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SUMMARY

Huntington’s disease (HD) is a heritable, autosomal dominant, neurodegenerative disease
associated with the loss of medium spiny neurons (MSNs), cognitive and motor defects,
and ultimately death. Though it is a monogenic disease and is caused by an expanded CAG
trinucleotide repeat in the huntingtin gene (HTT), the precise pathomechanism underlying
HD is unknown. However, lysosomal expansion, lipid dyshomeostasis, defects in
autophagy, and mitochondrial function, have all been reported in HD. These phenotypes
are commonly observed in lysosomal storage disorders (LSDs) and in particular, similarities
with Niemann Pick Type C disease (NP-C), suggest a link between the two diseases. Thus,
the repurposing of n-butyl-deoxy-nojirimycin (miglustat), a competitive inhibitor of
glycosphingolipid synthesis, which is currently used for treatment of NP-C, Gaucher, and

Pompe diseases, has been suggested for treatment of HD.

This thesis aimed to assess lysosomal storage in HD, by using neural progenitors and
neurons differentiated from HD patient-derived iPSCs, to compare HD cells to isogenic-
corrected versions. We identified phenotypic differences in HD lines relative to the isogenic
control cells, related to endolysosomal structure, lipid dyshomeostasis, autophagy, and
mitochondrial structure and function. Miglustat treatment was associated with moderate
improvement related to mitochondrial length, lipid storage, and autophagosome

accumulation.

Finally, we report the generation of two HTT knockout lines, one of which was generated
from the aforementioned HD patient-derived iPSCs. The HTT knockouts facilitated
investigation into wildtype huntingtin function and conferred the ability to make three-
way comparisons with which gain or loss of HTT function in HD could be approached.
Importantly, the HTT knockouts allowed for interrogation into the relationship between
HTT and Niemann-Pick type C1 (NPC1), the protein that is defective in NP-C disease. The
results here failed to evidence a wildtype role for HTT related to NPC1, or to the lysosomal
or late endosomal compartments. However, dysregulation in autophagy and gene

expression related to development were identified in HTT knockouts, which could help to



resolve wildtype HTT function. Together, this data has expanded the basic cell biology of

HD and supplied new tools with which huntingtin function might be examined.
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1 INTRODUCTION

1.1 The Lysosome

1.1.1 Overview

The lysosome was first described by Christian De Duve in 1955, who when conducting cell
fractionation studies into mechanisms underlying insulin function, observed increased
acid phosphatase activity after sample perturbation, leading to the visualization of the
vacuoles that contained the enzyme. The term lysosome is a portmanteau of the Greek
words, 'lusis (loosen) + soma' (body) due to its initial characterization as an organelle with
an acidic interior and digestive function. In this sense lysosomes were inaccurately
designated as the "cellular stomach," and this misnomer is now understood as a gross
oversimplification, as later research has uncovered the lysosome in a complex, dynamic,
transitional, and multifunctional role and one that is central to regulating cell function

(Settembre et al. 2011b).

Lysosomes are cytoplasmic organelles, accounting for roughly 5% of the intracellular
volume, and usually range between 0.1 and 1.2 um in diameter. They contain a
glycosylated inner membrane that protects from over 60 acid hydrolases and other
degradative enzymes contained inside of the lumen (Figure 1.1)(Ballabio and Bonifacino
2020). Here, the enzymes function optimally as pH is maintained between 4.5 and 5.5 by
the proton transport action of vacuolar ATPases (V-ATPases) balanced by a counterflux of
other ion species such as CI~, Na*, and K*. The soluble enzymes work in concert with more
than 120 lysosomal membrane proteins (LMPS), towards lysosomal functioning and
processing of biological polymers e.g., proteins, nucleic acids, carbohydrates, and entire
organelles arriving from upstream points in the endocytic and autophagic pathways
(Finkbeiner 2020). Accordingly, mutations to proteins that contribute to proper lysosomal
function give rise to a class of hereditary syndromes known as lysosomal storage
disorders (LSDs), which are characterized by metabolic dysfunction, neurodegeneration,
and impaired growth (Perera and Zoncu 2016). As such, there is mounting evidence, from
our lab as well as others, for lysosomal and other vesicle trafficking defects in HD (Table

1.3). Of particular interest to our lab is the striking phenotypic resemblance between HD
1



and Niemann Pick Type C disease (NP-C) (Table 1.3). Therefore, a survey of lysosomal

structure, processes, and associations is merited.

1.1.2 The evolutionary origins of the lysosome

Eukaryogenesis is thought to have occurred with the endosymbiotic incorporation of a
protobacterial mitochondrial ancestor into an archael host. However, the evolutionary
origin of the eukaryotic endomembrane system, a defining characteristic separating
eukaryotes from prokaryotes, which includes organelles such as the endoplasmic
reticulum, nucleus, Golgi, lysosomes, peroxisomes, and autophagosomes remains
unresolved (Gould et al. 2016). Several models for the origin of the endomembrane
system have been suggested. One such model proposes a de novo origin, and that the
endomembrane system arose in an archaeal ancestor to all eukaryotic organisms, which
permitted the phagocytosis of the mitochodrial precursor cell. Other models propose a
syntrophic development by which the protobacterial endosymbiont was incorporated
into the host through a non-phagocytic mechanism, and that the ATP provided by the
protomitochondria, permitted the formation of a complex endomembrane system
(Martin et al. 2015c). Along this line of reasoning, the most recent and simple theory
proposes that the endomembrane system developed in the asgardarcheon host, from the
outer membrane vesicles secreted by its protomitochondrial endosymbiont (Jékely 2007;
Gould 2018). The further the diversity of intracellular compartments and organelles has
been proposed to have occurred via the ‘organelle paralogy hypothesis’ which posits that
because the machinery involved in vesicle trafficking involves several highly-conserved
protein families, each acting on a specific organelle or transport pathway, and because
organelle and pathway identity rely on combinatorial protein-to-protein interactions,
iterative variations (due copy number variants or genetic mutations) in these interactions
could have contributed to organelle complexity and subcellular localization (Dacks and

Field 2018). In any case there is much yet to be clarified regarding this topic.

1.1.3 Lysosomal composition
The lumen of the lysosome is bound by a single, 7-10 nm wide, phospholipid bilayer that

on its interior contains a glycoprotein layer (glycocalyx) to protect against lysosomal



autolysis. The lysosomal membrane is comprised mostly (> 80%) of lysosome-associated
membrane proteins (LAMP) 1 and LAMP2 and lysosome integral membrane protein 2
(LIMP2) along with other proteins that are highly glycosylated at their lumenal domains.
The lysosomal membrane not only acts as a barrier to isolate the acidic and hydrolytic
lumenal contents from the rest of the cell, but is critical for filling essential roles in a
diverse range of cellular processes including lipid metabolism, signaling, phagocytosis,
autophagy, membrane repair, import and efflux, viral infection, and cell death (Schwake
et al. 2013). To carry out these functions, the membrane is enriched with more than 50
types of LMPs, which are shuttled via dileucine and tyrosine targeting motifs, and bound
to adaptor proteins in, the Golgi, before transport to the lysosome (Saftig and
Klumperman 2009; Luzio et al. 2014). Though the function of many LMPs remains elusive,
many are critical to proper cell function and defects often result in lysosomal storage
disorders. One LMP, Niemann-Pick type C1 (NPC1), which is mutated in NP-C, is a central
focus of this study (Carstea et al. 1997).

The lysosomal lumen is largely populated by soluble hydrolytic proteins with an acidic pH
optima, which degrade macromolecules (e.g., proteins, carbohydrates, nucleic acids) into
their constituent components. Before sequestration to the lysosomal lumen, proenzyme
forms of the soluble hydrolases are synthesized in the rough endoplasmic reticulum (ER),
trafficked to the cis-Golgi where the majority are tagged with a mannose-6-phosphate
(M6P), before binding to M6P-receptors in the trans-Golgi network. The hydrolases are
then delivered to endosomes where M6P-receptors are cleaved and recycled, before final
transport to the lysosome (Luzio et al. 2007). Other soluble proteins are transported in a
M6P-independent manner, binding through alternative receptors e.g., LIMP-2, or sortilin
(Braulke and Bonifacino 2009). In addition to the hydrolytic enzymes, lysosomal activator
proteins (LAPs) are present which frequently aid lipid catabolism by solubilizing and
presenting lipid substrates to their matching enzyme. Transport proteins are also present,
e.g., Niemann-Pick type C2 protein (NPC2), which act as solute carriers to export the
products of lysosomal degradation. As with LMPs, hydrolases and activator proteins are

critical to normal cell function with defects often resulting in LSDs.
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Figure 1.1. Basic lysosomal structure and composition.

1.1.4 Lysosomal function

Appropriate lysosome form is critical to proper lysosomal function, which in turn is
fundamental to a complexity of cellular processes that are indispensable to cell survival
and overall health. Lysosomal processing is essential for removal of toxins, the
elimination of impaired organelles, the termination of signal transduction, and the
maintenance of metabolic homeostasis (Wang et al. 2007). It is well established that
lysosomes degrade and recycle macromolecular input arriving from the endocytosis,
autophagic, secretory, and phagocytic pathways, while outputting the derivative
monomers. It is this control of endocytosis from, and exocytosis to, the plasma

membrane that enables the interactions between the cell and its environment to be



precisely regulated (Doherty and McMahon 2009). Appropriately, the concept of the
lysosome as merely a recycling compartment has shifted towards inclusion of the
lysosome as a key signaling regulator in a sophisticated network of cellular adaptation,
which integrates several cellular parameters e.g., nutrient concentration, energy levels,
and stressors, to regulate cellular and organismal metabolism (Perera and Zoncu 2016;
Ballabio and Bonifacino 2020). As such, the lysosome plays roles in major cellular
pathways, including endocytosis, autophagy, Ca?* signaling and homeostasis, while also

interacting with other organelles, e.g., mitochondria, the ER, and the Golgi complex
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Figure 1.2 Basic outline of the endolysosomal system.



(Ballabio and Bonifacino 2020). At the transcriptional level, the coordination of these
programs are carried out by the coordinated lysosomal expression and regulation (CLEAR)
gene regulatory networks which are modulated by a control circuit involving lysosomal
calcium signaling, and transcription factor EB (TFEB) (Medina et al. 2015). Because of the
central role of the lysosome in these interconnected cellular processes, it is unsurprising

that lysosomal dysfunction would activate the pathogenic cascades observed in LSDs.

1.1.4.1 The role of the lysosome in endocytosis

There are at least five endocytic mechanisms which dictate the lipid and protein
composition of the plasma membrane and regulate a cell's interface and communication
with its external environment, of these the clathrin-mediated pathway is the most widely
documented (Van Meel and Klumperman 2008). Spatiotemporally, endocytosis begins on
the outer leaflet of the plasma membrane, with the de novo production of internal
membranes from the PM. Here, fission of the plasma membrane leads to the formation
of vesicles which envelop PM lipids, integral proteins, and extracellular fluid for
internalization (Doherty and McMahon 2009). Once internalized, the vesicles carrying the
cargo undergo a series of maturation steps, first developing into the early endosome
(Klumperman and Raposo 2014). From here, the cargo is either returned to the cell
surface for recycling, by recycling endosomes, or alternatively to the late endosome. Late
endosomes that have matured, are also called multivesicular bodies (MVBs) and it is
these that fuse with lysosomes to form endolysosomes, which are the likely domain for

break down and recycling to occur (Luzio et al. 2014; Xu and Ren 2015).

1.1.4.2 The role of the lysosome in exocytosis

Exocytosis, which can be described as the fusion of internal membranes, with the plasma
membrane, can be considered the morphological counterbalance to endocytosis (Doherty
and McMahon 2009). Through this process, the cell expels specific chemicals to the
extracellular space and delivers lipids and proteins to the PM (Doherty and McMahon
2009). Exocytosis intersects the endocytic and autophagic systems at several points; in

particular, lysosomal exocytosis, is important in cellular clearance, membrane repair,



ECM remodeling, intercellular signaling, and is essential to CNS function with pathogenic

consequences, if defective (Buratta et al. 2020).

Lysosomal exocytosis can be triggered by PM damage, which results in rapid Ca?* influx,,
in PM resealing, reduced membrane tension, sphingomyelin release, and LAMP1
localization to the PM (Reddy et al. 2001; Andrews et al. 2014). In the CNS, lysosomal
exocytosis, induced by neuronal activity can trigger the secretion of lysosomal enzymes
towards degradation of the local extracellular matrix, leading to long-term synaptic
structural changes, while conversely, cerrebellin-1 (CBLN1) released from axonal
lysosomes can generate the formation of new synapses (Ibata and Yuzaki 2021).
Lysosomal exocytosis was shown to be involved in ATP release, and in response to
different stimuli, may contribute to astrocytic intercellular signaling by promoting the
extracellular release of the ATP needed for Ca%* wave propagation in neurons (Zhang et
al. 2007). However, this mechanism might also contribute to neurodegenerative
pathways, as Ca?*-mediated lysosomal exocytosis, brought about by oxidative stress in
astrocytes, was shown to be responsible for lysosomal release of ATP into the
extracellular space, and because ATP at too high of concentrations is toxic to neurons,
lysosomal exocytosis might contribute and extend the oxidative-stress induced cellular

damage, to the tissue level (Li et al. 2019).

1.1.4.3 The role of the lysosome in autophagy

Autophagy is a set of three processes, microautophagy, chaperone mediated autophagy
(CMA) and macroautophagy, whereby intracytoplasmic macromolecules and organelles
are targeted to the lysosome for degradation or reuse (Malik et al. 2019).
Microautophagy, is a generally non-selective process by which the lysosome reorganizes
its membrane, towards engulfing cytosolic material via pinocytosis, while in CMA,
cytoplasmic proteins are selectively translocated into the lysosomal lumen for
degradation. Macroautophagy, is the path by which transient, double-membraned
organelles, autophagosomes, sequester and shuttle cytoplasmic contents e.g., organelles

and most long-lived proteins, to the lysosome. The autophagosome then fuses with the



lysosome (or the amphisome) to form the autolysosome, where substrates are degraded

into their constituent molecules, and recycled into metabolic processes.

Lysosomal function is central to autophagy, and the balance between autophagic and
lysosomal networks are tightly intertwined through a TFEB-mediated autoregulatory
loop, which by acting as a master regulator of both lysosomal and autophagy genes, TFEB
coordinates biogenesis and lysosomal-autophagosome fusion (amongst other processes)
(Settembre et al. 2011a; Settembre et al. 2013). This loop is modulated by lysosomal Ca?*
signaling, and release triggers calcineurin activation, which dephosphorylates TFEB, to

induce biogenesis and autophagy. (Settembre et al. 2011a; Medina et al. 2015).

Especially in neurons, high levels of basal macroautophagy are critical for homeostasis,
because unlike non-neuronal cells, post-mitotic and non-proliferative neurons, are unable
to dilute accumulated cellular waste through division. Thus, proper, and efficient
lysosome function is critical to autolysosomal function, with dysfunction frequently
observed in neurodegenerative diseases including Huntington's disease. Moreover,
reduced autophagosomal clearance is observed in most LSDs, including NP-C (Ballabio
and Gieselmann 2009; Son et al. 2012). In this regard, however, HD is distinct in that
autophagy is not only dysfunctional, but wildtype huntingtin also is thought to perform

several functions in regulating the dynamics of autophagy (Martin et al. 2015b).

1.2 Lipid metabolism

Lipid molecules contribute to roughly 60% of nervous tissue where they are fundamental
to cellular integrity and the propagation of electrical and chemical signals (Tamiji and
Crawford 2010). The three main families of lipids: glycerolipids, sphingolipids, and sterols
are composed of hundreds of lipid species of varied structure and function. Proper lipid
synthesis and catabolism are necessary for cell health and disruption in these pathways
can give rise to LSDs. Several studies have evidenced lipid dyshomeostasis in HD, though
it remains undetermined as to whether this indicates a primary pathogenic event, or
whether it is secondary (Desplats et al. 2007b; Valenza and Cattaneo 2011; Handley et al.
2016; Di Pardo et al. 2017b). Moreover, recent studies in the Lloyd-Evans lab highlighted

disruption, in particular, to ganglioside GM1, cholesterol, and sphingomyelin (Haslett



2015; Clark 2017). The lysosome is the primary site of lipid catabolism; therefore, a
summary of lipid transport and metabolism is merited, especially as impairments here

result in the lipid accumulation observed in LSDs.
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1.2.1 Sphingolipids

Sphingolipids constitute nearly 20% of the lipids of the CNS and largely reside on the
outer leaflet of the plasma membrane; they function in a structural capacity in neurons,
while also contributing towards regulating cellular communication, neuronal
differentiation, and maturation (Bouscary et al.). Diseases involving dysregulation of
sphingolipid metabolism form a subcategory of LSDs, the sphingolipidoses, which includes
GM1 gangliosidosis, Sandhoff disease, Gaucher's disease, and Niemann-Pick type C;
sphingolipid dysregulation has been linked to neurodegenerative processes in other
diseases as well e.g., PD and ALS, though the mechanisms underlying the patterns of
storage and how this storage results in neurodegeneration remains unclear (Lloyd-Evans

et al. 2008).

Sphingolipids, defined by their underlying structure, are usually constituted by a long-
chain 18 carbon amino-alcohol backbone (Figure 1.3), the modification of which produces
the vast sphingolipid diversity (Gault et al. 2010). Sphingolipids, can be separated into
either sphingomyelins or glycosphingolipids, the former consisting of a ceramide attached
to a phosphocholine or phosphoethanolamine headgroup, while the latter are composed
of sphingosine linked to a glycan moiety (Garg and Smith 2017). More complex
sphingolipids are formed as these lipid anchors can then be decorated with a variety of
charged, neutral, phosphorylated and/or glycosylated moieties, which contribute to both
polar and nonpolar regions, thus, conferring amphipathic properties, which explains their
propensity to aggregate into membranous structures (Gault et al. 2010). Furthermore,
the wide diversity in sphingolipid chemical structures enables them to perform distinctive
roles within cellular metabolism (Merrill Jr and Sandhoff 2002). However, despite the
large sphingolipid diversity, their generation and degradation are governed by common
synthetic pathways, centered around ceramide production, and can be thought of as an
array of interconnected networks that diverge from a common entry point to be broken

down by a single breakdown pathway (Gault et al. 2010).
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1.2.2 Sphingolipid metabolism

De novo synthesis

Cells acquire sphingolipids intrinsically via de novo biosynthesis and extrinsically through
uptake and recycling, acquisition is centered around the production of ceramide (Figure
1.4). De novo ceramide synthesis occurs via the sphingolipid biosynthetic pathway, and is
initiated on the cytosolic surface of the ER, as the localized enzyme, serine palmitoyl
transferase (SPT) condenses palmitoyl-CoA and L-serine to yield 3-keto-
dihydrosphinganine (3KS) (Braun and Snell 1968; Stoffel et al. 1968). Subsequent
reduction of 3KS by 3-ketosphinganine reductase (KDSR) yields dihydrosphinganine. Next,
fatty acyl-CoA is coupled to the dihydrosphinganine by ceramide synthase (CerS),
resulting in the formation of dihydroceramides that vary in the length of the amide-
bound fatty acid. Lastly, double bond formation between carbons C-4 and C-5 is mediated
by dihydroceramide desaturase (DEGS) resulting in nascent ceramides which are then
shuttled, via the ceramide transfer protein (CERT), to the Golgi, where they act as
substrates in the synthesis of more complex sphingolipids such as sphingomyelin or

glycosphingolipids e.g., gangliosides (Wigger et al. 2019).
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1.2.2.1 Sphingolipid Recycling

1.2.2.1.1 The salvage pathway

Sphingolipid recycling can be divided and categorized by the subcellular location in which
the processes occur, as either lysosomal or nonlysosomal. The salvage pathway refers to
a process of sphingosine recycling and constitutive degradation of long chain sphingoid
bases. The salvage pathway has been shown to play an important role in ceramide
metabolism and function, by modulating ceramide biosynthesis and ceramide-dependent
cell signaling. This process occurs mainly in the lysosome, and competes with de novo
synthesis to provide input for sphingolipid production, supplying free sphingosine (de
novo mainly produces dihydro sphingosine) for production of between 50 and 90% of
cellular glycosphingolipids, depending on cell type (Gillard et al. 1998; Kitatani et al. 2008;
Schulze and Sandhoff 2011). In the lysosome, glycosphingolipid breakdown occurs as
sugar residues are cleaved, resulting in the formation of glucosylceramide (GluCer),
galactosylceramide (GalCer), which are then hydrolyzed by B-glucocerebrosidases (GCase)
or B-galactosidases (B-gal) to form ceramide. Additional lysosomal ceramide formation
occurs via the hydrolysis of sphingomyelin, mediated by acid sphingomyelinase (ASMase).
Ceramide input from these lysosomal pathways can then be deacylated by acid
ceramidases (CDase) to form sphingosine. The sphingosine can then be exported from
the lysosome to the cytoplasm, where it can subsequently be reacylated by ceramide
synthase (CerS) to from ceramide. It is important to note that defects in the function of
these hydrolytic enzymes and dysregulation along the ceramide-sphingosine axis has
been observed and is a likely contributor to several neurodegenerative and LSDs, and
aberrant sphingosine efflux has been implicated as a causal factor of NP-C (Lloyd-Evans et

al. 2008; Young et al. 2012).

1.2.2.1.2 The sphingomyelinase pathway

Nonlysosomal recycling via the sphingomyelinase pathway can occur on the plasma
membrane (or in association with lipoproteins), in a bidirectional reaction. Here,
ceramide is generated by the breakdown of sphingomyelin, which is degraded by ASMase
to yield ceramide, in-turn ceramide can be deacylated by acid-neutral ceramidases to
produce free sphingosine. In the other direction, sphingomyelin synthase converts

ceramide to sphingomyelin by the addition of a phosphocholine molecule, the product of
14



phosphatidylcholine breakdown into diacylglycerol (Jenkins et al. 2009; Merscher and
Fornoni 2014). Sphingomyelinase and its associated enzymes and activator proteins, are
critical to lysosomal sphingomyelin turnover, as defects are responsible for sphingolipid
accumulation, and contribute to dysfunction in a major fraction of LSDs, including all of

the sphingolipidoses as well as NP-C. (Young et al. 2012).

1.2.2.2 Sphingolipid degradation

Proper sphingolipid degradation is indispensable for regulating lipid homeostasis and
healthy cell functioning. Because lipids are not excreted as readily as more hydrophilic
molecules, and failure to do so results in lipid accumulation, there is a substantial
evolutionary risk leveraged against the benefits of lipid production, in that organisms
must be capable of catabolizing each lipid that is synthesized (Gault et al. 2010; Young et
al. 2012; Garg and Smith 2017). Therefore, it is understandable, that for each enzyme
that produces a particular sphingolipid, there is a corresponding and diametrically
opposite enzyme capable of breaking down the generated product. The concept of LSDs
is fundamentally based on lipid accumulation due to specific defects in catabolic
enzymes, and mutations in sphingolipid catabolizing enzymes are causative factors in a
substantial number of these diseases (Gault et al. 2010). Parallel with the production of
hundreds of individual sphingolipid variants from an input of a few sphingolipid
precursors, there is a single common terminal degradation pathway, as all sphingolipids
are broken down in a step-wise manner into their constituent components from
ceramide to, sphingosine, sphingosine-1-phosphate, and finally to hexadecenal and

phosphoethanolamine (Gault et al. 2010).

The initial step in the degradation process is carried out through the deacylation of
ceramide into sphingosine by ceramidase enzymes, which are classified according to their
respective pH optima. Acid ceramidase is responsible for the ceramide breakdown in the
lysosome, and defects in this enzyme lead to Farber disease. In the second step,
sphingosine is converted to sphingosine-1-phosphate by members of the DAG kinase
family, sphingosine kinases 1 or 2 (SK1 or SK2). Though similar, SK1 and SK2 vary slightly
in their subcellular localization and substrate specificity. Generally, however, SK1 and SK2
are cytosolic (though indirectly membrane-associated) and phosphorylate sphingosine at

the C-1 hydroxy, in and ATP-dependent manner, to produce sphingosine-1-phosphate
15



(S1P). In the final step of sphingolipid catabolism, phosphorylated sphingoid bases, are
converted to hexadecenal and phosphoethanolamine, by sphingosine-1-phosphate lyase

on the cytosolic face of the ER.

1.2.2.3 Gangliosides

Gangliosides represent one of many classes of glycolipids and therefore contain a
carbohydrate linked to a hydrophobic lipid moiety through a covalent, glycosidic bond.
More specifically, gangliosides (and globosides) are glycosphingolipids and therefore their
lipid moiety exists as a sphingoid base or ceramide. In particular, gangliosides are defined
by the presence of one or more sialic acids (N-acetylneuraminic acid or N-
glycolylneuraminic acid) attached to the carbohydrate moiety. Gangliosides are especially
important in CNS tissue where they constitute 10-12% of the lipid content, largely
localized to the PM where they are anchored by their ceramide group, while their glycan
moiety is exposed on the cell surface. Gangliosides function in cell recognition, adhesion,
signal transduction, and in regulating calcium homeostasis (Robert K et al. 2011; Breiden
and Sandhoff 2018; Sandhoff and Sandhoff 2018b). Dysfunctions in ganglioside
metabolism are common in disease, and are classified as, gangliosidoses. Moreover,

defects in ganglioside metabolism are seen in HD and NP-C (Maglione et al. 2010).

1.2.2.4 Ganglioside Synthesis

As with other sphingolipids, ganglioside synthesis begins in the ER, with the production of
ceramide (Figure 1.5). Ceramide is then transferred to the cytosolic face of the Golgi
complex by ceramide ER transfer protein (CERT) or via vesicular transport. Notably,
glucosylceramide synthase then mediates the first step for the majority of downstream
glycosphingolipid synthesis by linking a UDP-glucose (uridine diphosphate glucose)
molecule to the C1 hydroxyl position on the sphingosine base, to yield GluCer. Following
this, the glucosylceramides are transferred to the luminal leaflet of the Golgi where a
galactose moiety is added by lactosylceramide synthase, resulting in lactosylceramide
(LacCer), which forms the basis for the majority of gangliosides, with the exception of
ganglioside GM4. LacCer, acts as a substrate to facilitate GSL anabolism into various GSL
series. In neurons, the basic ganglioside GM3 is generated by the addition of a sialic acid
to the galactosyl moiety of LacCer by GM3 synthase. Additional sialylation reactions, yield

GD3, and then GT3 which are the molecular foundations for the a, b, and c series of
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gangliosides, respectively. Following the a-series progression to the ganglioside GM1, the
next step involves the conversion of GM3 to GM2 by GM2 synthase, and then from GM2
to GM1 through GM1 synthase (Gault et al. 2010; Robert K et al. 2011; Sandhoff and
Sandhoff 2018b). Notably, however, diseases associated with defective ganglioside
synthesis are extremely rare, while malfunctions along catabolic pathways lead to several

well-known diseases (Figure 1.6).
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Figure 1.5. Outline of ganglioside synthesis.

1.2.2.5 Ganglioside Catabolism

Ganglioside degradation begins as gangliosides are endocytosed and trafficked to late
endosomes and lysosomes where, lipid-binding cofactors, specifically sphingolipid
activator proteins (SAPs), work in concert with soluble glycosidases, lipases, and
phospholipases towards catabolism; notably, this process is thought to occur in

intralysosomal vesicles (ILVs). For example, in complex gangliosides, stepwise removal of
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terminal sialic acid molecules by neuraminidases, results in GM1. Next, GM1 degradation
proceeds as GM1-B-galactosidase, in cooperation with GM2 activator protein or saposin
B, mediates the removal of the terminal galactose to generate GM2. Following this, B-
hexosaminidase A and GM2 activator protein, act to release the terminal N-
acetylgalactosamine residue to form GM3, which can be broken down to LacCer by an a-
sialidase and Sap B. LacCer is degraded to GluCer by The Sap B or Sap C-assisted action of
B-galactosidase, while the glucosyl residue is cleaved by Sap C-assisted B-glucosidase.
Finally, acid ceramidase and Sap D coordinate to split ceramide into its constituents
sphingoid base and free fatty acids (Sandhoff and Sandhoff 2018a). Since sphingolipids
are mainly recycled, with limited de novo synthesis, it is unsurprising that several LSDs

are associated with malfunctions in these hydrolytic steps (Figure 1.6).
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Figure 1.6. Sphingolipid catabolic pathways, associated enzymes, and diseases.
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1.2.2.6 Cholesterol

Cholesterol is the most abundant and well studied lipid in mammalian cells, however,
understanding of the cholesterol-associated pathways and metabolic processes are
incomplete. Cholesterol is a main component of cell membranes and is a precursor to
numerous biological molecules. Though the CNS only accounts for roughly 2% of the
body, it contains roughly 25% of the cholesterol, and of that, cholesterol is mainly (70% -
80%) incorporated into myelin, thus underscoring its importance, especially in the CNS
(Dietschy and Turley 2004; Ikonen and Zhou 2021). Cholesterol metabolism in the brain
differs from that occurring in peripheral tissues, as the blood brain barrier prevents
cholesterol uptake from circulation (with the exception of 27-hydroxycholesterol or via
the scavenger receptor class B type 1), thus nearly all CNS cholesterol synthesis and
recycling are regulated locally and independently of the rest of the body (Jeske and
Dietschy 1980; Bjorkhem and Meaney 2004). The rate of cholesterol synthesis in neurons
and glial cells is greatest during embryogenesis and childhood. However, in adults,
neuron populations become reliant on cholesterol-containing lipoproteins secreted by
glial cells, as they gradually lose their capacity for de novo synthesis (Vitali et al. 2014).
There is substantial evidence to demonstrate the importance of cholesterol's role in
multiple biological processes and overall cell functioning, while defective cholesterol
homeostasis has been observed in numerous diseases. As such, dysregulation in
cholesterol levels and turnover are frequently observed in neurodegenerative and
lysosomal storage diseases, again including NP-C and HD (Bjérkhem and Meaney 2004;

Sitaula and Burris 2016; Parenti et al. 2021).

1.2.2.6.1 De novo synthesis

De novo biosynthesis of cholesterol can be upregulated by brain derived neurotrophic
factor (BDNF) and begins with the starting input of acetyl-coenzyme A (acetyl-CoA),
produced in, and transported from, mitochondria. The initial step in the pathway occurs
in the cytosol, as 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HMGCS) condenses
one molecule of acetyl-coenzyme A and one molecule of acetoacetyl-CoA to yield one
molecule of HMG-CoA, with subsequent steps occurring in the ER (Figure 1.7). Next, in
the rate-limiting step, HMG-CoA is reduced to mevalonic acid by HMG-CoA reductase
(HMGCR), which then undergoes a series of steps and is further phosphorylated to
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isopentyl pyrophosphate, which is then converted to geranyl pyrophosphate. Geranyl
pyrophosphate is then combined with another isopentyl pyrophosphate to make farnesyl
pyrophosphate. Two molecules of farnesyl pyrophosphate are then condensed via
squalene synthase to form squalene, which is then cyclized to yield lanosterol. From here
processes leading from lanosterol to cholesterol can diverge into the Bloch or Kandutsch-
Russel pathways, with the latter (or a modified version thereof) being the most prevalent
in CNS tissue, where the absolute rate of de novo CNS cholesterol synthesis is relatively

low (Mitsche et al. 2015; Sitaula and Burris 2016).

1.2.2.6.2 Cholesterol uptake in neurons

Cholesterol is essential to, and involved in, several CNS functions including, structural
maintenance, regulation of lipid and membrane fluidity, transport, permeability of ions
and metabolites, action potential propagation, as well as neuron growth and
development (Gonzalez-Guevara et al. 2020). Accordingly, cholesterol distribution and
metabolism are subjects of great interest. While the synthesis of cholesterol is critical
during neurodevelopment, adult neurons primarily rely on uptake of extracellular
cholesterol released from glial cells (mainly astrocytes) which are thought to produce
roughly 95% of cholesterol in the brain (Dietschy 2009). For example, from astrocytes,
after synthesis, cholesterol can be shuttled from the ER to endosomes, or into the
extracellular space mediated by ATP-binding cassette transporters (ABCA1). Cholesterol is
then chaperoned by apolipoprotein E (ApoE) in low-density lipoprotein (LDL) complexes,
to the neuronal LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) receptors
where they are internalized through receptor-mediated endocytosis