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Abstract

Human individuality is likely underpinned by the constitution of functional brain net-

works that ensure consistency of each person's cognitive and behavioral profile.

These functional networks should, in principle, be detectable by noninvasive neuro-

physiology. We use a method that enables the detection of dominant frequencies of

the interaction between every pair of brain areas at every temporal segment of the

recording period, the dominant coupling modes (DoCM). We apply this method to

brain oscillations, measured with magnetoencephalography (MEG) at rest in two

independent datasets, and show that the spatiotemporal evolution of DoCMs consti-

tutes an individualized brain fingerprint. Based on this successful fingerprinting we

suggest that DoCMs are important targets for the investigation of neural correlates

of individual psychological parameters and can provide mechanistic insight into the

underlying neurophysiological processes, as well as their disturbance in brain

diseases.
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1 | INTRODUCTION

Despite over 30 years of functional neuroimaging in humans, the cor-

relates of individuality in the brain have not been elucidated up to

now. A likely reason is that human neuroscience studies generally

aggregate data across a group of subjects to reveal commonalities in

brain activity and connectivity patterns or to obtain salient differences

between patient and control groups, whereas the heterogeneity

within each group is typically ignored.

However, even among neurologically healthy people, both brain

structure (Amunts et al., 2000; Bürgel et al., 2006; Mangin

et al., 2004) and function (Grabner et al., 2007; Newman et al., 2003;

Rypma & D'Esposito, 1999) are highly variable. Functionally, inter-

subject variability was found to be high both for functional activation

during cognitive tasks (Grabner et al., 2007; Newman et al., 2003;

Rypma & D'Esposito, 1999) and for the intrinsic functional organiza-

tion of the brain at rest (Mueller et al., 2013). For example, monozy-

gotic twins only share a small variance in their local structural

connectome (van Essen et al., 2013), allowing for a considerable

amount of variability even between genetically identical individuals.

Conversely, within individuals, structural and functional connectivity

measures seem to be very stable over time (Barch et al., 2013; Yeh

et al., 2016), even across several months (Finn et al., 2015; Powell

et al., 2018). Brain connectomics is, therefore, an attractive tool to

investigate the brain signatures of individual differences (Dimitriadis &

Salis, 2017).
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The motivation behind the idea of “brain fingerprinting” with neuro-

imaging signals is not mainly to identify the identity of individuals. The

general motivation of brain fingerprinting is to capture individually specific

features of the brain, and ultimately to achieve a mechanistic interpreta-

tion that can contribute to a new understanding of the biological basis of

personality, characteristic biological features of individuals, and other indi-

vidual traits using neuroimaging (Liu et al., 2019). The identification of the

“brain-fingerprinting” subnetwork with the use of a neuroimaging modal-

ity will moreover enhance our understanding of brain networks that are

likely to be particularly vulnerable to perturbations leading to cognitive,

behavioral, and psychopathological abnormalities (Finn & Todd

Constable, 2016; Kanai & Rees, 2011; van den Heuvel & Sporns, 2013).

Brain fingerprinting has been studied with electroencephalography

(EEG; Dimitriadis & Salis, 2017), functional magnetic resonance imaging

(fMRI; Finn et al., 2015; Liu et al., 2018), diffusion MRI (dMRI; Yeh

et al., 2016) and magnetoencephalography (MEG; da Silva Castanheira

et al., 2021; Sareen et al., 2021).MEG arguably has the highest sensitivity to

spatiotemporal fluctuations in fine-grained activity among the noninvasive

neuroimaging techniques. Compared to fMRI (Abrol et al., 2017), MEG is a

more direct measure of functional connectivity that can uncover the domi-

nant coupling modes of brain networks and the multi-scale frequency-

dependent interactions across space and time (Engel et al., 2013).

Brain rhythms that can be detected with MEG range from the infra-

slow (<0.01 Hz) to ultrafast frequencies (200–600 Hz) and include at

least 10 interactive oscillation classes each one with a specific frequency

width ranging from the slow 4 (<0.01 Hz) up to ultra-fast (200–600 Hz;

Buzsáki et al., 2013). These brain rhythms often interact in the same

brain state either within the same or across different structures, in a mul-

tiplex way that supports within-frequencies and between-frequencies

coupling modes (cross-frequency coupling; Engel et al., 2013; Khazipov

et al., 2004). We thus propose that, for a comprehensive evaluation of

network integration and its individual specificity, both phase-to-phase

(within frequency) and phase-to-amplitude cross-frequency coupling

mechanisms need to be analyzed (Engel et al., 2013; Siebenhühner

et al., 2016), which is the approach taken in the present study.

Our goal was to investigate if the multiplexity of brain communi-

cation at MEG resting-state and in healthy individuals explored under

our dominant coupling model (DoCM) model (Dimitriadis, 2018, 2021)

can be served as a personalized brain signature. For that purpose, we

trained our proposed analytic pipeline in a test–retest study and

we validated the outcome of this repeat cohort in a larger MEG

cohort (N = 183) with an unknown number of common subjects

between the two for the experimenter (SID).

2 | MATERIALS AND METHODS

2.1 | Subjects

2.1.1 | Repeat scan cohort (Experiment 1)

Forty healthy subjects (age 22.85 ± 3.74 years, 15 women and

25 men) underwent two resting-state MEG sessions (eyes open) over

2 consecutive weeks. The duration of the resting-state condition was

5 mins. For each participant, scans were scheduled on the same day

of the week and at the same time of the day. This is a test–retest

study performed in CUBRIC Neuroimaging Centre with the main aim

to evaluate the repeatability of various measurements that can be

extracted from MEG resting-state recordings. The study was

approved by the Ethics Committee of the School of Psychology at

Cardiff University, and participants provided informed consent.

2.1.2 | Validation cohort (Experiment 2)

The second validation cohort consists of MEG resting-state recordings

from N = 183 subjects (64 males and 119 females: 119 with mean

age of 24.79 and SD 5.68). This large cohort is a collection of multi-

modal neuroimaging datasets performed in CUBRIC Neuroimaging

Centre from a healthy population. The multimodal neuroimaging pro-

tocol of the repeat scan cohort is the same as the validation cohort.

The duration of the resting-state condition was 5 mins. The study was

approved by the Ethics Committee of the School of Psychology at

Cardiff University, and participants provided informed consent.

Twenty-two subjects of the first cohort were also in this second

cohort. This partial overlap provided an additional challenge to the

classification procedure.

These data were provided to SID by the study PIs (DEL and KS)

without prior information as to whether there were any common sub-

jects between the MEG repeat scan study and the normative

database.

The recruitment of participants in both cohorts was inclusive to

all persons without limitations by (1) sex or gender, (2) race or ethnic-

ity, or (3) age other than as scientifically justified and as specified in

enrollment inclusion and exclusion criteria.

2.2 | MEG-MRI recordings

Whole-head MEG recordings were made using a 275-channel CTF

radial gradiometer system. An additional 29 reference channels were

recorded for noise cancellation purposes and the primary sensors

were analyzed as synthetic third-order gradiometers. Two or three of

the 275 channels were turned off due to excessive sensor noise

(depending on time of acquisition). Subjects were seated upright in

the magnetically shielded room. To achieve MRI/MEG co-registration,

fiduciary markers were placed at fixed distances from three anatomi-

cal landmarks identifiable in the subject's anatomical MRI, and their

locations were verified afterward using high-resolution digital photo-

graphs. Head localization was performed before and after each

recording, and a trigger was sent to the acquisition computer at rele-

vant stimulus events.

All datasets were either acquired at or down-sampled to 600 Hz,

and filtered with a 1-Hz high-pass and a 200-Hz low-pass filter. The

data were first whitened and reduced in dimensionality using principal

component analysis with a threshold set to 95% of the total variance.
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The statistical values of kurtosis, Rényi entropy, and skewness of each

independent component were used to eliminate ocular, muscle, and

cardiac artifacts. We estimated those metrics in a dynamic fashion

adopting a sliding window mode of width 2 s with no overlapping

leading to a number of 30 (per min) � 5 (mins) = 150 temporal seg-

ments. Specifically, a component was deemed artifactual if more than

20% of the total number of temporal segments (more than 30)

showed all the metric values after normalization to zero-mean and

unit-variance outside the range of [�2, +2]. The artifact-free multi-

channel MEG resting-state recordings were then entered into the

beamforming analysis (see next section).

Subjects further underwent an MRI session in which a

T1-weighted 1-mm anatomical scan was acquired, using an inversion

recovery spoiled gradient echo acquisition. Both MRI and MEG

recordings in both cohorts have been collected on the same day fol-

lowing a common multimodal neuroimaging protocol in CUBRIC Neu-

roimaging Centre.

2.3 | Beamforming

An atlas-based beamformer approach was adopted to project MEG

data from the sensor level to source space independently for each

brain rhythm. The frequency bands studied were δ (1–4 Hz), θ (4–

8 Hz), α1 (8–10 Hz), α2 (10–13 Hz), β1 (13–20 Hz), β2 (20–30 Hz), γ1
(30–45 Hz), and γ2 (55–90 Hz). First, the coregistered MRI was spa-

tially normalized to a template MRI using SPM8 (Weiskopf

et al., 2011). The AAL atlas was used to anatomically label the voxels,

for each participant and session, in this template space. The 90 cortical

regions of interest (ROIs) were used for further analysis, as is common

in recent studies (Hillebrand et al., 2016). Next, neuronal activity in

the atlas-labeled voxels was reconstructed using the LCMV source

localization algorithm as implemented in Fieldtrip (Oostenveld

et al., 2011). The MEG lead field was based on a VC model created

using the boundary element method (BEM).

The beamformer sequentially reconstructs the activity for each

voxel in a predefined grid covering the entire brain (spacing 6 mm) by

weighting the contribution of each MEG sensor to a voxel's time

series—a procedure that creates the spatial filters that can then pro-

ject sensor activity to the cortical activity. Each ROI in the atlas con-

tains many voxels, and the numbers of voxels per ROI differ. To

obtain a single representative time series for every ROI, we defined a

functional-centroid ROI representative by functionally interpolating

activity from the voxel time series, within each ROI, in a weighted

fashion. Specifically, we estimated a functional connectivity map

between every pair of source time series within each of the AALs

ROIs (Equation 1) using the absolute value of the Pearson's correlation

coefficient (Equation 2). We then estimated the connectivity strength

of each voxel within the ROI by summing its connectivity values to

other voxels within the same ROI (Equation 3) and finally, we normal-

ized each strength by the sum of strengths (Equation 4) to estimate a

set of weights within the ROI that sum to a value of 1. Finally, we mul-

tiplied each voxel time series with their respective weights and we

summed across them to get a representative time series for each ROI

(Equation 5). The whole procedure was applied independently to

every quasi-stable temporal segment derived by the settings of tem-

poral window and stepping criterion.

The following Equations 1–5 demonstrated the steps for this

functional interpolation.

ROImap �Rvoxels�samples,voxels�noof voxel timeseries within eachROI

ð1Þ

SVoxels ¼
XVoxels

k¼1

XVoxels

l¼kþ1

absðcorr ROImap
k tð Þ,corr ROImap

l tð Þ� �� �
,SVoxels �ROIXROI

ð2Þ

SSk ¼
XVoxels

k¼1

corr k, :ð Þ, SS�1�ROI ð3Þ

Wk ¼ SSk
PVoxels
k¼1

SSk

ð4Þ

ROIactivity ¼
XVoxels

k¼1

ROItime series
k �Wk ð5Þ

2.3.1 | MEG dynamic source connectivity analysis

A dynamic connectivity analysis, based on a sliding-window approach,

was applied to eight conventionally defined frequency bands: δ (0.5–

4 Hz); θ (4–8 Hz); α1 (8–10 Hz); α2 (10–13 Hz); β1 (13–20 Hz), β2 (20–

30 Hz), γ1 (30–45 Hz) and γ2 (55–90 Hz). Band-limited brain activity

was derived by applying a third-order Βutterworth filter (in zero-phase

mode). We quantified the brain source network, employing two types of

interactions and adopting properly defined connectivity estimators:

(a) intra-frequency phase coupling within each of the eight frequencies

was estimated using the imaginary part of the phase locking value (iPLV;

Dimitriadis et al., 2017; Dimitriadis & Salis, 2017); (b) cross-frequency

coupling (CFC), namely phase-to-amplitude coupling (PAC) between

28 possible pairs of frequencies was defined with the PAC estimator

(Dimitriadis & Salis, 2017). The strength of the connections estimated

with the two adopted connectivity estimators (iPLV/PAC) ranged from

0 to 1. The derived quantities are tabulated in a 90 � 90 matrix, called

hereafter the “functional connectivity graph” (FCG), in which each ele-

ment conveys the strength of iPLV/PAC for each pair of cortical

sources. The aforementioned procedure produced 8 + 28 = 36 FCGs

for each participant, in each sliding window. To further clarify the total

amount of coupling modes, we estimated eight within-frequency cou-

pling modes (one per frequency), and 8 � 7/2 = 28 cross-frequency

coupling modes per pair of ROIs and per sliding mode. This procedure

produces 36 coupling modes per pair of ROIs and per sliding mode.

We adopted a sliding-window of 1 s moving every 100 ms to cap-

ture, in more detail, possible transitions of dominant intrinsic coupling

modes between consecutive windows (see Sections 5 and 6 for the

optimization strategy of the width of the temporal window and
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the stepping criterion). The whole approach led to 2991 [(300 s –

1)/0.1 + 1] time-varying FCGs for each participant and session. For

each participant and for each connectivity estimator, 4D dynamic

functional connectivity graphs were derived, each with dimension:

(modes:8 + 28) � 2991 (temporal segments) � 90 (ROIs) � 90 (ROIs).

Table 1 summarizes the derived dynamic graphs and their dimension

for each subject (see also Figure 1). Our methodology has already

been demonstrated and validated in several functional neuroimaging

studies (Dimitriadis, 2018, 2021; Dimitriadis & Salis, 2017).

2.3.2 | Surrogate MEG source connectivity analysis

To estimate the statistical significance of the iPLV/PAC-interactions,

which were estimated within frequencies and for every pair of fre-

quencies, between all possible pairs of 90 virtual sensors, and at each

successive sliding window, we employed surrogate data

(Dimitriadis, 2021). Surrogate data analyses determined: (a) if a given

iPLV/PAC value differed from what would be expected by chance

alone, and (b) if a given nonzero iPLV/PAC indicated coupling that

was, at least statistically, nonspurious.

Significant iPLV values were determined after calculating iPLV for

rs = 10,000 surrogates for each connection derived by selecting a ran-

dom time-point from the amplitude time series of one of the two vir-

tual sources and then exchanging the order of the two segments that

were created (Dimitriadis, 2018, 2021; Dimitriadis & Salis, 2017).

Similarly, significant PAC values were determined after calculating

PAC for rs = 10,000 surrogates for each connection derived by select-

ing a random time-point from the amplitude time series (high-fre-

quency) and then exchanging the two ordered segments.

For every time window, virtual sensor-pair, and pair of frequen-

cies, we tested the null hypothesis H0 that the observed PAC value

came from the same distribution as the distribution of surrogate PAC-

values. Ten thousand surrogate time-series AsHF(t) were generated by

cutting at a single point at a random location the amplitude A time

series (high-frequency, HF) and exchanging the two resulting

time courses (Aru et al., 2015). Repeating this procedure produced a

set of surrogates with minimal distortion of the original amplitude

dynamics and impact on the nonstationarity of brain activity as com-

pared to either merely shuffling the time series or cutting and rebuild-

ing the time series in more than one time point. With this

aforementioned approach, the nonstationarity of the brain activity as

captured from the source time series is less affected compared to cir-

cularly permuted phase time series (low-frequency) for PAC relative

to amplitude series (high-frequency for PAC) and the phase of the

time series for iPLV. This procedure ensures that the observed and

surrogate indices share the same statistical properties. The amplitude

distribution and Fourier spectra of original time series and surrogate

time series are identical, the autocorrelation functions, the means, and

standard deviations of amplitude distributions are also identical.

For each subject and condition, the surrogate PAC (sPAC) was

computed. We then determined a one-sided p-value expressing the

TABLE 1 Dimensions and
information tabulated in the dynamic
functional connectivity graphs.

Dimensions Directed Within frequencies Between frequencies

iPLV 8 � 2991 � 90 � 90 ✓

PAC 28 � 2991 � 90 � 90 ✓ ✓

F IGURE 1 Construction of integrated dynamic functional connectivity graphs (iDFCG). (a) We constructed one DFCG per coupling mode for
both within-frequency coupling and cross-frequency coupling modes (36 in total). Similarly, we constructed 10,000 surrogates DFCG per coupling
mode, and assigned a p-value per each of the 36 coupling modes for every pair of ROIs within a temporal segment. An example of the first three
temporal segments from the first subject of the first cohort is illustrated in (b). From this process, we can untangle if two brain regions are
functionally connected and if so, which is the preferred dominant coupling mode. (c) The outcome of the surrogate analysis is an iDFCG that
preserves both the weight and the dominant type of interaction (SF - Statistical Filtering).
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likelihood that the observed PAC value could belong to the surrogate

distribution and corresponded to the proportion of “surrogate”’ PACs

which was higher than the observed PAC value (Dimitriadis, 2018,

2021; Dimitriadis & Salis, 2017). PAC values associated with statisti-

cally significant p values were considered unlikely to reflect signals

not entailing PAC coupling.

Similarly, for each subject and condition, the surrogate iPLV

(siPLV) was computed. We determined a one-sided p-value expressing

the likelihood that the observed iPLV value could belong to the surro-

gate distribution and corresponded to the proportion of “surrogate”’
iPLVs which was higher than the observed iPLV value (Dimitriadis,

2018, 2021; Dimitriadis & Salis, 2017). iPLV values associated with

statistically significant p values were considered unlikely to reflect sig-

nals not entailing iPLV coupling.

After obtaining a p-value per pair of MEG sources at every tem-

poral segment and for each of 36 intra and inter-frequency coupling

modes, we corrected for multiple comparisons (p < 0.001; Bonferroni

correction, p0 < p/36). The false discovery rate (FDR) method

(Benjamini & Hochberg, 1995; Dimitriadis, 2018, 2021; Dimitriadis &

Salis, 2017) was employed to control for multiple comparisons across

the whole network based on the identified DoCM with the expected

proportion of false positives set to q ≤ 0.01. Finally, the PAC mode

that characterized a specific pair of frequencies was determined based

on the highest, statistically significant PAC value from surrogates.

Then, we compared the Bonferroni corrected p values for both {i,j}

and {j,i} pairs of brain areas and we assigned to every pair of ROIs the

type and strength of functional coupling corresponding to the lowest

p-value or in the case of equal p-value, the one with the highest func-

tional strength. We analyzed the resulting dynamic functional connec-

tivity graphs as undirected.

The aforementioned statistical test is important to detect the

dominant intrinsic coupling mode between every pair of virtual

sources across each temporal segment. In that case, our method

assigned to every pair of ROIs, the preferred type of interaction which

can be from any of the 36 different coupling modes (8 intra-frequency

and 28 cross-frequency pairs; see Figure 1b).

The proposed integration model assumes that if two brain areas

are communicating then this should be realized via a preferred domi-

nant coupling mode. In Figure 2, we illustrated an example of how this

model worked for a pair of virtual sources in two consecutive tempo-

ral segments. From 36 potential coupling modes, finally, we concluded

to a dominant coupling mode (either intra or cross-frequency cou-

pling) or none.

The detection of the dominant coupling mode per pair of MEG

sources is given in Figure 2b. Practically, the statistical surrogate

analysis can lead to three conditions: (a) only one frequency or fre-

quency pair met the statistical thresholding criterion, (b) in the case

of two frequencies or frequency pairs both exceeding the statistical

F IGURE 2 Determining Dominant Intrinsic Coupling Modes (DoCM). (a) Schematic illustration of the approach employed to identify the
DoCM between two AAL atlas ROIs (left superior frontal gyrus, right superior frontal gyrus) for two consecutive 1 s sliding time windows (t1, t2)
during the resting-state MEG recording. In this example, the functional interdependence between band-passed signals from the two virtual
sensors was indexed by imaginary Phase Locking (iPLV). In this manner, iPLV was computed between the two virtual sensors either for same-
frequency oscillations (e.g., δ to δ) or between different frequencies (e.g., δ to θ; Potential Intrinsic Coupling Modes [PICM]). Statistical filtering,
using surrogate data for reference, was employed to assess whether each iPLV value was significantly different from chance. During t1 the DoCM

reflected significant phase locking between δ and α2 oscillations (indicated by red rectangles) whereas during t2 the dominant interaction was
found between δ and θ oscillations. (b) Burst of DoCM between left superior frontal gyrus and right superior frontal gyrus. This packeting can be
thought to group the “letters” contained in the DoCM series to form a neural “word.”, representing a possible integration of many DoCMs
(Leinekugel et al, 2002).
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threshold, the one with the highest iPLV/PAC value was identified

as the characteristic iPLV/PAC mode for this pair of virtual sensors

at that particular time window and (c) if none of the within fre-

quency or cross-frequency pairs exceed the statistical threshold, a

value of zero was assigned to this pair of virtual sensors so there is

no identified characteristic coupling mode. The selection of the

maximum iPLV/PAC value in the (b) condition can be adopted as a

solution in the case of more than one surviving frequency and/or

frequency pair since both iPLV/PAC are quantified based on the

same formula. Finally, for each participant, the resulting TViPLV/

PAC profiles constituted a 3D array of size [2991 (temporal

segments) � 90 (sources) � 90 (sources)] that tabulated the func-

tional coupling strength. The identity of prominent frequencies or

frequency pairs for every pair of sources) at each time window was

finally stored in a second 3D array of size [2991 � 90 � 90]. In the

latter array, significant iPLV/PAC interactions were indicated by an

integer number ranging from 1 up to 36 (1 for δ-δ coupling, 2 for θ-

θ coupling,…, 8 for γ2- γ2,…,36 for β2-γ2), with zeros indicating non-

significant iPLV/PAC interactions. The procedure of statistical fil-

tering is demonstrated in Figure 1c. DoCM has been already

established in our previous studies (Dimitriadis, 2018, 2021;

Dimitriadis & Salis, 2017).

2.3.3 | Dynamic reconfiguration of dominant
coupling modes

The outcome of this novel approach is demonstrated in Figure 3. The

colored lines illustrate the fluctuation of the preferred coupling modes

for three pairs of MEG sources from participant 1 (Figure 3a). The

color codes the strength of the iPLV/PAC connectivity estimator

while the y-axis refers to one of the 36 possible coupling modes. The

colored 2D matrices are called comodulograms and summarize the

probability distribution of each coupling mode for a single pair of

MEG ROIs (Figure 3b). Figure 3a illustrates the core of our methodol-

ogy that explains how we integrate the dominant coupling modes into

a single dynamic functional connectivity graph. The main outcome of

this model is a sequence of dominant coupling modes between every

pair of neuromagnetic sources across experimental time. Dominant

coupling modes can be seen as the basic letters of neural transmission

that can form a “word” for neural information exchanged between

two sources.

We illustrate the dynamic reconfiguration of dominant coupling

modes, across experimental time, for four pairs of sources from a sin-

gle subject. Each subplot in Figure 3a illustrates the richness of infor-

mation in neuromagnetic source connectivity time series in terms of

F IGURE 3 Dynamic reconfiguration of dominant coupling modes for four pairs of ROIs. (a) Right frontal-superior-orbital–right parietal-
superior, (b) left frontal-middle–right parietal-inferior, (c) left frontal-middle–right frontal-middle, and (d) left temporal superior–left frontal
superior for subject 1. (a) In the left subplot, color represents the strength of iPLV coupling while the height of the fluctuated time series (y-axis)
codes the dominant intrinsic coupling mode (DoCM) over 36 possible options (8 for intra-frequency and 28 for cross-frequency coupling). (b) The
2D matrix is a comodulogram that tabulates the probability distribution (PD) of each dominant coupling mode across the time series presented in
(a). For each time series, we plotted the comodulograms which tabulate the probability distribution of dominant coupling modes across intra (main
diagonal) and cross-frequency coupling (off-diagonal). The total sum of the probability distribution is equal to 1. The horizontal axis refers to the
modulating frequencies while the vertical axis refers to the modulated frequencies. From the comodulograms, one can understand that the basic
modulators of intrinsic activity are mainly δ, θ, α1, and α2 brain rhythms.
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the fluctuations of dominant coupling modes over and above mere

coupling strength.

In Figure 3, we showed the first 2 s out of 300 s for four pairs of

sources. Our DoCM model untangled the dominant coupling mode

per pair of brain areas at every snapshot of the dynamic connectivity

analysis. These sequences of DoCM were used to construct the

comodulograms that tabulate the probability distribution of DoCM

across experimental time per every pair of brain areas (see Figure 3,

right column).

3 | MODELLING THE DYNAMIC
RECONFIGURATION OF DOMINANT
COUPLING MODES VIA MARKOVIAN
MODELS (EXPERIMENT 1)

We modeled the time series that describes the temporal evolution

of the dominant coupling mode per pair of sources with a discrete

Hidden Markovian Model (dHMM; Figures 2 and 3). For every

time series called hereafter DoCMts, we can estimate the proba-

bility distribution (PD) of DoCM. PD is a vector of size 36 that

quantifies the PD of DoCM across experimental time which equals

2991 temporal segments. We estimated PD for every pair of vir-

tual sources.

For every DoCMts, a dHMM was used to model each DoCMts

using the Expectation Maximization algorithm (Baum–Welch method).

With this approach, for every DoCMts and independently for each

subject, we searched for the best model described by the transition

matrix, the priors, and the observation matrix by minimizing the log-

likelihood between the original system and the one modeled via the

dHMM. For that purpose, dHMMs were trained using the Baum–

Welch algorithm (for further details, see Section 1 in the Supporting

Information).

We optimized the number of states for each DoCM by minimizing

the error between the trained dHMM and the original data. This leads

to 90 � (90 – 1)/2 = 4005 training sets for each subject and scan ses-

sions. Each subject is a separate class k = 40 and our goal is to detect

the subset of MEG source pairs that can accurately detect each sub-

ject compared to the rest.

The procedure of brain fingerprinting based on the estimation of

probability distribution (PD) of dominant coupling modes over the

DoCMts to increase recognition accuracy can be summarized as

follows.

The following steps were repeated separately for each DoCMts.

1. PD is a vector of size 36 that quantifies the probability distribution

of DoCM across experimental time which equals 2991 temporal

segments.

2. In our case, we estimated PD across six epochs over every time

series of size 2991 temporal segments {1–500, 501–1000, 1001–

1500, 1501–2000, 2001–2500, 2501–2991} and between every

pair of sources. The outcome of this preprocessing step is a feature

matrix of size (FM): 6 (epochs) � 36 (no of dominant coupling

modes).

3. We trained one dHMM model over every FM related to a pair of

sources (n = 4005) per subject (k = 40) independently per subject

from the first scan session.

4. To classify an incoming sequence of DoCM, we computed the log-

likelihood that every k model gives to the test sequence derived

from the second session. if the k'th model is the most likely, then

declare the class of the sequence to be class k (subject id).

5. We followed the aforementioned procedure for every 4005 time

series and explicitly for every 4005 PD matrices.

6. From this procedure, DoCMts were ranked according to their dis-

criminative power (performance) to separate participants from the

remainder of the sample.

7. This procedure was repeated iteratively with the main scope of

aggregating the most important DoCMts such as to increase the

classification accuracy. Then, we added the second DoCMts, and

we used the sum of log-likelihood from the two time series as a

way to declare the class k of both sequences and so forth. This

procedure was followed till reaching a plateau for the identification

accuracy.

8. Seventy-six connections succeeded to discriminate every subject

over the rest and the related topology is given in Figure 6a–d.

Figure 4 illustrates how the integration of the selected edges

improved the classification performance (CP) of brain

fingerprinting.

F IGURE 4 Step-wise classification
performance (CP) of the brain-
fingerprinting for the 76 selected edges.
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9. Figure 7 illustrates the sum of log-likelihood outcome using the

76 training dHMM models from every subject, related to each of

the 76 selected DoCMts from the first scan session, with the

76 testing sequences of DoCMts for every k � 1 subject.

4 | FLEXIBILITY INDEX BASED ON THE
DYNAMIC RECONFIGURATION OF
DOMINANT INTRINSIC COUPLING MODES

A novel flexibility index (FI) based on the dynamic reconfiguration of

DoCM has been applied to the first cohort. FI is based on the concept

that variability of connectivity patterns (i.e., more frequent switches

between DoCM), captures the brain's flexibility.

We briefly describe its definition in the following section.

The outcome of statistical filtering was two 3D matrices per sub-

ject and condition each one with dimensions: 2991 (temporal seg-

ments) � 90 (sources) � 90 (sources). The first one keeps the weights

of the survived functional connections while the second tabulates

with an integer the dominant coupling mode.

From the second 3D matrix, we can estimate the stability of func-

tional connections across time in terms of the DoCM. This estimator

is called flexibility index (FI) and encounters for each pair of MEG

sources how many times a DoCM changes between two consecutive

temporal segments. FI is defined for every pair of virtual sources and

in a global manner as follows:

FIMEG
GLOBAL ¼

FIMEG

Sources� Sources-1ð Þð Þ=2 ð7Þ

where T = 2991 and Sources = 90.

We have proposed this FI as a novel temporal variability measure

that may be a suitable indicator of the flexibility of a brain region, and

could potentially be used to predict the outcome of learning or to

demonstrate changes due to disorders. Our recent fMRI-based

dynamic functional connectivity study (Dimitriadis, 2021; Palmigiano

et al., 2017; Sorrentino, Rucco, Baselice, et al., 2021) has shown that

FI predicts memory.

5 | OPTIMIZATION OF PARAMETERS FOR
THE SLIDING WINDOW APPROACH

The basic parameters of a time-varying approach based on the sliding

window method are the width of the sliding window and the stepping

criterion that defines the moving of the window to the next temporal

segment. We optimized the basic parameters of the sliding-window

time-varying approach {width of time-window, stepping criterion}

based on the repeatability of flexibility index (FI) using the dataset

from the first cohort. The objective criterion was to increase the cor-

relation of network-wise FI between the two sessions. This is a signifi-

cant criterion since in our study we mixed all the different coupling

modes into a single dynamic functional brain network. With this pro-

cedure, we decided to identify a repeatable frequency of temporal

changes of dominant coupling modes across the network, as a way to

optimize the sliding window and the stepping criterion but without

bias the selection on the connection level. Additionally, the coupling

strength of every coupling mode would change by changing the width

of the temporal window and also the stepping criterion. However, in

our approach, we care about the repeatability of the frequency of

temporal changes of dominant coupling modes across the network

and not about their coupling strength.

We employed a large set of settings for the width of temporal

window {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3} s and step-

ping criterion {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}

ms. This procedure yielded a width of 1 s and a stepping criterion of

100 ms as best settings, based on the optimized repeatability of FI

(Figure 6).

Figure 5 illustrates the correlation of FI across sessions 1 and

2 for the 40 subjects. The intra-class correlation coefficient is 0.89,

the R2 is 0.7 and the correlation coefficient is 0.8569.

6 | EXTERNAL VALIDATION OF THE
IDENTIFICATION PROCESS IN A SECOND
COHORT (EXPERIMENT 2)

To validate our identification scheme, we repeated the whole prepro-

cessing analysis in the second cohort of N = 183 subjects. Our goal

was to blindly identify the participants that were common to both

cohorts (first cohort of 40 repeat scans and the second cohort of

N = 183 subjects). Author SID did not know how many participants

from the test–retest study participated in the population study. The

main goal of this external blind identification step was to identify

the correct number and identity of subjects from the first cohort that

have a third scan in the second cohort.

For that reason, we have to extract a decision-making scheme

from the sum of log-likelihood as derived by using the 76 training

dHMM models from every subject, related to each of the 76 selected

DoCMts from the first scan session, with the testing sequences for

every k � 1 subjects (step 9 described in previous section 3).

FIMEGðSources; SourcesÞ¼ 1
1�T

XT�1

s¼1

XSources

source1¼1

XSources

source2¼source1 þ 1

δ DoCM T, source1,source2ð Þ,
�

DoCM Tþ1,source1,source2ð Þ
�

ð6Þ
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Figure 6e illustrates the similarity matrix that encapsulates each pair-

wise sum of log-likelihood. Based on the similarity matrix shown in

Figure 6e, we estimated the threshold values important for the exter-

nal validation task. We estimated the threshold1 574.01 ± 15.51 from

the off-diagonal values and the threshold2 1754.90 ± 116.55 from the

diagonal values from Figure 6e. Both thresholds are important to iden-

tify the unknown number of subjects from the first test–retest study

that participated in the second large cohort.

F IGURE 6 Results of the two-stage analysis procedure. The upper panel (Stage 1) shows the identification training using 40 participants with
repeat resting-state MEG data. The lower panel (Stage 2) shows the blind matching, or nonmatching, of these 40 people to an independent
dataset of 183 people. Panels (a) and (b) show the nodes and connections that were identified as being important DoCM network features for the
initial training. In (a), these are plotted on a 3D template brain representation, while in (b), the same connections are shown on a circular
representation of the 90 AAL atlas regions. In (c), the distribution of the 76 connections identified as part of the multi-parametric brain
fingerprinting approach to the five sub-networks is shown. Each color encodes the total number of connections (NC) related to the identified
76 pairs within and between the five sub-networks. CO, cingulo-opercular; DMN, default mode network; FP, fronto-parietal; O, occipital; SM,
sensory motor). In (d), the classification performance of each of the same sub-networks is shown. Each color encodes the classification
performance (CP) of the 76 connections integrated within and between the five networks. (e) shows the performance of the matching procedure
as a similarity matrix illustrating the summation of log-likelihood across 76 training discrete Hidden Markov Models (dHMM) models from the first
dataset of each subject (x-axis) and from the second dataset of each subject (y-axis). (f) shows the performance of the independent matching test
as a similarity matrix, showing the sum of log-likelihoods across 76 training dHMMmodels from every subject of the test–retest study and each
set of 76 tested sequences of every subject from the population study. Yellow pixels in this matrix represent the successful identification of
subjects from the first test–retest study that indeed participated in the second study.

F IGURE 5 Repeatability of FI across
the repeat MEG resting-state cohort.
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The 76 trained dHMM models for every DoCMts derived from

the first scan session and applied independently per subject were

used for testing every set of 76 DoCMts from the second population

cohort of 183 subjects. Applying the threshold as derived from the

similarity matrix (Figure 6e) and it was stated above, we decided if a

subject from the first study participated also in the second cohort.

Figure 6f illustrates the similarity matrix that tabulates the sum of log-

likelihood between every pair of subjects between the two studies.

The performance of cross-experiment identification with the relevant

sum of log-likelihood estimated between the two cohorts is shown in

Figure 7. Figure 8 illustrates the Differentiability scores, for each of

the original 40 participants, when matching is attempted in cohort

2 (N = 183).

7 | VALIDATION OF THE DOCM ACROSS
ALTERNATIVE SCENARIOS

In order to strengthen the outcome of our research approach based

on DoCM, we applied the following experiments answering the fol-

lowing questions. The following experiments were applied to both

cohorts as with the original DoCM approach.

1. Does the set of 76 connections showed in Figure 6b is unique across

surrogate sets of 76 connections across the total set of 4005?

To answer to this type of question, we randomly selected 1000

random sets of 76 connections sampling the complete set of 4005

possible pairs, and presenting the outcome of this approach following

the same procedure.

2. Does the power spectrum could show similar performance with

the semantic information of DoCM?

We employed Welch's method to derive power spectrum density

(PSD) estimates for each ROI, using time windows of 2 s with 50%

overlap sled over all ROI representative time-series (Welch, 1967).

The resulting frequency range of PSDs was 0–90 Hz, with a frequency

resolution of 0.5 Hz. The following procedure under the brain finger-

printing framework has been realized independently for each of the

eight studying frequency bands. We created a PSD profile from every

subject and scan session by concatenating the ROI-based PSD profile

into a single vector of features.

We used the absolute value of Pearson's correlation coefficient

to quantify the correlation between every PSD profile of every

F IGURE 7 Performance of cross-experiment identification. For each of the 40 participants in Cohort 1, the sum(LogLikelihood) is plotted for
each match to the 183 people in the second cohort. For 18 of the participants, this is a distribution of values between 100 and 1000,
representing no match, that is, the algorithm has correctly estimated that these 18 people were not in the second cohort. For 22 of the
40 participants, a single sum(LogLikelihood) is seen that exceeds a value of 1400. This represents a successful match between Cohort 1 and
Cohort 2.
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subject from scan session 1 with the same PSD profile of all the sub-

jects from scan session 2. This procedure should be run exhaustively

between every subjects' PSD profile from scan session 1 with every

subjects' PSD profile from scan session 2 producing a correlation vec-

tor of size [1 � 40 (subjects)]. The index of the column featuring the

largest absolute correlation coefficient determined the predicted

(anonymous) identity of the individual in the second session cohort.

Thus, if a given individual's PSD profile from the first dataset were

most correlated to the PSD profile from their second dataset, the indi-

vidual would be correctly differentiated. This procedure will produce a

binary vector of size [1 � 40] with 1 s where an individual was cor-

rectly differentiated from the rest of the cohort, and 0 s where is not

correctly classified. By summing the columns of this vector and divid-

ing by the total amount of subjects (here 40), we can access the classi-

fication performance of PSD from the test-retest cohort. Similarly, the

classification performance was estimated for the identification of

the 22 subjects in the second validation cohort.

3. Does the static connectivity network could show similar perfor-

mance with the semantic information of DoCM?

We constructed static frequency-dependent functional brain net-

works of size [90 (ROIs) � 90 (ROIs)] per subject and scan session.

Similarly, as in the PSD analysis, we vectorised the upper triangular of

the brain networks producing a vector of features of size 4005 which

are the possible pair-wise connections between every possible pair of

the 90 ROIs (90 � 89/2 = 4005 pairs). We followed the same brain

fingerprinting framework as described above. This procedure has been

realized independently for each of the eight studying frequency

bands.

4. Does the strength of dynamic connectivity network could show

similar performance with the semantic information of DoCM?

In our approach, we kept and analyzed with dHMM method, the

semantic information tabulated in 3D matrices of size The outcome of

DoCM was two 3D matrices per subject and condition each one with

dimensions: 2991 (temporal segments) � 90 (sources) � 90 (sources).

The first one keeps the weights of the survived functional connec-

tions while the second tabulates with an integer the dominant cou-

pling mode. Both 3D matrices constitute the integrated dynamic

functional connectivity graphs (iDFCG). Here, we will use the first 3D

matrix that tabulates the functional coupling strength of the dominant

coupling modes as a way to test its brain fingerprinting validity versus

the proposed approach. The second and third dimension of the 3D

matrix that refers to a snapshot of the dynamic functional connectiv-

ity graph was vectorised as in the static approach transforming the 3D

matrix into a 2D matrix of size [2991 � 4005]. We followed the same

F IGURE 8 Differentiability scores (da Silva Castanheira et al., 2021), for each of the original 40 participants, when matching is attempted in
cohort 2 (N = 183). For those 22 participants present in the second cohort, the mean score is 4.7 ± 0.5. For those 18 participants not present in
the second cohort, the score is 1.7 ± 0.1.
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brain fingerprinting framework as described above but we adopted

the Euclidean distance as a proper distance metric to measure the

similarity of two 2D matrices.

8 | RESULTS

8.1 | Stage 1: Identification of a neuromagnetic
fingerprint from the dynamic reconfiguration of
dominant coupling modes

In the first stage, we analyzed the test–retest dataset, performing a

2D grid search using the whole-brain connectivity matrix, with no

a priori restriction over specific subnetworks. Τhe differentiability

score for the test–retest dataset was 4.3 ± 0.4 while the differentia-

tion accuracy was 100% (Figure 6e) for the 40 subjects. Figure 6e

illustrates the sum of log-likelihood outcome using the 76 training

dHMM models from every subject related to each of the 76 selected

DoCMts from the first MEG session with the 76 sequences of

DoCMts from the second MEG session for each subject. The in-

diagonal of this matrix showed a high concordance between the two

MEG sessions for every subject and a low likelihood between every

pair of subjects (off-diagonal) supporting the absolute accuracy of

the classification. Based on the similarity matrix shown in Figure 6e,

we estimated the threshold values important for the external valida-

tion task. We estimated the threshold1 574.01 ± 15.51 from the off-

diagonal values and the threshold2 1754.90 ± 116.55 from the diag-

onal values from Figure 6e. Both thresholds constituted the range of

sum(LogLikelihood) values that are important to identify the subjects

from the first test–retest study that participated in the second large

cohort.

8.1.1 | Subnetwork identification based on the
dynamic reconfiguration of dominant coupling modes

We ranked all the pairs of anatomical modes according to their dis-

criminative power and then integrated step-wise the pairs if they

improved the discrimination accuracy further. The topology of these

connections is given in Figure 6a,b. The distribution of these pairs

within and between the five brain networks can be seen in

Figure 6c,d. Major contributions were located within the cingulo-

opercular network (CO: 8 connections) and between the default-

mode network (DMN) and the CO (DMN-CO: 7 connections) and the

sensorimotor (SM) network (DMN-SM: 6 connections). Βased on

the probability distribution of the selected 76 time-series between

pairs of ROIs, we revealed that the major frequency contributors both

within and cross-frequency coupling modes were in descending order

α1, δ, α2, and θ.

After training optimization, we achieved 100% identification of

the independent second MEG measurement of the 40 participants

of the repeat cohort using 76 pairs of anatomical nodes from

(90 � 89/2 = 4005) possible connections.

8.1.2 | Quantifying edgewise contribution to brain
identification

To quantify the extent to which the 76 pairs contributed to the finger-

printing of the 40 subjects, we repeated the same classification proce-

dure by integrating the connections either within or between the five

brain networks. The dynamic reconfiguration of DoCM for every pair

of connections that group together in the same brain network was

used as a unique pool of features. We did not average the evolution

of DoCM for pairs grouped within the same network or between the

networks. A pair can connect two brain areas that are both located on

the same brain network (5 total cases) or each brain area is located in

different brain networks. This gives 5 � (5–1)/2 = 10 pair-wise com-

binations of the brain networks and one configuration for each brain

network giving us a total number of 15 runs. We repeated the same

classification identification methodology independently for the

15 total cases. We finally, ranked the performance of the 15 cases to

reveal the highest contribution from each one. Figure 6d illustrates

the classification performance of the identification for each of the

15 cases. The best performance for individual discrimination was

achieved at 57.5% (23 out of 40 subjects;) for the pair of DMN-CO

and by the within-FP DoCM with 57.5% (23 out of 40 subjects), the

DoCM within the CO subnetwork with 50% (20 out of 40 subjects),

the DoCMwithin the DMN subnetwork with 42.5% (17 out of 40 sub-

jects) and the DoCM of the DMN-FP integration with 37.5% (15 out

of 40 subjects), O with 22.5% (9 out of 40 subjects) and SM with 25%

(10 out of 40 subjects) contribute the least to individual subject

identification.

8.2 | Stage 2: Testing the neuromagnetic brain
fingerprinting approach in a second population study

To further validate our approach of brain fingerprinting in a second

dataset (external validation), we applied the same framework, using

the same subnetwork of 76 connections, to MEG resting state data-

sets from 183 subjects who had participated in a multi-modal study in

CUBRIC as part of the creation of a large normative neuroimaging

database (Buzsáki & Wang, 2012). With this approach, we replicate

the same methodology and also the relevance of the nodes

highlighted in the previous stage. We succeeded to recover both the

number (N = 22) and the identity of all subjects from our cohort of

40 (Experiment 1) who were involved also in this second study

(Figure 6f). Yellow pixels in this 2D similarity matrix correctly identify

the 22 subjects who also took part in the second study. Figure 7 illus-

trates the performance of this cross-experiment identification. In

Figure 7, we showed the sum(LogLikelihood) of each of the 40 subjects

from the first cohort matched to the 183 subjects from the second

cohort. For 22 out of the 40 participants, a single sum(LogLikelihood)

is seen that exceeds a value of 1400 that supports the absolute differ-

entiation accuracy of 100%. For unsuccessful matches, a uniform dis-

tribution between 100 and 1000 can be seen, while in contrast,

successful matches show a clear separation in having values above
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1400. Figure 8 illustrates the Differentiability scores for both the

identified and not identified subjects of the test–retest dataset. For

those 22 participants present in the second cohort, the mean score is

4.7 ± 0.5 (Figure 8). For those 18 participants unpresented in the sec-

ond cohort, the score is 1.7 ± 0.1 (Figure 8).

8.2.1 | Brain fingerprinting with surrogates of
76 tuples of DoCM profiles

The average performance of randomly selected 1000 random sets of

76 connections across the 4005 possible pairs was 9.43% ± 3.62 for

the repeat scan cohort (dataset 1), and 4.54% ± 3.12 for the validation

cohort (dataset 2).

8.2.2 | Brain fingerprinting with PSD, static, and
dynamic functional connectivity network profiles

The performance of PSD approach in both repeat and validation

cohorts is showed in the first row of Table 2. The highest performance

was achieved in the repeat cohort in the γ sub-bands. Similarly, the

performance of the static functional connectivity approach in both

cohorts is tabulated in the second row of Table 2. Interestingly, the

highest performance was achieved for the repeat cohort in γ sub-

bands. Finally, the performance of the integrated dynamic functional

connectivity graphs (iDFCG) was 75.00 for the repeat cohort and

77.27 for the validation cohort.

9 | DISCUSSION

In the present study, we show that an individual's neural dynamics

measured with MEG, formalized as a profile of the reconfiguration of

dominant coupling modes between brain nodes, constitutes a reliable

and unique neurophysiological “fingerprint.” We demonstrate that

this novel signal processing approach allows the identification of an

individual from a group of subjects only based on the fluctuations of

dominant coupling modes of a subnetwork of 76 connections. We val-

idated the identification accuracy strategy based on the DoCM in a

second dataset of N = 183 subjects by accurately identifying the sub-

jects of the first scan cohort who participated in the second

experiment.

To further validate the importance of the DoCM model, we fol-

lowed specific experiments. We first showed that the set of 76 pairs

selected via our approach is a unique set and no other set of randomly

selected 76 pairs out of 4005 can produce similar results. The PSD

and the frequency-dependent static functional connectivity network

profiles both showed a low performance in both cohorts across the

frequency bands. Importantly, the iDFCG profile which tabulates

the weights of the DoCM showed the highest performance reaching

75.00 for the repeat cohort and 77.27 for the validation cohort. These

findings showed that only the semantic information of DoCM that

was modeled via the dHMM succeeded in the absolute performance

(100) in both cohorts and especially in the validation cohort.

The intra-individual consistency of functional brain networks has

been highlighted in the resting-state with both static (Colclough

et al., 2016) and dynamic approaches (Abrol et al., 2017; Dimitriadis,

L�opez, et al., 2018). However, our study was the first that explored

the multiplexity of human brain dynamics by incorporating both

within- and between-frequency coupling mechanisms into a single

dynamic functional connectivity graph (iDFCG). Whereas the majority

of previous studies of intra-individual consistency analyzed functional

connectivity only between predefined brain areas, we took a whole-

brain approach which captures the information flow between brain

areas more comprehensively. The reliability of individual functional

connectivity patterns of human brain dynamics is relevant to individ-

ual differences in cognition, personality, and behavior (Hearne

et al., 2016; Kanai & Rees, 2011). Moreover, our results suggest that

an individual's dynamic dominant coupling mode profile might be used

as a unique subject-specific descriptor of brain health. Our results

underline the potential of MEG and oscillation-based dynamic con-

nectivity to build novel oscillatory neuromarkers (van Pelt et al., 2012)

that can eventually be used to personalize the diagnosis and treat-

ment of mental and neurological disorders and hence improve the

outcome of an intervention in clinical practice. For example, a recent

study employed a large MEG dataset to explore if brief segments of

frequency-dependent brain activity enable individual differentiation

(da Silva Castanheira et al., 2021). They reported a high identification

score of 98%. Another study adopted an open MEG dataset from the

Human Connectome project where participants underwent three

recording sessions within a single day (Sareen et al., 2021). The

authors applied a static connectivity analysis adopting both phase and

amplitude-based measures with and without spatial correction

methods and in various frequency bands. They showed that all these

factors influenced the MEG fingerprinting performance. The

TABLE 2 Performance of power
spectrum, static and dynamic functional
connectivity network in both repeat and
validation cohorts.

δ θ α1 α2 β1 β2 γ1 γ2

Spectral

Repeat cohort 42.50 55.00 52.50 55.00 57.50 52.50 67.50 65.00

Validation cohort 27.27 31.82 36.36 36.36 40.91 45.45 40.91 45.45

Static connectome

Repeat cohort 47.50 57.50 55.00 57.50 62.50 57.50 70.00 72.50

Validation cohort 31.82 36.36 45.45 50.00 63.64 59.09 68.18 72.73

DIMITRIADIS ET AL. 13



identification score of 98% was detected in phase-coupling methods,

in central frequency bands (alpha and beta), and in the visual, fronto-

parietal, dorsal-attention, and default-mode networks (Sareen

et al., 2021).

9.1 | Anatomic loci of distinguishing dynamic
dominant coupling modes features

Our data-driven approach, based on the treatment of the dynamic

dominant coupling profile of each pair of brain areas as a Markovian

Chain, revealed a small set of connections that accurately identify

each individual over the whole set, with the main contributions com-

ing from connectivity between the DMN and the CO and the FP, and

within these three networks. The DMN-CO-FPN network thus cre-

ates a strong backbone for the unique characterization of the spatio-

temporal profile of DoCM of each individual.

The importance of the frontoparietal network for individual func-

tional connectivity profiles is consistent with the presumed individual

specificity of high-order association networks that are most recent in

evolutionary terms and demonstrate the highest inter-subject variabil-

ity (Cole et al., 2012; Kanai & Rees, 2011; van Pelt et al., 2012). Nodes

located in the frontoparietal network (FPN) have been identified as

flexible hubs that adjust to the requirements and demands of multi-

task activity (Cole et al., 2014). Moreover, the complementary con-

nections that start from the FPN to other areas of the brain, such as

the DMN, are consistent with the role of large-scale coordination of

human brain activity (Martuzzi et al., 2010; Smith et al., 2009).

Previous studies in both structural and functional neuroimaging

have linked the properties of the FPN to the construction of fluid

intelligence (Cole et al., 2014; Smith et al., 2009). Moreover, abnormal

functional connectivity in the FPN has been linked to many neuropsy-

chiatric diseases (Preusse et al., 2011; Sheffield et al., 2015;

Tschentscher et al., 2017). FPN and CON are hypothesized to support

top-down control of executive functioning and for that reason can be

seen as potential drivers of cognitive impairment in diseases such as

schizophrenia (Cetin et al., 2016; Gross, 2019; Uhlhaas &

Singer, 2012). The DMN–FPN–CON are thought to interact and

together control attention, working memory, decision-making,

and other higher-level cognitive operations (Cetin et al., 2016;

Tschentscher et al., 2017).

Adding the time dimension into the analysis of brain connectomes

yields “chronnectomes” based on network metrics that allow a

dynamic view of functional coupling modes. In the present study, we

demonstrated that fluctuations of dominant coupling modes between

brain networks are oscillatory fingerprints of individualized chronnec-

tomes in healthy individuals (Finn & Todd Constable, 2016; Horn

et al., 2017). Brain oscillations are amongst the neural phenotypes

with the highest heritability (Begleiter & Porjesz, 2006; van

Beijsterveldt & Boomsma, 1994). For this reason, brain rhythms have

long been explored as potential endophenotypes of cognition and

complex genetic disorders such as autism (David et al., 2016), schizo-

phrenia and bipolar disorder (Başar et al., 2016), or Alzheimer's

disease (Pusil et al., 2019) but progress has been hampered by a lack

of reliabl, individually specific neuroelectric or neuromagnetic metrics.

Our discovery of neuromagnetic fingerprints based on dominant cou-

pling modes can thus become a signature of individual brain health

and a marker for the progression of the disease and also a validated

substrate for the design of novel personalized treatments (Finn &

Todd Constable, 2016; Uhlhaas et al., 2017).

MEG resting-state functional connectivity patterns are stable

across life time within the subjects. A study took the advantage of this

observation to explore the similarity of whole brain functional connec-

tivity patterns to identify monozygotic twin pairs. They succeeded an

identification rate of 75% showing large similarities in brain connectiv-

ity patterns between two genetically identical individuals even after

60 years of life or more (Demuru et al., 2017). Another study pro-

posed the identifiability score and the general brain fingerprinting

framework as a way to define clinical connectome fingerprints rele-

vant to cognitive decline (Sorrentino, Rucco, Lardone, et al., 2021). In

another study, the authors proposed the clinical connectome finger-

print (CCF) approach where they showed a reduction of the identifia-

bility score in the cohort with Parkinson's disease in beta band which

was also proportional to the motor impairment (Lopez et al., 2023).

The clinical utility of CCF was demonstrated by its ability to predict

the individual motor impairment in patients affected by ALS (Romano

et al., 2022). Another study explored the uniqueness of dynamic func-

tional connectivity patterns across different temporal scales (van de

Ville et al., 2021).

Brain fingerprinting in the resting-state and the identification of

personalized brain subnetworks can thus be highly relevant for under-

standing the biological basis of personality and cognitive traits. A

recent study based on fMRI resting-state recordings and adopting

a chronnectomic approach not only reported a high accuracy in identi-

fying subjects, but also that the discriminative features predicted cog-

nitive performance in domains such as fluid intelligence and executive

function (Liu et al., 2018). Another study reported that task-evoked

brain activity estimated over brain regions defined by the resting-state

networks explains the link between resting-state functional connec-

tivity and cognitive task activations (Jiang et al., 2020).

10 | METHODOLOGICAL
CONSIDERATIONS

It is important to mention here that our attempt was not to exhaus-

tively explored how alternative graph construction scenarios can alter

the final outcome of our research. We decided to investigate the mul-

tiplexity of resting-state brain oscillations in the phase domain. Similar

analysis could be followed in the amplitude domain by adopting, for

example, the correlation of the envelope (Colclough et al., 2016). In

our study, we adopted a famous atlas; the AAL which is highly used

in MEG studies, and for that reason, many researchers can compare

the findings with their own findings. We also adapted our approach to

define the representative time series by weighting differently every

voxel time series per ROI. However, there are alternative approaches
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on how one can define the representative time series. The first class is

by collecting one voxel time series that (a) is located in the centroid of

the convex hull that orients the brain area (Centroid method) and

(b) also the one that encompasses the maximum power spectrum

(Power Spectrum method). The second class is by summarizing the

activity from all the voxel time series (a) by applying PCA on the voxel

time-series and extracting the first principal component but with the

drawback that the percentage of variance explained by the first princi-

pal component compared to the whole set of voxel time series could

be different across the population or groups for specific ROIs, (b) by

getting the mean across the voxel time series which is a common

technique mainly in fMRI (Mean method), (c) by weighting every voxel

time series according to its complementarity (Interpolation method–

our approach). In our approach, the contribution of every voxel time

series to the representative time series changes across experimental

time and temporal segments. The definition of the representative time

series per ROI could affect the brain connectivity in both static

(Dimitriadis, Routley, et al., 2018) and dynamic scenarios and also in

the multiplex approach, but this is out of the scope of our study.

11 | CONCLUSION

People can be identified through characteristic patterns of dynamic

changes in functional connectivity during rest. This oscillatory finger-

print, derived from neuromagnetic data, was mainly driven by func-

tional connectivity in and between frontoparietal, default mode, and

cinguloopercular networks, highlighting the role of these networks in

individual attributes such as intelligence and personality. Such individ-

ually specific patterns of neural dynamics can help unravel the neural

mechanisms of stable individual traits such as personality features and

intelligence and may in the future provide the basis for personalized

diagnostics of changes in brain health.
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