periods of microglial activation
IBA1, CD11b, CD68, and CX3CR1 are increased under the same
conditions (Roy et al., 2006; Zhang et al., 2018; Jurga et al.,
2020; Shi et al., 2021). Hexb appears to be more stable under
similar conditions (Bennett et al., 2016; Masuda et al., 2020).
Additionally, following its first description concern has been raised
over TMEM119’s microglial specificity, for example in the retina
TMEM119 was found to be expressed by both microglia and
Müller cells (Su et al., 2019). Moreover, during early development
(4.5 weeks), TMEM119 does not label microglia and instead may be
specific to osteoblasts (Bartalska et al., 2022). Furthermore, some
models such as the CX3CR1 gene knock-in, must consider the
impact of partial deficiencies in their expression that the model
induces, for example in APP-PS1 mice partial CX3CR1 deficiency
reduces plaque deposition (Hickman et al., 2019), and total
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TABLE 2 Summary of methods to label microglia in vivo with their respective advantages and disadvantages.

Category Marker Function Advantages Disadvantages

Myeloid

CD11b
Subunit of complement receptor 3
Chen et al., 2008

Well established markers

Expressed by peripheral myeloid
cells and infiltrating macrophages

CD68

Peptide transport/antigen
processing
Chistiakov et al., 2017

CX3CR1
Chemokine receptor
Lee et al., 2018

Plethora of widely available
antibodies

IBA1

Cytoskeleton calcium-binding
adaptor
Ohsawa et al., 2004

Microglial

HexB Lysosomal enzyme subunit
Masuda et al., 2020

Stable expression post-microglial
activation
Expressed only by microglia

Limited commercially available
antibodies

P2ry12
Adenosine diphosphate receptor
Gómez Morillas et al., 2021 Expressed only by microglia

Limited commercially available
antibodies

SiglecH
Phagocytosis receptor
Kopatz et al., 2013

Decreased expression with
sustained microglial activation

TMEM119
Yet to be established
Bennett et al., 2016

Expressed only by microglia (in the
adult brain)

Limited commercially available
antibodies
Decreased expression with
sustained microglial activation
Repressed during development
Expressed by retinal Müller cells

Reporter mice

CX3CR1GFP Chemokine receptor
Lee et al., 2018

Well established marker

Expressed by peripheral myeloid
cells and infiltrating macrophages
Impaired signaling of receptor
compared to WTs

HexBTdTomato Lysosomal enzyme subunit
Masuda et al., 2020

Expressed only by microglia
High specificity
Stable expression post-microglial
activation

Sall1GFP
Zinc finger transcriptional repressor
Buttgereit et al., 2016

Expressed only by microglia (in the
adult brain)

Decreased expression with
sustained microglial activation

TMEM119GFP Yet to be established
Bennett et al., 2016

Decreased expression with
sustained microglial activation
Repressed during development
Expressed by retinal Müller cells

CX3CR1 deficient microglia display premature aging phenotypes
(Gyoneva et al., 2019; Table 2).

Tools for imaging stained/labeled
microglia in situ

Confocal laser scanning microscopy is the favored approach
to image fluorescently labeled microglia in tissue sections. Care
must be taken to select an appropriate section thickness which
ensures the full 3D architecture of microglia is captured but
is thin enough to facilitate adequate antibody penetration if
immunohistochemistry is being used to label cells. Typically,
with appropriate retrieval and fixation strategies, section thickness
of up to 150 µm can be used which will sufficiently capture
typical microglial territorial depth (Davis et al., 2017; Leyh et al.,

2021). Furthermore, to ensure only fully intact microglia are
imaged care should be taken to avoid microglia on the tissue
border which are likely incomplete. Whilst traditional confocal
microscopes are more than capable of imaging small field images
of microglia in tissue sections, the advent of automated slide
scanners such as the ZEISS Axioscan 7 and Olympus VS120
have revolutionized the acquisition of microglial images for
morphometric analysis. These microscopes enable entire brain
regions or whole sections to be imaged resulting in thousands
of microglial images being acquired per animal with reduced
sampling bias. Large microglial image datasets can also be obtained
via light-sheet microscopy used in conjunction with methods
to clear brains containing fluorescently labeled microglia. This
approach ensures intact microglial architecture and enables global
analysis of microglial morphotypes without sectioning artifacts;
however, with the caveat that the shrinkage which occurs during
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sample preparation will alter microglial profiles (Bekkouche et al.,
2020; Vulders et al., 2021). Furthermore, light-sheet technology
has modest spatial resolution which does pose an issue for
researchers wanting to capture finer microglial processes in their
morphometric analysis (Watkins and St. Croix, 2018; Chen et al.,
2022).

Methods for assessing morphology

Parallel improvements in high performance cluster computing,
machine learning algorithms and image classification frameworks
built on deep learning architectures show that the field of imaging
in biomedical sciences is entering a new age of high throughput
analysis (Barragán-Montero et al., 2021; Castiglioni et al.,
2021; Zerouaoui and Idri, 2021). However, these developments
bring with them new challenges in how to assess microglia
morphology in a manner that capitalizes upon the large microglial
image datasets being acquired. We begin by describing the
different methods for microglial classification and morphological
analysis, starting with the low-throughput methods and ending
with classification pipelines capable of analyzing thousands of
cells.

Manual classification

Manual classification of microglial morphology using
maximum intensity projection images generated from 3D
images of microglia is a simple, commonly used method to
assess microglial activation status in a given context. In manual
classification, a trained “scorer” is given an image dataset typically
containing 50–250 microglia per subject (Table 3) they then
class each cell as being either homeostatic, reactive, amoeboid or
rod-shaped whilst being blinded to the experimental group/animal
they are from. Classification is done according to a set of criteria
for each morphology: homeostatic–large surveying area with thin
highly arborised processes; reactive–enlarged soma with thicker
and less branched processes; ameboid–no processes with large
soma; rod–long polarized processes with a thin soma. Whilst this
approach requires no specialist software and can be a relatively
rapid method for analysis once the initial “scorer” training has
been completed, the criteria are very subjective and effective
blinding is not always possible when studying disease and injury
models with distinctive histopathological features. Subjectivity
becomes an even greater issue if researchers wish to include in
their analysis the hyper-ramified morphotype (Figure 1D), which
is difficult to identify/separate from homeostatic and reactive
morphotypes due to it being a transitory stage between the two
(Morrison and Filosa, 2013; Holloway et al., 2019). Another
significant challenge regarding manual morphological assessment
is loss of data through dimensionality reduction. Here, trying
to view a 3D object as a 2D object is done by viewing z-stacked
images as a maximum intensity projection. This is quick and
computationally simple, for example, ImageJ1 contains the 3D

1 https://github.com/imagej/ImageJ

TABLE 3 A non-exhaustive sampling of the number of cells assessed in
recent highly cited papers using using the four most common methods
for microglial morphological analysis: manual classification, fractal
analysis, manual/semi-automated reconstruction, and
automated reconstruction.

References Area of
research

# Cells assessed

Manual classification

Diz-Chaves et al., 2012 Psychological stress 28 counting frames per
animal

Ziebell et al., 2017a Traumatic brain
injury

100 cells (16 counting
frames) per animal

Davies et al., 2017 Alzheimer’s disease ∼200 cells per individual

DeWalt et al., 2018 Blast injury ∼50 cells per ROI

Martini et al., 2020 Alzheimer’s disease 5 counting fames per
section

Vega-Rivera et al.,
2021

Psychological stress 50 cells per animal

Bachstetter et al., 2015 Alzheimer’s disease 5 counting fames per
section

Sardari et al., 2020 Ischemia 6 counting frames per
section

Hoeijmakers et al.,
2017

Alzheimer’s disease 4 counting frames per
section

Villapol et al., 2017 Traumatic brain
injury

2–5 counting frames per
animal/ROI

Fractal analysis

Sołtys et al., 2001 Lesion injury 145 cells in total

Morrison et al., 2017 Traumatic brain
injury

24 cells per animal/ROI

Daly et al., 2022 Nutrition 20 cells per animal

Kuo et al., 2021 Ischemia 30 cells per animal

Francistiová et al., 2022 Microglial biology 8 cells per condition

Bido et al., 2021 Parkinson’s disease 30 cells per animal

Young et al., 2021 Ischemia 3 cells per animal/ROI

Fletcher et al., 2020 Parkinson’s disease 27 cells per animal

Green et al., 2022a Microglial biology 478 cells in total

Manual/Semi-automated reconstruction

Kongsui et al., 2014 Microglial biology 5 cells per ROI

Bolton et al., 2017 Neurodevelopment 45 cells in total

Ali et al., 2019 Environmental
enrichment

10–20 cells per condition/
ROI

Franco-Bocanegra
et al., 2021

Alzheimer’s disease 15 cells per individual

Franciosi et al., 2012 Huntington’s disease ∼1000 cells per condition

Cengiz et al., 2019 Parkinson’s disease 5–10 cells per animal

Gildawie et al., 2020 Neurodevelopment 200-600 cells per animal

Gober et al., 2022 Schizophrenia 30 cells per individual

Chaaya et al., 2019 Behavioral
neuroscience

9 cells per ROI

Weinhard et al., 2018b Neurodevelopment 60 cells per condition

(Continued)
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TABLE 3 (Continued)

References Area of
research

# Cells assessed

Fujikawa and Jinno,
2022

Psychological stress 255 cells in total

Automated reconstruction

Verdonk et al., 2016 Microglial biology 20,000 cells per condition

Kozlowski and
Weimer, 2012

Microglial biology 10,000 cells per condition

Pelgrim et al., 2022 Chronic obstructive
pulmonary disease

12 cells per ROI

Elzinga et al., 2022 Nutrition/Microglial
biology

∼5,000 cells per condition

Martinez et al., 2023 Microglial biology ∼5,000 cells in total

Leyh et al., 2021 Ischemia 15,786 cells in total

ROI (region of interest). Demonstrating the within method variability of sample number and
the advantages afforded by automated reconstruction methods.

FIGURE 2

Demonstration of the caveats associated with using
two-dimensional maximum intensity projections generated from
three dimensional images for manual quantification of microglial
morphologies. In the case of the example given the large soma
contained within slices 10–12 in the maximum intensity projection
will obscure the large process contained within slices 24–26,
meaning they will not be included in any analyses performed.

Project function which does this. Nonetheless, the resulting
image hides processes that are obstructed by the cell body or
other thicker processes. Figure 2 shows a schematic of this issue.
Whilst the classification could, in theory, be done by a scorer
scrolling through the z-plane, this proves to be challenging and
impractical.

A major drawback of manual classification is the introduction
of inter-rater biases. Morphology is complex; important parameters
including branch angle, branch thickness and soma size, are
challenging for a human investigator to accurately gauge.
The boundaries between one morphology and the next can
be very subtle (for example between homeostatic and hyper-
ramified). Furthermore, there exists no standard guide for
microglia classification, meaning that one person’s homeostatic
microglia is another person’s reactive microglia. This lack of

FIGURE 3

Methods for calculating fractal dimension used to quantify
microglial complexity. (A) Classical length/caliper method. (B) Box
counting method. (C) Mass-radius method.

consistency can lead to an extreme disparity in classification
between observers. For example in a recent study, Chaaya et al.
(2019) classed a population of cells with large processes and
arborisation as ameboid whereas by many other researchers’
rubrics these cells would be classified as having a reactive
morphology. This discrepancy serves the point that manual
classification struggles with inter-rater reproducibility, especially
between different research groups. We must also consider the
substantial time commitment that manual classification requires,
even when sampling a small population of 100 microglia per
animal, analysis will take days and require the undivided attention
of the scorer. In response to these issues and the desire
to assess microglial morphology in a less subjective manner,
methods have been developed to extract morphometrics from
microglia.

Fractal analysis

Microglia, with their branching trees and formation of complex
patterns, are fractals as per the definition of Benoît (1975)
and therefore can have their complexity and structural variation
quantified using fractal methods (Mandelbrot, 1967). A fractal’s
complexity can be quantitatively assessed through calculating its
fractal dimension (D), using either a length or a mass method.
The classical length or caliper method measures the perimeter
of an object with different lengths of ruler (e.g., 5, 10, and 20
pixels). Log(perimeter) is plotted against log(ruler length) to which
a straight line is fitted whose slope (S) is used to calculate D (where
D = 1–S) (Figure 3A; Jelinek et al., 2005). Box Counting is another
length-based method for obtaining D, where a series of increasingly
fine grids are applied to the image and the number of grid boxes
covering the image counted (Figure 3B). D is calculated as follows:

D =
log (N)

log (1/G)

Where N is the number of squares that cover the pattern and G
is the grid size (Smith et al., 1996; Rajković et al., 2017). Mass
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methods utilize boxes or circles of varying sizes placed at random
points along the shape’s perimeter and the number of border pixels
contained within the shape are counted (Figure 3C). The slope (S)
is calculated as follows:

S =
log (p)

log (w)

Where p is the number of pixels in the applied box/circle and
w is the applied box width or circle diameter (Smith et al.,
1996; Jelinek and Fernandez, 1998). This slope is then used to
calculate D.

Structural variation or lacunarity (L) is another metric
obtainable through fractal analysis and is a quantifiable measure of
rotational/translational invariance (non-uniformity) (Figure 4). As
with D there is little consensus on the “best” approach to calculate a
fractal’s L. One common approach is to apply a series of increasingly
fine grids to the image and then measuring the average number
of pixels per square for each size of grid. Normalization (standard
deviation/mean2) of these average pixel counts give the coefficient
of variation, the average of which across all grid sizes is L (Smith
et al., 1996; Jelinek and Fernandez, 1998).

The first implementation of fractal analysis to study microglial
morphology (Sołtys et al., 2001), expanded existing methods
used for morphological assessment of neurons, astrocytes and
oligodendrocytes (Montague and Friedlander, 1989; Huxlin et al.,
1992; Smith and Behar, 1994). In its simplest form, fractal analysis
is performed on a one-pixel outline of a 2D microglial image
generated through manual thresholding in ImageJ and plugins
such as FracLac. A new fractal analysis plugin, MULTIFRAC2;
released in Torre et al. (2020), still requires manually generated
cell outlines, but can perform both 2D and 3D dimensional
fractal analysis with researchers typically assessing 5–150 cells
per subject (Table 3). Regardless of the method or software
employed, all produce estimates of D and L. Unlike raw
morphometrics, the parameters generated by fractal analysis do
not lend themselves to simple interpretation as to the morphotype
of the cell they are obtained from. Sołtys et al. (2001) along
with Jelinek et al. (2008) used manual classification alongside
fractal analysis to determine that both D and L decrease as
a microglia trend toward activation. The one-pixel outlines
generated during fractal analysis can be used to measure a
limited range of raw morphological parameters such as convexity
(convex hull perimeter/cell perimeter), solidity (cell area/convex
area) and form factor (4π∗area/perimeter2), which are often
presented alongside D and L values in studies using fractal
analysis to quantify microglial morphological changes (Sołtys
et al., 2001; Fernández-Arjona et al., 2017; Morrison et al.,
2017). When fractal analysis was first implemented to analyze
microglial morphometrics by Sołtys et al. (2001) it was truly
cutting edge and was one of the only methods available to
extract quantitative measures of cellular morphology. However,
in the intervening 20 years the emergence of software packages
(detailed in the next section), which facilitate both manual and
automatic microglial tracing, have supplanted fractal analysis as
the “gold standard” for quantitively assessing cellular morphology.
These newer methods can produce detailed multi-dimensional

2 https://github.com/ivangtorre/multifrac

FIGURE 4

Lacunarity (∧ or L) a measure of rotational invariance is used to
quantify the non-uniformity of microglia. The top left cell (A) is
heterogenous and is rotationally invariant. When rotated by 180◦ (C)
it looks dissimilar to the original (A) which is reflected by having a ∧
close to 1. The top right cell (B) is more homogenous and is less
affected by rotation (D) which results in a ∧ closer to 0.

datasets to quantify microglial morphology, opposed to the one
or two parameters generated by fractal analysis. Furthermore,
fractal analysis suffers from issues of reproducibility and user
bias due to the need for manual thresholding of images and
operator driven selection of cells. Despite these issues, fractal
analysis could feasibly be incorporated into the semi-/fully
automated morphological analysis platforms discussed later in
this review, especially as some of these software packages do not
require the operator to select cells for analysis. This inclusion
would increase the dimensionality of the datasets they generate
through the inclusion of D and L, which could be particularly
useful for machine learning driven classification and/or cluster
analysis.

Manual approaches

Several manual tracing software solutions are available to
researchers ranging from free open-source ImageJ plugins such as
Simple Neurite Tracer [SNT, (Arshadi et al., 2021)] or Analyze
Skeleton (Arganda-Carreras et al., 2010) to commercial packages
Neurolucida 360 R© (MBF Bioscience) and Imaris Microscopy
Image Analysis software (Oxford Instruments) which are feature
rich but very expensive (>$15,000 for typical academic license).
All these software packages regardless of cost or number of
features enable the operator to manually trace a projection
generated from a 3D microglial image. Of course, this comes
with the same caveats surrounding 2D projections discussed
previously but has the capacity that the original 3D image can
be referred to, enabling the user to solve any ambiguity such
as overlapping processes. In some cases, particularly with the
more advanced and feature heavy platforms, semi-automated
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is a more apt description as the manual tracing is often
guided by the software or an imprecise trace is generated
by the software which the user can then manually tweak
and edit themselves. The Imaris Microscopy Image Analysis
software package generates these automatic editable traces by
allowing the user to set “starting points” and “seed points,”
along which the microglial structure is detected. Whilst its
developers regard this feature as “automatic” we believe semi-
automatic is more appropriate. From experience manual edits
of “start” and “seed” points is almost always required and calls
for extensive user input when compared to the fully automated
approaches that we will go onto discuss later. Nonetheless, packages
like Imaris Microscopy Image Analysis and Neurolucida 360 R©

provide highly precise and detailed traces (albeit requiring some
manual editing) of microglia from which morphometrics can be
extracted. All methods of manual tracing include a level of bias;
from personal experience and speaking with peers, researchers
performing manual tracing tend to select cells to trace that
are “easy” e.g., are isolated with little overlap with other cell’s
processes. This bias, whilst understandable, can severely impact
the morphometric datasets generated, particularly when studying
diseases such as AD and TBI where clusters of overlapping and
intercalated microglia are expected around plaques and injury sites,
respectively.

Fully automated approaches

Several approaches for truly automated tracing have emerged
recently and are beginning to challenge the dominance of
manual and semi-automated methods to sample microglial
morphometrics. Examples of automated tracing platforms
currently available to researchers include the MATLAB based
3DMorph,3 (York et al., 2018) GliaTrace,4 (Abdolhoseini et al.,
2019), MIC-MAC (Salamanca et al., 2019), and Microglia
Morphology Quantification Tool,5 (Heindl et al., 2018) and
standalone platforms such as Vaa3D,6 (Peng et al., 2010) and
Acapella [PerkinElmer Technologies, USA, (Verdonk et al., 2016)].
Despite their differences, all these approaches to automated
tracing revolve around two key processes: segmentation and
skeletonisation. Segmentation separates cells out from its
neighbors and addresses the major issue of cells and their
processes overlapping in three-dimensional space (Al-Kofahi
et al., 2018). Many automated quantitative methods of assessing
microglial morphology require cells in isolation and are therefore
dependent upon adequate segmentation. If cells cannot be
segmented correctly then much of the further downstream analysis
will either fail or generate inaccurate representations of the
cells. As with many other aspects of microglia analysis, early
attempts at segmentation used software developed for use with
other cell types, such as Fogbank (breast epithelial cells), FastER
(HeLa cells, blood progenitor cells and embryonic stem cells)
and Cell-Profiler (Drosophila Kc167 cells and human HT29 cells)

3 https://github.com/ElisaYork/3DMorph

4 https://github.com/Mahmoud-Abdolhoseini/GliaTrace-toolkits

5 https://github.com/isdneuroimaging/mmqt

6 https://github.com/Vaa3D/release/releases/

(Vicar et al., 2019). However, all these programs were originally
developed for rounder cells with more homogenous profiles, and
thus struggle to adequately segment highly arborised microglia
whose processes extensively overlap in three-dimensions. Several
microglia-specific segmentation algorithms have now begun
to emerge in recent years; the vast majority utilize a manually
set threshold which generates a binary image separating the
cells from background. In the case of 3DMorph, segmentation
begins with pre-processing in which the image is denoised
and filtered to remove staining artifacts. This is followed by
the identification of areas of highest staining intensity termed
local minima, which are used as cell seed points and generally
correspond to the center of the soma. From the seed point the
intensity of the pixels in the surrounding area is compared
to a user defined threshold. Once the intensity of the selected
voxels hits a set threshold level the cell outline is drawn, and
it is digitally separated from the background and neighboring
cells from which morphometrics extracted. Post-segmentation
the isolated cell’s internal skeleton can be constructed through a
skeletonisation algorithm from which additional morphometrics
can be extracted covering the cell’s ramification and branching
hierarchy. The process of skeletonisation can broadly be divided
into two main methods: the first, the method implemented
by the scikit-image algorithm (van der Walt et al., 2014),7 is
termed morphological thinning, and works by looping iteratively
to delete border pixels with the condition that pixel removal
does not break the connectivity of the shape (Guo and Hall,
1989; Lam et al., 1992). The second skeletonisation method
is to generate a distance transform of the image or a medial
axis transformation, during which pixels are labeled with their
distance from the nearest boundary and the local maxima,
representing the skeleton (Blum, 1967). As with segmentation,
producing skeletons for cells with complex morphologies is a task
which has been optimized and developed for use in the analysis
of cell types other than microglia. Existing programs such as
ImageJ’s Analyze Skeleton (Arganda-Carreras et al., 2010) and
Python’s scikit-image have been co-opted for use in microglial
analysis.

One of the primary advantages of automated tracing is that it
requires minimal user input, following image acquisition (which
itself can be automated using slide scanners), images can be
processed via macros and batch processing before being fed into
the automatic tracing software. With time no longer being an
issue for the operator, this enables larger populations of microglia
to be traced and the subsequent generation of larger microglial
morphological datasets (>10,000 cells, Table 3). A review of the
current microglial tracing literature found that researchers using
manual/semi-automated tracing methods tend to trace between
5 and 500 microglia per animal (Table 3). These relatively low
numbers are sufficient to detect morphological changes models
of CNS injury and disease such as TBI (Donat et al., 2017;
Ziebell et al., 2017a), AD (Hansen et al., 2018; Leng and Edison,
2021), and ischemia (Lai and Todd, 2006; Heindl et al., 2018;
Zhang, 2019) where mass microglial activation is observed in
biological scenarios. However, where more subtle changes in
activation are expected such as following behavioral stressors,

7 https://scikit-image.org/
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larger datasets are essential so that the reactive population of
microglia are not “missed.” Furthermore, the use of automated
tracing greatly reduces the user bias associated with manual
tracing. There is no influence of the researcher upon which
microglia are traced meaning there is no preference for easy to
trace microglia as described previously, which results in a more
representative sample of the microglial population being assessed.
Automated tracing methods may struggle with densely packed
microglia and fail to trace them correctly or not at all, thus losing
an experimentally relevant population of microglia. However,
adjustments and improvements to segmentation algorithms maybe
be able to mitigate this issue in the future. Additionally automated
tracing is more prone to “miss” fine terminal processes compared
to manual/semi-automated methods due to the apparent breaks
in terminal processes which occur because of thinning staining.
In our experience of implementing automated tracing platforms,
we have found it useful to include a filtering step for all
morphological data that they output, to remove biologically
unfeasible data points. Typically, we set a maximum expected
value for each morphological parameter and remove all data
obtained from any microglia which exceeds the limit in any single
morphometric category e.g., cell volume. Despite the automated
tracing platforms discussed above being extensively validated
and capable of producing extremely accurate traces in a high
throughput manner, they all suffer to varying degrees with issues
pertaining to user friendliness and accessibility for operators
with limited background in coding. None of them can be run
from simple executable file akin to ImageJ and have limited
implementation of graphical user interfaces. In some cases, in
the original publications there was no clear signposting of where
script repositories can be found and required the potential users to
manually seek out the GitHub account of the authors. If automated
tracing platforms are to be widely used and become a viable
alternative to software packages such as Imaris Microscopy Image
Analysis and Neurolucida 360 R©, further concerted development
of one or more of these existing platforms is paramount.
Such development should focus on improving user friendliness,
maintaining/updating the software’s features and improving its
uptake within the wider research community, whether this be
through commercialisation or promotion as open-source software
by a large research body such as the NIH as was done with
ImageJ.

Analyzing microglial morphometrics

The simplest method for analyzing microglial traces is
comparing raw morphometric parameters obtained from them,
between experimental groups. Any changes in morphometrics
observed between groups can be used to infer whether any
changes in microglial classification/activation have occurred.
Morphometrically there are many features that can be extracted
from microglia. As mentioned throughout, some of the most
common parameters are cell soma, cell volume, ramification
reflected by Sholl analysis (proximal and distal processes to
the cell), number of terminal points, the total length of all
processes and the territorial coverage of the microglia. When
these parameters are combined, their relevancy and usefulness

TABLE 4 The varied definitions of “ramification index” found
within the literature.

Definition References

Cell perimeter
Cell area

Madry et al., 2018b

Maximum number of Sholl intersections
# Primary processes

Morrison and Filosa, 2013; Simon
et al., 2020; Clarke et al., 2021

# End branches
# Primary branches

Sołtys et al., 2001; Heindl et al.,
2018

Cell area
Convex area

Schilling et al., 2001; Wittekindt
et al., 2022

4π × Cell area
Cell perimeter2

Schilling et al., 2004; Wodicka et al.,
2015

Cell perimeter/Cell area
2 × (π/Cell area)1/2

Madry et al., 2018a; Kyrargyri et al.,
2020

Cell territory
Cell volume

York et al., 2018; Steffens et al., 2023

provide a more detailed interpretation of the microglia in
the relative context. For example, an increase in both soma
volume and a decrease in the number of branch points
would suggest a shift toward microglial activation and therefore
increased phagocytosis in the given condition (Leyh et al.,
2021). Furthermore, several researchers have highlighted the
importance of subtle fluctuations in microglial morphology in
both the healthy and pathological brain. For example, where
relative soma volumes and proximal processes remain constant
but changes are observed in distal processes, which infer
changes to microglia surveying activity or their support of
synaptic plasticity (Tremblay et al., 2010; Karperien et al., 2013;
Hristovska and Pascual, 2016). Attempts have been made to
combine several morphometrics into one parameter which can
be used to quantify microglial activation; ramification index is
one such example. Ramification index is commonly found in the
literature, however, no consensus has been reached on how to
calculate this metric, with researchers using an array of different
definitions (Table 4), making interexperimental comparisons
challenging. It is also important to note that comparisons
of different methods for obtaining microglial morphometrics
have revealed that there can be some differences in measured
effect sizes depending on the method employed. This appears
to be truest when performing solely fractal analysis or Sholl
analysis (Green et al., 2022b). When comparing methods which
reconstruct microglia in 3D, the parameters extracted from the
same cell by different software packages are comparable for most
morphometrics (number of endpoints, number of branch points
and cell volume), with branch length measurements being the
exception, exhibiting high variability across the three methods
assessed (York et al., 2018). In this section we provide an
overview of the methods for analyzing microglial morphometrics
which go beyond considering the raw values in insolation and
instead attempt to use them to classify/categorize microglia into
morphotypes.
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Cluster analysis

Now that automated tracing platforms have facilitated the
generation of large microglial morphometric datasets, new
methods for analysis have emerged to take advantage of them.
Clustering analysis or clustering, which is commonly used
in in transcriptomics, groups objects based upon common
characteristics and similarity. Clustering therefore appears
naturally suited for microglial morphological classification.
Verdonk et al. (2016) successfully implemented cluster analysis
based upon two morphological descriptors: complexity index
(CI) and covered environment area (CEA) extrapolated from
morphometrics obtained from 20,000 microglia per group using
a custom Acapella script. CI is the ratio between the number of
segments of a cell and the number of primary ramifications, where
a segment is defined as a length of process between two nodes.
CEA is the total 2D surface area occupied by the shape formed
by linking all the extremities of the cell. Principal component
analysis (PCA) identified no correlation between these two features
making them suitable for k-means clustering, in which cells are
assigned to one of four subpopulations: SP1 (CEAlow/CIlow), SP2
(CEAlow/CIhigh), SP3 (CEAhigh/CIlow), and SP4 (CEAhigh/CIhigh).
In this particular case the authors make no inferences on how
these sub-populations relate to microglial activity but instead
present the ratio between SPs as a single metric to compare
microglial populations. Verdonk et al. (2016) saw no changes
in SP proportions in mice treated with and without LPS when
looking at microglia taken from across the brain. However, when
microglial populations from different brain regions were examined
separately differences in SP proportions were observed not only
with LPS treatment but also between brain regions in control
animals. For example, in the striatum, post-LPS, the proportion
of cells in SP4 increased from 3 to 46%. MIC-MAC developed by
Salamanca et al. (2019) also implements k-means clustering to
stratify microglia based upon their morphologies but combines
it with semi-automated acquisition of morphometrics. MATLAB
based MIC-MAC generates two masks per cell, one which utilizes
a machine learning based, heavy smoothing algorithm (ilastik,
Berg et al., 2019)8 to segment and one from a detailed rendering
which captures the fine detail. The two masks are combined to
produce a 3D reconstruction from which 62 morphometrics are
extracted. Following PCA driven dimensionality reduction, 21
parameters are used in k-means cluster analysis during which
microglia were assigned to one of 10 clusters, the number of
clusters being determined by knee-plot analysis. Following cluster
analysis, a graphical user interface (GUI) within MIC-MAC
can be used to inspect cluster homogeneity. MIC-MAC was
developed using a dataset of 11,142 microglia obtained from four
sources: the CA1 of 1-month and 12-month-old mice and from
post-mortem hippocampi of Alzheimer’s disease (AD) patients
and age-matched controls. All clusters contained microglia
derived from both species, however, some clusters had a higher
proportion of cells coming from one source than the other.
When considering microglia from AD patients versus aged-
matched controls, k-means clustering revealed an expected shift in
morphological classification. Similarly, morphOMICs developed

8 https://www.ilastik.org/index.html

by Colombo et al. (2022) also uses hierarchical clustering analysis
(HCA) to classify microglia morphologically without any a priori
adherence to pre-existing microglial morphotypes. MorphOMICs’
developers use IMARIS to generate 3D reconstructions of
microglia which does introduce some of the limitations and biases
associated with semi-automated methods discussed earlier in
this review, however, given that the software uses the commonly
used.swc file format, morphOMICs could be combined with
fully automated reconstruction methods which mitigate some
of these issues. A topological morphology descriptor is used to
generate persistence barcodes from these 3D reconstructions.
Persistence barcodes retain as much information as possible about
a cell’s morphology by summarizing the 3D-tree complexity, radial
distance and branching patterns. The use of persistence barcodes
has a distinct advantage over the use of single morphometric
parameters which can be influenced by interdependency and
only capture certain features of a tree. These advantages are
evidenced by morphOMICs’ developers, who show that when
using HCA, classical morphometrics such as process length and
number of branching points, are unable to recapitulate the same
morphotypic resolution achieved using persistence barcodes.
These examples show that cluster analysis can be used to separate
microglia into assemblies based upon their morphology, and
in the case of Salamanca et al. (2019) combined it with a very
powerful, high-throughput method to gather morphometrics.
Both approaches presented above are relatively simple and
reliable methods for comparing microglial morphology and are
capable of quantifying known shifts in microglial activation post-
injury/disease. However, they do not produce classifiers which
fit with the classical descriptors used by the field at large (i.e.,
homeostatic, hyper-ramified, reactive, ameboid and rod) which
may impede the method’s uptake and acceptance by the wider
research community.

In contrast to this, Fernández-Arjona et al. (2017) developed
a HCA where the resulting clusters are tied to the existing
microglial morphological nomenclature. Using FracLac9 and
840 manually generated single cell image masks, the authors
generated 15 morphometric parameters per cell from rats
intracerebroventricularly injected with neuraminidase or saline.
Microglial activation was confirmed through manual classification
of microglia and an observed increase of IBA1/IL1β colocalisation
following neuraminidase treatment. The Thorndike procedure and
Calinski-Harabasz criterion were used to estimate the number
of clusters required to best represent the data before linear
discriminant analysis (LDA) was used as the first stage of the
HCA. LDA identifies characteristics that have a discriminate
function >90% and is capable of separating cells into different
groups. Convex hull span ratio, cell circularity and convex hull
area were identified by LDA as being important characteristics
and were used to create a decision tree to separate microglia
into four clusters. Subsequent PCA suggested that these clusters
should be subdivided to create a total of 8 clusters based
upon the parameters: convex hull and convex hull circularity.
Following the development of the classification decision tree,
the authors proposed that Cluster 1 represented a mixture
of ramified and activated morphologies, Cluster 2 represented

9 https://imagej.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm#intro
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ramified morphology (“resting”) microglia, Cluster 3 represented
an intermediate morphology (hyper-ramified) and Cluster 4
represented an activated morphology. The subdivision of these
clusters via PCA complicated matters in this case as microglia
began to segregate not based upon activation status but instead
brain region. For example, Cluster 2.2 was localized exclusively
to the hippocampus. Intriguingly, microglia in the hypothalamus
of rats injected with saline were in the same cluster (1.1)
as some microglia from the hippocampi of neuraminidase
treated rats, which supports the idea of microglial heterogeneity
in the brain and that the morphotype of “resting”/salient
microglia may be region specific. The HCA performed by
Fernández-Arjona et al. (2017) was an effective implementation
of cluster analysis for microglial classification; however, they
did not validate their model with any other datasets such as
rats treated with LPS, to show that the classifier they have
produced can be implemented in a range of biological scenarios.
Furthermore, they do not consider how ameboid or rod-
shaped microglia may be treated by their decision tree, probably
because they are not present in the saline/neuraminidase dataset.
However, these morphological groups are important to consider
in injured and diseased brains such as post-TBI or during
AD.

Machine learning

The use of machine learning algorithms to classify cells based
on their morphology is well established in oncology (Kourou
et al., 2015). Researchers have now begun to implement similar
methodologies to classify microglia based upon morphometrics
generated by high-throughput automated image analysis. However,
there is a clear difference in the requirements of a predictive
model for assessing microglial activation and one used for cancer
diagnostics. In machine learning classification two errors can
occur: false positives and false negatives. Cancer diagnostics can
less afford false negatives i.e., patients with cancer given the all-
clear, than false positives i.e., healthy patient is sent for follow
up tests which rule out cancer. To this end predictive algorithms
used in oncology focus on achieving a high specificity (true
negative rate) to the detriment of their sensitivity (true positive
rate). However, in the case of models designed for microglial
classification the positive prediction (e.g., a cell has a reactive
morphology) has the same importance as the negative prediction
(e.g., a cell does not have a reactive morphology), so both sensitivity
and specificity are of equal importance and a balance must be
struck between the two. Several machine learning algorithms have
been recently developed to classify microglia based upon their
morphology. One such algorithm was created by Leyh et al.
(2021) and uses a convolutional neural network (CNN) to assign
microglia to one of four pre-determined classes (ramified, activated,
rod or ameboid). The CNN was developed using a microglial
image dataset (obtained using a slide scanner) containing 4,000
cells, which was generated by manually selecting 1,000 of each
morphological group from a set of manually selected images
generated from leptin receptor deficient and wild type (WT)
mice. Leptin receptor deficiency (db/db or db/+) is an established
mouse model in which microglia have adopted predominantly

a non-homeostatic morphology (reactive, rod or ameboid) (Dey
et al., 2014; Arroba et al., 2016). The image dataset was split
into three sections: training (70%), testing (15%), and validation
(15%). The training dataset was used to train the CNN who’s
within model optimisation was driven by the testing dataset,
with the accuracy of the final model (95.56%) being estimated
using the validation dataset. The model’s accuracy, when broken
down for each morphology, reveals that it can identify ramified
(97.22%) and ameboid (97.78%) with relative ease, whereas in
comparison it struggles to separate rod (91.67%) and activated
(95.56%) morphologies. The functionality of the final model was
confirmed by assessing microglial activation in a mouse model of
ischemia. The CNN was able to detect and quantify the predicted
increase in the proportion of activated microglia known to occur
in the hippocampus and neocortex 24 h post-ischemia. One of the
CNN pipeline’s unique advantages is the lack of any requirement for
3D-reconstruction of microglia, instead preferring to use computer
vision to extract the information required for classification. This
streamlines the process and ensures a consistency of data that is
input into the neural network, something which other platforms
cannot offer.

Another novel implementation of machine learning to assess
microglial morphological changes has been developed by Silburt
and Aubert (2022). In their workflow, named MORPHological
Identification of Outlier clUSters (MORPHEUS), a support vector
machine (SVM) was trained to recognize the morphology of
active microglia using images of hippocampal microglia obtained
from mouse brains whose blood brain barrier had been disrupted
through focused ultrasound (FUS) or from aged TgCRND8
mice (AD mouse model). MORPHEUS identifies clusters of
active microglia, with clusters here referring to microglia which
were close spatially, not in a statistical sense à la k-means
or HCA. In order to do this, it requires four parameters: nu
(hyperparameter for a multiclass support vector machine which
reflects the number of normal observations which lie outside
the classification decision boundary), gamma (hyperparameter
for the radial-basis-function kernel), minimum cluster size and
minimum neighbor distance. An optimal set of hyperparameters
was determined as being the set which maximized the clustering
of microglia from FUS and TgCRND8 mice and produced
no clustering of microglia from controls. Further analysis of
clusters observed in FUS and TgCRND8 mice divided them
into “focal” and “proximal” microglia, where “focal” microglia
are defined as being the cluster which is surrounded by less
active “proximal” microglia. Analysis downstream of MORPHEUS
enables researchers to compare the number and size of spatially
distinct clusters between experimental groups which serves as a
quantitative measure of microglial activation. Whilst MORPHEUS’
developers don’t explicitly state that it can extract the number of
individual “focal,” “proximal” and “non-active” microglia which
would enable more traditional comparison of microglial activation,
it should be feasible to do so albeit with minor tweaks to the
software. The approach taken by Silburt and Aubert (2022) is
a novel approach to assessing microglial activation in vivo, and
evaluating cells as a collectively entity rather than as individuals
certainly has advantages, such as identifying the brain regions
impacted in disease and post-injury which may have particular
relevance in a clinical setting. However, in the case of some
CNS infections, diseases and psychiatric disorders, microglial
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activation is more disparate and spread out across a wide
area, which MORPHEUS would not be able to quantify in
its current incarnation. If MORPRHEUS’s measures of spatial
distribution of microglial activation could be combined with a
more traditional approach which gathers raw morphometrics from
individual cells, MORPHEUS could prove to be an even more
powerful tool for quantitative assessment of changes in microglial
morphology.

Outside of the CNS, SVMs have also been used by Choi
et al. (2022) to develop a supervised SVM classifier for retinal
microglia, however, with a novel twist. The SVM was training
exclusively using morphometrics extracted from microglia somas
in the retinas of 2-, 6-, and 28-month-old mice. In order to do
this, Choi et al. (2022) developed a pipeline containing a custom
cell body counting script (ImageJ) to identify large masses of IBA1
staining and a custom auto-segmentation script (MATLAB) to
separate out each soma into individual images. Using an exhaustive
literature search, the authors generated qualitative descriptors of
microglial somas for each the five classical morphotypes: ramified
(small round circular), hyper-ramified (less circular than ramified,
irregular, lobed and radially elongated), activated (larger soma than
ramified, irregular and spatial restricted), rod-shaped (elongated
narrow) and amoeboid (larger soma than ramified). From these
qualitative descriptors, an initial set of quantitative predictors
were generated for each morphotype based upon Feret’s maximum
distance (Fmax = greatest length between two tangents which are
parallel on an object) and Feret’s diameter ratio (FDR= Fmax/Fmin),
for example, rod microglia are defined as having an FDR > 3
and an Fmax > 13.201 µm. Correct classification based upon
Fmax and FDR was confirmed by overlaying the soma over the
original “complete” microglial image and additional parameters
were extracted and used to define each morphotype (Figure 5).
A final dataset containing 34 parameters from 1,200 somas (240
per morphotype) was used to train a linear SVM with a strong
predictive power (true positive rate: >87.9%, false negative rate:
>12.1%). The model identified an increase in the percentage
of activated microglia in the retinas of aged mice (28-month-
old), a finding that has previously been reported by other
researchers using manual tracing in ImageJ (Damani et al., 2011).
The authors do not confirm whether their cell body counting
script and segmentation pipeline can extract morphometric data
from microglial somas in the CNS. Microglia in the retina are
arranged in a dual layer whereas microglia residing in the brain
exist in a far more complex environment; this may pose a
challenge to make Choi et al.’s (2022) approach suitable for use
outside of the retina. However, the core principals of looking
at microglial somas instead of the entire cell is intriguing and
if it could be extended to microglia in the CNS, it would
present a valuable addition to other automated methods for
acquiring morphometrics and would increase the dimensionality
of datasets available for cluster analysis and other classification
algorithms.

Community adoption

All the methods utilizing both cluster analysis and machine
learning for microglial morphological classification have seen little

FIGURE 5

Calculating Feret’s maximum distance (Fmax), Feret’s minimum
distance (Fmin) and Feret’s diameter ratio (FDR) from a convex hull.

to no uptake by the wider research community. Whilst it is
difficult to know exactly why this has been the case, we would
like to propose the following suggestions for ensuring wider use
in future. Firstly, all algorithms developed for the classification
of microglial morphotypes should be made available to all for
use and for scrutinisation through GitHub repositories and a
commitment from researchers to truly open research. Of the papers
discussed: Salamanca et al. (2019), Colombo et al. (2022), and
Silburt and Aubert (2022) provided a GitHub repository, or a
dedicated website for their classifiers which were clearly signposted
in their publications. In the case of other algorithms, GitHub
links are not provided and instead the authors request interested
parties contact them for access. However, in our experience,
requests can produce mixed results, including in one case a
flat refusal to share their code. Furthermore, a great drawback
is that whilst the code may be made available, access is often
not given to the datasets that were used to develop the model
which renders third party validation and implementation of the
algorithms in another experimental setting extremely difficult.
Sharing of these datasets would also aid transparency and would
give researchers a stable of cell morphology data that could be
used in the training, testing and validation of their own prediction
algorithms.

Secondly there is a significant barrier of entry for researchers
who wish to implement machine learning into their experiments.
All the methods presented above require an established familiarity
with Python or MATLAB; the latter being especially problematic
due to the requirement of a paid license and lack any GUIs
or any other features to aid their use by novices. Whilst this
perhaps has not been in the scope of previous projects, we
propose that in the future consideration should be given to
making published methods for classification simple to implement
and with clear documentation to instruct other research groups
such as an online tutorial. The benefits of machine learning
driven microglial classification, such as reproducibility and inter-
experimental comparisons, will only truly be felt when there
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is wide scale adoption and acceptance within the research
community at large.

Concluding remarks

Researchers have developed a variety of methods to quantitively
analyze the morphology of microglia and thanks to rapid
advances in automated acquisition of morphometrics, the field
has changed drastically in the past decade. Despite significant
strides in identifying new cellular markers (e.g., TMEM119 and
HexB) and developing experimental models (e.g., CX3CR1GFP and
Sall1GFP) to visualize microglia in vivo and ex vivo, microglial
morphological analysis needs to swiftly advance to capitalize
on these methods to further the understanding of microglial
biology. Manual classification will always have its place in the
analysis of microglial morphology due to its simplicity and not
requiring complex and/or expensive software packages. However,
with time, manual classification may be resigned to the role of
quality control for automated tracing methods and aiding the
development of new classification algorithms. Likewise, analyzing
microglial activation using raw morphometrics can be suitable
for researchers studying diseases where microglia are activated en
masse such as AD and TBI. However, for scenarios where low-
grade activation of a small and perhaps distributed microglial
subpopulation is expected, such as in models of major depressive
disorder (Wang et al., 2022) and schizophrenia (Laskaris et al.,
2016; Zhou et al., 2020), raw morphometrics alone will never be
sufficient to detect subtle activity changes between experimental
groups. To see the integration of classification algorithms into
these kinds of research topics, developers need to implement
features which lower the barrier of entry for their software
to see the widespread uptake by the research community at
large, a process which may require support from government
research agencies such as the NIH and UKRI as was seen
with ImageJ. The inter-experimenter reproducibility afforded
by classification pipelines gives them a great advantage over
manual classification and comparison of raw morphometrics.
With these caveats the future looks bright for the integration
of machine learning and cluster analysis into the microglia
researcher’s biological toolkit. With this integration, analysis
of more subtle changes in microglial activation across wide
areas of the brain becomes possible, and the consistency
of microglial morphological analysis is improved across the
board.
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