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Abstract 

P ropag ation of malicious code on online social networks (OSNs) is often a coordinated ef for t by 

collusive groups of malicious actors hiding behind multiple online identities (or digital personas). 

Increased interaction in OSN has made them reliable for the efficient orchestration of cyberattacks 

such as phishing click bait and drive-by downloads. URL shortening enables obfuscation of such 

links to malicious websites and massive interaction with such embedded malicious links in OSN 

guarantees maximum reach. These malicious links lure users to malicious endpoints where attack- 

ers can exploit system vulnerabilities. Identifying the org aniz ed groups colluding to spread mal- 

ware is non-trivial owing to the fluidity and anonymity of criminal digital personas on OSN. This 

paper proposes a methodology for identifying such org aniz ed groups of criminal actors working to- 

gether to spread malicious links on OSN. Our approach focuses on understanding malicious users 

as ‘digital criminal per sonas ’ and characteristics of their online existence. We first identify those 

users engaged in propagating malicious links on OSN platforms, and further develop a method- 

ology to create a digital fingerprint for each malicious OSN account/digital persona. We create 

similarity clusters of malicious actors based on these unique digital fingerprints to establish ‘collu- 

sive’ behaviour. We evaluate the ability of a cluster-based approach on OSN digital fingerprinting 

to identify collusive behaviour in OSN by estimating within-cluster similarity measures and testing 

it on a ground-truth dataset of five known colluding groups on Twitter. Our results show that our 

digital fingerprints can identify 90% of cyber personas engaged in collusive behaviour and 75% of 

collusion in a given sample set. 
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ntroduction 

rganized crime groups, including hackers, misinformation cam-
aigners, and even actors of illicit trafficking rings, have used Twitter
o spread malicious information and resources [ 1 ]. Interactions on
nline social networks (OSNs) can now eliminate trade-offs between
nonymity and efficiency in distributing malicious codes online. This
uxury afforded to malicious actors makes it difficult for analysts to
inpoint perpetrators of various cybercrimes on OSN platforms. In-
eraction on most social network platforms means a user can follow
The Author(s) 2023. Published by Oxford University Press. This is an Open Access article
icense ( https://creativecommons.org/licenses/by-nc/4.0/ ), which permits non-commercial
roperly cited. For commercial re-use, please contact journals.permissions@oup.com . 
ther users, like, mention, share, comment on, and click on posts by
ther users. Microblogging sites such as Twitter are therefore effi-
ient for hackers to spread malicious codes with higher chances of
sers clicking on these malicious links [ 2 ]. 

Digital personas (represented by online accounts) play a critical
ole in how criminals leverage OSNs to maximize the effects of their
alicious efforts. Malicious actors can operate multiple accounts si-
ultaneously, i.e. there can be a single account operated by multiple
hysical persons or one physical person operating multiple online
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accounts. As there are no constraints on the number of digital per- 
sonas attributed to one person, one criminal may control multiple cy- 
ber personas, or a single cyber persona may be shared by a criminal 
group actively engaging with potential victims [ 3 ]. This anonymity 
also makes it easier for malicious actors to build online numerous 
online fake accounts to automate criminal activities [ 4 ]. For exam- 
ple, research demonstrates how one malicious user can create armies 
of sockpuppets or ‘ego-networks’ to boost deceptive behaviour in 
online discussion communities [ 5 ]. These sockpuppets deceive ordi- 
nary users with personalized messages into engaging and spreading 
their malicious content. Similarly, criminal entities can also disguise 
themselves as legitimate accounts masquerading as ‘trusted sources’ 
while spreading malicious content [ 6 ]. 

Before the popularity of OSNs, it was harder to get malware to 
unsuspecting victims as hackers relied on traditional social networks 
such as spam/phishing emails [ 7 ] or comment sections of newsgroups 
[ 8 ]. These methods were limited due to minimum reach while de- 
manding a lot of effort to get users to download malicious codes 
onto their systems. The distinguishing feature of OSNs is the abil- 
ity of users to freely share and interact with other users’ content.
This feature creates an efficient self-propagating platform for mal- 
ware distribution that requires minimum effort but guarantees max- 
imum reach. Before the explosion of OSNs, researchers had identi- 
fied the importance and nature of criminally motivated networks and 
how information is propagated within them [ 9 ]. In 1993, e.g. the re- 
construction of malicious social communication networks involved 
in price-fixing the electrical equipment industry concludes that crim- 
inal networks are set up to maximize concealment rather than effi- 
ciency [ 9 ]. However, in the case of modern social networks, Sanzgiri,
Hughes, and Upadhyaya debunks the myth of the need for digital se- 
crecy but rather emphasizes the goal of malicious actors as physical 
anonymity [ 6 ]. 

In OSNs, the distribution of malicious links is largely enabled by 
URL shortening [ 10 ]. Perpetrators can distribute links to malicious 
sites or software by embedding them in shared posts. However, mi- 
croblogging sites like Twitter have limitations on the number of char- 
acters that can fit in a single post; therefore, users use short URLs 
in posts rather than standard URLs. Obfuscated or short URLs are 
standard URLs that have been encoded into URLs with fewer char- 
acters primarily to fit into the character limits of social media posts 
using URL encoding services such as bit.ly and TinyURL [ 11 ], and 
Twitter’s shortening service. URL encoding is a form of obfuscating 
information that tricks unsuspecting users to download/spread ma- 
licious software without their knowledge. Malicious actors working 
together will either propagate the same obfuscated URL or use the 
same obfuscation tool/service to encode their malicious links. Iden- 
tifying these criminal actors and groups in OSNs is challenging as 
they are often hidden underneath layers of information and are usu- 
ally portrayed as ‘legitimate’ accounts. Thus, in this study, we present 
a novel approach for identifying collusive groups of malicious ac- 
tors working together to spread malware. Our approach exploits the 
digital fingerprints of a user’s online presence using an unsupervised 
learning approach to group similar online digital fingerprints. To the 
best of our knowledge, this is the first study that fingerprints each 
malicious user and identifies collusion between malicious users. 

We aim to build a generalizable framework that can effectively 
identify groups of social media accounts working together to propa- 
gate malicious links. We use Twitter as the OSN, although our results 
can be applied to microblogging sites with similar social structures to 
something like Facebook. Our novel methodology provides the fol- 
lowing inherent contributions to the body of work: For known ma- 
licious accounts, we define and create a digital fingerprint for each 
associated digital persona based on the following criteria: 
� A URL fingerprint: to identify accounts that use similar tools in 
creating their attack vector. 

� An account fingerprint: to identify accounts created with similar 
account characteristics. 

� A post-content/language fingerprint: to identify accounts with 
the same set of people writing posted content or posting similar 
content. 

� An activity fingerprint: to identify the account with similar inter- 
action patterns between them. 

We apply an unsupervised machine learning algorithm to these 
digital fingerprints to discover latent similarities between digital per- 
sonas. Our unsupervised learning creates groups of colluding actors 
based on similarities in their digital personas. To evaluate our digital 
fingerprint, we estimate within-cluster similarity measures of users in 
a cluster. Furthermore, using five groups of known colluding accounts 
as a baseline, we compare the extent to which the application of an 
unsupervised learning model on our digital fingerprints can identify 
collusion amongst these accounts. 

The rest of the paper is organized as follows: The ‘Methodol- 
ogy’ section explains each step of the methodology namely, how we 
developed a fingerprint for digital personas and how we developed 
an unsupervised learning model to group these digital personas. The 
‘Creating digital fingerprints for malicious actors’ subsection of the 
‘Methodology’ section particularly explains the process of establish- 
ing collusion, which is critical as evidence of organized criminal ac- 
tivities. This subsection explains the similarity of social interaction 
parameters as evidence of collusion. Finally, we evaluate and com- 
pare our results in the ‘Results’ section with current literature and 
conclude in the ‘Conclusion’ section. 

Background 

In the past, traditional malware propagation techniques such as spam 

emails and comment sections of newsgroups were used to entice users 
to download and share various malicious codes. The advent of ‘flex- 
ible’ digital personas in highly interactive modern social networks 
such as Twitter, and the use of advanced URL obfuscation techniques,
has enabled hackers to automate the dissemination of malicious links.

When a person creates an online account on a digital platform,
they create a digital representation of themselves called a cyber or 
digital persona. Prominent studies in the field provide the rationale 
for a digital persona as a model for representing an individual’s iden- 
tity in cyberspace [ 12 ]. These digital personas are developed through 
collecting, storing, and analysing an individual’s digital footprint (or 
online activities) [ 13 ]. Other researchers further demonstrate how the 
activities of online accounts leave digital footprints that are unique to 
a person’s existence in cyberspace, i.e. a digital fingerprint [ 3 ]. Social 
interconnectedness establishes support for creating online communi- 
ties of digital personas characterized by active social presence, social 
participation, and collaboration. 

Digital personas are attributed directly to an actual person or per- 
sons with certain cyber characteristics, e.g. email address, IP address,
social accounts, etc. The components of the digital persona define 
online identities and characteristics of people as they interact within 
an online network [ 14 ]. 

For profiling digital personas in underground networks, re- 
searchers have developed simple solutions to tracking deviance in 
such networks. Some researchers show how to create digital pro- 
files for physical actors in major underground forums [ 15 ]. Their 
methodology exploits simple Skype communication protocols to ex- 
pose location data, network behaviour, and work habits from on- 
line Skype handles of malicious underground actors. Others cluster 
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ser accounts from various underground forums to predict if a user
ould engage in high-profile criminal behaviour in the future [ 16 ].
lores, Garcia, and Cortez use structural profiles of Twitter network
sers to create network embeddings and establish similar groups [ 17 ].
owever, for modern social media networks such as Facebook, Twit-

er, and Instagram, there are a greater proportion of ordinary, good-
illed users not involved in malicious activities. The challenge, there-

ore, is identifying malicious intent in such massive social networks. 
Such social network platforms offer key features that allow users

o share content and interact with posted content. Twitter is one
f many social media platforms that allows the broadcasting of
80 characters limited ‘tweets’. A person creates a Twitter account,
hereby creating a digital representation of themselves on the plat-
orm. A registered user creates a ‘tweet’ (a 280-character limited post)
nd shares it on his/her ‘timeline’. A timeline is a historical feed of
 user’s activity on Twitter. A tweet can contain any one of the fol-
owing types of content: text, videos, images, or links to internal or
xternal content. Interaction on Twitter is supported by connections
etween multiple users. A connection is created between two Twit-
er users when a user ‘follows’ another user or a user is ‘followed by
nother user’. This user–follower entity model is a representation of
he structure of information dissemination in OSN platforms. In ad-
ition to direct connections, interacting relationships are also crucial
o the structure of information dissemination on the platform. Two
sers A and B have an interacting relationship each time: 

� User A retweets a post from User B or User B retweets a post from
User A. 

� User A replies to a tweet by User B or User B replies to a tweet
by User A. 

� User A likes a post from User B or User B likes a post from User
A. 

� While using the ‘@username’, User A mentions User B in a tweet
or User B mentions User A in a tweet. 

It is important to note that relationships on Twitter can be asym-
etrical, i.e. follower–following relationships, but are not automati-

ally so. A collection of tweets can represent information on a specific
opic. Users can indicate topic categorization tweets by appending
#’ to the topic, e.g. #crypto. These are called hashtags and are used
o decide trending topics of interest on the platform. Hackers often
everage this OSN feature to reach many users by appending a ‘trend-
ng’ hashtag to the post with content containing their malicious links.

ithin this ecosystem, malicious actors can form groups and work
ogether to achieve malicious intent. 

Mapping online collusive networks is important for understand-
ng the operational structure or ‘modus operandi’ in social networks.

ultiple studies claim that the key to unravelling collusive networks
s understanding various measures of influence and identifying key
ctors in the network based on ‘centrality’ measures [ 18 ]. How-
ver, some research suggests that online collusive networks often
ace a trade-off between secrecy and efficiency as such, and mea-
ures of ‘popularity’ in overt social networks may not apply to
dentifying key actors in a covert criminal network incorporating
ecrecy [ 19 ]. 

Some researchers allege that ‘secrecy/covertness’ in malware
ropagation networks has a different meaning due to the nature of
peration of covert networks on online social platforms [ 6 ]. Covert
roups spreading malicious information on social networks are ‘hid-
en’ in their ability to disconnect their physical identities from their
nline identities. As opposed to real-world covert networks that use
nline social platforms as an enabler to recruit and share resources
mong already indoctrinated members, malware propagation net-
orks intend to optimize information dissemination to a maximum
umber of unsuspecting victims. This assertion, therefore, empha-
izes identifying ‘key player accounts’ (collaborating accounts) with
nfluence and the means to spread information quickly to the most
mount of people [ 6 ]. 

In addition to staying physically hidden while spreading mali-
ious codes, collusive groups must have similarities in their digital
ersonas. Although there is sufficient research covering the detection
f automatically generated content on Twitter, a solution to establish-
ng collusion between a set of accounts is still limited [ 20 ]. Therefore,
t is possible to detect Twitter accounts generating and spreading au-
omated content, but difficult to identify which of these accounts are
ollaborating to spread the content. 

After extensive research, we have summarized the task of estab-
ishing ‘collusion’ in OSNs into identifying two phases: (a) synchro-
ization in account activity [ 21 ] and (b) identifying similarities in
igital personas [ 22 ]. Synchronized behaviour among independent
andom users is highly unlikely and therefore such suspicious activi-
ies are considered anomalous behaviour [ 23 ]. Consequently, current
ethods of detecting cooperating or colluding accounts on Twitter
epend on supervised training of features observed over a certain
eriod. The goal is to establish similarities between account activity
eatures such as frequency of posting new content, consistent time
f posting [ 23 ], and frequency of retweets [ 24 ]. These methods rely
eavily on a long duration of time-based activities; however, true col-

usion is truly characterized by a short period of similar activities
etween accounts [ 23 ]. 

To address this gap, some researchers propose using overall inter-
ctions of potentially spam or automated accounts on Twitter as a
tepping stone to identifying colluding accounts [ 21 ]. Unfortunately,
hese methods assume that collusion is only possible with automat-
cally generated content. It is important to note that collusion is not
estricted to ‘fake’ or ‘spam’ accounts and real-world users can ac-
ively participate in spreading malicious content online, e.g. in cases
f cyber hacktivism [ 3 ]. 

Detecting collusion involves observing a consistent pattern of
imilarities in the activities of Twitter users, e.g. synchronized retweet
ctivities between a group of accounts [ 20 ]. For example, by iden-
ifying similarities in account features such as interaction activities
nd retweet similarity, researchers demonstrate how to detect black-
arket-driven collusion [ 25 ]. One solution proposes a simple cross-

orrelation of activities as an absolute indicator of collusion be-
ween accounts. Simple cross-correlation of accounts’ activities con-
eniently is not restricted to the presence of time-dependent activ-
ties between tweets, rather analyses account information relative
o each other rather than independently [ 23 ]. Cross-correlating ac-
ounts assume that the activities and characteristics of collusive ac-
ounts are somewhat similar, and by quantifying the change and fre-
uency of activities, it is possible to observe correlated user accounts
cting similarly . Similarly , in OSNs, interaction mechanisms such as
like’ and ‘retweets’ have become social currency to boost the reach
f malicious posts from malicious actors [ 2 ]. Sometimes, collusion
akes the form of false boosting of malicious content with no future
ngagement. Unlike bot-based malicious ecosystems, these collusive
etworks are made up of real human users. For example, one study
reates a set of heuristics for detecting such human-like false boosters
f online content based on account activities and account follower–
ollowing networks [ 26 ]. Their research currently records the high-
st accuracy for a classification-based approach in the research body
f work for detecting collusive actors on Twitter . However , meth-
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ods used for identifying malicious actors in their research are less 
grounded than those provided in our work. 

Methodology 

Data collection 

We collected data for 1 week on one popular event, the COVID-19 
2020 pandemic. The COVID-19 related tweets were collected be- 
tween 11 March 2020 and 21 March 2020. For this study, we col- 
lect tweets containing hashtags and phrases related to the COVID 

pandemic using Twitter’s Streaming API. We used the hashtags such 
as #covid, #covid19, #lockdown, #StayHomeStaySafe, #StayHome, 
#QuarantineandChill, #corona, #coronavirus, and #pandemic to fil- 
ter tweets from Twitter’s Streaming API. Political, cultural, and social 
events provide increased interaction on social media platforms there- 
fore increasing the probability of a malicious link being retweeted or 
shared. We selected a short-time frame to ensure we capture the im- 
mediate activities of any colluding actors within a specific period. For 
activity data, we performed data collection everyday of the data col- 
lection period to capture all user activity within the data collection 
period. We finally filter these to unique tweets excluding all retweets.
We capture 1 255 178 COVID-19 related tweets collected in March 
at the beginning of the implementation of national lockdown rules.
We filter tweets to only those with embedded external URLs. Finally,
since Twitter automatically shortens all embedded links with Twit- 
ter’s URL shortening service, we perform an initial GET request for 
each URL in our dataset. Using the python’s ‘redirect’ parameter from 

it’s GET request library [ 27 ], we captured the redirected long-form 

destination URL. 

Labelling tweets 

Each tweet was labelled as Benign or Malicious by parsing the long- 
form embedded URL through V irusTotal. V irusTotal is a free cloud- 
based antivirus engine aggregator that provides an integrated inter- 
face to several antivirus scan engines [ 28 ]. In addition to AntiVirus 
Engines, VirusTotal uses website scanners to detect malicious con- 
tent available in URLs. VirusTotal performs antivirus scans in parallel 
across multiple antivirus engines. Each URL passed through Virus- 
Total is passed through at least 80 different antivirus search engines.

A tweet is labelled as ‘Malicious’ if at least one antivirus engine 
classifies its embedded URL as ‘malicious’ or ‘suspicious’. A tweet is 
labelled as ‘Benign’ if no antivirus engine classifies its embedded URL 

as ‘malicious’ or ‘suspicious’. Tweets with ambiguous results such as 
‘Unknown’ or ‘Unseen’ (where virus total is unable to establish the la- 
bel of embedded URL) are excluded from the results. Finally, we filter 
our data to tweets with embedded URLs tagged as ‘Malicious’ and 
tweets from all other users directly connected to malicious tweets.
We detected 153 unique user accounts actively involved in spreading 
malicious links at the first week of the COVID-19 2020 pandemic. Of 
these malicious 153 account, 44 accounts were invalid due to account 
no longer existing at the time of analysis or invalid data fields from 

Twitter accounts, leaving 109 unique malicious users in our sample. 

Creating digital fingerprints for malicious actors 

A digital fingerprint aims to identify patterns representative of a per- 
son’s online presence and its interaction with other digital personas.
Various techniques to correctly characterize the persona combine 
multiple aspects of its existence in cyberspace such as how the speak 
(or write), identity characteristics, and online activity. We extend this 
method to create characteristics of malicious accounts that represent 
their existence in OSNs. We assume that each malicious account is 
controlled by at least one physical person. One cyber persona might 
be controlled by multiple physical people, or many cyber personas 
may be controlled by one physical person. Our aim is to create a 
representative set of digital persona features that can expose latent 
similarities between digital personas to identify groups of accounts 
that may be working together to propagate malicious codes. We use 
a set of 75 features, as shown in Tables 1 –4 below, to characterize 
the different ways in which digital personas can exhibit latent simi- 
larities online based on literature. We create four sets of features to 
characterize a malicious actor’s digital footprint: 

� URL fingerprint: This examines in-depth characteristics of a ma- 
licious URL to identify actors who use similar propagation tools.
For example, using the same obfuscation method, using the same 
host IP with varying paths and parameters in the URL. 

� Account fingerprint: This examines the characteristics of a per- 
sona’s online existence to identify accounts with similar markers 
as possibly created by the same set of people. For example, dif- 
ference in account creation time, account location, account age,
etc. 

� Language fingerprint: This analyses similarities in language of 
posted content to identify accounts who have similar authors or 
are posting similar content. For example, accounts automating 
posting with similar post templates. 

� Activity fingerprint: This examines similarities in the pattern of 
activity among users. This helps identify accounts who act in a 
similar way, e.g. bots programmed to post specific amount of con- 
tent daily or programmed to like and retweet posts from other 
specific accounts. 

Explanations for these features are detailed in the ‘Attributing ac- 
tors by URL characteristics DF 1 (characterizing or identifying similar 
propagation tools)’ subsection through ‘Attributing actors by activity 
characteristics ( DF 4 ) (characterizing or identifying accounts where 
actors engage with content in a similar way)’. 

Attributing actors by URL characteristics DF 1 (characterizing or 
identifying similar propagation tools) 
The first category of our digital fingerprint are URL-based features,
which focuses on identifying groups of cyber personas who use simi- 
lar propagation tools. In attempting to identify covert groups of ma- 
licious actors on social networks working together, it is reasonable to 
assume that they use similar tools to create and distribute their mali- 
cious codes [ 29 ]. Although there is a wide acceptance of open-source 
software in these communities, hackers who purchase a Top-Level 
Domain for malicious intent are known to use the same TLD with 
multiple sub-domains and path strings to create new malicious links 
[ 30 ]. 

Furthermore, a common research objective in cyber threat miti- 
gation is differentiating malicious URLs (URLs pointing to websites 
with malicious codes) from benign URLs (URLs pointing to clean 
websites). Some of these techniques for separating malicious and be- 
nign URLs provides solutions for analysing the metadata of URLs 
[ 30 ]. Other techniques identifies a set of lexical and host-based fea- 
tures that can be extracted from URL strings to separate malicious 
and benign URLs [ 31 ]. Lexical features refer to properties of the URL 

name such as the length of URL string or the number of digits present 
in URL string while host-based features relate to metadata of the host 
such as WHOIS information, IP Address properties, location, domain 
registration, and connection speed [ 30 ]. Table 1 below outlines fea- 
tures extracted from embedded URL strings. 
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Table 1: URL fingerprint features 

SN Criteria Description Source 

1 URL length Total number of characters in URL string [ 30 , 31 ] 
2 URL digit count Total number of numeric digits [0–9] in URL string [ 31 ] 
3 URL schema Server access protocol [ 31 ] 
4 URL hostname Hostname from URL query string [ 31 ] 
5 URL path Section of webpage [ 31 ] 
6 URL query Query string parameters [ 31 ] 
7 URL parameters [ 31 ] 
8 URL age Number of days since URL domain was created [ 32 ] 
9 Number of subdomains Number of sub domains associated with URL [ 32 ] 
10 Obfuscation tool Obfuscation service used to shorten URL [ 32 ] 
11 URL life Number of days to expiration [ 32 ] 
12 URL network First 3 octets of URL’s IP address [ 32 ] 
13 URL country IP address server country [ 32 ] 
14 URL city IP address server city [ 32 ] 
15 Connection speed Connection speed [ 30 ] 
16 Days since updated Number of days since website was updated [ 30 , 31 ] 
17 Named servers Named servers [ 30 , 31 ] 
18 Open ports Services running on website [ 30 , 31 ] 
19 ISP Whois Internet service provider if available [ 30 , 31 ] 
20 Organization Whois registered organization [ 30 , 31 ] 
21 Sitemap hash If site has hash map embedded [ 30 , 31 ] 

Table 2: Tweet account characteristics 

SN Criteria Description Source 

1 Followers Total Twitter users following user account [ 22 , 35 , 36 ] 
2 Following Total Twitter users the user account is following [ 22 , 35 , 36 ] 
3 Location The physical geo-location of account as stated on account [ 22 , 35 , 36 ] 
4 Protected Protected accounts have their accounts private where only approved followers of the account 

can see account tweets 
[ 22 , 35 , 36 ] 

5 Verified This indicates that an account of public interest has been authenticated by Twitter [ 22 , 35 , 36 ] 
6 Listed count This indicates that one or more other Twitter users have added the account to a preferred 

Twitter list 
[ 22 , 35 , 36 ] 

7 Likes/ favourites Total number of likes across all tweets [ 22 , 35 , 36 ] 
8 Static count [ 22 , 35 , 36 ] 
9 Created at Timestamp representing the date the Twitter account was opened [ 22 , 35 , 36 ] 
10 Geo enabled [ 22 , 35 , 36 ] 
11 Contributors enabled This account allows other Twitter users to post content on their behalf [ 22 , 35 , 36 ] 
12 Language set Language set [ 22 , 35 , 36 ] 
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Finding similarities across these sets of features will reveal if ma-
icious URL links created by the same or similar actor(s) have simi-
ar characteristics embed in their metadata. Our fingerprint includes
eatures related to tools by which URL’s host, domain, query path
ength, and string were created. 

For example, benign links embedded in Twitter posts will usually
ontain links to news articles, albums, marketing ads/products, etc.
owever, long-form of embedded malicious links will have missing
ath queries or have path queries that are not English-readable or
utomatically generated. Therefore, on the average malicious paths
n URL strings will have shorter lengths than those in benign URL
trings as seen in Fig. 1 . 

ttributing actors by social network account characteristics DF 2 
n addition to similar propagation tools, the characteristics of so-
ial accounts listed in Table 2 below, are useful in identifying actors
f covert cyber-criminal networks in OSNs. It is common for one
riminal to hide behind multiple digital personas or multiple dig-
tal personas to control a single account interacting with multiple
ictims [ 3 ]. This category of features will therefore identify multi-
le accounts operated by a single cyber persona or an account op-
rated by multiple criminal entities. The fluid nature of a person’s
nline identity (cyber persona) makes it easier for criminal elements
o disguise themselves as legitimate users to exploit unknowing vic-
ims. For example, in 2010, masquerading an elite financial consul-
ant, the hacker group Lulzec created a 1 million capacity botnet
ade up of Facebook users by distributing links to malicious web-

ites luring their victims to book consultation sessions [ 33 ]. These
ookings were click-baits to further inject users’ computers with ma-

icious codes that gives hackers control of users’ systems. Similarly,
isinformation bots are known to exist on social network platforms

uch as Twitter, for the sole purpose of spreading propaganda and in-
uencing public opinion. In 2018, Twitter reportedly found 50 000
ake accounts dedicated to actively sharing election-related materi-
ls and other automated election-related activities in the USA. At-
ackers can manage the execution of such elaborate attack by au-
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Table 3: Tweet text language characteristics 

SN Criteria Description Source 

1 Emoji count Number of ideograms in Twitter post [ 50 ] 
2 Punctuation count Number of special characters or punctuations in Twitter post [ 11 ] 
3 Emoticon ratio Ratio of ideograms to letters (characters) in a tweet [ 50 ] 
4 Punctuation ratio Ratio of punctuation to letters (characters) in a tweet [ 11 ] 
5 Capitalization Number of characters in tweet written in upper case [ 11 ] 
6 Alphanumeric count Number of numerical digits [0–9] in Twitter post [ 11 ] 
7 Exclamation count Number of exclamation marks ‘!’ in Twitter post [ 50 ] 
9 Sentences count Number of sentences in Twitter post as separated by a period (.) [ 11 ] 
10 Token count Number of words in in Twitter post [ 11 ] 
11 Token ratio Ratio of the total number of unique words to the total number of words in the Twitter post [ 11 ] 
12 Hashtag count Number of words in Twitter post beginning with a ‘#’ [ 50 ] 
13 Adjectives Number of Adjectives POS in Twitter post [ 42 ] 
14 Conjunctions Number of Conjunctions POS in Twitter post [ 42 ] 
15 Adverbs Number of Adverbs POS in Twitter post [ 42 ] 
16 Delimiters Number of Delimiters POS in Twitter post [ 42 ] 
17 Nouns Number of Nouns POS in Twitter post [ 42 ] 
19 Pronouns Number of Pronouns POS in Twitter post [ 42 ] 
20 Verbs Number of Verbs POS in Twitter post [ 42 ] 
22 Adposition Number of Adposition POS in Twitter post [ 42 ] 
23 Anger Amount of antagonism present in Twitter post [ 51 ] 
24 Anticipation Quantification for anticipation detected in Twitter post [ 51 ] 
25 Disgust Quantification for disgust detected in Twitter post [ 51 ] 
26 Fear Quantification for fear detected in Twitter post [ 51 ] 
27 Joy Quantification for joy detected in Twitter post [ 51 ] 
28 Sadness Quantification for sadness detected in Twitter post [ 51 ] 
29 Trust Quantification for trust detected in Twitter post [ 51 ] 
30 Surprise Quantification for surprise detected in Twitter post [ 51 ] 
31 Negative Quantification for negative detected in Twitter post [ 47 ] 
32 Positive Quantification for positive detected in Twitter post [ 47 ] 

Table 4: Account activity features 

SN Criteria Description Source 

1 Average user daily posts Average number of posts from user per day [ 21 , 24 ] 
2 Average user daily retweets Average number of retweets from user per day [ 21 ] 
3 Average daily retweeted Average number of time the user is retweeted by others daily [ 21 ] 
4 Number of unique retweets Average number of unique users retweeted by user daily [ 21 ] 
5 Number of daily user likes Average number of daily likes on user’s post [ 21 ] 
6 Average user daily mentions Average number of unique users mentioned per post in user’s posts [ 21 ] 
7 Average posting interval Average time difference (in minutes) between posts [ 21 ] 
8 Average retweet interval Average time difference (in minutes) between retweets [ 21 ] 
9 Average number of hashtag per post Average number of hashtags used across posts [ 21 ] 
10 Average daily replies Average number of replies User A gets on original content daily [ 21 ] 
11 Average daily replied Average number of tweets User A replied to [ 21 ] 
12 Unique number of user likes Unique number of users who have liked User A’s statuses [ 21 ] 
12 Unique number of user likes Unique number of users who have liked User A’s statuses [ 21 ] 
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tomating the creation of malicious accounts using the same account 
templates [ 34 ]. 

Multiple researchers suggest that hidden characteristics of ac- 
count attributes can identify accounts that exhibit similar behaviour 
of having similar underlying characteristics [ 37 ]. Another study 
shows that it is possible to identify similar spam accounts by feed- 
ing these features to a fine-tuned k -means clustering algorithm sim- 
ilarities in profile information [ 22 ]. Similarly, Dudorov et al. uses a 
condensed set of k -principal components to characterize groups of 
spammers on Twitter based on similarities in account features [ 38 ].
Finally, Arshi et al. cluster the account details of Facebook users in or- 
der to identify groups of people with similar political, cultural, and 
social views for conducting targeted decentralized mini campaigns 
[ 39 ]. These authors determine that it is possible to create friendship,
communication, and affinity networks based on subtle political and 
cultural affiliations. The rationale for including profile details is that 
similar accounts will look similar. For example, consider a group of 
bots following each other and re-posting each other’s posts in a co- 
ordinated manner. 

Attributing actors by language style DF 3 (characterizing or identify- 
ing accounts with the same set people writing posted content) 
Every author has unique writing pattern and a representation of an 
author’s use of language within conversations highlights characteris- 
tics such as hidden in the structure and syntax of sentences. In our 
third category of features, we assume that criminal entities automate 
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Figure 1: URL features. 
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he creation of malicious posts. A language fingerprint represents a
odel of a persona’s language within conversations [ 40 ]. Therefore,
osts from elements within the same criminal network would have
imilar language characteristics. We expect similarities in language
o be less varied amongst colluding malicious users than amongst
andom independent users. Chen et al. also extend their experiment
o demonstrate how attackers create multiple posts from a single
emplate using multiple cyber personas to propagate these malicious
osts in a coordinated manner [ 34 ]. 

The study of ‘measuring writing style’ is called stylometry [ 41 ]
nd its applications are used mainly in Authorship Attribution [ 11 ].
uthorship Attribution, is the science of inferring the author of a
iven piece of text based on embedded language characteristics. In
he context of social networks, this practice becomes important in
reating clusters of cyber personas based on representative charac-
eristics of language that can reveal hidden groups of accounts with
imilar language patterns. 

In order to extract text similarity features listed in Table 3 be-
ow, we combine techniques from simple natural language processing
nd authorship attribution such as word frequency pattern identi-
cation [ 42 ], sentiment analysis [ 43 ], parts of speech tagging [ 44 ]
hat offer the capability to study the patterns of individual use
f language. Combining these two techniques leverages both sim-
le statistical methods and complex linguistically informed com-
utational algorithms to create a representative feature set of lan-
uage traits observed within a text. These feature set can further
e compared to identify groups of text that have similar patterns
f writing to infer groups of social media accounts posting similar
ontent. 
Word frequency-based pattern identification techniques provides
bility to study the types of keywords and their frequency of across
exts including punctuations, emojis, and numerical digits. A spectral
lustering approach can also highlight similarities between multiple
ersons online based on the frequency of common words [ 45 ]. How-
ver, most word frequency-based text-clustering solutions are lim-
ted in their ability to address semantic relationships between words,
hich often results in models that are void of contextual meaning

 46 ]. The inclusion of subjective states of texts largely narrows this
ap [ 47 ]. Sentiment analysis identifies and quantifies subjective states
n a given text while emotion detection quantifies the amount of a
pecific human emotion intended in a text [ 48 ]. Robert Plutchik’s
heels of emotions reduces 34 000 human emotions to 8 primary

motion dimensions: anger , fear , anticipation, surprise, joy, sadness,
rust, and disgust. Colneric and Demsar successfully use extract hu-
an emotions from 73 billion tweets using a recurrent neural net-
ork classifier based on Plutchik’s emotion categories [ 49 ]. 

ttributing actors by activity characteristics (DF 4 ) (characterizing or
dentifying accounts where actors engage with content in a similar
ay) 
ssuming there is a repeating pattern of the same set of users consis-

ently retweeting every new tweet from User A, we would consider
his a synchronized activity. If we assume that a group of accounts on
witter are working together to spread malware, we therefore expect
heir activities to be similar, synchronized, and correlated. Patterns
f activities behind accounts who are controlled by similar people
hould exhibit similar patterns of usage and association. For exam-
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ple, these include indicators from Table 4 below, such as an account 
retweeting content from the same sets of accounts or in the case of 
bots, accounts active during certain hours of the day. 

Such features in Table 4 below, can be extracted from studying 
patterns of interaction of bots. Some experts argues that while the 
priorities of bots and covert hacker groups on social media may dif- 
fer, their goals are inherently the same, to reach the most amount 
of people in the most effective way [ 52 ]. Features such as repeated 
behaviour, time interval between activities, similarities in accounts 
mentioned in original posts, ratio of similarity in followers to fol- 
lowing are all areas of interest for identifying accounts that may 
be colluding [ 24 ]. In analysing groups of bots on Twitter, it should 
be noted that they tend to act similar and interact with similar 
content and the same user accounts. These set of features are in- 
cluded to address groups of accounts that exhibit similar activity 
patterns. 

For each malicious user, we extract a timeline of the most recent 
10 000 tweets—these includes, retweets, mentions, and likes. We cre- 
ate estimates for daily user activity and interaction. We first observe 
how often a user posts original content (in the case user who posts 
malicious content). We then measure daily number of retweets and 
the number of unique users a user retweets (who is retweeting who) 
[ 24 ]. In addition to retweets, we estimate unique bi-directional likes 
and mentions. Incorporating these features captures accounts with 
synchronized behaviour as possibly colluding behind the scenes. 

The next section outlines the application of an unsupervised 
learning approach to find latent groups in these digital fingerprints. 

Identifying covert groups involved in the propagation 

of malware on Twitter (analysis and results) 

After fingerprinting each account, we transform the features ex- 
tracted and parse them through an unsupervised learning algorithm 

to group accounts with similar latent characteristics. To ensure use- 
ful features are used for the clustering task, a data pre-processing 
step is required. In this subsection, we outline details of our data pre- 
processing and analysis methodology. 

Feature transformation 
Data cleaning. Data cleaning ensures that data represent the prob- 
lem space to be modelled. This mainly includes removing all tweets 
with missing information for any observed feature. Missing data in 
Twitter API data usuallys result from data not collected due to user 
privacy restrictions or data collector’s API access rights. Removing 
records with any missing data can potentially lead to loss of infor- 
mation; however, performance of AI models on reduced data have 
been shown to out-perform AI models built with other type of data 
replacement techniques [ 53 , 54 ]. 

One-hot encoding. One-hot encoding refers to a method for trans- 
forming categorical variables—e.g. ‘profile text color’ and ‘location’ 
data—into formats understood by machine learning algorithm [ 54 ].
This method creates a binary vector for each unique category and as- 
signs a 1 or 0 to each observation for each category. If an observation 
has the i th category present, the corresponding vector component is 
set to 1 and 0 otherwise. After one-hot encoding, our dataset contains 
135 features across the four digital fingerprinting groups. 

Feature scaling. In most cases, datasets contain multiple features 
with varying degrees of magnitude, scale, and usefulness to the pre- 
diction task. For example, variables on different scales may create 
spurious bias. As machine learning algorithms are highly sensitive to 
these huge variations, feature scaling is required to even out these 
huge variations in the dataset and center feature values around their 
means. We use a Min–Max scaling as shown below: 

X scaled = 

(X − X min ) 
(X max − X min ) 

. (1) 

By using the Min–Max Scaler, all features would be transformed 
into a range (0 through 1), i.e the minimum value and maximum 

values for any feature in our dataset would be 0 and 1, respectively. 

Feature selection 
Feature selection is the process of subsetting initial feature set for bet- 
ter performance of machine learning models. The purpose of feature 
selection is to remove features that provide no useful information 
for the learning task and therefore, serve to reduce the quality of 
results or exponentially increase computational resources. In an un- 
supervised learning task, useless features can either be multicollinear 
features or Zero variance features. 

Zero-variance features have a variance close to zero σ < −0 and 
do not contain any significant pattern of change. On the other hand,
multicollinear features are highly correlated with one or more other 
features in the feature space. They contain no new useful information 
and may lead to decreased statistical significance or over-fitting. 

To remove zero-variance features, we consider that malicious ac- 
tors are rare observations and set the threshold for ‘low variance’ 
to absolute zero. Given the sparse nature of Twitter data and criteria 
for tweet collection outlined in the previous sections, a lot of features 
were similar across all users. 

To identify multicollinear features, we compute a Pearson’s pair- 
wise correlation matrix of all features in our sample. The Pearson’s 
correlation between two variables lies between ( −1 for negatively 
correlated features and 1 for positively correlated features). Two vari- 
ables are said to be collinear of their correlation coefficient is close 
to perfectly 1 or −1. We identify all pairs of features with correla- 
tion coefficients > 0.9 or < −0.9 and finally remove one pair of cor- 
related features. Removing absolute zero-variance variables reduced 
our feature set to 37 variables while removing multicollinear features 
removed two more variables from our data. At the end of the feature 
selection phase, we had 35 features for each tweet in our data. 

Identifying collusion 
To identify groups of colluding actors, we apply a k -means clustering 
algorithm to our transformed data to create groups of users with sim- 
ilar digital fingerprints. We assume that ‘colluding’ users will exhibit 
certain similarities in their digital fingerprints. K -means is a partition- 
based algorithm that regards the centre of a cluster as the data point 
of reference for all other data points in the same cluster. Given a set of 
observations with no labels, k- means partitions samples into groups 
based on the Euclidean distance between them. 

Let X = x i , i = 1…….n be a set of data points for n Twitter
accounts to be separated into a set of k clusters where each cluster 
should contain several accounts with similar latent fingerprinted fea- 
tures. The goal of k -means is to find several clusters that minimizes 
the squared error between a cluster mean and corresponding data 
points in the cluster. If μk is the cluster mean of the cluster c k , then 
the squared error between μk and all data points in c k is given as 

J(c k ) = 

∑ 

x i ∈ c k 
|| x i − μk || 2 . 



Finding Collusive Malicious Twitter Activity 9 

Figure 2: Determining k ( k = 5). 
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herefore, k -means minimizes the sum of squared error over all k
lusters: 

J(c k ) = 

n ∑ 

k =1 

J(c k ) . (2) 

 -means estimates similarity between user accounts by calculating
he distance between their fingerprinted data points with a distance
lgorithm (Euclidean distance). For example, given two there the dis-
ance between two data points x and y is defined as 

d(x, y ) = 

√ 

(x 1 − x 2 ) 2 + (y 1 − y 2 ) 2 . (3) 

There are two ambiguous aspects to the k -means clustering al-
orithm. K -means a localized optimization problem that is sensitive
o the selection of cluster centroids. Given we have no prior knowl-
dge of the number of covert groups (clusters) distributing malware
n Twitter, a random number k , is assigned. Consequently, choosing
ad or largely dissimilar cluster centroids will result in bad clustering
esults. Researchers most often turn to finding the number of clusters
hat reduces the overall within cluster sum of squares across all clus-
ers so that creating another cluster does not improve the total within
luster sum of square error [ 55 ]. This technique is called the ‘Elbow’
ethod [ 56 ], which shows a sharp decrease in the within cluster sum
f square to form an elbow at the optimal ‘ k ’ when plotted on a graph
uch as in Fig. 2 . The k -means algorithm is initially run for several
terations with various values for k and the within cluster sum of
quare for each run is recorded. The X -axis in the Fig. 1 represents
he number of clusters chosen on each run and the Y -axis represents
he recorded the within cluster sum of square. 

aseline evaluation setup 

ackers during the COVID-19 pandemic exposed fatal flaws in the
nfrastructure of social networking sites such as Twitter. We selected
his event because it forced unprecedented increase in online pres-
nce and collaboration. Specifically, the COVID ‘stay-at-home’ re-
trictions from early 2020 to early 2021 created a scenario that em-
oldened malicious groups and therefore increasing the chances of
ictims clicking on malicious links. Given the lack of ground truth
ata, i.e., real data on collusive groups on Twitter, we develop two
alidation methods to prove our methodology’s ability to identify
ollusion using a cluster-based fingerprinting approach. 

The first validation method estimates within cluster malicious
RL similarity [ 57 ] of users in our clustered data. The purpose of

his strategy is to establish baseline similarity between users in the
ame cluster. For estimating similarity between URLs propagated my
alicious users within clusters, we use a three-point-based approach

hat includes: 

� Estimating similarity between two URLs with cosine text simi-
larity approach [ 58 ]. Cosine text similarity score falls between
0 (dissimilar) and 1 (similar) and determines closeness’ between
two text strings. In general, these measures cover two types of
similarity, surface closeness (lexical similarity) and meaning (se-
mantic similarity). Surface similarity considers character level
similarity, while semantic similarity accounts for the actual mean-
ing behind characters or the entire phrase in context. Given two
text strings A and B, the cosine similarity between A and B is
estimated as 

∑ n 
i =1 A i ∗ B i √ ∑ n 

i =1 A 

2 
i 

√ ∑ n 
i =1 B 

2 
i 

(4)

� Estimating URL host similarity, which includes manual exami-
nation for similarity of host-based features. For example, within
each colluding cluster, we examine the ratio of unique number
of originating countries to the total number of colluding users
in the cluster. In addition, unique hosting providers and in-depth
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host-based features extracted from shodan [ 59 ] are also manually 
inspected. 

In the second method, we collected data from five groups of Twit- 
ter accounts each known to be collaborating to disseminate similar 
information. To collect this information, we target tweets from the 
2021 UK Scottish Elections across the five major Scottish political 
parties: The Scottish National Party, Scottish Conservatives, Scot- 
tish Labour, Scottish Greens, and The Scottish Liberal Democrats.
We selected this event because it was a major political event there- 
fore, there is increased cooperating Twitter activity between mem- 
bers of the same political group in the days leading up to the elec- 
tions. To simulate ‘collaborating groups of tweets’, we collect tweets 
from the party’s official Twitter accounts, party’s leader and their 
top five parliamentary MPs. We identify the top 10 active parlia- 
mentary representatives for each party by estimating the friends 
to follower’s ratio for all parliamentary representative within each 
party. 

We collect tweets from these accounts and group them as ‘collab- 
orating accounts’ working together to share similar tweets on their 
timelines. Our final evaluation data contain 2552 tweets from 34 
unique collaborating users, i.e. five groups, each with six or seven 
collaborating users as shown in Table 5 . These tweets represent those 
filtered as containing an embedded URL to ensure evaluation data 
corresponds with the methodology. Although, these are not malicious 
URLs and these accounts are not attributed to ‘maliciousness’, these 
accounts are suited for our evaluation as they represent groups of ac- 
counts working together to disseminate similar information. We ex- 
pect members of the same group to actively interact with post shared 
by each other during election campaigns than otherwise with mem- 
bers of a different political party. The results of the analysis are out- 
lined in the following section. 

Results 

The graph shows three ‘elbow’ points, at 3-clusters ( k = 3), 4-clusters 
( k = 4), and at 5-clusters ( k = 5). Table 6 below shows the percentage 
sample population for each cluster at k = 5. Within our selected sam- 
ple and timeframe, our unsupervised learning identifies five groups of 
malicious actors. Because k -means minimizes the squared errors, as- 
signing outlier points to their own clusters gives the optimal results.
These five groups of actors are assumed to be actively propagating 
malicious links within the first week of the COVID-19 pandemic on 
Twitter. We estimate the total number of unique malicious links prop- 
agated and the average activity rate for each cluster. A user activity 
includes posting, retweeting, liking, and commenting. Activity rate 
is estimated as the average number of likes, retweets, mentions, and 
posts by actors in a cluster. 

During the start of the week of the COVID-19 pandemic, a total 
of 80 unique malicious links were being spread on Twitter by 109 
unique users. Our model estimates that these 109 users can be repre- 
sented as five groups based on similarities in propagation tools, ac- 
count details, and language style. The organization behind the spread 
of malicious code during the COVID-19 pandemic is assumed to be 
represented by these groups. Figure 3 shows key variations in digital 
personas of malicious and benign users on Twitter. In comparison to 
tweets from benign users, tweets from malicious actors are less varied 
in key features of their digital fingerprints. 

For example, although malicious tweets collectively portray 
higher levels of anxiety driven emotions such as fear, surprise, and 
anger, benign tweets are more varied on these. Activity rates such as 
time intervals between posting and retweeting are also observed to be 
more synchronized with malicious tweets. Also note that URL links 
used by malicious actors have shorter path lengths and alpha numeric 
digits in them as seen in Fig. 1 . Excluding outliers, malicious actors 
post at least one new content between 0 and 3 days as opposed to a 
highly frequent posting interval of at least three original tweets per 
day by benign actors. 

In the next section, we provide a cluster-based evaluation of the 
methods presented in this paper. Firstly, we manually examine simi- 
larities between the URLs propagated within each cluster in our base- 
line dataset and assign a URL similarity [ 57 ] score to each cluster.
Clusters with cosine similarity scores closer to one are more likely to 
have created their malicious URLs using the same tools or have these 
URLs created by the same person/s or entities. 

Secondly, we create an experimental setup of simulated collud- 
ing accounts of five groups of political actors actively cooperating 
to spread campaign information on Twitter. We fingerprint and clus- 
ter these accounts and estimate how well our digital fingerprints can 
capture these groups of ‘colluding’ actors. 

To evaluate our methodology against the benchmark data, we 
start by assigning a label to each tweet indicating its party grouping 
and fingerprinting each tweet. We then run an unsupervised learning 
model to assign each tweet to a cluster. Table 6 shows the comparison 
between cluster assignments and original party groupings. We com- 
pare the extent to which digital fingerprints of these collaborating 
accounts are grouped together with an unsupervised learning model.
The resulting Table 7 below is a confusion matrix of the total number 
of correctly clustered users. 

Note that the assigned cluster for each group is shaded grey in 
Table 7 . We measure the ‘fitness’ of our fingerprinting methodology 
by calculating the accuracy and sensitivity of the cluster assignments.
We use the accuracy as a general measure of how well our digital 
fingerprints can separate groups of colluding users. In addition, we 
choose to evaluate the sensitivity of cluster assignments as the identi- 
fication of truly colluding actors is essential, with a certain tolerance 
for accepting some falsely identified colluding actors. To do this, we 
define the following terms in relation to our cluster assignments: 

� True positives: members of a group classified correctly clustered 
as that group, e.g. Group 5 → Cluster 5 [3]. 

� True negatives: non-members of a group correctly clustered as 
non-members of the group, e.g. Group 4 → Cluster 5[3] 

� False positives: non-members of the group wrongly clustered as 
members of the group, e.g. (Group 3, Group 4) → Cluster 4 [1,
1]. 

� False negatives: members of the group wrongly clustered as non- 
members of the group, e.g. (Cluster 2, Cluster 3) → Group 5 [2,
1]. 

For clarity, we produce the following summary in Table 8 : 
In Table 8 above, we use standard performance metrics in eval- 

uating how well our digital fingerprints can identify colluding users 
and groups of colluding users. The accuracy measures the ability of 
digital fingerprints to identify collusive behaviour amongst two or 
more users. Ninety % of the time, the model can identify groups of 
users engaged in similar collusive behaviour. 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

= 

24 + 160 
24 + 160 + 9 + 10 

= 

184 
203 

= 90 . 6% 

The sensitivity here measures the ability of digital fingerprints to 
correctly include malicious actors in their corresponding groups and 
exclude them from groups to which they do not belong. Seventy % 
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Table 5: Evaluation setup summary 

Group Number of Average number Unique number Total tweets 
unique users of tweets per user of URLs tweeted collected 

Group 1 7 64 22 450 
Group 2 7 66 21 465 
Group 3 7 70 16 491 
Group 4 7 84 24 591 
Group 5 6 92 33 555 

Table 6: Summary of malicious links propagated within clusters 

Cluster Users Unique malicious Users to unique Inter-cluster Inter-cluster 
links host ratio URL CS tweet CS 

1 23 19 0.8 0.68 0.52 
2 5 4 0.5 0.62 0.55 
3 77 47 1.0 0.81 0.65 
4 3 3 1.0 0.73 0.78 
5 10 7 1.0 0.92 0.76 

Figure 3: Tweet activity features. 

Table 7: Cluster—group assignment matrix 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Group 1 (slp) 7 0 0 0 0 
Group 2 (scp) 0 5 1 1 0 
Group 3 (sgp) 0 2 4 0 1 
Group 4 (snp) 1 0 0 5 1 
Group 5 (sld) 0 2 1 0 3 

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/9/1/tyad014/7240368 by guest on 15 August 2023



12 Ruth et al. 

Table 8: Evaluation metrics for groups 

TP TN FN FP 

G1 7 33 0 1 
G2 5 30 2 4 
G3 4 32 3 2 
G4 5 33 1 1 
G5 3 32 3 2 
Total 24 160 9 10 
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of the time, the model correctly places malicious users in their corre- 
sponding collusive groups while 78.8% of the time, the model cor- 
rectly excludes malicious users from the wrong collusive groups. This 
measure, therefore, 

Sensit ivit y = 

T P 
T P + F N 

= 

24 
24 + 10 

= 

184 
203 

= 70 . 5% 

As these fingerprints rightly identify groups of colluding actors,
it is sensitive to the inclusion of non-group members into an iden- 
tified group. While, clustering the digital fingerprints can identify 
‘collusion’, as evidenced by our evaluation setup, it falls short of 
identifying multiple groups of colluding actors at the same time.
The results prove that the digital fingerprints are efficient in sep- 
arating collusion activities for a group of users from what would 
be considered a normal online relationship between other groups of 
users. Further research may address exploring latent features of dig- 
ital fingerprints that identify various types of malicious actors. Such 
research would enable ‘family-like’ grouping of malicious actors 
on OSNs. 

Conclusion 

In this paper, we addressed the problem of finding malicious ac- 
tors spreading malicious links in OSNs. Our research proposed a 
methodology that creates a digital footprint for cyber personas in 
OSNs. Our digital footprint was created with four facets of a person’s 
online presence while propagating malicious links—characteristics 
of the URL shared, account characteristics, activity characteris- 
tics, and characteristics of language used in shared posts. We col- 
lected data around a major event and created a digital fingerprint 
for each account. Using an unsupervised learning model, assuming 
no a prior knowledge of group affiliation, we grouped these dig- 
ital fingerprints into clusters of collusion and estimated the joint 
probability of collusion in any one of our four facets within each 
cluster. 

The evaluation on labelled data proves that using our digital 
fingerprinting methodology is efficient in identifying the ‘collusion’ 
among certain users. As we can detect collusive behaviour among a 
group of users in online OSNs, the immediate implication is the ex- 
tension of this method to spot malicious activities beyond the prop- 
agation of malware. Hacker groups are known to co-ordinately use 
OSN platforms as a vector for cyberattacks during cyber hacktivism 

events [ 60 ]. 
Furthermore, beyond using embedded malicious URLs to identify 

malicious actors, the methods presented in this paper are useful in 
identifying other types of malicious actors. For example, OSNs such 
as Twitter, Reddit, and Facebook have been identified as recruiting 
and training grounds for deep covert terrorist activities [ 61 ] used as 
communication medium for sleeper cells [ 62 ]. 

Finally, there is a need for further improvements to our method- 
ology to capture ‘true groups’ of colluding users also suggesting the 
need for further research into simultaneously identifying multiple 
groups of actors involved in collusive behaviour. 
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