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A B S T R A C T   

Selective use of new information is crucial for adaptive decision-making. Combining a gamble bidding task with 
assessing cortical responses using functional near-infrared spectroscopy (fNIRS), we investigated potential effects 
of information valence on behavioral and neural processes of belief and value updating during uncertainty 
reduction in young adults. By modeling changes in the participants’ expressed subjective values using a Bayesian 
model, we dissociated processes of (i) updating beliefs about statistical properties of the gamble, (ii) updating 
values of a gamble based on new information about its winning probabilities, as well as (iii) expectancy violation. 
The results showed that participants used new information to update their beliefs and values about the gambles 
in a quasi-optimal manner, as reflected in the selective updating only in situations with reducible uncertainty. 
Furthermore, their updating was valence-dependent: information indicating an increase in winning probability 
was underweighted, whereas information about a decrease in winning probability was updated in good agree-
ment with predictions of the Bayesian decision theory. Results of model-based and moderation analyses showed 
that this valence-dependent asymmetry was associated with a distinct contribution of expectancy violation, 
besides belief updating, to value updating after experiencing new positive information regarding winning 
probabilities. In line with the behavioral results, we replicated previous findings showing involvements of 
frontoparietal brain regions in the different components of updating. Furthermore, this study provided novel 
results suggesting a valence-dependent recruitment of brain regions. Individuals with stronger oxyhemoglobin 
responses during value updating was more in line with predictions of the Bayesian model while integrating new 
information that indicates an increase in winning probability. Taken together, this study provides first results 
showing expectancy violation as a contributing factor to sub-optimal valence-dependent updating during un-
certainty reduction and suggests limitations of normative Bayesian decision theory.   

1. Introduction 

The ability to encode, process, select and integrate new information 
from the environment to reduce uncertainty is vital for adaptive 
behavior, such as making good decisions in complex and changing sit-
uations. Of specific relevance here, Bayesian and the related predictive 
inference theories (e.g., Friston et al., 2012) as well as model-based 
reinforcement learning (e.g., Doll et al., 2012) postulate that people 
are sensitive to the statistical properties (e.g., uncertainty) of the 

environments or tasks they are confronted with and the outcomes of 
their actions, such as rewards or losses. Internal models – commonly 
known as beliefs or expectations about the states of the environment or 
task at hand – are formed through experiences and learning to guide 
choice behavior (Friston et al., 2021; Ma, 2019; Rushworth and Beh-
rens, 2008; Yon and Frith, 2021). Upon observing new information, 
prior beliefs need to be flexibly updated, which can then be utilized to 
anticipate outcomes of future choices and actions (Behrens et al., 2007; 
Itti and Baldi, 2009; Ma and Jazayeri, 2014; Nassar et al., 2010; 

* Corresponding author at: Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Zellescher Weg 17, Room A232, 
01062 Dresden, Germany. 
** Corresponding author. 

E-mail addresses: xuerui.peng@tu-dresden.de (X.-R. Peng), shu-chen.li@tu-dresden.de (S.-C. Li).  

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/ynimg 

https://doi.org/10.1016/j.neuroimage.2023.120327 
Received 30 May 2023; Received in revised form 7 August 2023; Accepted 11 August 2023   

mailto:xuerui.peng@tu-dresden.de
mailto:shu-chen.li@tu-dresden.de
www.sciencedirect.com/science/journal/10538119
https://www.elsevier.com/locate/ynimg
https://doi.org/10.1016/j.neuroimage.2023.120327
https://doi.org/10.1016/j.neuroimage.2023.120327
https://doi.org/10.1016/j.neuroimage.2023.120327
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.120327&domain=pdf
http://creativecommons.org/licenses/by/4.0/


NeuroImage 279 (2023) 120327

2

Payzan-LeNestour and Bossaerts, 2011). Other than applications in the 
domain of decision making, similar theoretical propositions have also 
been applied to understand perception and motor behavior in dynamic 
and changing situations (e.g., Friston, 2005, 2009, see Da Costa et al. 
2020 for a review). 

Decisions usually involve some degrees of uncertainty. Choice con-
texts with uncertainty can be subdivided into being risky or ambiguous 
(Ellsberg, 1961; Huettel et al., 2006; Tymula et al., 2013). Risky cir-
cumstances pertain to situations of uncertain outcomes but with known 
outcome probabilities, whereas outcome probabilities remain unknown 
in ambiguous situations. A growing body of research indicates that 
people are sensitive to the nature of uncertainty, particularly whether it 
is reducible or irreducible, when using new information to guide their 
decisions. New experiences are used differently during updating pro-
cesses depending on whether they convey information that does not 
further reduce uncertainty, such as under risky situations, or informa-
tion that helps reduce uncertainty, such as in ambiguous circumstances 
(e.g., Kobayashi and Hsu, 2017; O’Reilly et al., 2013; Schulreich and 
Schwabe, 2021). 

These two types of uncertain situations have different implications 
for the adaptive use of new information. Consider, for instance, a gamble 
with two dice, A and B, where winning requires rolling a specific face of 
the dice (e.g., “3”). You know that dice A is fair and has the same 
probability of landing on any of the six faces, based on your past expe-
riences of rolling this dice. The 1/6 probability of landing on the face “3” 
makes rolling dice A risky, but the degree of uncertainty is known. In 
contrast, suppose you have no prior knowledge regarding whether dice 
B is fair or biased. In this case, rolling dice B is an ambiguous situation 
associated with unknown degree of uncertainty. If you observe that the 
face of “6” keeps landing on top consecutively across several rolls when 
rolling dice B, you might suspect that this dice is biased towards “6” and 
the probability of landing at the winning face of “3” could be much 
lower than 1/6. However, obtaining the same sequence of results when 
rolling dice A would not make you think the same way. Even though the 
observed events in both cases are the same and may surprise you to some 
extent. Rationally, you would only update your beliefs about dice B 
given the new information. Updating your beliefs (or expectations) 
could subsequently affect how you value potential outcomes of rolling 
dice B in the next round of the game, but not those of dice A. 

As illustrated in the example above, updating processes for decision 
making involve multiple aspects. Beliefs based on prior experiences 
about the statistical properties of an uncertain context (e.g., dice A or 
dice B) may affect the subjective values of potential action outcomes in 
that context (e.g., rolling dice B). First, rational updating requires 
assessing whether the uncertainty in a given context can or cannot be 
reduced by further information. Second, new information should be 
differentially utilized to update beliefs (e.g., the dice being fair or 
biased) and subjective values of a given action in that context (e.g., of 
rolling one of the dices). Third, it is important to distinguish between 
updating processes and mere violations of expectancy that naturally 
arising from probabilistic events which may not provide systematic in-
formation about the environment but occur also in situations with 
irreducible uncertainty. 

Indeed, results from several previous studies suggest dissociable 
processes of belief and value updating as well as expectancy violation at 
the neural level (Kobayashi and Hsu, 2017; O’Reilly et al., 2013; Pay-
zan-LeNestour and Bossaerts, 2011). Despite considerable differences in 
task designs across studies, belief updating seems to involve particularly 
frontoparietal regions (Gläscher et al., 2010; Kobayashi and Hsu, 2017; 
Nour et al., 2018; Schulreich and Schwabe, 2021; Tomov et al., 2018); 
whereas the bilateral insula (Kobayashi and Hsu, 2017), striatal regions 
as well as the frontal gyrus and anterior cingulate have been found to be 
associated with expectancy violation (see D’Astolfo and Rief, 2017 for a 
meta-analysis based on reinforcement learning paradigms). Further-
more, the subjective value of specific actions or choices in each task 
context (e.g., rolling one of the two dices) would be updated if there are 

changes in the beliefs about task uncertainty (e.g., the fairness of the 
dice). Brain activity in the ventral and medial prefrontal cortex as well as 
in the inferior parietal cortex has been shown to underlie such 
value-updating process (Kobayashi and Hsu, 2017). 

Bayesian decision theory provides a normative benchmark for how 
new information can be optimally integrated into prior beliefs about the 
decision contexts. Previous studies using incentivized games (e.g., 
gambles) have shown that young adults are sensitive to the reducibility 
of uncertainty and use new information to update beliefs and values in a 
quasi-normative manner (Kobayashi and Hsu, 2017; Schulreich and 
Schwabe, 2021). Normative Bayesian perspectives assume equal 
weighting of positive and negative outcomes; however, other than 
considering statistical properties of the task context, human 
decision-making is also known to be prone to bias, influenced by 
perceptual, cognitive, and affective processes and may rely on heuristics 
(Kahneman and Tversky, 1979; Kahneman, 2003; Gigerenzer and 
Gaissmaier, 2011). Of relevance for the current study are empirical 
findings suggesting that people may deviate from Bayesian normativism 
and process information in a valence-dependent manner by weighting 
positive and negative information differently (see Guitart-Masip et al., 
2014; Sharot and Garrett, 2016 for reviews). In tasks regarding 
self-relevant beliefs, positive information tends to be weighted more 
than negative information when it concerns feedbacks from others about 
one’s own personal characteristics (Möbius et al., 2022) or the likeli-
hood of personally experiencing particular life events (Garrett and 
Sharot, 2017; Kuzmanovic et al., 2015; Marks and Baines, 2017; 
Moutsiana et al., 2015; Sharot et al., 2011; 2012). Nevertheless, accu-
mulated findings over the past years indicate that the presence and di-
rection of valence-dependent updating were inconsistent across studies, 
depending on the domain and nature of the tasks (Bromberg-Martin and 
Sharot, 2020; Coutts, 2019). For example, the self-related optimism bias 
(i.e., overweighting positive information) vanished under perceived 
threat (Garrett et al., 2018). In the monetary domain, Kuhnen (2015) 
found that people weighted negative information more (i.e., showing a 
pessimism bias) in the loss condition when performing an active in-
vestment task. Moreover, reinforcement-learning models have included 
valence-dependent learning rates for positive or negative prediction 
errors to estimate subjective values in a risk-sensitive manner (e.g., Niv 
et al., 2002). Taken together, existing findings indicate that the nature of 
valence-dependent processing depends very much on specific contexts 
and features of the tasks. 

Thus, it is of interest to also explore the nature of valence-dependent 
behavior in situations entailing reducible and irreducible uncertainties 
to gain a more comprehensive understanding of adaptive updating. 
Kobayashi and Hsu (2017) investigated young adults’ updating behavior 
using a gamble bidding task that included both ambiguous and risky 
situations. In an initial behavioral experiment, the participants could 
actively indicate their bids (i.e., subjective values) for a given gamble 
after experiencing different scenarios, which either indicated a change 
of outcome probabilities or not. Their results suggested that young 
adults take the reducibility of uncertainty into account when ascribing 
values to different scenarios of the gambles. In line with the Bayesian 
normative prediction, participants’ value updating was 
valence-independent and quantitatively comparable across scenarios 
with either positive information (i.e., indicating more favorable winning 
probability) or negative information (i.e., indicating less favorable 
winning probability). In a further fMRI experiment of the same study, 
another group of participants only passively observed the different 
gamble scenarios without actually giving the values they would bid after 
receiving new information about the gambles. The implicit processing of 
the new information was found to be associated with brain activity in 
the frontoparietal network for belief and value updating in a dissociable 
manner. However, because of the passive viewing nature of their fMRI 
task, potential valence-dependent effects could not be examined 
(Kobayashi and Hsu, 2017). In a later study, Schulreich and Schwabe 
(2021) used the active variant of the gamble bidding task and found that 
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value updating was conservative (i.e., less than predicted by the 
Bayesian normative model) both after receiving positive or negative new 
information about the gambles. However, salivary levels of the stress 
hormone cortisol correlated positively with value updating following 
positive information indicated higher winning probabilities, but not 
with value updating following negative information. This indicates that 
different mechanisms might underlie updating processes after experi-
encing positive or negative new information and suggests that 
valence-dependent effects may be observed in situations with reducible 
uncertainty. 

To further investigate potential valence-dependent effects of updat-
ing behavior during decision making with uncertainty and the related 
brain mechanisms, the current study used an active variant of the 
gamble bidding task in combination with functional near-infrared 
spectroscopy (fNIRS). The first goal was to replicate key results of 
frontoparietal involvements in adaptive updating from the study by 
Kobayashi and Hsu (2017) and to extend these findings to situations 
when participants can also actively indicate their adjusted subjective 
values after being presented with new information in separate scenarios 
of the gamble. In this regard, we also adopted a quantitative Bayesian 
model (Kobayashi and Hsu, 2017) to account for updating behaviors in 
risky and ambiguous situations. We expected that frontoparietal cortical 
activity associated with belief and value updating could also be observed 
and partially dissociated in the active bidding paradigm using a different 
imaging modality. The second goal was to explore valence-dependent 
effects on belief and value updating and their brain correlates. 
Crucially, only by using observed value updates made by the partici-
pants instead of model-derived updating values, which are normative 
and symmetric with respect to valence, would it be possible to detect 
potential valence-dependent asymmetries in neural responses. The exact 
direction of valence-dependent effect is difficult to anticipate a priori. 
However, considering that value updating in the positive domain has 
been associated with a stronger bias (Palminteri and Lebreton, 2022) or 
malleability (e.g., regarding stress hormones, Schulreich and Schwabe, 
2021) compared to the negative domain, sub-optimal updating behavior 
that deviates from Bayesian predictions could be more likely after 
experiencing positive information about the gambles. Moreover, given 
that the ability of decision making depends on integrating new infor-
mation into existing beliefs to adjust choices and varies among in-
dividuals (Nassar et al., 2010), we also assessed whether individual 
differences in logical reasoning ability, which is an important aspect of 
fluid intelligence, would be associated with variations in updating be-
haviors. Although this specific analysis was not pre-registered, we hy-
pothesized a positive relationship between logical reasoning ability as 
assessed by the well-established Raven’s Matrices test (Raven et al., 
1998) and Bayesian rationality in updating, as logical reasoning ability 
had been found to be correlated with decision-making functions impli-
cating frontal brain regions (Eppinger et al., 2015). 

2. Method 

2.1. Participants 

A total of 47 adults (age ranged from 18 to 30 years) participated in 
this study. All participants were right-handed, had normal or corrected- 
to-normal vision, and had no history of psychiatric illness, neurological 
diseases, or medical scalp conditions. The participants gave informed 
consent before participation and were compensated with 10 Euros per 
hour plus a possible bonus that could be gained at the end of the gamble 
bidding task. The local ethics committee of the TU Dresden approved the 
study (SR-EK-6012021). Two participants had to be excluded due to the 
low quality of the assessed fNIRS data (see Methods for details), 
resulting in a final sample of 45 participants (27 females, 18 males; 
mean age ± SD: 22.04 ± 2.8 years). 

2.2. Study procedure 

The study consisted of one experimental session that took about 3 h. 
The participants first filled out a demographic questionnaire and the 
Edinburgh Handedness Inventory (EHI; Oldfield, 1971). Subsequently, 
the experimenters measured the participant’s head size for selecting the 
suitable fNIRS cap to set up the fNIRS montage while the participants 
read through task instructions of the gamble bidding task. Before per-
forming the task, a short quiz about key aspects of the task was given to 
ensure that the participants understood the task instructions. Next, 
participants performed two practice rounds (one with the experimenter, 
the other by themselves) to familiarize with the gamble bidding task 
before starting the actual experiment. The fNIRS data recording of the 
gamble bidding task began 30 s before the main experiment and 
terminated with task completion (see Section 2.4 for details about fNIRS 
setup and procedure). The main program of the gamble bidding task 
lasted about 38 min on average. After the gamble bidding task, cognitive 
covariates of verbal knowledge and basic information processing speed 
that are commonly used in the research of adult development (cf. Li 
et al., 2004) were respectively assessed with the Spot-the-Word Test 
(Baddeley et al., 1993) and the Identical-Pictures Test (Lindenberger 
and Baltes, 1997) to better characterize our sample. Although these 
abilities may not be directly associated with performance variations in 
the gamble bidding task, including these measures would allow com-
parisons of basic characteristics of our sample with samples of other ages 
in future studies and meta-analyses. Afterwards, the participants were 
instructed and performed a separate 3-state Markov decision task 
(Eppinger et al., 2015) that lasted 45 min. This study focuses only on the 
gamble bidding task. Lastly, besides other factors, it is known that fluid 
intelligence – the capacity for logical reasoning, problem-solving, and 
adapting to dynamic situations – also plays a role in decision making 
(Bruine de Bruin et al., 2020). Thus, after the Markov decision task and 
removal of the fNIRS cap, we assessed logical reasoning ability with the 
Raven’s Progressive Matrices test (Raven et al., 1998) to assess whether 
individual differences in reasoning ability may be related to variations in 
normatively optimal updating behavior. Individual differences in the 
Raven’s test had been previously found to be associated with decision 
processes implicating frontal brain functions (Eppinger et al., 2015), 
which are also relevant for performing the gamble bidding task. 

2.3. Gamble bidding task 

2.3.1. Task design 
We adapted and programmed (in MATLAB R2020b using Psy-

chToolbox 3.0.16) a variant of the gamble bidding task used in two 
previous studies (Kobayashi and Hsu, 2017; Schulreich and Schwabe, 
2021), which was based on Ellsberg’s urn problem (Ellsberg, 1961). The 
participants interacted with the task via a standard PC keyboard. The 
task consisted of multiple gambles, each with an urn containing 2 to 4 
balls in three colors (red, blue, and yellow). The participants had to bid a 
price (value) for each gamble after been shown initial information about 
general composition (not exact content) of balls in the urn. In each 
gamble there were two kinds of balls: (1) the risky balls had a single 
color (e.g., blue balls in Fig. 1) for which the exact amount of balls in this 
color was known; (2) the ambiguous balls were initially shown as 
bicolored (e.g., half red and half yellow in Fig. 1) for which only the total 
number, but not the exact color-to-ball assignments, was known. Thus, 
the distribution of balls of these two colors in that given gamble was 
ambiguous. To eliminate potential color bias, the allocation of specific 
colors (i.e., red, blue, and yellow) to risky/ambiguous categories was 
randomized across participants and no color bias was observed (for a 
check of potential bias, see Supplementary Materials, Text S1). The types 
of uncertainty in a given gamble were manipulated by a predetermined 
winning color displayed above the urn. If the winning color is that of the 
risky ball(s), the winning probability of the given gamble can be 
calculated directly based on the initial information about urn 
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composition; however, if the winning color is one of the two ambiguous 
colors, the winning probability will be initially unknown. As a concrete 
example (see Fig. 1A, left panel), let us consider an urn with four balls, of 
which two are risky (e.g., blue) and the other two ambiguous (e.g., 
initially shown in mixed red/yellow color). If the winning color is blue 
(the risky color in this case), the probability of winning is 50%; whereas, 
if the winning color is yellow (one of the ambiguous colors), the exact 
probability of winning is not known as the possible urn contents could be 
(1) two blue and two red (0% winning probability), (2) two blue, one red 
and one yellow (25% winning probability), or (3) two blue and two 
yellow balls (50% winning probability). 

Following the initial presentation of urn composition, further infor-
mation about the urn content of a given gamble was shown in three 

independent scenarios. The initial presentation provided prior infor-
mation about potential probabilities of ambiguous colored ball(s) in the 
urn on which participants could base their initial judgements, and later 
update their beliefs and values for bidding with new information gained 
in the three scenarios of the gamble. Comparing the participants’ bid-
ding behavior before and after each of the three scenarios allowed us to 
evaluate participants’ sensitivity to the nature of uncertainty in the 
gamble and to assess their behaviors of value updating. Specifically, 
before (predraw) and after (postdraw) each scenario, the participants 
were asked to bid a value to indicate a price in Euro at which they would 
be willing to sell (WTS) the gamble. In other words, the WTS value is the 
minimum amount of money which a person is willing to accept to forgo 
the right to play the lottery (hence, also sometimes referred to as 

Fig. 1. Experimental paradigm and task procedure. (A) The urn composition and draw scenarios of an example ambiguous gamble (adapted from Kobayashi and Hsu, 
2017). Left panel: The urn of this gamble contains four balls, two of which are risky (blue) and the other two ambiguous (red/yellow). The exact number of red and 
yellow balls is unknown to participants. Hence, there are three different possible urn compositions as shown. Middle panel: A draw of a red ball (ambiguous color) 
results in belief updating and eliminates one possible urn composition (i.e., two blue and two yellow balls). Expectancy violation is defined as the difference between 
1 and the probability of drawing a red ball. Right panel: A draw of a blue ball (risky color) does not result in belief updating but is linked to expectancy violation (i.e., 
counter probability of drawing a yellow ball). (B) The trial sequence for an example gamble, adapted from Schulreich and Schwabe (2021, p. 3). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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“willingness to accept”), which is a well-established indicator in eco-
nomics and decision research (e.g., Kobayashi and Hsu, 2017; Novem-
sky and Kahneman, 2005). They were instructed to enter their WTS 
values by entering numbers between 0 and 10 using the number pad of 
the keyboard. Each of the three scenarios was shown as a randomly 
drawn ball (once in each color) that could potentially provide more 
information about the urn content. Further knowledge of an urn’s 
composition could only be gained if an ambiguous ball was drawn. If a 
risky ball was drawn, no new information could be gained because the 
number of the risky ball(s) was already fixed at the initial presentation of 
urn composition. If the participants are sensitive to the nature of un-
certainty, belief and value updating would only take place in ambiguous 
but not in risky gambles. Notably, participants were instructed to treat 
the three scenarios of a gamble as independent (i.e., each of the sce-
narios starts with the same initial composition; an observed draw in a 
given scenario does not change the initial composition for the next 
scenario). No effect of scenario order was observed, indicating inde-
pendent processing of the scenarios (see Text S2). To enhance task 
engagement and ensure that the WTS values the participants ascribed to 
each of the gambles reflect their subjective prices, a resolution draw 
took place at the very end of the experiment after the participants had 
finished bidding for all gambles. The resolution draw determined the 
amount of a possible bonus the participants could gain besides the 
reimbursement for their participation. During the resolution draw, one 
of the gambles (including all the predraw and postdraw scenarios) 
shown during the experiment was randomly selected. Following the 
Becker-DeGroot–Marschak bidding procedure (BDM; Becker et al., 
1964), a price (in the range of 0€ to 10€) randomly generated by the 
computer was compared to the WTS value the participant entered for 
that gamble during the experiment. If the participant’s WTS value was 
below the computer-generated price, they sold the gamble to the com-
puter and received the computer-generated price as a bonus; otherwise, 
they played the gamble with a chance to win either 10€ or nothing. Our 
task instructions provided a clear explanation of this procedure through 
a detailed illustration. 

The winning colors and the corresponding colors of the observed 
draws were manipulated such that the scenarios provided either (i) new 
and relevant information (drawing ambiguous balls in ambiguous 
gambles), (ii) new but irrelevant information (drawing ambiguous balls 
in risky gambles) or (iii) no new information at all (i.e., drawing risky 
balls in either type of gambles). By design, this allowed for the experi-
mental separation of belief updating and expectancy violation, such that 
updating behavior can be separately analyzed for cases in which 
updating was normatively predicted and in cases when it was not. If the 
participants behave rationally, belief updating could be expected after 
observing draws of ambiguous balls and this would be reflected in 
changes in the WTS values of ambiguous gambles (i.e., value updating). 
No belief (and value) updating would be expected after observing draws 
of risky balls. In the example shown in Fig. 1A (middle panel), observing 
a draw of a red (ambiguous) ball reduces uncertainty because this in-
formation indicates that at least one of the ambiguous balls is red. 
Therefore, the chance of drawing a red ball in the resolution draw in-
creases (ΔPred > 0), while the probability of drawing a yellow ball and 
thus the chance of winning the full 10€ decreases (ΔPyellow < 0). 
Consequently, this makes this gamble less attractive for the participants 
since the winning color is yellow in this example and should result in 
negative value updating. In the case of gambles with risky winning color 
(i.e., if the winning color would be blue), drawing an ambiguous ball 
provides new but irrelevant information given that the probabilities of 
risky gambles are fully specified beforehand (ΔPblue = 0). Thus, no 
relevant information could be gained when the risky color is the winning 
color for any draw. Accordingly, zero updating is expected for these 
cases. 

Furthermore, given that the Bayesian model assumes that the par-
ticipants may form expectations about the probabilities of drawing balls 

of different colors based on initial information about the urn composi-
tion and the probabilistic nature of the draw’s color at each trial, any 
draw (including draws of colors of risky balls) in any gamble (including 
risky gambles) involves some degrees of “surprise” or expectancy 
violation. Since drawing a ball (any color) from the urn in the gamble is 
an event that would certainly occur, the sum of the probabilities of all 
the outcomes (drawing balls of all three colors) equals 1. Expectancy 
violation in this context is quantified by 1 - P(drawcolor), where P 
(drawcolor) is the prior probability of drawing a ball of a particular 
color. Given that P(drawcolor) is <1, 1 - P(drawcolor) is >0 for any draw 
(Kobayashi and Hsu, 2017). 

Altogether each participant was presented with six different urn 
content compositions in the task, which varied with respect to the total 
number of balls in the urn and the number of risky and ambiguous balls 
(see details of urn content compositions in Table S1). Besides the 18 
gambles (i.e., three winning colors × six urn content compositions) used 
in two previous studies (Kobayashi and Hsu, 2017; Schulreich and 
Schwabe, 2021), we added one more repetition for each urn content 
composition in a balanced manner across gamble types and winning 
colors to increase the signal-to-noise ratio for the fNIRS analysis. Spe-
cifically, among the six additional gambles, the winning colors are 
evenly divided, such that two gambles have the color of the risky ball 
and two gambles with the color of each of the two ambiguous balls as the 
winning colors. In total, our variant of the task included 24 gambles (8 
risky gambles and 16 ambiguous gambles) that were evenly associated 
with three possible winning colors. Crucially, this design balanced the 
magnitude and direction of the positive and negative information for the 
ambiguous gambles (see Table S2 for details) to ensure that 
valence-dependent effects, if observed, would not be confounded by 
differences in gamble types. The order in which the gambles were pre-
sented was randomized across participants. Each of the 24 gambles was 
further associated with three scenarios, each with one different colored 
ball drawn from the urn. For instance, in an ambiguous gamble, there 
would be one scenario with an ambiguous ball that matches the winning 
color, one scenario with a mismatched ambiguous ball, and one scenario 
with a risky ball, so that no systematic bias would be introduced by the 
task design (see Table S2 for details). The order in which the different 
colors were drawn in the scenarios was also randomized. Altogether we 
could collect 24 predraw WTSs and 72 (24 gambles × 3 scenarios) 
postdraw WTSs from each participant. 

2.3.2. Task procedure 
As shown in Fig. 1B, the urn content composition was displayed for 8 

s at the beginning of each gamble. Subsequently, participants were 
asked to enter their WTSpre value (predraw bid price) within a maximum 
duration of 10 s, followed by the instruction text of “Waiting for a new 
scenario …” that was shown on a black screen with a mean interval of 
11.5 s and a jitter between 10 and 16 s. Then the first scenario was 
presented for 4 s, followed by the instruction text of “Please wait a 
moment to enter your value…” (mean interval of 5.5 s, jittered between 
4 and 10 s). Next, participants entered their WTSpost value (postdraw bid 
price) of the first scenario within 10 s, followed by an inter-scenario 
interval (mean interval of 11.5 s, jittered between 10 and 16 s). The 
second and third scenarios of the given gamble were then presented 
using the same procedure. All inter-stimulus intervals were jittered in 
0.5-s steps according to a long-tailed exponential distribution (λ = 3; 
Hagberg et al., 2001). 

In case the participants exceeded the 10s-time limit and thus failed to 
register their WTSpre value, the entire gamble was considered missing, 
because no reference value could be used to compute value updating in 
this case. If there was no WTSpost, only this value was considered 
missing. However, the WTSpost of the other two scenarios could still be 
included for computing value updating. In total, only 0.5% of the trials 
(16 of 3240 trials from all included participants) were time-outs and 
discarded from the analyses. 
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2.4. fNIRS data acquisition and optode montage 

We used two NIRSport (NIRx Medical Technologies, LLC, USA) 
continuous-wave fNIRS devices in the tandem mode of the NIRStar 
acquisition software (version 15.3) for data collection. Each NIRSport 
system has 8 sources with electromagnetic wavelengths of 760 and 850 
nm and 8 detectors sampled at 3.472 Hz using the default standard 
illumination pattern. Two sizes of standard NIRS caps (56 and 58 cm; 
https://nirx.net/nirscap) were available for participants. Prior to the 
experiment, we measured each participant’s head circumference to 
determine the appropriate cap size. Before proceeding with the experi-
ment, a built-in calibration procedure of the NIRSport system was used 
to check signal quality for each channel, with readjustments of optodes 
when necessary (i.e., in cases of initial insufficient signal quality due to 
placements of optodes). Data recording commenced only when the 
majority of channels (i.e., >35 of 40 channels) exhibited excellent signal 
quality, the remaining channels were deemed acceptable, and there 
were no critical issues or missing channels. The two cap sizes fitted the 
participants well; none of them had to be excluded due to calibration 
problems using this procedure before fNIRS recording or reported dis-
comforts during or after the experiment. All caps were prepared ac-
cording to our frontoparietal montage (see next section, Fig. 2A), 

containing 16 sources and 16 detectors, which resulted in 40 active 
channels. A reliable channel distance of 3 cm was obtained by inserting 
stabilizing links (NIRx, Germany). To improve contact between optodes 
and scalp, spring-loaded grommets with pressure level 2 secured the 
optodes in the parietal area where the hair is thicker. Velcro strips were 
used to minimize any strain on the cable during the recordings. A black 
over-cap provided by NIRx (produced by EasyCap) was pulled over the 
NIRS cap to eliminate external light sources. The cap was then placed 
and verified based on the international 10–20 location of Cz (Klem et al., 
1999). Cotton swabs were used to move the hair aside when mounting 
the optodes to ensure proper contact with the scalp. 

The fNIRS Optodes’ Location Decider (fOLD; Zimeo-Morais et al., 
2018) toolbox was used to guide optode positioning in accordance with 
the international 10–10 system to cover anatomical regions of interest 
(ROI). With the primary aim of measuring neural activity correlated 
with belief updating, our targeted regions were decided based on a 
previous fMRI study, which used a similar task variant (Kobayashi and 
Hsu, 2017). Specifically, this previous study found that belief updating 
correlated with activity in lateral frontoparietal areas. Thus, the Auto-
mated Anatomical Labeling (AAL2; Rolls et al., 2015) was specified to 
generate probe arrangement to provide coverage for the bilateral su-
perior frontal gyrus (Frontal_Sup), middle frontal gyrus (Frontal_Mid), 

Fig. 2. Montage setup of fNIRS measurements. (A) fNIRS montage in the international 10–10 coordinate space. Two 8 × 8 fNIRS systems were setup in the tandem 
mode resulting in 40 channels. Cz is highlighted in green. (B) Sensitivity profile in log10 (mm− 1) of montage. Sources are indicated in red, detectors are indicated in 
blue, and yellow lines indicate channels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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superior parietal gyrus (Parietal_Sup) and inferior parietal gyrus (Pari-
etal_Inf). Furthermore, value updating was associated with activity in 
the cingulate and the medial prefrontal cortex (MPFC). Notably, some of 
our superior frontal channels (i.e., channels 3, 5 and 9) could also detect 
hemodynamic changes from the MPFC (see Table S3 for coverage 
probabilities). However, given the limitations of the light emitters, ac-
tivity in deeper cortical areas, such as cingulate and insula, previously 
found to be uniquely associated with expectancy violation after 
adjusting for belief and value updating (Kobayashi and Hsu, 2017), 
cannot be reliably measured with fNIRS (Cui et al., 2011). Two 8 × 8 
fNIRS systems (each resulting in 20 channels) separately covered the 
target regions in the left and right hemispheres (see Table S3 for the 
anatomical specificity of each channel to the ROIs). The sensitivity 
profile of our montage (Fig. 2B) was generated by modeling the light 
transport in tissues using the Monte-Carlo transport software (tMCimg) 
embedded in the AtlasViewer (Aasted et al., 2015; Boas et al., 2002). 

2.5. Data analysis 

2.5.1. Behavioral analysis 
Theoretically, value updating is the consequence of belief updating, 

which refers to internal processes that cannot be directly measured with 
choice data (see related descriptions in Section 2.3.1). Thus, in the 
context of the gamble bidding task, the value updating behavior of the 
participants served as the primary dependent variable and a proxy for 
participants’ belief updating (Kobayashi and Hsu, 2017; Schulreich and 
Schwabe, 2021). Specifically, value updating was quantified as the 
trial-wise difference of postdraw and predraw WTSs from the 72 sce-
narios (i.e., ΔWTS = WTSpost − WTSpre) for each participant. Although 
individual differences of WTSpre at the start of a trial may affect the 
degree of possible value adjustments at postdraw, the ΔWTS as 
computed here takes into account such individual differences. Based on 
the combination of the winning color and the color of the observed 
draws, ΔWTSs were classified into three categories: normatively positive 
(norm-pos), normatively negative (norm-neg) and normatively zero 
trials (norm-zero). In a normatively positive trial, the color of the 
observed draw was ambiguous and matches the winning color (i.e., 
ambiguity was reduced through the draw), thus indicating a better 
winning probability for the gamble. In contrast, in a normatively 
negative trial, the colors do not match, revealing a lower winning 
probability. In normatively zero trials, no new information about win-
ning probability can be gained. Of note, the norm-zero updating trials 
include three subcategories: risky color draws in ambiguous gambles, 
and ambiguous or risky color draws in risky gambles (see Table S2). 

To examine whether the participants’ value updating behavior was 
sensitive to the nature of uncertainty from a normative perspective, one- 
sample Wilcoxon signed rank tests were first performed (using function 
wilcox_test in the rstatix package; Kassambara, 2021). These tests were 
not pre-registered but included to test the ΔWTSs of each category 
against zero deviation from the Bayesian predictions. Next, the 
pre-registered analyses of using Friedman’s ANOVA and post-hoc pair-
wise Wilcoxon signed rank tests (using function friedman_test, friedman_ 
effsize, and wilcox_test in rstatix package; Kassambara, 2021) were 
executed to compare updated values between trial categories (norm-pos 
vs. norm-zero vs. norm-neg). For the post-hoc analysis, the p-values were 
corrected using Bonferroni-Holm method to control the family wise 
error rate. To this end, ΔWTSs were sign-flipped in the category where 
negative value updating was expected, such that large values indicate 
strong value updating behavior, irrespectively of valence. 

2.5.1.1. Bayesian quantitative model. As pre-registered, we adopted a 
Bayesian model (Kobayashi and Hsu, 2017) to predict updating behavior 
quantitatively. This model incorporates two stages: (1) belief formation 
and (2) valuation. The stage of belief formation models the probability 
distribution of a future draw’s color. Before the scenarios of a gamble 

were presented, the participants were aware of the total number of risk 
balls (nr) and ambiguous balls (na) as presented to them in the initial urn 
composition. Yet, the distribution of each ambiguous colors within na, i. 
e., the number of balls of the ambiguous color 1 (na1) and ambiguous 
color 2 (na2) was not known. The probability of drawing a risky ball is 
straightforwardly specified as 

Ppre(r) = nr
/
(nr + na)

However, to estimate the probability of a future draw of ambiguous 
balls, all possible urn content compositions need to be considered and 
weighted. Assuming a binomial distribution, the probability of numbers 
of balls in one ambiguous color a1 is obtained as 

Ppre(na1) =
1

2na

(
na
na1

)

.

Accordingly, the probability of a future draw in ambiguous color a1 
is estimated as 

Ppre(a1) =
∑na

na1=0
Ppre(na1)⋅na1

/
(nr + na).

Since observed draws of ambiguous balls provide further informa-
tion about the urn content, beliefs should be updated under the Bayesian 
rule because ambiguity is reduced. In case of a draw in color a1, the 
postdraw probability of na1 follows 

Ppost(na1) =
1

2na − 1

(
na − 1
na1 − 1

)

,

again assuming the binomial probability distribution. When the 
observed draw was in color a2, the postdraw probability of na1 is ob-
tained as 

Ppost(na1) =
1

2na − 1

(
na − 1

na1

)

.

In the case of drawing a risky ball, the postdraw probability of na1 is 
equal to its predraw probability, which is defined as 

Ppost(na1) = Ppre(na1).

Because no new information about the urn content is provided in this 
case, the degree of ambiguity remains constant. 

In the valuation stage, an expected value (EV) is generated by 
multiplying the given probability of the winning color Pw with the 
monetary reward of 10€ (that would be gained when the resolution draw 
matched the winning color), i.e., EV = 10€ × Pw. Notably, we were also 
able to assess whether participants non-normatively updated values 
when uncertainty was not reduced (i.e., in risky gambles and risky color 
draws). However, the observations may have violated prior expecta-
tions. Expectancy violation is quantified as 1 − Pdrawcolor, which is a 
greater than zero value for any draw of any gamble (see definition above 
in 2.3.1). 

To test whether the participants behaved normatively in value 
updating, we fitted their WTSs to the Bayesian model using linear mixed 
model analysis. A full model (using lme function in nlme package; Pin-
heiro et al., 2017) was specified with Bayesian model predictions as 
urn-wise predictors and participants as the random effect for WTSs in 
trials of the two non-zero categories (i.e., norm-pos and norm-neg) 
separately. Results of the full model were compared with a null model 
that did not incorporate the Bayesian prediction term (i.e., only a con-
stant). Since the null model is nested in the full model, log-likelihood 
ratio tests were employed to test model fitting. Since the null model 
predicts no differences in value updating behavior across all urn com-
positions, a better model fit of the full model would then indicate that 
the participants’ value updating varies as a function of urn composi-
tions, which would be consistent with the Bayesian model. This 
approach differs from our pre-registered analysis of correlating expected 
and observed value updating behavior. We opted for regression over the 
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pre-registered correlational analyses because integrating Bayesian pre-
dictions in a mixed model allows for individual deviations while still 
capturing the underlying relationship as opposed to averaging values 
into only one value per category per participant across all urn compo-
sitions. To further explore whether and how value updating may 
quantitatively deviate from the Bayesian prediction for each non-zero 
category, we performed another set of one-sample Wilcoxon signed 
rank tests in which the dependent variable was the deviations of ΔWTSs 
from Bayesian model predictions, i.e., deviation (DEV) = value upda-
tingobserved – value updatingpredicted. The category-wise DEV values were 
averaged across all urn compositions for each participant and tested 
against zero. Positive DEV indicates that the observed updating is larger 
than the predicted updating and thus may reflect an overweighting of 
novel information, while negative DEV suggests the opposite. 

From the Bayesian normative perspective, value updating should 
only be driven by belief updating, i.e., the difference between predraw 
and postdraw probability of ambiguous color draws in the ambiguous 
gambles only. However, in a non-normative manner, expectancy viola-
tion could also influence the value updating, since in any draw of any 
gamble the probability of expectancy violation (1 − Pdrawcolor) is >0. To 
better understand the mechanisms underlying value updating, in line 
with similar analyses conducted in a previous study (Schulreich and 
Schwabe, 2021), we also included non- preregistered analyses that 
tested multiple models in which belief updating and expectancy viola-
tion (as defined by the Bayesian model) were separately or jointly 
included as urn-wise predictors with participants as random effects. The 
models were separately fitted to the observed value updates (i.e., 
ΔWTSs) from different trial categories, resulting in four models: (1) 
belief updating as sole predictor, (2) expectancy violation as sole pre-
dictor, (3) belief updating and expectancy violation as predictors, and 
(4) belief updating, expectancy violation and belief updating × expec-
tancy violation as predictors. Specifically, all four models were fitted to 
data from trial categories in which belief updating could be normatively 
expected, including (i) ambiguous gambles with matching (norm-pos) or 
(ii) mismatching (norm-neg) ambiguous color draws, and (iii) risky 
gambles with ambiguous color draws (a subcategory of norm-zero 
category). As regarding the remaining trials from the other two 
norm-zero subcategories that involved risk color draws (i.e., ambiguous 
or risky gambles with risky color draws), only model (2) was fitted to 
these data. All models were fitted using maximum likelihood (ML) 
estimation and evaluated by the Bayesian Information Criterion (BIC; 
Schwarz, 1978). 

Lastly, Spearman’s correlations (stats package; R Core Team, 2020) 
between a measure of fluid intelligence (i.e., logical reasoning ability 
assessed by Raven’s Progressive Matrices) and performance in the 
gamble bidding task (quantified as the absolute deviation |DEV| from 
Bayesian model predictions) was conducted to explore the potential 
relation between individual differences in reasoning ability and value 
updating. FDR corrections were applied to correct for multiple com-
parisons for the correlations. 

MATLAB R2020b (MathWorks Inc, Natick, MA, USA) was used for 
data pre-processing; statistical analyses were computed using R and R 
studio (version 4.2.0). For all analyses, the two-tailed significance level 
was set at p ≤ 0.05. The data were visually checked for potential 
anomalies using boxplots, histograms, density and Q-Q-plots (via ggplot2 
package; Wickham, 2016; and ggbubr package; Kassambara, 2020). The 
normality assumption was tested using Shapiro-Wilk tests (shapiro.test 
function in stats package; R Core Team, 2020) and by interpreting 
skewness and kurtosis (pastecs package; Grosjean and Ibanez, 2018). We 
used non-parametric variants of statistical tests for our pre-registered 
analyses in cases of non-normality of the data as commonly suggested 
(Kvam et al., 2022). Effect sizes were calculated as rank-biserial corre-
lation (rrb) for the Wilcoxon tests and Kendall’s W for Friedman’s 
ANOVA. Effects were interpreted according to the definition by Cohen 
(1988), in which an rrb or Kendall’s W between 0.1 and 0.3 is considered 
a small, between 0.3 and 0.5 a medium, and greater than 0.5 a large 

effect. 

2.5.2. fNIRS data analysis 

2.5.2.1. Data quality check. The fNIRS data were first loaded into the 
HOMER3 toolbox (Huppert et al., 2009) to check data quality. The 
function hmrR_PruneChannels was used to check the raw data of light 
intensity range (dRange) and the signal-to-noise ratio (SNR) for each 
channel and wavelength. A SNR threshold of 6.67 [~15% coefficient of 
variation (CV); SNR = 1/CV × 100] and dRange of 0.1 to 10 were used 
as criteria for identifying bad channels. However, even though some 
channels may have good SNR and signal levels, they might not capture 
data reflecting physiology. We thus further visually checked the power 
spectral density (PSD) for each channel of each participant to see 
whether the signal also contained the heartbeat frequency component, 
typically around 1 Hz (Tong et al., 2011). The presence of the heartbeat 
frequency is a common indicator of a strong signal quality in fNIRS data 
(Hocke et al., 2018). 

Although having passed the calibration procedure before starting the 
fNIRS recording (see 2.4), two participants were identified with poor- 
quality data based on the offline SNR check and visual PSD inspection 
(with more than 33% of bad channels, i.e., 13 channels) and excluded 
from further analyses (see Table S4 for an overview of the number of 
participants with good signal quality by channel). Of note, the careful 
offline checks were only to ensure data quality, no channels of any of the 
remaining 45 participants were pruned based on this. Instead, we 
adopted statistical models that downweighs noisy channels (see details 
in next section). Including these channels may increase type-II error but 
will not increase the false-positive rate (Huppert, 2016; Meidenbauer 
et al., 2021). 

2.5.2.2. fNIRS pre-processing pipeline, parametric modulation, and 
category-based activation. The checked fNIRS data were preprocessed 
and analyzed using the NIRS Brain AnalyzIR Toolbox (Santosa et al., 
2018). We adopted an analytical approach that minimized data 
manipulation (Santosa et al., 2018, p. 29). The raw fNIRS light intensity 
data was first converted to optical density and then converted to 
oxygenated (HbO) and deoxygenated (HbR) hemoglobin concentrations 
by the modified Beer-Lambert law (Strangman et al., 2003) with a 
partial pathlength factor of 0.1. Noise reduction and correction were 
conducted with regression models. Specifically, we used an autore-
gressive iteratively reweighted least-squares model (AR-IRLS) for the 
first (individual) level analysis. The AR-IRLS model corrects serially 
correlated errors using an auto-regressive filter (prewhitening) and 
employs robust weighted regression to iteratively downweigh noisy 
channels (Barker et al., 2013). This procedure outperforms other 
methods in correcting physiological noise and correlated errors in fNIRS 
measurements (Huppert, 2016). Concentrations of HbO have been 
consistently shown to have a better SNR and is more sensitive than HbR 
in reflecting task-induced, event-related cortical responses (Cheng et al., 
2015; Hoge et al., 2005; Huppert et al., 2006; Jiang et al., 2015). Thus, 
we focus here only on results regarding HbO concentrations (results 
regarding HbR are available in full in Tables S5 and S6). 

The pre-processed HbO data was first subjected to two model-based 
analyses to examine different aspects of the updating process and po-
tential valence-dependent effects at the individual (first level). As pre- 
registered, for the first model (Model-1) we created a regressor with 
the onsets of the 72 observed draws presented in the gamble scenarios, 
with each scenario being one trial. This regressor was then para-
metrically modulated by belief updating, expectancy violation, and 
value updating. Value updating was directly quantified as the partici-
pants’ ΔWTS at each trial. Belief updating and expectancy violation 
refer to internal processes that cannot be directly measured with the 
behavioral data, their trial-wise values were defined by the Bayesian 
model (see Section 2.5.1.1 for details). Given the way the winning colors 
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and the colors of the observed draws were manipulated across urn 
compositions of different gamble types, by design, belief updating and 
expectancy violation can independently occur in the experiment at 
various levels across ambiguous gambles with ambiguous color draws (r 
= 0 between model-predicted values of belief updating and expectancy 
violation). As in the previous fMRI study of the gamble bidding task, this 
manipulation allowed analyses of brain correlates of belief updating and 
value updating independent of expectancy violation. However, when all 
trials (i.e., also including trials of risky color draws where zero belief 
updating was predicted) were considered together, a statistical corre-
lation between belief updating and expectancy violation resulted (r =
0.62, cf. r = 0.7 found in Kobayashi and Hsu, 2017). Given this corre-
lation, we thus calculated the variance inflation factor (VIF; Stine, 1995) 
to check for collinearity of the regressors (using check_collinearity in 
performance package; Lüdecke et al., 2021), which can signal unstable 
and difficult-to-interpret coefficients. A VIF of 1 indicates complete 
orthogonality between the regressors and 10 is a commonly used 
threshold for high collinearity (O’Brien, 2007). When examining our 
data, the maximum VIF value was 1.64, which indicated that the cor-
relation among the regressors would not substantially influence the re-
sults of the models. Therefore, we mean-centered and normalized 
(range: − 1 to 1) all parametric modulators (i.e., belief updating, ex-
pectancy violation, value updating), instead of statistically orthogonal-
izing them. Furthermore, with the active variant of the gamble bidding 
task used here, we could use the empirically observed ΔWTS values as 
the parametric modulator of value updating, instead of using 
model-predicted values (cf. Kobayashi and Hsu, 2017). Importantly, this 
also enabled us to assess potential valence-dependent effects on updat-
ing processes. For this, we set up the second model (Model-2) with three 
separate regressors: the onsets of the observed draws for norm-pos, 
norm-neg and norm-zero trials. For both Model-1 and Model-2, we 
also included identical regressors of no interest to control for variances 
associated with (1) urn presentation, as well as (2) motor responses 
associated with predraw or postdraw bidding. All regressors were 
modeled with their respective duration (i.e., presentation duration or 
response times for the bidding phases). The canonical hemodynamic 
response function (also known as ‘double gamma function’) with default 
parameters (peak time 4 s and undershoot time 16 s; Santosa et al., 
2018) was selected for convolution to form the main regressors in the 
design matrix. 

At the second (group) level, the modeled data at first level by Model- 
1 and Model-2 were analyzed separately with linear mixed-effects 
models to calculate the group mean for each condition, where partici-
pants were included as random effects in the models. The Student’s t-test 
was performed to calculate and compare the channel-wise regression 
coefficients for each condition. To correct for multiple comparisons, we 
adopted a false-discovery rate (FDR) correction with q < 0.05 (Benja-
mini and Hochberg, 1995). All tests from analyses conducted at the 
group level (i.e., including two data types, 40 channels and all condi-
tions of interests) were subjected to this FDR correction, making our 
correction rather conservative. The results from group-level analyses 
were visualized using the nirs2img function (https://www.alivelearn.net 
/?p=2230) to convert the t statistic values of significant channels and 
the corresponding MNI coordinates into *.img files. The converted im-
ages were then rendered over the 3D brain model using Surf Ice (https 
://www.nitrc.org/projects/surfice/). 

2.5.2.3. Relationship between updating-related cortical response and 
Bayesian rationality. We examined potential associations between 
updating-related cortical responses and the behavioral performance 
index of optimal updating (i.e., the deviation between predicted value 
updating and ΔWTSs). This analysis was pre-registered, but the specific 
methodological details could not be specified at preregistration. We 
defined four regions of interest (ROIs), i.e., the right frontal gyrus (12 
channels), the left frontal gyrus (11 channels), the right parietal gyrus (8 

channels) and the left parietal gyrus (9 channels). Before conducting the 
correlational analyses, we checked the z-scores of beta values of all 
participants in each ROI separately. No outliers (defined by the pre- 
registered criteria of 3 standard deviations above or below the group 
mean) were identified. Thus, no participants were excluded for the 
analyses. 

3. Results 

3.1. Behavioral results 

3.1.1. Value updating behavior is Bayesian quasi-optimal 
The participants’ subjective values before and after observed draws 

differed across urn compositions and gamble types (see Figs. S1 and S2 
with accompanying texts in Supplementary Materials for the distribu-
tions and ranges of WTSs at predraw and postdraw stages for ambiguous 
and risky gambles, respectively). Note, however, the measure of value 
updating we computed (the ΔWTSs) takes into account individual dif-
ferences in subjective values. Regardless of such individual differences, 
the mean effects showed that participants’ value updating behavior 
differed across urn compositions of the different gamble types, consis-
tent with the Bayesian model (log-likelihood ratio tests, null model vs. 
full model, ps < 0.0001; Fig. 3A). More importantly, their updating 
behavior is sensitive to the relevance of new information, i.e., the 
reducibility of uncertainty. Specifically, the participants’ value updating 
was significantly larger than 0 in normatively positive (match) trials 
[median(Mdn) = 0.94, p< 0.001, rrb = 0.54] and less than 0 in norma-
tively negative (mismatch) trials (Mdn = –1.56, p < 0.001, rrb = 0.84). 
Although value updating in the normatively zero trials statistically 
differed from 0 (Mdn = –0.028, p = 0.02, rrb = 0.34) which indicates a 
deviation from the Bayesian predictions, when performing analyses 
separately for the three normatively zero subcategories, value updating 
did not differ from 0 in all subcategories (all ps > 0.1; see Fig. S3 for 
details). 

3.1.2. Valence-dependent value updating and deviations from Bayesian 
optimality 

Although the above results indicate that in general the participants 
behaved quasi-optimally, the data also reveal deviations below the 
predicted values for the norm-pos trials (i.e., when the colors of 
observed draws match with winning colors in scenarios of ambiguous 
gambles; Fig. 3A). To assess whether the degree of value updating 
differed between categories of gamble scenarios, we flipped the sign of 
ΔWTSs of the norm-neg trials. The pre-registered Friedman’s ANOVA 
revealed a significant main effect of category, χ2(2) = 52.84, p < 0.001, 
Kendall’s W = 0.59. Post-hoc pairwise Wilcoxon signed rank tests 
showed significant differences between all three trial categories. ΔWTSs 
in the norm-neg trials (sign-flipped; Mdn = 1.56) was significantly 
higher than in the norm-pos (Mdn = 0.94, p = 0.001, Bonferroni-Holm 
corrected) and in the norm-zero trials (Mdn = − 0.03 p < 0.001, 
Bonferroni-Holm corrected). ΔWTSs in the norm-pos trials was higher 
than in the norm-zero trials (p < 0.001). We further tested whether 
ΔWTSs in these categories confirmed with Bayesian predictions and 
could show that unlike in the norm-neg (Mdn = 0.04, p = 0.09, rrb =

0.25) and all norm-zero (all ps > 0.05, see also Fig. S3) categories which 
did not differ from model predictions, ΔWTSs in the norm-pos trials 
were significantly less pronounced than the model predicted (Mdn =
− 0.65, p < 0.001, rrb = 0.73; Fig. 3B). Together, these results indicate 
valence-dependent updating behavior in ambiguous gambles, with a 
suboptimal underweighting of new information in norm-pos trials. 

3.1.3. Mechanisms underlying valence-dependent updating 
According to the Bayesian model, normative value updating should 

only be driven by belief updating, which takes the reducibility of un-
certainty into account (i.e., only after ambiguous color draws in 
ambiguous gambles). Nonetheless, value updating potentially could also 
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be influenced, to some extent, by expectancy violation, because in every 
observed draw (including trials with risky color draws) the expectations 
can be violated merely due to the probabilistic nature of each color 
draw. We fitted four models with different regressors to the value- 
updating data from different trial categories to determine potentially 
distinct underlying mechanisms. The best-fitting model for each trial 
category is reported in Table 1 (see also Table S7 for an overview of all 
model fits). 

In line with the findings reported by Schulreich and Schwabe (2021), 
for norm-neg trials, model-derived belief updating values emerged as a 
significant predictor for the observed value-updating data (i.e., ΔWTSs; 
see Table 1). Adding values of expectancy violation as defined by the 
Bayesian model and the interaction of belief updating × expectancy 
violation as additional predictors resulted in worse model fits (see 
Table S7). In contrast, for the norm-pos trials the best-fitting model 
included both model-derived values of belief updating and expectancy 
violation (Likelihood-ratio test of improved fit, L-ratio = 23.12, p <
0.001). This indicates that value updating in the norm-pos category was 
not only driven by belief updating, as normatively predicted, but was 
also partly driven by expectancy violation (Table 1). Adding a belief 
updating × expectancy violation interaction term as a predictor resulted 

in a worse model fit, whilst expectancy violation as the only predictor 
yielded the worst model fit for both normative trial categories (see 
Table S7 also for descriptions and fits for data in the norm-zero 
category). 

In light of these results, we conducted a moderation analysis (Baron 
and Kenny, 1986) to assess whether the contributions of model-derived 
belief updating and expectancy violation values in predicting ΔWTSs 
would depend on the valence of updating (henceforth updating valence, 
which was defined in the model as a dummy variable with 0 and 1 for 
the norm-neg or norm-pos categories, respectively). A mixed-effect 
regression model with random intercepts for the participants and 
random slopes on the function of urn composition were specified 
(Preacher et al., 2015). Belief updating and expectancy violation were 
centered and normalized before been included as predictors. For each 
participant, urn-wise ΔWTSs from norm-pos and norm-neg (sign--
flipped) trials were combined in one column as dependent variable. Two 
interaction terms were created and added to the regression model by 
multiplying the predictors and dummy factor of updating valence 
separately. To better understand the moderating effects, we estimated 
the regression slopes of the belief-updating predictor for each updating 
valence (using function emtrends in emmeans package; Lenth et al., 

Fig. 3. Results of updating behavior. (A) Bayesian predictions and observed data (ΔWTSs) of value updating in ambiguous gambles (data points represent the six urn 
compositions). Error bars indicate the standard error of the mean (SE). (B) Category-wise deviations between observed and predicted value updating. The boxplots 
show the median and quartiles of the data, individual data dots are plotted (♯ value updating was not different from 0 in all three normatively zero subcategories). (C) 
Upper panel: belief updating is positively associated with value updating in both norm-pos (red) and norm-neg (blue) trial categories, yet have a greater effect on the 
latter; lower-right panel: expectancy violation is positively associated with value updating only in norm-pos but not in norm-neg trial categories.(D) Individuals with 
higher contribution of expectancy violation to value updating (see text in the Results section for details) tend to update their value less than Bayesian model’s 
prediction and (E) perform worse in normatively positive trials. (F) Individuals with higher Raven’s scores exhibited better overall Bayesian rationality (quantified as 
the mean absolute deviation from the Bayesian model in the norm-pos categories). Of note, raw Raven scores were illustrated for descriptive purposes, but the 
statistical test was based on Raven scores after controlling for the time for completing the Raven’s test. Similar relations were found for averages across all trial 
categories (see text in Results section for details). The shaded areas in (D), (E) and (F) represent a confidence interval of 95%. ***p < 0.001, **p < 0.01, ns p > 0.05. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2018). As shown in the upper panel of Fig. 3C, updating valence had a 
significant moderating influence on the relationship between belief 
updating and ΔWTSs (β = − 0.36, t491 = − 3.27, p = 0.001) in both 
categories. Furthermore, a steeper slope of the regression line was 
observed for the norm-neg trial category, suggesting the influence of 
belief updating on value updating is stronger in norm-neg than in 
norm-pos trials. Although updating valence did not significantly mod-
erate the relationship between expectancy violation and value updating 
(β = 0.21, t491 = 1.87, p = 0.06; the lower panel of Fig. 3C) in general, 
expectancy violation significantly influenced value updating in 
norm-pos trials but not the norm-neg trials. 

Lastly, for trials in the norm-zero category, value updating after risky 
color draws in ambiguous gambles was significantly predicted by ex-
pectancy violation (β = 2.69, t224 = 3.27, p = 0.001); whereas value 
updating after risky color draw in the risky gambles was better described 
by the null model (with a constant estimate). After ambiguous color 
draws in risky gambles, the Bayesian model assumed that beliefs (but 
not values) were updated. Including belief updating as a predictor 
resulted in a poorer model fit. While the model with expectancy viola-
tion showed the best model fit, the coefficients of the predictor and 
intercept were not significant (Table S7). 

Taken together, these results indicate that the mechanisms associ-
ated with value-updating behavior varied depending on updating 
valence. Interestingly, other than being affected by belief updating as 
expected by the Bayesian model, value updating in the norm-pos trials 
was also affected by expectancy violation. Expectancy violation also 
accounted for value updating after risky color draws in ambiguous 
gambles, which suggests suboptimal value updating in this trial cate-
gory. In risky gambles, in line with predictions of the Bayesian model, 
irrespective of the color of the balls drawn, no value updating was 
observed, and expectancy violation did not significantly influence the 
process. 

3.1.4. Individual differences in value updating behavior 
To explore individual differences in the suboptimal behavior in 

norm-pos trials, we separately fitted linear regression models with ex-
pectancy violation and belief updating as predictors for each partici-
pant’s trial-wise norm-pos ΔWTSs. As described in the Methods section, 
model-derived values of expectancy violation and belief updating were 
separable and independent across ambiguous gambles (r = 0) given our 
task design; thus, the standardized regression coefficients would allow 
us to quantify their contribution (Johnson, 2000). Both predictors and 

ΔWTSs were standardized before model specification. The relative in-
fluence of expectancy violation on value updating for each participant 
was then quantified as the squared standardized regression coefficient of 
expectancy violation divided by the sum of the squared standardized 
coefficient of both predictors, i.e., β2

expVio/(β
2
expVio + β2

beliefupd). The range 
of this index is [0, 1], with closer to 1 indicating greater relative influ-
ence of expectancy violation. Next, we performed correlational analyses 
to explore relations between individual differences in expectancy 
violation and the updating behavior. Since both variables were not 
normally distributed, the non-parametric Spearman rank correlation 
was conducted (de Winter et al., 2016). The results indicated that in-
dividuals who were more influenced by expectancy violation in their 
updating process during gambles in the normative-pos category also 
more tended towards underweighting positive new information relative 
to the Bayesian predictions (rs = − 0.27, p = 0.07; Fig. 3D) and deviated 
significantly more (in absolute values) from the predictions (rs = 0.36, p 
= 0.02; Fig. 3E). 

In terms of the relationship between value updating performance and 
logical reasoning ability, which is an important facet of fluid intelli-
gence, we observed significant negative correlations between Raven’s 
scores and the |DEV| of norm-pos trials, rs = − 0.35, p = 0.02 (q = 0.03 
with FDR correction) after controlling for Raven’s processing time 
(Fig. 3F). We controlled for individual differences in the time taken for 
the Raven’s test because it was correlated with the test score, rs = 0.28, p 
= 0.04, implying better performance with increased time spent on the 
test. Furthermore, the Raven’s scores were also significantly negatively 
correlated with |DEV| of norm-zero trials, rs = − 0.38, p = 0.01 (q =
0.025 with FDR correction) and the average |DEV| across all trial types, 
rs = − 0.41, p = 0.005 (q = 0.025 with FDR correction). However, there 
was no significant correlation with the |DEVnorm-neg|, rs = − 0.29, p =
0.06. These results indicate that value updating is in general more in line 
with Bayesian predictions in individuals with higher reasoning ability. 

3.2. fNIRS results 

3.2.1. Neural correlates of updating processes 
We first performed channel-wise parametric analyses of the fNIRS 

HbO signal in the NIRS Brain AnalyzIR Toolbox (Santosa et al., 2018) to 
assess cortical correlates of belief updating, expectancy violation, and 
value updating. We observed that five channels, primarily in the right 
middle frontal gyrus (MFG) and right superior parietal gyrus (SPG) and 
right inferior parietal gyrus (IPG), showed activity that was positively 
related to belief updating, whereas the activity of one left SPG channel 
exhibited a negative correlation with belief updating (q < 0.05; Fig. 4A, 
see also Table S5 for an overview of statistics individual channels). The 
activity of six channels primarily in the left MFG and bilateral SPG was 
associated positively with expectancy violation (q < 0.05; Fig. 4B, see 
also values in Table S5). As for value updating, activity of six frontal 
channels was found to be positively related to it, whereas activity of two 
parietal channels and one left MFG channel was negatively related to 
value updating (q < 0.05; Fig. 4C, see also Table S5; note that the values 
of updating in norm-neg trials was not sign-flipped here so that the 
negative T statistics here reflect the negative values in these trials). 
Together, these results based on regressions with parametric modula-
tions of belief updating, expectancy violation and value updating yield 
activity in similar brain regions as in the fMRI results reported by 
Kobayashi and Hsu (2017). 

3.2.2. Valence-dependent effect of value updating in frontoparietal regions 
Bayesian decision theory expects the same underlying updating 

process for normatively positive or normatively negative trials. How-
ever, behaviorally we observed asymmetric updating behavior 
depending on valence, indicating non-normative underweighting of new 
information in norm-pos trials. Thus, in the second model, we compared 
cortical activity between these two categories of gamble scenarios. 

Table 1 
Best-fitting models of the influences of belief updating and expectancy violation 
on value updating in different trial categories (negative updates not sign- 
flipped*).   

Coefficient SE DF t-value p-value 

Ambiguous color draws in ambiguous gambles—same color (normatively positive) 
Constant ¡2.22 0.74 223 ¡2.99 0.003 
Belief updating 5.71 2.45 223 2.33 0.02 
Expectancy violation 2.63 0.91 223 2.90 0.004 
Ambiguous color draws in ambiguous gambles—different color (normatively negative) 
Constant 0.84 0.30 224 2.82 0.005 
Belief updating ¡13.83 2.08 224 ¡6.65 <0.001 
Ambiguous color draws in risky gambles (normatively zero) 
Constant − 0.73 0.44 224 − 1.64 0.10 
Expectancy violation 1.07 0.61 224 1.73 0.09 
Risky color draws in risky gambles (normatively zero) 
Constant − 0.21 0.14 225 − 1.55 0.12 
Risky color draws in ambiguous gambles (normatively zero) 
Constant ¡2.15 0.66 224 ¡3.24 0.001 
Expectancy violation 2.69 0.82 224 3.27 0.001  

* The coefficient for the norm-neg category is negative because Bayesian belief 
updating was included as absolute values and ΔWTSs was not sign-flipped here. 

Note. Bold font indicates statistically significant results (p < 0.05).  
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Results from the analyses revealed that HbO responses in 12 channels 
(nine frontal channels and three right parietal channels, q < 0.05; Fig. 5, 
see also Table S6) were larger in the norm-pos trials than in the norm- 
neg trials, indicating valence-dependent recruitment of these regions. 

3.3. Brain-behavior correlations of valence-dependent value updating 

Results from previous sections show valence-dependent effects both 
at the behavioral and brain levels. Specifically, worse performance 
(greater deviations from Bayesian predictions) but greater frontoparietal 
activity was found in the norm-pos trials compared to norm-neg trials. 
To better understand individual differences in valence-dependent 
cortical activity and value-updating performance in norm-pos trials, 
for each participant we extracted the contrast values (i.e., βnorm-pos - 
βnorm-neg) from four ROIs (left/right frontal/parietal, see Method section 
for details) and correlated them with individual differences in value 
updating performance in norm-pos trials and with valence-dependent 
asymmetry of the updating performance. Updating performance in 
norm-pos trials was measured by the absolute difference between 
ΔWTSs and Bayesian model prediction (|DEVnorm-pos|). The closer | 
DEVnorm-pos| is to 0, the more normative the performance (i.e., less 
underweighting of positive new information). The asymmetry in 
updating performance was defined as the difference between the abso-
lute model deviations of the norm-pos and norm-neg trials (|DEVnorm- 

pos| - |DEVnorm-neg|). Positive values in this case indicate relatively less 
normative performance of norm-pos trials compared to norm-neg trials. 

As shown in Fig. 6A, individuals with higher norm-pos vs. norm-neg 
activity in left frontal, left and right parietal cortex showed less model 
deviated value updating behavior in the norm-pos trials (rss > − 0.30, ps 
< 0.05), while a marginal effect was found in the right frontal cortex (rs 
= − 0.29, p = 0.051). After FDR correction (q < 0.05) for multiple 
testing, only the left-parietal correlation remained significant. Consis-
tently, as shown in Fig. 6B, participants with higher norm-pos vs. norm- 
neg activity also showed more normative performance in norm-pos trials 
relative to their own performance in the norm-neg trials (all rss > − 0.31, 
ps < 0.04). Other than the right-frontal region, effects in the remaining 
three regions survived the FDR correction. These correlations remained 
largely unchanged after controlling for individual’s Raven score and the 
time for completing the Raven’s test (for details see Text S3). 

4. Discussion 

Extending previous studies on mechanisms underlying updating 
processes during decision making with reducible and irreducible un-
certainty, the present study investigated potential valence-dependent 

effects on value updating and the associated cortical mechanisms in 
an adapted variant of a gamble bidding paradigm (cf. Kobayashi and 
Hsu, 2017). In combination with model-based analyses using Bayesian 
decision theory and measuring cortical activities using fNIRS while 
simultaneously assessing behavioral value updating, the active variant 
of the gamble bidding task used here not only allowed the dissociation of 
subprocesses associated with belief updating, value updating, and ex-
pectancy violation, but also the examination of valence-dependent 
mechanisms. The observed valence effects here provide the first clear 
findings of valence-dependent updating behavior in the context of de-
cision making under reducible uncertainty and the associated brain 
mechanisms. These findings have implications for discussions about 
limitations of normative Bayesian decision theory and can be inter-
preted in line with processes of statistical inference and learning when 
couched in the more general principles of Bayesian inference underlying 
perception and cognition. Below, we discuss these results in detail in 
light of previous findings and theories. 

The behavioral results from the current study corroborate previous 
empirical findings showing that young adults are sensitive to the nature 
of uncertainty (reducible vs. irreducible) and behave in a quasi-optimal 
manner when updating values after experiencing scenarios providing 
new information about the gambles (Fig. 3A; cf. Kobayashi and Hsu, 
2017; Schulreich and Schwabe, 2021). Together, these findings lend 
support for Bayesian principles about the roles of uncertainty in 
perceptual or cognitive information integration (Fiser et al., 2010; Knill 
and Pouget, 2004; Ma and Jazayeri, 2014; Pouget et al., 2013). Specif-
ically, the active inference framework postulates that in dynamic, 
probabilistic environments, individuals make inferences about statisti-
cal contingencies in the environment and gradually learn to adapt their 
internal models of the world (or beliefs) in order to minimize the dis-
crepancies between expectations based on prior knowledge and action 
outcomes (Da Costa et al., 2020; Friston, 2005, 2009). Considering our 
gamble bidding task through the lens of this framework, participants 
may have formed prior beliefs about the potential winning probability of 
a given gamble, based on the initial presentation of urn composition. 
This initial belief served as a starting point for making inferences about 
the expected value of that gamble. As the participants gained further 
information reflecting a positive or negative change in the winning 
probability in each different scenario of the gamble from trial to trial, 
the inference about the expected value of the gamble was updated as 
reflected in the ΔWTSs. Such updates across independent scenarios of a 
gamble allowed the participants to gradually learn more about the sta-
tistical properties of the gamble and update their beliefs about the 
winning probability. In line with Bayesian normative behavior, belief 
and value updating only occurred in scenarios when new information 

Fig. 4. Activation in frontoparietal regions correlated with updating processes during observed draws. (A)Belief updating, (B) expectancy violation and (C) value updating. 
Participant’s ΔWTSs were adopted as parametric modulators of value updating. ΔWTSs of normatively negative scenarios were not sign-flipped here, so the negative 
neural correlates reflected the negative value updating (see text in Results section for details). Only significant channels (FDR-q < 0.05) are shown. 
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reduced uncertainty, as in the case of ambiguous gambles. However, 
updating behavior was valence dependent and thus deviating from 
Bayesian predictions. This valence dependency calls for separate, 
valence-specific parameters in Bayesian decision theory to account for 
updating behavior with new information about increased or decreased 
winning probabilities. Similarly, generic theories in the active-inference 
(see Da Costa et al., 2020 for review) or reinforcement-learning frame-
works (see Doll et al., 2012 for review) do not usually model learning 

differently depending on outcome valence; however, these models can 
be extended by valence-specific parameters to account for 
valence-dependent inference and learning (cf. Niv et al., 2002; Pal-
minteri and Lebreton, 2022). 

At the neural level, we observed HbO activities assessed with fNIRS 
in different regions of the lateral frontoparietal cortex that were 
distinctly associated with belief updating, expectancy violation, and 
value updating (Fig. 4). The observed frontoparietal involvements 

Fig. 5. Trial category-related neural activity during observed draw. (A) Updating category contrast map for HbO. Only significant channels (q < 0.05) are shown. (B) 
Mean β-value from the HbO signal over all channels in normatively positive (red), normatively negative (blue) and normatively zero (gray) updating categories 
during observed draws. Student’s T-tests were extracted from contrast analysis in NIRS Brain AnalyzIR Toolbox (Santosa et al., 2018). The boxplots show the median 
and quartiles of the data, individual data dots are plotted. Asterisks indicate FDR q-values, ***q < 0.001, **q < 0.01, * q < 0.05. (C) Group-level average HbO 
concentration changes related to normatively positive (red), normatively negative (blue) and normatively zero (gray) updating category averaged across 4 ROIs with 
standard error of the mean as shaded area. Gray area indicates the time window of observed draw (duration = 4 s). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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suggest that both processes of inference and learning (cf. Friston, 2005) 
were involved in performing the gamble bidding task. These findings in 
part replicate observations made in earlier fMRI studies, but with an 
adapted active-bidding paradigm and a different imaging modality (i.e., 
fNIRS). While the replication of earlier fMRI findings in the different 
imaging modality of fNIRS is certainly of some interests, the main 
benefit of the study design lies in the possibility to examine brain 
mechanisms associated with valence-dependent updating behavior by 
using an active bidding paradigm, which could not be investigated 
previously in the passive variant of the task. 

Regarding replicating previous findings, the HbO signals associated 
with belief updating were found in the right lateral frontoparietal cortex, 
similar to the fMRI results reported by Kobayashi and Hsu (2017), which 
confirm the role of frontoparietal cortex in integrating new information 
with existing beliefs. Despite some variations in the exact localizations, 
several studies across different domains and contexts have confirmed 
the link between the frontoparietal cortex and belief updating (e.g., 
Gläscher et al., 2010; Visalli et al., 2019; Waskom et al., 2017). More-
over, a recent study found that applying anodal transcranial direct 
current stimulation (tDCS) over the right dorsolateral prefrontal cortex 
made young adults behave more rationally during Bayesian updating 
(Schulreich and Schwabe, 2021). Regarding expectancy violation, we 
observed associated HbO signals in the left MFG and the bilateral pos-
terior parietal cortex (PPC), which is consistent with findings from 
previous studies that decomposed the belief updating and surprise 
(Nour et al., 2018; O’Reilly et al., 2013; Schwartenbeck et al., 2016; 
Visalli et al., 2019). However, this finding differed from Kobayashi and 
Hsu’s (2017) fMRI study, which suggested a unique association between 

the activity of anterior insula and the degree of expectancy violation. 
This discrepancy in part could be due to the use of different neuro-
imaging modalities as well as differences in task procedures. Although 
both studies reported the neural correlates of updating processes during 
the phase of observing different gamble scenarios, the procedural details 
of the tasks differed markedly between the two studies. Particularly, in 
Kobayashi and Hsu’s (2017) fMRI study, the participants were merely 
required to passively observe different scenarios without actual subse-
quent bidding involved. Our active bidding procedure, which eventually 
was associated with a potential bonus at the end of the task, may engage 
participants more during task performance. Some evidence suggests that 
active/passive decision involvement may influence how people process 
decision information (Kuhnen, 2015) and the underlying neural re-
sponses (Rao et al., 2008). For instance, Kuhnen (2015) found that in-
dividuals update their beliefs more pessimistically in the loss domain 
when actively investing compared to passive involvement (i.e., only 
evaluating how good the stock is based on the provided information). 

Furthermore, going beyond results observed in the two previous 
studies (Kobayashi and Hsu, 2017; Schulreich and Schwabe, 2021), by 
allowing active bidding and simultaneously assessing cortical responses, 
we were able to detect and examine valence-dependent updating 
behavior (Fig. 3B) and cortical responses (Fig. 5). Specifically, although 
the participants generally weighed new information in a quasi-optimal 
manner after observing scenarios of gambles indicating a decrease of 
winning probability (normatively negative scenarios), they deviated 
from the Bayesian prediction and underweighted the new information 
after observing scenarios indicating an increase in winning probability 
(normatively positive scenarios). Results from model-based analyses 

Fig. 6. Correlations between updating-related cortical responses during observed draws and gambling bidding task performance. (A) Individuals with higher norm-pos vs. 
norm-neg activity in four frontoparietal regions showed more Bayesian optimal value updating (as indicated by less deviation) in the norm-pos trials. (B) Individuals 
with higher norm-pos vs. norm-neg activities also showed better relatively performance in norm-pos trials as compared to their own performance in the norm-neg 
trials. |DEV| denotes the absolute difference between ΔWTSs and Bayesian model prediction (both uncorrected p-values and the FDR corrected q-values are 
shown here). 
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suggest that the Bayesian suboptimal underweighting of new positive 
information may, in part, be associated with the influence of expectancy 
violation on value updating in scenarios indicating higher winning 
probabilities than initially thought. When predicting value updating 
behavior, the best-fitting model for norm-pos trials included both belief 
updating and expectancy violation as predictors. In contrast, only belief 
updating was required for fitting data from the norm-neg trials 
(Table 1). Results from correlational and moderation analyses lend 
further support for this finding: value updating is only associated with 
belief updating and not with expectancy violation in norm-neg trials; 
however, it is both associated with belief updating and expectancy 
violation in norm-pos trials (Fig. 3C). In terms of brain correlates, in-
dividuals with greater involvement of frontoparietal activity during the 
norm-pos trials showed less suboptimal underweighting of positive in-
formation during value updating (Fig. 6A) and a lesser asymmetry in 
valence-dependent value updating (Fig. 6B). 

Although normative Bayesian perspectives commonly assume equal 
weighting of positive and negative outcomes, human decision-making 
processes are known to be affected by other factors underlying cogni-
tion or motivation during uncertain situations (Maddox and Markman, 
2010). Thus, human decision-making behavior may not be entirely 
captured by normative predictions in many situations. In our study, for 
instance, we observed a valence-dependent value updating pattern. This 
deviation from Bayesian normativism need not be considered as biases 
of human reasoning but could also reflect bounded rationality within the 
constraints of the decision contexts and individual attributes (Kahne-
man, 2003; Gigerenzer and Selten, 2002). Previous studies found young 
adults showed quasi-optimal updating behavior and sensitivity to the 
reducibility of uncertainty (cf. Kobayashi and Hsu, 2017; Schulreich 
et al., 2020). Congruent with this, our results also indicate that partic-
ipants only updated subjective values in ambiguous gambles upon 
receiving information indicating changes in the winning probabilities. 
However, our findings introduce a new perspective: the way they carry 
out the updating deviated from Bayesian predictions as it depended on 
the valence of the new information, a factor not accounted for by 
Bayesian theory. Following a draw that indicated a decrease in winning 
probability, values were rationally adjusted downwards; however, 
following a draw that indicated an increase in winning probability, 
values were not adjusted upwards to the extent the Bayesian model 
predicted, reflecting conservative updating behavior in this case. In 
contrast to recent findings by Schulreich and Schwabe (2021), which 
showed conservative updating following both normatively positive and 
negative scenarios, our results are rather in line with the typical 
behavior of loss aversion observed when people make decisions under 
uncertain and risky situations. Prospect Theory (Kahneman and Tver-
sky, 1979) proposes a different weighting of prospective gains and losses 
during choice. In mixed gambles, for instance, people tend to show 
greater sensitivity to losses than gains (Schulreich et al., 2020; Tversky 
and Kahneman, 1992). This framework also postulates that evaluations 
of a given outcome are based on changes from a reference point (or a 
status quo) rather than on the final state. In the current study, the par-
ticipants’ initial subjective value after the urn presentation prior to 
observed draws represent a plausible reference point. An 
ambiguous-color draw that matches the winning color (i.e., the 
norm-pos scenarios) represents a gain compared to this reference point 
(i.e., prior to the draw), as it informs about an increase of the likelihood 
of winning in that gamble. In contrast, an ambiguous-color draw that 
mismatches the winning color (i.e., the norm-neg scenarios) represents a 
loss compared to the reference point, as it indicates a decrease in win-
ning probability. Interestingly, the shape of the observed function of 
deviations (as illustrated in Fig. 3A) from Bayesian predictions might be 
explained by the shape of a prospect-theoretic value function (Kahne-
man and Tversky, 1979). Specifically, a steeper slope for potential losses 
(i.e., stronger updating for negative information) would translate to a 
deviation function closer to the Bayesian prediction in our study. In a 
similar vein, the S-shape of the deviation function could be explained by 

the concavity and convexity of the prospect-theoretic value function for 
gains and losses, respectively. Our findings complement and extend the 
theory by suggesting that positive and negative events are also processed 
differently in how they are incorporated into prior beliefs. In addition, 
results from the regression analyses (Table 1) as well as moderation 
models (Fig. 3C) showed that, besides belief updating, expectancy 
violation also contributed to value updating after observing new positive 
information, but not after negative information. 

In terms of neural correlates, concurrent with the behavioral 
valence-dependent effects on value updating, we found valence- 
dependent recruitments of brain activity. Although several frontopar-
ietal regions were involved in belief and value updating in general, 
category-based contrasts directly comparing activity during norm-pos 
and norm-neg scenarios showed that greater frontoparietal activity 
was recruited when integrating new positive than negative information. 
What might underlie the greater demand of cortical resources when 
integrating new positive information albeit the associated value updat-
ing was reduced (and Bayesian suboptimal) during scenarios indicating 
increases in winning probabilities? 

One explanation might be the observed influence of expectancy 
violation (i.e., surprise). Probabilistic events are also associated with 
certain degrees of expectancy violation that do not necessarily reflect 
systematic changes in statistical contingencies of the decision contexts. 
In multi-step reinforcement-based decision tasks (e.g., Daw et al., 2011), 
expectancy violation may trigger processes associated with the so-called 
model-free (or habitual) learning instead of model-based processing. In 
the paradigm investigated here, the experimental manipulation ensured 
a relative independence of the two factors (or only negligible collin-
earity). This allowed the explorations of distinct and shared brain cor-
relates of these two processes. Other than dissociable brain activities 
observed in previous studies which were in part replicated here (see 
discussions above), belief updating and expectancy violation were both 
also associated with HbO signals in the frontoparietal region. Although 
we could not observe activity in deeper brain regions using fNIRS, ac-
tivity in the insula has been found to be uniquely associated with ex-
pectancy violation in fMRI data (Kobayashi and Hsu, 2017). Inputs from 
the insula to the striatum are known to affect reward-dependent 
behavior or memory (Haggerty et al., 2022; Parkes et al., 2015). 
Higher activity in the anterior insula and striatum have been shown to 
be associated with the tendency of a default bias (stay with a default 
option or status quo instead of switch option) during a gambling task 
(Yu et al., 2010). Taken together, these findings suggest that other than 
the frontoparietal model-based process of belief updating, model-free 
reward expectancy processes may also be engaged, particularly during 
the normatively positive scenarios. The underweighting of positive in-
formation (conservative updating) would be in line with a conjecture 
that the positive information about an increase in the winning proba-
bility of a given gamble is rewarding itself, which may either motivate 
individuals to stay with default beliefs or make them less sensitive to the 
increase in winning probability. 

Another possible interpretation could be considered in terms of 
processing demands of cognitive information theory. Specifically, it has 
been argued that encoding surprising events (cf. expectancy violation) 
requires cognitive effort (see Zénon et al., 2019, for an overview). Our 
regression analysis revealed that expectancy violation is an additional 
influence besides belief updating in predicting value updating behavior 
in norm-pos and not in norm-neg scenarios. The suboptimal perfor-
mance after observing draws indicating an increase in winning proba-
bility could be associated with an attentional distraction since surprising 
events associated with rewards may attract attentional resources away 
from other aspects of cognitive processing (cf. Anderson, 2016; Noonan 
et al., 2018). Optimal task performance thus requires recruiting addi-
tional cognitive control that ignores prepotent but irrelevant signals in 
favor of attention to decision-relevant information. Recent models of 
cognitive control proposed that the frontoparietal cortex is engaged in 
the trial-by-trial adjustment of task-relevant information, which 
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underlies top-down control (Cocchi et al., 2013; Crittenden et al., 2016; 
Marek and Dosenbach, 2018) and monitor performance. Relatedly, re-
sults from previous EEG studies also indicate that frontoparietally 
distributed event-related potentials (e.g., P300) were associated with 
processes of probabilistic expectations (Kluger et al., 2019) or uncer-
tainty resolution in a novelty processing task (Harper et al., 2016). 
Furthermore, different components of the P3 have been associated with 
perceptual inference- and learning stages as postulated by a 
predictive-processing account (Barceló, 2021). In line with these earlier 
studies, our results indicated that individuals who showed higher ac-
tivities in the frontoparietal regions deviated less from Bayesian pre-
dictions in their value updating behavior during the norm-pos scenarios. 

Consistent with our prediction, participants with higher logical 
reasoning ability as measured by the Raven’s test deviated less from the 
Bayesian prediction during value updating in all three scenario types 
(Fig. 3F). This result indicates that individuals with higher reasoning 
abilities may be more likely to utilize rational strategies, such as the use 
of Bayes’ rule, which make their updating behavior more in line with the 
Bayesian prediction. Conversely, individuals with lower reasoning 
abilities may have a less concrete model/belief about the task and were 
more inclined to rely on situational factors, such as expectancy viola-
tion, that can lead to suboptimal decision-making. These results accord 
with a previous study, which found that individuals with a higher level 
of reasoning ability acquired a complex state transition structure un-
derlying sequential decision making better than individuals with a lower 
level of reasoning ability (Eppinger et al., 2015). Taken together, under 
uncertain and dynamic environments, individual differences in 
reasoning ability may contribute to differences in utilizing new infor-
mation to update their decisions and choices. 

While our findings provide new insights into the valence-dependent 
neurocognitive processing of environmental signals, some limitations of 
this study must be noted. First, fNIRS brain imaging is restricted to a set 
of regions of interest and to the outer surface of cortical tissue due to the 
limited penetration depth of the light. Therefore, we were not able to 
investigate additional subcortical brain regions that might play an 
essential role in information processing. For instance, the cingulo- 
opercular (CON) network, including the anterior cingulate and bilat-
eral insula, was suggested to process unexpected events, highly interact 
with the frontoparietal regions, and engage in cognitive control (Dos-
enbach et al., 2008; Marek and Dosenbach, 2018; Visalli et al., 2019). 
The evidence from affective neuroscience studies suggests that the 
valence-dependent bias may be due to asymmetric emotional and neural 
responses to prospective gains and losses, which have consistently been 
identified in the striatum and the amygdala (see Schulreich et al., 2020; 
or Sokol-Hessner and Rutledge, 2019 for a review). Hence, how the 
valence-dependent effects dynamically modulate the 
cortical-subcortical interactions during adaptive uncertainty reduction 
is an interesting question for future research. Furthermore, fNIRS cannot 
address the temporal dynamic of the updating processes because of its 
relatively poor temporal resolution (in our dual system setup, 3.47 Hz). 
Future studies may consider adopting a multimodal imaging approach 
(e.g., fMRI-EEG), which combines measures of high spatial and milli-
second temporal resolution to better describe the neural dynamics of 
different updating scenarios. Finally, as our sample was relatively young 
(average age = 22.04 years), these results may not generalize to an older 
cohort. Given that aging is accompanied by a wide range of neurobio-
logical and cognitive decline (see Grady, 2012; Li and Rieckmann, 2014 
for reviews), which may also affect the decision-making quality in old 
age (e.g., Chowdhury et al., 2013; Eppinger et al., 2015; Samane-
z-Larkin et al., 2012), future research with a broader age range would be 
beneficial in investigating neurocognitive processes underlying poten-
tial age-related differences in the sensitivity to the reducibility of un-
certainty during decision making. 

5. Conclusions 

Using an active variant of a gamble bidding task in combination with 
fNIRS, we found valence-dependent effects both at the behavioral and 
neural levels in young adults. Specifically, although young adults’ 
integration of negative information is aligned with the Bayes’ rule, they 
systematically underweighted positive information. Furthermore, we 
found greater frontoparietal activities in response to positive than 
negative information, and this valence-dependent modulation of brain 
activities was associated with better performance (i.e., less under-
weighting of positive information). The suboptimal behavior updating 
after observing positive information may be associated with the impact 
of expectancy violation on motivation and attention that interfere with 
belief updating. Together, our study supported the view that fronto-
parietal regions play a crucial role in adaptive information processing 
and shed new light on the valence-dependent asymmetric updating of 
beliefs and values under uncertainty 
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Barceló, F., 2021. A predictive processing account of card sorting: fast proactive and 
reactive frontoparietal cortical dynamics during inference and learning of perceptual 
categories. J. Cogn. Neurosci. 33 (9), 1636–1656. https://doi.org/10.1162/jocn_a_ 
01662. 

Barker, J.W., Aarabi, A., Huppert, T.J., 2013. Autoregressive model based algorithm for 
correcting motion and serially correlated errors in fNIRS. Biomed. Opt. Express 4 (8), 
1366–1379. https://doi.org/10.1364/BOE.4.001366. 

Baron, R.M., Kenny, D.A., 1986. The moderator–mediator variable distinction in social 
psychological research: conceptual, strategic, and statistical considerations. J. Pers. 
Soc. Psychol. 51 (6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173. 

Becker, G.M., Degroot, M.H., Marschak, J., 1964. Measuring utility by a single-response 
sequential method. Behav. Sci. 9 (3), 226–232. https://doi.org/10.1002/ 
bs.3830090304. 

Behrens, T.E.J., Woolrich, M.W., Walton, M.E., Rushworth, M.F.S., 2007. Learning the 
value of information in an uncertain world. Nat. Neurosci. 10 (9), 9 https://doi.org/ 
10.1038/nn1954. Article.  

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J. R. Stat. Soc. 57 (1), 289–300. https://doi. 
org/10.1111/j.2517-6161.1995.tb02031.x. 

Boas, D.A., Culver, J.P., Stott, J.J., Dunn, A.K., 2002. Three dimensional Monte Carlo 
code for photon migration through complex heterogeneous media including the 
adult human head. Opt. Express 10 (3), 159–170. https://doi.org/10.1364/ 
OE.10.000159. 

Bromberg-Martin, E.S., Sharot, T., 2020. The value of beliefs. Neuron 106 (4), 561–565. 
https://doi.org/10.1016/j.neuron.2020.05.001. 

Bruine de Bruin, W., Parker, A.M., Fischhoff, B., 2020. Decision-making competence: 
more than intelligence? Curr. Dir. Psychol. Sci. 29 (2), 186–192. https://doi.org/ 
10.1177/0963721420901592. 

Cheng, X., Li, X., Hu, Y., 2015. Synchronous brain activity during cooperative exchange 
depends on gender of partner: a fNIRS-based hyperscanning study. Hum. Brain 
Mapp. 36 (6), 2039–2048. https://doi.org/10.1002/hbm.22754. 

Chowdhury, R., Guitart-Masip, M., Lambert, C., Dayan, P., Huys, Q., Düzel, E., Dolan, R. 
J., 2013. Dopamine restores reward prediction errors in old age. Nat. Neurosci. 16 
(5), 5 https://doi.org/10.1038/nn.3364. Article.  

Cocchi, L., Zalesky, A., Fornito, A., Mattingley, J.B., 2013. Dynamic cooperation and 
competition between brain systems during cognitive control. Trends Cogn. Sci. 17 
(10), 493–501. https://doi.org/10.1016/j.tics.2013.08.006. 

Cohen, J., 1988. Statistical Power Analysis For the Behavioral Sciences, second ed. 
Erlbaum. 

Coutts, A., 2019. Good news and bad news are still news: experimental evidence on belief 
updating. Exp. Econ. 22 (2), 369–395. https://doi.org/10.1007/s10683-018-9572-5. 

Crittenden, B.M., Mitchell, D.J., Duncan, J., 2016. Task encoding across the multiple 
demand cortex is consistent with a frontoparietal and cingulo-opercular dual 
networks distinction. J. Neurosci. 36 (23), 6147–6155. https://doi.org/10.1523/ 
JNEUROSCI.4590-15.2016. 

Cui, X., Bray, S., Bryant, D.M., Glover, G.H., Reiss, A.L., 2011. A quantitative comparison 
of NIRS and fMRI across multiple cognitive tasks. NeuroImage 54 (4), 2808–2821. 
https://doi.org/10.1016/j.neuroimage.2010.10.069. 

Da Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., Friston, K., 2020. Active inference 
on discrete state-spaces: a synthesis. J. Math. Psychol. 99, 102447 https://doi.org/ 
10.1016/j.jmp.2020.102447. 

D’Astolfo, L., Rief, W., 2017. Learning about expectation violation from prediction error 
paradigms—A meta-analysis on brain processes following a prediction error. Front. 
Psychol. 8 https://doi.org/10.3389/fpsyg.2017.01253. 

Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P., Dolan, R.J., 2011. Model-based 
influences on humans’ choices and striatal prediction errors. Neuron 69 (6), 
1204–1215. https://doi.org/10.1016/j.neuron.2011.02.027. 

de Winter, J.C.F., Gosling, S.D., Potter, J., 2016. Comparing the Pearson and Spearman 
correlation coefficients across distributions and sample sizes: a tutorial using 
simulations and empirical data. Psychol. Methods 21 (3), 273–290. https://doi.org/ 
10.1037/met0000079. 

Doll, B.B., Simon, D.A., Daw, N.D., 2012. The ubiquity of model-based reinforcement 
learning. Curr. Opin. Neurobiol. 22 (6), 1075–1081. https://doi.org/10.1016/j. 
conb.2012.08.003. 

Dosenbach, N.U.F., Fair, D.A., Cohen, A.L., Schlaggar, B.L., Petersen, S.E., 2008. A dual- 
networks architecture of top-down control. Trends Cogn. Sci. 12 (3), 99–105. 
https://doi.org/10.1016/j.tics.2008.01.001. 

Ellsberg, D., 1961. Risk, ambiguity, and the Savage axioms. Q. J. Econ. 75 (4), 643–669. 
https://doi.org/10.2307/1884324. 

Eppinger, B., Heekeren, H.R., Li, S.-C., 2015. Age-related prefrontal impairments 
implicate deficient prediction of future reward in older adults. Neurobiol. Aging 36 
(8), 2380–2390. https://doi.org/10.1016/j.neurobiolaging.2015.04.010. 

Fiser, J., Berkes, P., Orbán, G., Lengyel, M., 2010. Statistically optimal perception and 
learning: from behavior to neural representations. Trends Cogn. Sci. 14 (3), 
119–130. https://doi.org/10.1016/j.tics.2010.01.003. 

Friston, K., 2005. A theory of cortical responses. Philos. Trans. R. Soc. B 360 (1456), 
815–836. https://doi.org/10.1098/rstb.2005.1622. 

Friston, K., 2009. The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 
13 (7), 293–301. https://doi.org/10.1016/j.tics.2009.04.005. 

Friston, K., Moran, R.J., Nagai, Y., Taniguchi, T., Gomi, H., Tenenbaum, J., 2021. World 
model learning and inference. Neural Netw. 144, 573–590. https://doi.org/ 
10.1016/j.neunet.2021.09.011. 

Friston, K., Samothrakis, S., Montague, R., 2012. Active inference and agency: optimal 
control without cost functions. Biol. Cybern. 106 (8), 523–541. https://doi.org/ 
10.1007/s00422-012-0512-8. 
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