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a b s t r a c t

We consider the ‘anti-Hertz’ elastic problem of inverse indentation, which happens when the surface
of an elastic material is pressed down with a plate with a round hole to form a bulge. This classical
problem takes on a new life when a polydomain nematic liquid crystal elastomer is used. In this case,
the nematic director aligns with the leading principal direction of local stress distribution created
by bulging. When the deformed material is crosslinked a second time, this alignment pattern and
the resulting permanent protrusion are preserved as pressure is removed, creating a bulge that can
be reversibly actuated from a flat surface upon cooling. Experimentally, we also observe a dimple
ring around the bulge and a punt (indentation) underneath it at the bottom. Theoretically, we model
the deformation by coupling linear elastic and anelastic deformations using non-monotonic nematic
elasticity and the singular stress-order relation of the polydomain-monodomain transition. The theory
is in excellent agreement with the experiments, and predicts the emergence of all observed features.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Liquid crystal elastomers (LCEs) have emerged in the last
ecade as promising multifunctional active materials. They are
ormed of cross-linked polymeric chains with embedded meso-
enic molecules and can display both elastic and nematic (or
ther mesophase) behavior, the latter order changing in response
o external stimuli such as heat, light, and mechanical stress [1].
his makes them the material of choice for several important
pplications of mechanical actuation [2], including in biomedical
ngineering, power generation and flexible electronics.
Here, we explore the possibility of LCEs to form small bumps

n the surface of a sheet that can be further programmed. The
ain idea is to provide the correct combined mechanical stress
nd heat profile to create an array of such bumps. The fine
ontrol of this process could lead to dynamic tactile displays
r refreshable LCE screens containing Braille character cells [3].
ince the actuation of these bumps is reversible, repeatable, and
e-programmable, this process may be suitable for further tech-
ological development.
The problem of bump formation is also of outstanding interest

rom a purely physical point of view. The Hertz problem in
ontact mechanics consists of computing the deformations and
tresses of two elastic bodies with curved surfaces pressed against
ach other [4,5]. It is one of the most important problems of
lasticity, and is the process behind force microscopy, friction,
nd all indentation techniques. We refer to the formation of a
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bulge as the anti-Hertz problem, since the boundary conditions
are inverted. Rather than having a displacement prescribed in a
localized region where contact takes place surrounded by a large
planar stress-free region, in bulging we have a central opening
that is stress-free, surrounded by a large planar domain with
prescribed displacement, Fig. 1(a). A solution of this problem has
been proposed within the framework of linear isotropic elas-
ticity with applications to the bulging of brain tissue following
decompressive craniectomy [6–8].

The elastic bulging is fully reversible and by itself insufficient
to describe the permanent deformations found in LCEs. Indeed,
in polydomain nematic LCE, the mesogens are separated into
misaligned regions of 1-2 µm size [9], such that in every domain
they are aligned along a local director, but the overall response
is isotropic [10–12]. The uniformly aligned nematic monodomain
structure can form from polydomain LCE through stretching dur-
ing the final cross-linking of the polymer network, or by cooling
from the isotropic to a nematic phase under an external stress
field [13–15]. In this case, the additional anelastic behavior de-
termined by the local nematic order evolves during the formation
of a bump and changes dramatically the bulging problem leading
to a permanent bump with a different morphology, followed by
its reversible thermal actuation. Here, we study this problem

experimentally and theoretically.

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (a) The sketch illustrating the pressurized bulge in an isotropic linear elastic material; (b) The photo of our free-standing bulge, in ambient conditions (at
maximum nematic oder); (c) The line scan of the top and bottom surfaces of the LCE layer, giving detailed information on height distribution around and underneath
the bulge; (d) The profilometer map of the local height around the bulge.
1. Methods

1.1. Experiment

To produce an experimental illustration of the anti-Hertz
ulge, we follow the work on Braille actuators [3] and use a main-
hain nematic LCE based on the thiol-acrylate click chemistry
nd flexible crosslinkers. It is the system of choice due to its
obust and reproducible production and properties (see [16–18]
or details on material synthesis). We start with a polydomain
ematic elastomer of isotropic genesis, partially crosslinked. For
his, upon cooling, the isotropic crosslinked network enters into
he nematic phase with a set of quenched random crosslinks, but
o additional texture constraints [10]. In addition, when during
rosslinking this network is swollen by a solvent, the stretched
hains fold on de-swelling without entangling (i.e. additional
nternal constraints) [19]. This is our starting flat polydomain LCE
ayer.

An important factor is the ability to ‘‘freeze’’ the pressurized
ulge, and its pattern of induced local order, by the second-
tep (final) crosslinking, see [3] for detail. The half-crosslinked
lastomer layer was sandwiched between a flat support and a flat
eflon plate with holes of the desired dimension and shape. The
andwich was introduced in a hot press at room temperature, and
set pressure of under 10 kPa was applied to form the bulge.
he pressurized film was then heated to complete the second
rosslinking in the isotropic phase, which preserved the pattern of
ocal stress and induced nematic order in the bulge on subsequent
ooling.
After releasing the pressure and annealing the load-free elas-

omer, we cooled it down to the nematic phase to recover the
2

permanently ‘recorded’ bulge driven by a pattern of local uni-
axial order and the associated local extension, as illustrated in
Fig. 1. The surface topography was measured by the DektakXT
profilometer from Bruker to obtain line scans and surface map
profiles. Fig. 1(c) shows the combined line scan of both the
top and the bottom surface of the LCE layer, showing that, in
addition to the prominent bulge, there is a matching indentation
underneath, the punt, where the material was displaced to supply
the protrusion. One can also see dimples forming around the
protrusion rim, again to supply material into the growing bulge,
since the material volume is conserved.

1.2. Theory

We model the deformation of the polydomain LCE layer
pressed between two horizontal rigid plates when the top plate
contains a circular opening with straight edge and the other
acts as a fixed support. Locally, the material undergoes differ-
ent degrees of the polydomain-monodomain transition along
the local axes of principal stresses, mimicking the polydomain–
monodomain transition under uniaxial tensile stress, well-studied
experimentally and theoretically. Specifically, we use the model
for the uniaxial order parameter as a function of stress [15], at
every point in space:

Q (σ ) ≈ Qmax(T ) exp
[
−c1/

√
(σ+ − σ−) − c0

]
, (1)

where Qmax(T ) is the temperature-dependent intrinsic value of
nematic order parameter, before its macroscopic average reduc-
tion due to misaligned domains [20], σ± are the principal stress
components, c0 is the ‘plateau stress’ value, and the material con-
stant c is determined by the ratio of the Frank elastic modulus of
1
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Fig. 2. (a) The stress–strain curve of polydomain–monodomain transition in our LCE, overlaid with the values of induced order parameter Q reported on the second
vertical axis. The arrow marks the soft stress plateau c0 , where the alignment of domains takes place. (b) The same data for order parameter Q is plotted against
stress, with the line representing best fit with Eq. (1).
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the underlying nematic and the degree of quenched disorder in
the crosslinked network [15]. Since the rate of pressure was small
in our experiments, and in practice the quasi-equilibrium stress
plateau of the ideal isotropic-genesis polydomain–monodomain
transition is almost zero, we neglect the small ‘jump’ of Q at the
ritical point [12,21].
Fig. 2 illustrates these parameters in our experimental system.

he plot in Fig. 2(a) shows the classical stress–strain curve of
olydomain-monodomain transition, where the arrow points at
he soft stress plateau [12,15] of c0 = 0.0018 MPa, and the values
f induced order parameter Q (determined by X-ray scattering) at
everal points in strain. The plot in Fig. 2(b) contains the same
alues Q plotted against the stress, and fitted by Eq. (1) with
max = 0.63 and c1 = 0.019. We will use these parameters for
he induced order Q (σ ) in the analysis below.

An important feature of the system is the combination of
lastic and anelastic effects that can be captured through a mul-
iplicative decomposition of the deformation gradient [22] such
hat the deformation gradient F with respect to the reference
olydomain configuration takes the form [23,24]

= G · A, (2)

here A is the local elastic deformation tensor, and G is the natural
eformation tensor from the isotropic to a nematic state. Local
ass conservation implies that during the anelastic remodeling
e have detG = 1.
Following [24], the natural deformation tensor can be written

s follows

= a−1/6I +
(
a1/3 − a−1/6)n ⊗ n, (3)

here n = [cos θ, sin θ, 0]T is the local nematic director in the
urrent axisymmetric configuration and a = (1 + 2Q )/(1 − Q ) is
he chain anisotropy parameter [25].

. Results

.1. The local elastic deformation tensor

The bulging of a homogeneous isotropic elastic material under
niform applied pressure can be adequately captured by linear
lasticity [6–8]. Hence, we write A = ∇u + I, where u is the
isplacement field from the reference configuration to the elastic
eformed state and I is the identity tensor.
 e

3

The stress tensor for an unconstrained isotropic linear elastic
aterial is given by

=
E

1 + ν
e +

Eν

(1 + ν) (1 − 2ν)
(tr e) I, (4)

where E is the Young modulus, ν is Poisson’s ratio, and e =(
∇u + ∇uT

)
/2 is the infinitesimal strain tensor.

We assume an axisymmetric deformation, with x as the hori-
zontal radial direction and z the vertical direction; in both cases,
the distances are non-dimensional, scaled by the radius of the
hole. When the material is incompressible (ν = 1/2, see [26]
for discussion) and the gap has a straight edge while the applied
pressure is constant, setting the layer’s top surface at z = 0,
the components of the displacement field at this surface take the
form [8]:

ux = 0, uz = δ −
3p0
2E

√
1 − x2, (5)

where δ is a uniform vertical displacement and p0 is the applied
ressure. The area of the bulge is Ab = πh/2, where h = 3p0/2E
s the height.

With rounded edges, the solution away from the edge is well
aptured by the straight-edge case but has the advantage to re-
uce the local stress singularity created by the jump [8]. Hence it
ay prevent material failure at that point. Since the deformation
nd stress profiles are almost indistinguishable away from the
dge, and the experiments are carried out with straight edges,
he simpler straight-edge solution is sufficient for our analysis.

In the deformed layer, the components of the linear elastic
tress tensor for x ≥ 0 and z ≥ 0 have the following explicit
orms [8]:

σxx = −
p0

ρ
√
2

[(
x −

zζ
ρ2

)√
ρ − ξ + z

(
1 +

ξ

ρ2

)√
ρ + ξ

]
σzz = −

p0
ρ
√
2

[(
x +

zζ
ρ2

)√
ρ − ξ + z

(
1 −

ξ

ρ2

)√
ρ + ξ

]
σxz =

p0
ρ
√
2

z
ρ3

(
ξ
√

ρ − ξ + ζ
√

ρ + ξ

)
,

where ξ = 1 − x2 + z2, ζ = 2x and ρ =

√
ξ 2 + ζ 2. The small

train components are

exx = (2σxx − σzz) /2E,

ezz = (2σzz − σxx) /2E,

= 3σ /2E.
xz xz
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Fig. 3. (a) Analytical deformation profile of the pressurized LCE layer when E = 32 kPa and p0 = 5 kPa; (b) Finite element simulation of the naturally deformed LCE
ayer when Qmax = 0.65, with arrows indicating local deformation and colors showing vertical displacement; (c) The distribution of the uniaxial order parameter Q
n the pressurized layer, below the bulge; (d) The distribution of the angle θ for the orientation of the nematic director in the pressurized layer, below the bulge.
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s the elastic material deforms, the nematic molecules reorient
n the leading direction of the principal stress components

± =
1
2

[
σxx + σzz ±

√
(σxx − σzz)

2
+ 4σ 2

xz

]
, (6)

with principal strains e± = (σ± − σ∓/2)/E.
We define θ to be the polar angle of the director alignment

w.r.t. the horizontal direction, from which we have

σxx = σ+ cos2 θ + σ− sin2 θ,

σzz = σ+ sin2 θ + σ− cos2 θ,

σxz = (σ+ − σ−) sin θ cos θ.

or −1 < x < 1 and 0 < z ≪ 1, we obtain σ+ ≈ σzz and
− ≈ σxx. Hence, θ ≈ π/2 and we conclude that the director
ligns vertically in the emerging bulge.
Fig. 3(a) presents the profile of the pressurized LCE layer

btained from our analytical calculations with Young’s modulus
= 32 kPa and applied pressure p0 = 5 kPa. The director

rientation and its nematic order in the pressurized bulge will
e ‘recorded’ by the second crosslinking in order to be recovered
hen the unloaded material reacts spontaneously to temperature
hanges. Then, only Qmax, and hence the anisotropic parameter a,
ill vary with temperature, while the nematic director pattern
remains frozen. For visualization, Fig. 3(b) displays a finite

lement simulation of the naturally deformed LCE model when
max = 0.65. Contour plots of the order parameter Q in the
ressurized layer are represented in Fig. 3(c). For the nematic
irector, contour plots of the orientation angle θ are shown in
ig. 3(d).

.2. Actuation of the load-free bulge

In general, after loading and subsequent unloading, the ne-
atic material does not return to its initial stress-free configu-

ation, but exhibits a residual strain. The deformed pressurized
 r

4

LCE layer contains a vertical bulge emerging through the gap in
the top plate. After fixing the local map of induced nematic order
Q(x) via the second crosslinking, and removing the applied load, a
unt is formed below the bulge, at the interface of the load-free
ayer with the bottom plate, as well as the dimple around the
ulge.
Figs. 4(a,b) illustrate the experimental results on the load-free

ulge on heating the LCE into isotropic phase. This variation, from
he protruded bulge to nearly-flat surface in the isotropic phase is
aused by the change of underlying order parameter magnitude
max(T ), which can be measured independently [20].
Our theoretical model calculates the shape of the load-free

pontaneously deformed layer, with different values of Qmax, as
hown in Fig. 4(c) where the variation with temperature is re-
lected. For the naturally actuated bulge, using Eq. (2), the com-
onents of the displacement field at z = 0 take the following form
s functions of the temperature-dependent anisotropy parameter
(x),

ux = 0, uz = uz
a1/3 − 1

a1/30 − 1
, (7)

here uz(x) is given by Eq. (5) and a0(x) is the anisotropy of new
rosslink orientations. Hence these surface profiles are developed
y the local director and order parameter in the bulge, which
re depicted in Fig. 4(d). When the order decreases to zero in
he isotropic phase, we recover the stress-free flat surface, as
xpected.

. Discussion

We designed and implemented the actuation of a liquid crystal
lastomer sheet that can be programmed to produce small bumps
n a flat surface at different temperatures. The original polydo-
ain LCE is capable of large reversible deformations and forms
ulges when pressed down trough round holes under a perfo-
ated plate. Such a deformation induces in the material a nematic
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Fig. 4. (a) A sequence of profilometer scans of the top surface, as in Fig. 1(c), at different temperatures; (b) The summary of the peak height, measured from the
profilometer scans against temperature, illustrating the (fully reversible) flattening of the bulge in the isotropic phase; (c) A sequence of analytical deformation
profiles of the load-free system for different values of Qmax , reflecting temperature changes; (d) The corresponding local map of the induced order parameter Q (x)
for different values of Qmax in the bulge, with the inset showing the vertical director orientation.
reordering, that can be ‘recorded’ by second cross-linking, and
then ‘remembered’ after the load is removed and a nematic phase
is induced by varying temperature. Theoretically, this process
can be modeled by considering both the elastic response of the
matrix and the anelastic response of the embedded mesogens.
The mathematical and numerical solutions of this model correctly
capture all morphological features of the system and provide a
full description of its mechanical behavior. The loaded system
and its load-free actuation are mathematically tractable and ex-
perimentally controllable, rendering this process predictable for
technological applications, such as controlling flows in a channel
by blocking it or actuating textured surfaces.
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