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Abstract Discovering the rules of synaptic plasticity is an important step for understanding 
brain learning. Existing plasticity models are either (1) top- down and interpretable, but not flex-
ible enough to account for experimental data, or (2) bottom- up and biologically realistic, but too 
intricate to interpret and hard to fit to data. To avoid the shortcomings of these approaches, we 
present a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic 
enzyme dynamics to predict plasticity outcomes. We apply this readout to a multi- timescale model 
of hippocampal synaptic plasticity induction that includes electrical dynamics, calcium, CaMKII 
and calcineurin, and accurate representation of intrinsic noise sources. Using a single set of model 
parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex 
vivo experiments covering various spike- timing and frequency- dependent plasticity induction proto-
cols, animal ages, and experimental conditions. Our model also predicts that in vivo- like spike timing 
irregularity strongly shapes plasticity outcome. This geometrical readout modelling approach can be 
readily applied to other excitatory or inhibitory synapses to discover their synaptic plasticity rules.

Editor's evaluation
Synaptic plasticity is a ubiquitous but also highly complex phenomenon and developing a unifying 
description has been challenging. This study presents a realistic biophysical model of plasticity 
induction, with a novel read- out of CaMKII and Calcineurin. It is able to describe a wide range of 
experimental results and sets a new benchmark for realistic computational models.

Introduction
To understand how brains learn, we need to identify the rules governing how synapses change their 
strength in neural circuits. The dominant principle at the basis of current models of synaptic plas-
ticity is the Hebb postulate (Hebb, 1949) which states that neurons with correlated electrical activity 
strengthen their synaptic connections, while neurons active at different times weaken their connec-
tions. In particular, spike- timing- dependent plasticity (STDP) models (Blum and Abbott, 1996; 
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Gerstner et al., 1996; Eurich et al., 1999) were formulated based on experimental observations 
that precise timing of pre- and post- synaptic spiking determines whether synapses are strengthened 
or weakened (Debanne et al., 1996; Tsodyks and Markram, 1997; Bi and Poo, 1998; Markram 
et al., 2011). However, experiments also found that plasticity induction depends on the rate and 
number of stimuli delivered to the synapse (Dudek and Bear, 1992; Sjöström et al., 2001), and the 
level of dendritic spine depolarisation (Artola et al., 1990; Magee and Johnston, 1997; Sjöström 
and Häusser, 2006; Golding et al., 2002; Hardie and Spruston, 2009). The lack of satisfactory plas-
ticity models based solely on neural spiking prompted researchers to consider simple models based 
on synapse biochemistry (Castellani et al., 2001; Castellani et al., 2005). Following a proposed 
role for postsynaptic calcium (Ca2+) signalling in synaptic plasticity (Lisman, 1989), previous models 
assumed that the amplitude of postsynaptic calcium controls long- term alterations in synaptic 
strength, with moderate levels of calcium causing long- term depression (LTD) and high calcium 
causing long- term potentiation (LTP) (Shouval et  al., 2002; Karmarkar and Buonomano, 2002). 
However, experimental data suggests that calcium dynamics are also important (Yang et al., 1999; 
Mizuno et al., 2001; Wang et al., 2005; Nevian and Sakmann, 2006; Tigaret et al., 2016). As a 
result, subsequent phenomenological models of plasticity incorporated slow variables that integrate 
the fast synaptic input signals, loosely modelling calcium and its downstream effectors (Abarbanel 
et al., 2003; Rubin et al., 2005; Rackham et al., 2010; Clopath and Gerstner, 2010; Kumar and 
Mehta, 2011; Graupner and Brunel, 2012; Honda et al., 2013; Standage et al., 2014; De Pittà 
and Brunel, 2016). Concurrently, more detailed models tried to explicitly describe the molecular 
pathways integrating the calcium dynamics and its stochastic nature (Cai et al., 2007; Shouval and 
Kalantzis, 2005; Miller et al., 2005; Zeng and Holmes, 2010; Yeung et al., 2004). However, even 
these models do not account for data showing that plasticity is highly sensitive to physiological 
conditions such as the developmental age of the animal (Dudek and Bear, 1993; Meredith et al., 
2003; Cao and Harris, 2012; Cizeron et al., 2020), extracellular calcium and magnesium concen-
trations (Mulkey and Malenka, 1992; Inglebert et al., 2020) and temperature (Volgushev et al., 
2004; Wittenberg and Wang, 2006; Klyachko and Stevens, 2006). This limits the predictive power 
of this class of plasticity models.

An alternative approach taken by several groups (Bhalla and Iyengar, 1999; Jędrzejewska- Szmek 
et al., 2017; Blackwell et al., 2019; Chindemi et al., 2022; Zhang et al., 2021) was to model the 
complex molecular cascade leading to synaptic weight changes. The main benefit is the direct corre-
spondence between the model’s components and biological elements, but at the price of numerous 
poorly constrained parameters. Additionally, the increased number of nonlinear equations and 
stochasticity makes fitting to plasticity experiment data difficult (Mäki- Marttunen et al., 2020).

Subtle differences between experimental STDP protocols can produce completely different 
synaptic plasticity outcomes, indicative of finely tuned synaptic behaviour as detailed above. To 
tackle this problem, we devised a new plasticity rule based on a bottom- up, data- driven approach by 
building a biologically- grounded model of plasticity induction at a single rat hippocampal CA3–CA1 
synapse. We focused on this synapse type because of the abundant published experimental data 
that can be used to quantitatively constrain the model parameters. Compared to previous models 
in the literature, we aimed for an intermediate level of detail: enough biophysical components to 
capture the key dynamical processes underlying plasticity induction, but not the detailed molecular 
cascade underlying plasticity expression; much of which is poorly quantified for the various experi-
mental conditions we cover in this study.

Our model is centred on dendritic spine electrical dynamics, calcium signalling and immediate 
downstream molecules, which we then map to synaptic strength change via a conceptually new 
dynamical, geometric readout mechanism. It assumes that a compartment- based description of 
calcium- triggered processes is sufficient to reproduce known properties of LTP and LTD induction. 
Also, neither spatially- resolved elements (Bartol et  al., 2015; Griffith et  al., 2016) nor calcium- 
independent processes are required to predict the observed synaptic change. Crucially, the model 
also captured intrinsic noise based on the stochastic switching of synaptic receptors and ion channels 
(Yuste et al., 1999; Ribrault et al., 2011). We report that, with a single set of parameters, the model 
could account for published data from spike- timing and frequency- dependent plasticity experiments, 
and variations in physiological parameters influencing plasticity outcomes. We also tested how the 
model responded to in vivo- like spike timing jitter and spike failures.

https://doi.org/10.7554/eLife.80152
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Results
A multi-timescale model of synaptic plasticity induction
We built a computational model of plasticity induction at a single CA3- CA1 rat glutamatergic synapse 
(Figure 1). Our goal was to reproduce results on synaptic plasticity that explored the effects of several 
experimental parameters: fine timing differences between pre and postsynaptic spiking (Figure 2 and 
Figure 3); stimulation frequency (Figure 4); animal age (Figure 5); external calcium and magnesium 
(Figure 6); stochasticity in the firing structure (Figure 7), temperature and experimental conditions vari-
ations (Supplemental Information). Where possible, we set parameters to values previously estimated 
from synaptic physiology and biochemistry experiments, and tuned the remainder within physiolog-
ically plausible ranges to reproduce our target plasticity experiments (see Materials and methods).

The model components are schematized in Figure 1 (full details in Materials and methods). For 
glutamate release, we used a two- pool vesicle depletion and recycling system, which accounts for 
short- term presynaptic depression and facilitation. When glutamate is released from vesicles, it can 
bind to the postsynaptic α-amino- 3- hydroxy- 5- methyl- 4- isoxazolepropionic acid and N- methyl- D- 
aspartate receptors (AMPArs and NMDArs, respectively), depolarizing the spine head by ∼30  mV 
(Kwon et al., 2017; Jayant et al., 2017; Beaulieu- Laroche and Harnett, 2018). The dendritic spine 
membrane depolarization causes the activation of voltage- gated calcium channels (VGCCs) and 
removes magnesium ([Mg2+]o) block from NMDArs. Backpropagating action potentials (BaP) can also 
depolarize the spine membrane by up to ∼60 mV (Kwon et al., 2017; Jayant et al., 2017). As an 
inhibitory component, we modelled a gamma- aminobutyric acid receptor (GABAr) synapse on the 
dendrite shaft (Destexhe et al., 1998). Calcium ions influx through VGCCs and NMDArs can activate 
SK potassium channels (Adelman et al., 2012; Griffith et al., 2016), which provide a tightly- coupled 
local negative feedback limiting spine depolarisation. Upon entering the spine, calcium ions also bind 
to calmodulin (CaM). Calcium- bound CaM in turn activates two major signalling molecules (Fujii et al., 
2013): Ca2+/calmodulin- dependent protein kinase II (CaMKII) and calcineurin (CaN) phosphatase, also 
known as PP2B (Saraf et al., 2018). We included these two enzymes because of the overwhelming 
evidence that CaMKII activation is necessary for Schaffer- collateral LTP (Giese et al., 1998; Chang 
et al., 2017), while CaN activation is necessary for LTD (O’Connor et al., 2005; Otmakhov et al., 
2015). Later, we show how we map the joint activity of CaMKII and CaN to LTP and LTD. Ligand- gated 
ion channels (ionotropic receptors) and voltage- gated ion channels have an inherent random behavior, 
stochastically switching between open, closed and internal states (Ribrault et al., 2011). If the number 
of ion channels is large, then the variability of the total population activity becomes negligible relative 
to the mean (O’Donnell and van Rossum, 2014). However individual hippocampal synapses contain 
only small numbers of receptors and ion channels, for example they contain ∼10 NMDArs and <15 
VGCCs (Takumi et al., 1999; Sabatini and Svoboda, 2000; Nimchinsky et al., 2004), making their 
total activation highly stochastic. Therefore, we modelled AMPAr, NMDAr, VGCCs and GABAr as 
stochastic processes. Presynaptic vesicle release events were also stochastic: glutamate release was 
an all- or- none event, and the amplitude of each glutamate pulse was drawn randomly, modelling 
heterogeneity in vesicle size (Liu et al., 1999). The inclusion of stochastic processes to account for 
an intrinsic noise in synaptic activation (Deperrois and Graupner, 2020) contrasts with most previous 
models in the literature, which either represent all variables as continuous and deterministic or add an 
external generic noise source (Bhalla, 2004; Antunes and De Schutter, 2012; Bartol et al., 2015).

The synapse model showed nonlinear dynamics across multiple timescales. For illustration, we 
stimulated the synapse with single simultaneous glutamate and GABA vesicle releases (Figure 1b). 
AMPArs and VGCCs open rapidly but close again within a few milliseconds. The dendritic GABAr 
closes more slowly, on a timescale of ∼10 ms. NMDArs, the major calcium source, closes on timescales 
of ∼50 and ∼250 ms for the GluN2A and GluN2B subtypes, respectively.

To show the typical responses of the spine head voltage and Ca2+, we stimulated the synapse with a 
single presynaptic pulse (EPSP) paired 10 ms later with a single BaP (1Pre1Post10; Figure 1c left). For 
this pairing, the arrival of a BaP at the spine immediately after an EPSP, leads to a large Ca2+ transient 
aligned with the BaP due to the NMDArs first being bound by glutamate then unblocked by the BaP 
depolarisation (Figure 1c right).

Single pre or postsynaptic stimulation pulses did not cause depletion of vesicle reserves or substan-
tial activation of the enzymes. To illustrate these slower- timescale processes, we stimulated the 
synapse with a prolonged protocol: one presynaptic pulse followed by one postsynaptic pulse 10 ms 

https://doi.org/10.7554/eLife.80152
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later, repeated 30 times at 5 Hz (Figure 1d–e). The number of vesicles in both the docked and reserve 
pools decreased substantially over the course of the stimulation train (Figure 1d left), which in turn 
caused decreased vesicle release probability. Similarly, by the 30th pulse, the dendritic BaP amplitude 
had attenuated to ∼85% (∼70% BaP efficiency; Figure 1d right) of its initial amplitude, modelling the 
effects of slow dendritic sodium channel inactivation (Colbert et al., 1997; Golding et al., 2001). Free 
CaM concentration rose rapidly in response to calcium transients but also decayed back to baseline 
on a timescale of ∼500 ms (Figure 1e top). In contrast, the concentration of active CaMKII and CaN 
accumulated over a timescale of seconds, reaching a sustained peak during the stimulation train, then 
decayed back to baseline on a timescale of ∼10 and ∼120 s respectively, in line with experimental data 
(Quintana et al., 2005; Fujii et al., 2013; Chang et al., 2017; Figure 1e).

The effects of the stochastic variables can be seen in Figure 1b–d. The synaptic receptors and ion 
channels open and close randomly (Figure 1b). Even though spine voltage, calcium, and downstream 
molecules were modelled as continuous and deterministic, they inherited some randomness from the 
upstream stochastic variables. As a result, there was substantial trial- to- trial variability in the voltage 
and calcium responses to identical pre and postsynaptic spike trains (grey traces in Figure 1c). This 
variability was also passed on to the downstream enzymes CaM, CaMKII and CaN, but was filtered 
and therefore attenuated by the slow dynamics of CaMKII and CaN. In summary, the model contained 

Figure 1. | The synapse model, its timescales and mechanisms. (a), Model diagram with the synaptic components including pre and postsynaptic 
compartments and inhibitory transmission (bottom left). AMPAr, NMDAr: AMPA- and NMDA- type glutamate receptors respectively; GABA(A)r: Type 
A GABA receptors; VGCC: R-, T- and L- type voltage- gated Ca2+ channels; SK: SK potassium channels. (b), Stochastic dynamics of the different ligand- 
gated and voltage- gated ion channels in the model. Plots show the total number of open channels as a function of time. The insets show a zoomed time 
axis highlighting the difference in timescale of the activity among the channels. (c), Dendritic spine membrane potential (left) and calcium concentration 
(right) as function of time for a single causal (1Pre1Post10) stimulus (EPSP: single excitatory postsynaptic potential, ‘1Pre’; BaP: single back- propagated 
action potential, ‘1Post’). (d), Left: depletion of vesicle pools (reserve and docked) induced by 30 pairing repetitions delivered at 5 Hz (Sterratt et al., 
2011), see Materials and methods. The same depletion rule is applied to both glutamate- and GABA- containing vesicles. Right: BaP efficiency as 
function of time. BaP efficiency phenomenologically captures the distance- dependent attenuation of BaP (Buchanan and Mellor, 2007; Golding et al., 
2001), see Materials and methods. (e), Concentration of active enzyme for CaM, CaN, and CaMKII, as function of time triggered by 30 repetitions of 
1Pre1Post10 pairing stimulations delivered at 5 Hz. The vertical grey bar is the duration of the stimuli, 6 s. The multiple traces in the graphs in panels c 
(right) and e reflect the run- to- run variability due to the inherent stochasticity in the model.

https://doi.org/10.7554/eLife.80152
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stochastic nonlinear variables acting over five different orders of magnitude of timescale, from ∼1 ms 
to ∼1 min, making it sensitive to both fast and slow components of input signals.

Distinguishing between stimulation protocols using the CaMKII and 
CaN joint response
It has proven difficult for simple models of synaptic plasticity to capture the underlying rules and 
explain why some stimulation protocols induce plasticity while others do not. We tested the model’s 
sensitivity by simulating its response to a set of protocols used by Tigaret et al., 2016 in a recent ex 
vivo experimental study on adult (P50- 55) rat hippocampus with blocked GABAr. We schematized 
the Tigaret et al., 2016 protocols in Figure 2a. Notably, three leading spike- timing and calcium- 
dependent plasticity models (Song et al., 2000; Pfister and Gerstner, 2006; Graupner and Brunel, 
2012) could not fit well these data (Figure 2b–d). Next, we asked if our new model could distinguish 
between three pairs of protocols (see Figure 2e–m). For each of these pairs, one of the protocols 
experimentally induced LTP or LTD, while the other subtly different protocol caused no change (NC) 
in synapse strength.

The first pair of protocols differed in intensity. A protocol which caused no plasticity consisted 
of 1 presynaptic spike followed 10 ms later by one postsynaptic spike repeated at 5 Hz for 1 min 
(1Pre1Post10, 300 at 5 Hz). The other protocol induced LTP, but differed only in that it included a 
postsynaptic doublet instead of a single spike (1Pre2Post10, 300 at 5 Hz), implying a slightly stronger 
initial BaP amplitude. We first attempted to achieve separability by plotting CaMKII or CaN activities 
independently. As observed in the plots in Figure 2e, it was not possible to set a single concentration 
threshold on either CaMKII or CaN that would discriminate between the protocols. This result was 
expected, at least for CaMKII, as recent experimental data demonstrates a fast saturation of CaMKII 
concentration in dendritic spines regardless of stimulation frequency (Chang et al., 2017).

To achieve better separability we set out to test a different approach, which was to combine the 
activity of the two enzymes, by plotting the joint CaMKII and CaN responses against each other 
on a 2D plane (Figure 2f). This innovative geometric plot is based on the mathematical concept of 
orbits from dynamical systems theory (Meiss, 2007). In this plot, the trajectories of two protocols 
can be seen to overlap for the initial part of the transient and then diverge. To quantify trial- to- trial 
variability, we also calculated contour maps showing the mean fraction of time the trajectories spent 
in each part of the plane during the stimulation (Figure 2g). Importantly, both the trajectories and 
contour maps were substantially non- overlapping between the two protocols, implying that they can 
be separated based on the joint CaN- CaMKII activity. We found that the 1Pre2Post10 protocol leads 
to a weaker response in both CaMKII and CaN, corresponding to the lower blue traces in Figure 2f. 
The decreased response to the doublet protocol was due to the stronger attenuation of dendritic BaP 
amplitude over the course of the simulation (Golding et al., 2001), leading to reduced calcium influx 
through NMDArs and VGCCs (data not shown).

Using the second pair of protocols, we explored if this combined enzyme activity analysis could 
distinguish between subtle differences in protocol sequencing. We stimulated our model with one 
causal paring protocol (EPSP- BaP) involving a single presynaptic spike followed 50 ms later by a 
doublet of postsynaptic spikes (1Pre2Post50, 300 at 5 Hz), repeated at 5 Hz for one minute, which 
caused LTP in Tigaret et al., 2016. The other, anticausal, protocol involved the same total number of 
pre and postsynaptic spikes, but with the pre- post order reversed (2Post1Pre50, 300 at 5 Hz). Exper-
imentally, the anticausal (BaP- EPSP) protocol did not induce plasticity (Tigaret et al., 2016). Notably, 
the only difference was the sequencing of whether the pre or postsynaptic neuron fired first, over a 
short time gap of 50 ms. Although the time courses of CaMKII and CaN activities were difficult to 
distinguish (Figure 2h), the LTP- inducing protocol caused greater CaN activation, compared to the 
non LTP- inducing protocol. Indeed, this translated to a horizontal offset in both the trajectory and 
contour map (Figure 2i–j), demonstrating that this pair of protocols can also be separated in the joint 
CaN- CaMKII plane.

The third pair of protocols differed in both duration and intensity. We thus tested the combined 
enzyme activity analysis in this configuration. In line with a previous study (Isaac et al., 2009), Tigaret 
et al., 2016 found that a train of doublets of presynaptic spikes separated by 50 ms repeated at a 
low frequency of 3 Hz for 5 min (2Pre50, 900 at 3 Hz) induced LTD, while a slightly more intense but 
shorter duration protocol of presynaptic spike doublets separated by 10 ms repeated at 5 Hz for 1 

https://doi.org/10.7554/eLife.80152
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Figure 2. | The duration and amplitude of the joint CaN- CaMKII activity differentiates plasticity protocols. (a), Tigaret et al., 2016 protocols, which 
inspired this model.(a) is adapted from Figure 2B from Tigaret et al., 2016. (b–d), Standard models for predicting plasticity fail to account for 
Tigaret et al., 2016 data. Mean weight change for the Tigaret’s data (red), error bars denote ±1 s.d. Plasticity protocols indicated by labels on x- axis. 
Blue bars show mean plasticity predicted for the same protocols by classic STDP model (Song et al., 2000) (panel b), triplet STDP model (Pfister 
and Gerstner, 2006) (panel c), or Graupner- Brunel calcium- based STDP (Graupner and Brunel, 2012) model (panel d). (e), Time- course of active 
enzyme concentration for CaMKII (solid line) and CaN (dashed line) triggered by two protocols consisting of 300 repetitions at 5 Hz of 1Pre2Post10 or 

Figure 2 continued on next page
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min (2Pre10, 300 at 5 Hz) did not cause plasticity. When we simulated both protocols in the model 
(Figure 2k–m), both caused similar initial responses in CaMKII and CaN. In the shorter protocol, this 
activation decayed to baseline within 100 s of the end of the stimulation. However the slower and 
longer- lasting 2Pre50 3 Hz 900 p protocol caused an additional sustained, stochastically fluctuating, 
plateau of activation of both enzymes (Figure 2k). This resulted in the LTD- inducing protocol having a 
downward and leftward- shifted CaN- CaMKII trajectory and contour plot, relative to the other protocol 
(Figure 2l–m). These results again showed that the joint CaN- CaMKII activity can be used to predict 
plasticity changes.

A geometrical readout mapping joint enzymatic activity to plasticity 
outcomes
The three above examples demonstrated that plotting the combined CaN- CaMKII activities in a 2D 
plane (geometrical readout which is abstract e.g. not defined within a physical space) allowed us 
to distinguish between subtly different protocols with correct assignment of plasticity outcome. We 
found that the simulated CaN- CaMKII trajectories from the two LTP- inducing protocols (Figure 2e–g 
and Figure 2h–j) spent a large fraction of time near ∼20 µM CaMKII and 7–10 µM CaN. In contrast, 
protocols that failed to trigger LTP had either lower (Figure 2h–j, k–m), or higher CaMKII and CaN acti-
vation (1Pre1Post10, Figure 2e–g). The LTD- inducing protocol, by comparison, spent a longer period 
in a region of sustained but lower ∼12 µM CaMKII and ∼2 µM CaN and activation Figure 2k–m. The 
plots in Figure 2g, j and m, show contour maps of histograms of the joint CaMKII- CaN activity, indi-
cating where in the plane the trajectories spent most time. Figure 2g and j indicate that this measure 
can be used to predict plasticity, because the NC and LTP protocol histograms are largely non- 
overlapping. In Figure 2g, the NC protocol response ‘overshoots’ (mostly due to higher CaN concen-
tration) the LTP protocol response, whereas in Figure 2j the NC protocol response ‘undershoots’ 
(mostly due to lower CaN concentration) the LTP protocol response. In contrast, when we compared 
the response histograms for the LTD and NC protocols, we found a greater overlap (Figure 2m). This 
suggested that, in this case, the histogram alone was not sufficient to separate the protocols, and that 
protocol duration is also important. LTD induction (2Pre50) required a more prolonged activation than 
NC (2Pre10). We thus took advantage of these joint CaMKII- CaN activity maps to design a minimal 
readout mechanism connecting combined enzyme activity to LTP, LTD or NC. We reasoned that this 
readout would need three key properties. First, although the figure suggests that the CaMKII- CaN 
trajectories corresponding to LTP and LTD could be linearly separable, we will demonstrate later (see 
Figure 3—figure supplement 3) that the readout requires nonlinear boundaries to activate the plas-
ticity inducing component. Second, since LTD requires more prolonged activity than LTP, the readout 
should be sensitive to the timescale of the input. Third, a mechanism is required to convert the 2D 
LTP- LTD inducing signals into a synaptic weight change. After iterating through several designs, we 
satisfied the first property by designing ‘plasticity regions’: polygons in the CaN- CaMKII plane that 
would detect when trajectories pass through. We satisfied the second property by using two plasticity 
inducing components with different time constants which low- pass- filter the plasticity region signals. 
We satisfied the third property by feeding both the opposing LTP and LTD signals into a stochastic 
Markov chain which accumulated the total synaptic strength change. Overall, this readout mechanism 
acts as a parsimonious model of the complex signalling cascade linking CaMKII and CaN activation to 
expression of synaptic plasticity (He et al., 2015). It can be considered as a two- dimensional exten-
sion of previous computational studies that applied analogous 1D threshold functions to dendritic 
spine calcium concentration (Shouval et al., 2002; Karmarkar and Buonomano, 2002; Graupner 
and Brunel, 2012; Standage et al., 2014).

1Pre1Post10 stimulus pairings. Protocols start at time 0 s. Experimental data indicates that 1Pre2Post10 and 1Pre1Post10 produce LTP and no change 
(NC), respectively. (f), Trajectories of joint enzymatic activity (CaN- CaMKII) as function of time for the protocols in panel e, starting at the initial resting 
state (filled black circle). The arrows show the direction of the trajectory and filled grey circles indicate the time points at 2, 10, and 60 s after the 
beginning of the protocol. The region of the CaN- CaMKII plane enclosed in the black square is expanded in panel g. (g), Mean- time (colorbar) spent by 
the orbits in the CaN- CaMKII plane region expanded from panel f for each protocol (average of 100 samples). For panels g, j and m the heat maps were 
based on enzyme and 2Post1Pre50 (NC) depicted in the same manner as in panels (e- g). (k- m), CaN- CaMKII activities for the LTD- inducing protocol 
2Pre50 (900 repetitions at 3 Hz) and the NC protocol 2Pre10 (300 repetitions at 5 Hz) depicted in the same manner as in panels e- g.

Figure 2 continued
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We now elaborate on the readout design process (see also Figure 21 of Materials and methods). 
We first drew non- overlapping polygons of LTP and LTD ‘plasticity regions’ in the CaN- CaMKII plane 
(Figure  3a). We positioned these regions over the parts of the phase space where the enzyme 
activities corresponding to the LTP- and LTD- inducing protocols were most different (Materials and 
methods), as shown by trajectories in Figure 2f, i and l. When a trajectory enters in one of these plas-
ticity regions, it activates LTD or LTP indicator variables (Materials and methods) which encode the 
joint enzyme activities (trajectories in the phase plots) transitions across the LTP and LTD regions over 
time (Figure 3b). These indicator variables drove transition rates of a plasticity Markov chain used 
to predict LTP or LTD (Figure 3c), see Materials and methods. Intuitively, this plasticity Markov chain 
models the competing processes of insertion/deletion of AMPArs to the synapse, although this is not 
represented in the model. The LTD transition rates were slower than the LTP transition rates, to reflect 
studies showing that LTD requires sustained synaptic stimulation (Yang et al., 1999; Mizuno et al., 
2001; Wang et al., 2005). The parameters for this plasticity Markov chain (Materials and methods) 
were fit to the plasticity induction outcomes from different protocols (Appendix 1—table 1). At the 
beginning of the simulation, the plasticity Markov chain starts with 100 processes (Destexhe et al., 
1998) in the NC state, with each variable representing 1% weight change, an abstract measure of 
synaptic strength that can be either EPSP, EPSC, or field EPSP slope depending on the experiment. 
Each process can transit stochastically between NC, LTP and LTD states. At the end of the protocol, 
the plasticity outcome is given by the difference between the number of processes in the LTP and the 
LTD states (Materials and methods).

In Figure 3d, we plot the model’s responses to seven different plasticity protocols used by Tigaret 
et al., 2016 by overlaying example CaMKII- CaN trajectories for each protocol with the LTP and LTD 
regions. The corresponding region indicators are plotted as function of time in Figure 3e, and long- 
term alterations in the synaptic strength are plotted as function of time in Figure 3f. The three proto-
cols that induced LTP in the Tigaret et al., 2016 experiments spent substantial time in the LTP region, 
and so triggered potentiation. In contrast, the combined response (CamKII, CaN) to 1Pre1Post10 
overshoots both regions, crossing them only briefly on its return to baseline, and so resulted in little 
weight change. The protocol that induced LTD (2Pre50, purple trace) is five times longer than other 
protocols, spending sufficient time inside the LTD region (Figure 3f). In contrast, two other protocols 
that spent time in the same LTD region of the CaN- CaMKII plane (2Post1Pre50 and 2Pre10) were too 
brief to induce LTD. These protocols were also not strong enough to reach the LTP region, so resulted 
in no net plasticity, again consistent with Tigaret et al., 2016 experiments.

We observed run- to- run variability in the amplitude of the predicted plasticity, due to the inherent 
stochasticity in the model. To ensure that stochastic components are necessary for adequate model 
behaviour, we compared stochastic and deterministic versions of the model with and without discrete 
presynaptic release and found that adding stochastic components indeed modified the model’s 
behaviour (Figure 3—figure supplement 1). Also, we confirmed that VGCCs are necessary for accu-
rate modelling of Tigaret et al., 2016 data as blocking these channels reproduced the data obtained 
in VGCC blockers by Tigaret that is no potentiation could be elicited (Figure 3—figure supplement 
2). Finally, we stress in Figure 3—figure supplement 3 that the horizontal boundaries (related to 
CaMKII activity) are indeed necessary.

In Figure 3g, we plot the distributions of the simulation outcomes, along with the experimental 
data, for the protocols in Tigaret et al., 2016. We find a very good correspondence between the 
model and experiments. Of note, data fitting of the experiments in Tigaret et al., 2016 (Figure 3g) 
was more accurate with our model than the fitting obtained with existing leading spike- or calcium- 
based STDP models (Song et al., 2000; Pfister and Gerstner, 2006; Graupner and Brunel, 2012), 
see Figure 2b–d.

Experimentally, LTP can be induced by few pulses while LTD usually requires stimulation protocols 
of longer duration (Yang et al., 1999; Mizuno et al., 2001; Wang et al., 2005). We incorporated 
this effect into the geometrical readout model by letting LTP have faster transition rates than LTD 
(Figure 3c). Tigaret et al., 2016 found that 300 repetitions of anticausal post- before- pre pairings did 
not cause LTD, in contrast to the canonical spike- timing- dependent plasticity curve (Bi and Poo, 1998). 
We hypothesized that LTD might indeed appear with the anticausal protocol (Appendix 1—table 1) 
if stimulation duration was increased. To explore this possibility in our model, we systematically Alabi 
and Tsien, 2012 varied the number of paired repetitions from 100 to 1200, and also co- varied the 

https://doi.org/10.7554/eLife.80152
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Figure 3. Read- out strategy to accurately model Tigaret et al., 2016 experiment. (a) Illustration of the joint CaMKII and CaN activities crossing the 
plasticity regions. Arrows indicate the flow of time, starting at the filled black circle. (b) Region indicator showing when the joint CaN and CaMKII activity 
crosses the LTD or LTP regions in panel a. For example, the LTP indicator is such that  1LTP(x) = 1  if  x ∈ LTP  and 0 otherwise. Leaving the region 
activates a mechanism with a slow timescale that keeps track of the accumulated time inside the region. Such mechanism drives the transition rates 
used to predict plasticity (Materials and methods). (c), Plasticity Markov chain with three states: LTD, LTP and NC. There are only two transition rates 
which are functions of the plasticity region indicator (Materials and methods). The LTP transition is fast, whereas the LTD transition is slow, meaning that 
LTD change requires longer time inside the LTD region (panel a). The NC state starts with 100 processes. See Figure 23 for more details on the dynamics 
of the Plasticity Markov Chain. (d) Joint CaMKII and CaN activity for all protocols in Tigaret et al., 2016 (shown in panel f). The stimulus ends when the 
trajectory becomes smooth. Trajectories correspond to those in Figure 2b, e and h, at 60 s. (e) Region indicator for the protocols in panel f. The upper 
square bumps are caused by the protocol crossing the LTP region, the lower square bumps when the protocol crosses the LTD region (as in panel d). 
(f) Synaptic weight (%) as function of time for each protocol. The weight change is defined as the number (out of 100) of states in the LTP state minus 
the number of states in the LTD state (panel c). The trajectories correspond to the median of the simulations in panel g. (g) Synaptic weight change (%) 
predicted by the model compared to data (EPSC amplitudes) from Tigaret et al., 2016 (100 samples for each protocol, also for panel h and i). The data 
(filled grey circles) was provided by Tigaret et al., 2016 (note an 230% outlier as the red asterisk). (h) Predicted mean synaptic weight change (%) as a 
function of delay (ms) and number of pairing repetitions (pulses) for the protocol 1Pre2Post(delay), where delays are between –100 and 100 ms. LTD is 
induced by 2Post1Pre50 after at least 500 pulses. The mean weight change along the horizontal dashed line is reported in the STDP curves in panel i. (i) 
Synaptic weight change (%) as a function of pre- post delay. Each plot corresponds to a different pairing repetition number (color legend). The solid line 
shows the mean, and the ribbons are the 2nd and 4th quantiles. The filled grey circles are the data means estimated in Tigaret et al., 2016, also shown 
in panel g.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison showing different roles of stochasticity in the model.

Figure supplement 2. Effects of blocking VGCCs.

Figure supplement 3. Exclusively setting vertical boundaries (no CaMKII selectivity) fails to capture the correct plasticity outcome.

Figure supplement 4. Varying Tigaret et al., 2016 experimental parameters.

https://doi.org/10.7554/eLife.80152
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pre- post delay from –100 to 100 ms. Figure 3h shows a contour plot of the predicted mean synaptic 
strength change across for the 1Pre2Post(delay) stimulation protocol for different numbers of pairing 
repetitions. In Figure 3h and a LTD window appears after ∼500 pairing repetitions for some anti-
causal pairings, in line with our expectation. The magnitude of LTP also increases with pulse number, 
for causal positive pairings. For either 100 or 300 pairing repetitions, only LTP or NC is induced 
(Figure 3i). The model also made other plasticity predictions by varying Tigaret et al., 2016 experi-
mental conditions (Figure 3—figure supplement 4). In summary, our geometrical readout mechanism 
suggests that the direction and magnitude of the change in synaptic strength can be predicted from 
the joint CaMKII- CaN activity in the LTP and LTD regions.

Frequency-dependent plasticity
The stimulation protocols used by Tigaret et al., 2016 explored how subtle variations in pre and 
postsynaptic spike timing influenced the direction and magnitude of plasticity (see Appendix 1—
table 1 for experimental differences). In contrast, traditional synaptic plasticity protocols exploring 
the role of presynaptic stimulation frequency did not measure the timing of co- occurring postsynaptic 
spikes (Dudek and Bear, 1992; Wang and Wagner, 1999; Kealy and Commins, 2010). These studies 
found that long- duration low- frequency stimulation (LFS) induces LTD, whereas short- duration high- 
frequency stimulation induces LTP, with a cross- over point of zero change at intermediate stimulation 
frequencies. In addition to allowing us to explore frequency- dependent plasticity (FDP), this stimula-
tion paradigm also gave us further constraints to define the LTD polygon region in the model since in 
Tigaret et al., 2016, only one LTD case was available. For FDP, we focused on modelling the experi-
ments from Dudek and Bear, 1992, who stimulated Schaffer collateral projections to pyramidal CA1 
neurons with 900 pulses in frequencies ranging from 1 to 50 Hz. In addition to presynaptic stimulation 
patterns, the experimental conditions differed from Tigaret et al., 2016 in two other aspects: animal 
age and control of postsynaptic spiking activity (see Appendix 1—table 1 legend). We incorporated 
both age- dependence and EPSP- evoked- BaPs in our model (Materials and methods). Importantly, the 
geometrical readout mechanism mapping joint CaMKII- CaN activity to plasticity remained identical 
for all experiments in this work.

Figure 4a shows the joint CaMKII- CaN activity when we stimulated the model with 900 presyn-
aptic spikes at 1, 3, 5, 10, and 50 Hz (Dudek and Bear, 1992). Higher stimulation frequencies drove 
stronger responses in both CaN and CaMKII activities (Figure 4a). Figure 4b and c show the corre-
sponding plasticity region indicator for the LTP/LTD region threshold crossings and the synaptic 
strength change. From this set of five protocols, only the 50 Hz stimulation drove a response strong 
enough to reach the LTP region of the plane (Figure 4a and d). Although the remaining four protocols 
drove responses primarily in the LTD region, only the 3 and 5 Hz stimulations resulted in substantial 
LTD. The 1 and 10 Hz stimulations resulted in negligible LTD, but for two distinct reasons. Although 
the 10 Hz protocol’s joint CaMKII- CaN activity passed through the LTD region of the plane (Figure 4a 
and d), it was too brief to activate the slow LTD mechanism built into the readout (Materials and 
methods). The 1 Hz stimulation, on the other hand, was prolonged, but its response was too weak to 
reach the LTD region, crossing the threshold only intermittently (Figure 4b, bottom trace). Overall, the 
model matched well the mean plasticity response found by Dudek and Bear, 1992, see Figure 4e, 
following a classic BCM- like curve as function of stimulation frequency (Abraham et al., 2001; Bienen-
stock et al., 1982).

We then used the model to explore the stimulation space in more detail by varying the stimulation 
frequency from 0.5 to 40 Hz, and varying the number of presynaptic pulses from 50 to 1200. Figure 4f 
shows a contour map of the mean synaptic strength change (%) in this 2D frequency–pulse number 
space. Dudek and Bear, 1992 experimental conditions, we found that LTD induction required at least 
∼300 pulses, at frequencies between 1 and 3 Hz. In contrast, LTP could be induced using ∼50 pulses at 
∼20 Hz or greater. The contour map also showed that increasing the number of pulses (vertical axis in 
Figure 4f) increases the magnitude of both LTP and LTD. This was accompanied by a widening of the 
LTD frequency range, whereas the LTP frequency threshold remained around ∼20 Hz, independent of 
pulse number. This general effect, that increasing pulse number tends to increase the magnitude of 
plasticity, was also observed in simulation of Tigaret et al., 2016 (see Figure 3h). Ex vivo experiments 
in Dudek and Bear, 1992 were done at 35°C. However, lower temperatures are more widely usetd for 
ex vivo experiments because they extend brain slice viability.

https://doi.org/10.7554/eLife.80152
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At this point, having fully described the model, we show the importance of the stochasticity of the 
different components of the model. We simulated three protocols of Dudek and Bear, 1992 with 
deterministic equations in Figure 4—figure supplement 2. We show that, for the different protocols, 
if some of the channels are modelled with deterministic equations, the net effect on synapse weight 
differs from the expected outcome provided by the original model. The relative contributions of each 
source of noise differed, depending on the plasticity protocol. We can conclude that all noise sources 
we introduced in our model are important.

Variations in plasticity induction with developmental age
The rules for induction of LTP and LTD change during development (Dudek and Bear, 1993; Cao 
and Harris, 2012), so a given plasticity protocol can produce different outcomes when delivered 
to synapses from young animals versus mature animals. For example, when Dudek and Bear, 1993 
tested the effects of low- frequency stimulation (1 Hz) on CA3- CA1 synapses from rats of different ages, 
they found that the magnitude of LTD decreases steeply with age from P7 until becoming minimal in 
mature animals >P35 (Figure 5a, circles). Across the same age range, they found that a theta burst 
stimulation (TBS) protocol induced progressively greater LTP magnitude with developmental age 

Figure 4. Frequency dependent plasticity (FDP), Dudek and Bear, 1992 dataset. (a) Example traces of joint CaMKII- CaN activity for each of Dudek 
and Bear, 1992 protocol. (b) Region indicator showing when the joint CaMKII- CaN activity crosses the LTD or LTP regions for each protocol in panel 
a. (c) Synaptic weight change (%) as a function of time for each protocol, analogous to Figure 3c. Trace colours correspond to panel a. The trajectories 
displayed were chosen to match the medians in panel e. (d) Mean (100 samples) time spent (s) for protocols 1Pre for 900 pairing repetitions at 3, 10, 
and 50 Hz. (e), Comparison between data from Dudek and Bear, 1992 and our model (1Pre 900 p, 300 sampcomles per frequency, see Appendix 1—
table 1). Data are represented as normal distributions with the mean and variance of the change in field EPSP slope taken from Dudek and Bear, 
1992. (f), Prediction for the mean weight change (%) when varying the stimulation frequency and pulse number (24x38 × 100 data points, respectively 
pulse x frequency x samples). The filled grey circles show the Dudek and Bear, 1992 protocol parameters and the corresponding results are shown in 
panel e. In Figure 4—figure supplement 1, we provide additional graphs of frequency dependent plasticity outcomes, including predictions, when 
varying experimental parameters in Dudek and Bear, 1992 (external Mg, external Ca, distance from soma, temperature, Poisson spike train during 
development).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Varying experimental parameters in Dudek and Bear, 1992 and Poisson spike train during development.

Figure supplement 2. The figure shows the weight change (%) for Dudek and Bear, 1992 protocols (50 Hz, 30 Hz, and 3 Hz, related to Figure 4 of the 
main manuscript).

https://doi.org/10.7554/eLife.80152
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Figure 5. Age- dependent plasticity, Dudek and Bear, 1993 dataset. (a), Synaptic weight change for 1Pre, 900 at 
1 Dudek and Bear, 1993. The solid line is the mean and the ribbons are the 2nd and 4th quantiles predicted by 
our model (same for panel b, c and f). (b), Synaptic weight change for theta burst stimulation (TBS - 4Pre at 100 Hz 
repeated 10 times at 5 Hz given in 6 epochs at 0.1 Hz, see Appendix 1—table 1). (c), Synaptic weight change as a 
function of frequency for different ages. BCM- like curves showing that, during adulthood, the same LTD protocol 
becomes less efficient. It also shows that high- frequencies are inefficient at inducing LTP before P15. (d), Synaptic 
weight change as a function of age. Proposed protocol using presynaptic bursts to recover LTD at ≥ P35 with less 
pulses, 300 instead of the original 900 from Dudek and Bear, 1993. This effect is more pronounced for young 
rats. Figure 5—figure supplement 1 shows a 900 pulses comparison. (e), Mean synaptic strength change (%) as 
a function of frequency and age for 1Pre 900 pulses (32x38 × 100, respectively, for frequency, age and samples). 
The protocols in Dudek and Bear, 1993 (panel a) are marked with the yellow vertical line. The horizontal lines 
represent the experimental conditions of panel c. Note the P35 was used for Dudek and Bear, 1992 experiment in 
Figure 4f. (f), Mean time spent for the 1Pre 1 Hz 900 pulses protocol showing how the trajectories are left- shifted 
as rat age increases. In Figure 5—figure supplement 1, we provide additional simulations to analyse the synaptic 
plasticity outcomes, including predictions, of duplets, triplets and quadruplets for FDP, perturbing developmental- 
mechanisms for Dudek and Bear, 1993, and age- related changes in STDP experiments (Inglebert et al., 2020; 
Tigaret et al., 2016; Meredith et al., 2003).

Figure 5 continued on next page
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(Figure 5b, circles). Multiple properties of neurons change during development: the NMDAr switches 
its dominant subunit expression from GluN2B to GluN2A (Sheng et al., 1994; Popescu et al., 2004; 
Iacobucci and Popescu, 2017), the reversal potential of the receptor (GABAr) switches from depolar-
ising to hyperpolarizing (Rivera et al., 1999; Meredith et al., 2003; Rinetti- Vargas et al., 2017), and 
the action potential backpropagates more efficiently with age (Buchanan and Mellor, 2007). These 
mechanisms have been proposed to underlie the developmental changes in synaptic plasticity rules 
because they are key regulators of synaptic calcium signalling (Meredith et al., 2003; Buchanan and 
Mellor, 2007). However, their sufficiency and individual contributions to the age- related plasticity 
changes are unclear and have not been taken into account in any previous model. We incorporated 
these mechanisms in the model (Materials and methods) by parametrizing each of the three compo-
nents to vary with the animal’s postnatal age, to test if they could account for the age- dependent 
plasticity data.

We found that elaborating the model with age- dependent changes in NMDAr composition, GABAr 
reversal potential, and BaP efficiency, while keeping the same plasticity readout parameters, was 
sufficient to account for the developmental changes in LTD and LTP observed by Dudek and Bear, 
1993 (Figure 5a and b). We then explored the model’s response to protocols of various stimulation 
frequencies, from 0.5 to 40 Hz, across ages from P5 to P80 (Figure 5c and e). Figure 5c shows the 
synaptic strength change as function of stimulation frequency for ages P15, P25, P35, and P45. The 
magnitude of LTD decreases with age, while the magnitude of LTP increases with age. Figure 5e 
shows a contour plot of the same result, covering the age- frequency space.

The 1 Hz presynaptic stimulation protocol in Dudek and Bear, 1993 did not induce LTD in adult 
animals (Dudek and Bear, 1992). We found that the joint CaN- CaMKII activity trajectories for this 
stimulation protocol underwent an age- dependent leftward shift beyond the LTD region (Figure 5f). 
This implies that LTD is not induced in mature animals by this conventional LFS protocol due to insuf-
ficient activation of enzymes. In contrast, Tigaret et al., 2016 and Isaac et al., 2009 were able to 
induce LTD in adult rat tissue by combining LFS with presynaptic spike pairs repeated 900 times at 
3 Hz. Given these empirical findings and our modelling results, we observe that LTD induction in adult 
animals requires that the stimulation protocol: (1) causes CaMKII and CaN activity to stay more in the 
LTD region than the LTP region and (2) is sufficiently long to activate the LTD readout mechanism. 
With experimental parameters used by Dudek and Bear, 1993, this may be as short as 300 pulses 
when multi- spike presynaptic protocols are used since the joint CaMKII- CaN activity can reach the 
LTD region more quickly than for single spike protocols. We simulated two such potential protocols as 
predictions: doublet and quadruplet spike groups delivered 300 times at 1 Hz, with 50 ms between 
each pair of spikes in the group (Figure 5d). The model predicts that both these protocols induce LTD 
in adults, whereas as shown above, the single pulse protocol did not cause LTD. These simulations 
suggest that the temporal requirements for inducing LTD may not be as prolonged as previously 
assumed, since they can be reduced by varying stimulation intensity. See Figure 5—figure supple-
ment 1 for frequency versus age maps for presynaptic bursts.

Dudek and Bear, 1993 also performed theta burst stimulation (Appendix 1—table 1) at different 
developmental ages, and found that LTP is not easily induced in young rats (Cao and Harris, 2012), as 
depicted in Figure 5b. The model qualitatively matches this trend, and also predicts that TBS induces 
maximal LTP around P21, before declining further during development (Figure 5b, green curve). Simi-
larly, the model predicts that high- frequency stimulation induces LTP only for ages >P15, peaks at P35, 
then gradually declines at older ages (Figure 5e). Note that in Figure 5b, we used six epochs instead 
of four used by Dudek and Bear, 1993 to increase LTP outcome which is known to washout after one 
hour for young rats (Cao and Harris, 2012).

In contrast to Dudek and Bear, 1993 findings, other studies have found that LTP can be induced 
in hippocampus in young animals (<P15) with STDP. For example, Meredith et al., 2003 found that, 
at room temperature, 1Pre1Post10 induces LTP in young rats, whereas 1Pre2Post10 induces NC. This 

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Duplets, triplets, and quadruplets for FDP, perturbing developmental- mechanisms for 
Dudek and Bear, 1993, and age- related changes in STDP experiments (Inglebert et al., 2020; Tigaret et al., 
2016; Meredith et al., 2003).

Figure 5 continued
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relationship was inverted for adults, with 1Pre1Post inducing no plasticity and 1Pre2Post10 inducing 
LTP (as captured by our model in Figure 5—figure supplement 1).

Together, these results suggest that not only do the requirements for LTP/LTD change with age, but 
also that these age- dependencies are different for different stimulation patterns. Finally, we explore 
which mechanisms are responsible for plasticity induction changes across development in the FDP 
protocol (Figure 5—figure supplement 1) by fixing each parameter to young or adult values for the 
FDP paradigm. Our model analysis suggests that the NMDAr switch (Iacobucci and Popescu, 2017) 
is a dominant factor affecting LTD induction, but the maturation of BaP (Buchanan and Mellor, 2007) 
is the dominant factor affecting LTP induction, with GABAr shift having only a weak influence on LTD 
induction for Dudek and Bear, 1993 FDP.

Plasticity requirements during development do not necessarily follow the profile in Dudek and 
Bear, 1993 as shown by Meredith et al., 2003 STDP experiment. Our model suggests that multiple 
developmental profiles are possible when experimental conditions vary within the same stimulation 
paradigm. This is illustrated in Figure 6—figure supplement 2a–c by varying the age of STDP exper-
iments done in different conditions. We fitted well the data from Wittenberg and Wang, 2006 by 
adapting the model with appropriate age and temperature.

Effects of extracellular calcium and magnesium concentrations on 
plasticity outcome
The canonical STDP rule (Bi and Poo, 1998), measured in cultured neurons with high extracellular 
calcium ([Ca2+]o) and at room temperature, was recently found not to be reproducible at physiological 
[Ca2+]o in CA1 brain slices (Inglebert et al., 2020). Instead, by varying the [Ca2+]o and [Mg2+]o, Ingle-
bert et al., 2020 found a spectrum of STDP rules with either no plasticity or full- LTD for physiological 
[Ca2+]o conditions ([Ca2+]o< 1.8 mM) and a bidirectional rule for high [Ca2+]o ([Ca2+]o> 2.5 mM), shown 
in Figure 6a- c.

We attempted to reproduce Inglebert et al., 2020 findings by varying [Ca2+]o and [Mg2+]o with the 
following consequences for the model mechanisms (Materials and methods). On the presynaptic side, 
[Ca2+]o modulates vesicle release probability. On the postsynaptic side, high [Ca2+]o reduces NMDAr 
conductance (Maki and Popescu, 2014), whereas [Mg2+]o affects the NMDAr Mg2+ block (Jahr and 
Stevens, 1990). Furthermore, spine calcium influx activates SK channels, which hyperpolarize the 
membrane and indirectly modulate NMDAr activity (Ngo- Anh et al., 2005; Griffith et al., 2016).

Figure 6a–c compares our model to Inglebert et  al., 2020 STDP data at different [Ca2+]o and 
[Mg2+]o. Note that Inglebert et al., 2020 used 150 pairing repetitions for the anti- causal stimuli and 
100 pairing repetitions for the causal stimuli both delivered at 0.3 Hz. At [Ca2+]o=1.3 mM, Figure 6a 
shows that the STDP rule induced weak LTD for brief causal delays. At [Ca2+]o = 1.8 mM, in Figure 6b, 
the model predicted a full- LTD window. At [Ca2+]o = 3 mM, in Figure 6c, it predicts a bidirectional rule 
with a second LTD window for long causal pairings, previously theorized by Rubin et al., 2005.

Figure 6d illustrates the time spent by the joint CaN- CaMKII activity for 1Pre1Post10 using Ingle-
bert et al., 2020 experimental conditions. Each density plot corresponds to a specific Ca/Mg ratio as 
in Figure 6a–c. The response under low [Ca2+]o spent most time inside the LTD region, but high [Ca2+]o 
shifts the trajectory to the LTP region. Figure 6—figure supplement 1a presents density plots for the 
anti- causal protocols.

Inglebert et al., 2020 fixed the Ca/Mg ratio at 1.5, although aCSF formulations in the literature 
differ (see Appendix 1—table 1). Figure 6—figure supplement 1d shows that varying the Ca/Mg 
ratio and [Ca2+]o for Inglebert et al., 2020 experiments restrict LTP to Ca/Mg >1.5 and [Ca2+]o>1.8 
mM.

Figure 6e shows a map of plasticity as function of pre- post delay and Ca/Mg concentrations and 
the parameters where LTP is induced for the 1Pre1Post10 protocol. Since plasticity rises steeply at 
around [Ca2+]o = 2.2 mM (see Figure 6—figure supplement 1b), small fluctuations in [Ca2+]o near this 
boundary could cause qualitative transitions in plasticity outcomes. For anti- causal pairings, increasing 
[Ca2+]o increases the magnitude of LTD (Figure 6—figure supplement 1b illustrates this with Ingle-
bert et al., 2020 data). Our model can identify the transitions between LTD and LTP as a function of 
the ratio between [Ca2+]o and [Mg2+]o, see Figure 6—figure supplement 1.

Inglebert et al., 2020 also found that increasing the pairing frequency to 5 or 10 Hz results in 
a transition from LTD to LTP for 1Pre1Post10 at [Ca2+]o = 1.8 mM (Figure  6—figure supplement 
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1c), similar frequency- STDP behaviour has been reported in the cortex (Sjöström et al., 2001). In 
Figure 6f, we varied both the pairing frequencies and [Ca2+]o and we observe similar transitions to 
Inglebert et  al., 2020. However, the model’s transition for [Ca2+]o = 1.8 mM was centred around 
0.5 Hz, which was untested by Inglebert et  al., 2020. The model predicts no plasticity at higher 
frequencies, unlike the data, that shows scattered LTP and LTD (see Figure 6—figure supplement 1c). 
Another frequency dependent comparison, Figure 3—figure supplement 4c and Figure 6—figure 
supplement 1h, show that Tigaret et al., 2016 burst- STDP and Inglebert et al., 2020 STDP share a 
similar transition structure, different from Dudek and Bear, 1992 FDP.

In contrast to Inglebert et al., 2020 results, the model predicts that setting low [Ca2+]o for Tigaret 
et al., 2016 burst- STDP abolishes LTP, and does not induce strong LTD (Figure 3—figure supplement 
4d). For Dudek and Bear, 1992 experiment, Figure  4—figure supplement 1a [Mg2+]o controls a 
sliding threshold between LTD and LTP but not [Ca2+]o (Figure 4—figure supplement 1b). For another 
direct stimulation experiment, Figure 6—figure supplement 1f shows that in an Mg- free medium, 
LTP expression requires fewer pulses (Mizuno et al., 2001).

Despite exploring physiological [Ca2+]o and [Mg2+]o Inglebert (Inglebert et al., 2020) use a non- 
physiological temperature ( 30◦C ) which extends T- type VGCC closing times and modifies the CaN- 
CaMKII baseline (Figure 6—figure supplement 2f). In summary, our model predicts that temperature 
can change STDP rules in a similar fashion to [Ca2+]o (Figure 6—figure supplement 1a and b). Overall, 

Figure 6. Effects of extracellular calcium and magnesium concentrations on plasticity. (a), Synaptic weight (%) for a STDP rule with [Ca2+]o=1.3 mM (fixed 
ratio, Ca/Mg = 1.5). According to the data extracted from Inglebert et al., 2020, the number of pairing repetitions for causal/positive (anti- causal/
negative) delays is 100 (150), both delivered at 0.3 Hz. The solid line is the mean, and the ribbons are the 2nd and 4th quantiles predicted by our model 
(all panels use 100 samples). (b), Same as a, but for [Ca2+]o = 1.8 mM (Ca/Mg ratio = 1.5). (c), Same as a, but for [Ca2+]o = 3 mM (Ca/Mg ratio = 1.5). (d), 
Mean time spent for causal pairing, 1Pre1Post10, at different Ca/Mg concentration ratios. The contour plots are associated with the panels a, b and 
c. e, Predicted effects of extracellular Ca/Mg on STDP outcome. Synaptic weight change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal 
(1Post1Pre10, 150 at 0.3 Hz) pairings varying extracellular Ca from 1.0 to 3 mM (Ca/Mg ratio = 1.5). The dashed lines represent the experiments in the 
panel a, b and c. We used 21x22 × 100 data points, respectively calcium x delay x samples. (f), Predicted effects of varying frequency and extracellular 
Ca/Mg for an STDP protocol. Contour plot showing the mean synaptic weight (%) for a single causal pairing protocol (1Pre1Post10, 100 samples) varying 
frequency from 0.1 to 10 Hz and [Ca2+]o from 1.0 to 3 mM (Ca/Mg ratio = 1.5). We used 21 x 18 × 100 data points, respectively calcium x frequency x 
samples.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. [Ca2+]o and [Mg2+]o related modifications for Inglebert et al., 2020 experiment.

Figure supplement 2. Temperature and age effects.
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we confirm that plasticity is highly sensitive to variations in extracellular calcium, magnesium, and 
temperature (Figure 3—figure supplement 4a, Figure 6—figure supplement 2d–f).

In vivo-like spike variability affects plasticity
In the above sections, we used highly regular and stereotypical stimulation protocols to replicate 
typical ex vivo plasticity experiments. In contrast, neural spiking in hippocampus in vivo is irregular 
and variable (Fenton and Muller, 1998; Isaac et al., 2009). Previous studies that asked how natural 
firing variability affects the rules of plasticity induction used simpler synapse models (Rackham et al., 
2010; Graupner et al., 2016; Cui et al., 2018). We explored this question in our synapse model using 
simulations with three distinct types of additional variability: (1) spike time jitter, (2) failures induced by 
dropping spikes, (3) independent pre and postsynaptic Poisson spike trains (Graupner et al., 2016).

We introduced spike timing jitter by adding zero- mean Gaussian noise (s.d.  σ ) to pre and postsyn-
aptic spikes, changing spike pairs inter- stimulus interval (ISI). In Figure 7a, we plot the LTP magnitude 
as function of jitter magnitude (controlled by  σ ) for protocols taken from Tigaret et al., 2016. With no 
jitter,  σ = 0 , these protocols have different LTP magnitudes (corresponding to Figure 3) and become 
similar once  σ  increases. The three protocols with a postsynaptic spike doublet gave identical plas-
ticity for  σ = 50  ms.

To understand the effects of jittering, we plotted the trajectories of joint CaN- CaMKII activity 
(Figure 7c). 2Post1Pre50 which ‘undershoots’ the LTP region shifted into the LTP region for jitter 
 σ = 50  ms. In contrast, 1Pre1Post10 which ‘overshoots’ (mostly smaller CaN concentration) the LTP 
region shifted to the opposite direction towards the LTP region.

Why does jitter cause different spike timing protocols to yield similar plasticity magnitudes? 
Increasing jitter causes a fraction of pairings to invert causality. Therefore, the jittered protocols 
became a mixture of causal and anticausal pairings (Figure 7c). This situation occurs for all paired 
protocols. So any protocol with the same number spikes will produce a similar outcome if the jitter 
is large enough. Note that despite noise the mean frequency was conserved at 5 ±13.5  Hz (see 
Figure 7e).

Next, we studied the effect of spike removal. In the previous sections, synaptic release probability 
was ∼60% (for [Ca2+]o = 2.5 mM) or lower, depending on the availability of docked vesicles (Materials 
and methods). However, baseline presynaptic vesicle release probability is heterogeneous across 
CA3- CA1 synapses, ranging from  ∼ 10 − 90 % (Dobrunz et al., 1997; Enoki et al., 2009) and likely 
lower on average in vivo (Froemke and Dan, 2002; Borst, 2010). BaPs are also heterogeneous with 
random attenuation profiles (Golding et al., 2001) and spike failures (Short et al., 2017). To test 
the effects of pre and postsynaptic failures on plasticity induction, we performed simulations where 
we randomly removed spikes, altering the regular attenuation observed in Tigaret et  al., 2016 
protocols.

In Figure  7b, we plot the plasticity magnitude as function of sparsity (percentage of removed 
spikes). The sparsity had different specific effects for each protocol. 1Pre2Post10 and 1Pre2Post50 
which originally produced substantial LTP were robust to spike removal until ∼60% sparsity. In contrast, 
the plasticity magnitude from both 1Pre1Post10 and 2Post1Pre50 showed a non- monotonic depen-
dence on sparsity, first increasing then decreasing, with maximal LTP at ∼40% sparsity.

To understand how sparsity causes this non- monotonic effect on plasticity magnitude, we plotted 
the histograms of time spent in the CaN- CaMKII plane for 2Post1Pre50 for three levels of sparsity: 0%, 
30%, and 80% (Figure 7d). For 0% sparsity, the activation spent most time at the border between the 
LTP and LTD regions, resulting in no change. Increasing sparsity to 30% caused the activation to shift 
rightward into the LTP region because there was less attenuation of pre and postsynaptic resources. 
In contrast, at 80% sparsity, the activation moved into the LTD region because there were not enough 
events to substantially activate CaMKII and CaN. Since LTD is a slow process and the protocol duration 
is short (60 s), there was no net plasticity. Therefore for this protocol, high and low sparsity caused 
no plasticity for distinct reasons, whereas intermediate sparsity enabled LTP by balancing resource 
depletion with enzyme activation.

Next we tested the interaction of jitter and spike removal. Figure 7f shows a contour map of weight 
change as a function of jitter and sparsity for the 2Post1Pre50 protocol, which originally induced no 
plasticity (Figure 3). Increasing spike jitter enlarged the range of sparsity inducing LTP. In summary, 
these simulations (Figure 7a, b, f and h) show that different STDP protocols have different degrees of 
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Figure 7. Jitter and spike dropping effects on STDP and Poisson spike trains. (a) Mean weight (%) for the jittered 
STDP protocols (protocol color legend shown in b). The solid line is the mean, and the ribbons are the 2nd and 
4th quantiles predicted by our model using 100 samples (same for panels a, b and g). (b) Mean weight (%) for 
the same (Tigaret et al., 2016) protocols used in panel a subjected to random spike removal (sparsity %). (c) 

Figure 7 continued on next page
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sensitivity to noise in the firing structure, suggesting that simple plasticity rules derived from regular 
ex vivo experiments may not predict plasticity in vivo.

How does random spike timing affect rate- dependent plasticity? We stimulated the model with 
pre and postsynaptic Poisson spike trains for 10 s, under Dudek and Bear, 1992 experimental condi-
tions. We systematically varied both the pre and postsynaptic rates (Figure 7h). The 10 s stimulation 
protocols induced only LTP, since LTD requires a prolonged stimulation (Mizuno et al., 2001). LTP 
magnitude monotonically increased with the presynaptic rate (Figure  7g and h). In contrast, LTP 
magnitude varied non- monotonically as a function of postsynaptic rate, initially increasing until a peak 
at 10 Hz, then decreasing with higher stimulation frequencies. This non- monotonic dependence on 
post- synaptic rate is inconsistent with classic rate- based models of Hebbian plasticity. From this anal-
ysis, we can make the prediction that firing variability can alter the rules of plasticity, in the sense 
that it is possible to add noise to cause LTP for protocols that did not otherwise induce plasticity. 
For example, we show that protocols inducing LTP can be hindered by jittering, e.g. 1Pre2Post10 
in Figure 7a. Also, protocols that are just outside the LTP plasticity region may turn into LTP if jitter 
is applied, e.g. 2Post1Pre50 and 1Pre1Post10 in Figure 7a. We also investigated how this plasticity 
dependence on pre- and postsynaptic Poisson firing rates varies with developmental age (Figure 4—
figure supplement 1g–i). We found that at P5 no plasticity is induced, at P15 a LTP region appears at 
around 1 Hz postsynaptic rate, and at P20 plasticity becomes similar to the mature age, with a peak in 
LTP magnitude at 10 Hz postsynaptic rate.

Discussion
We built a model of a rat CA3- CA1 hippocampal synapse, including key electrical and biochemical 
components underlying synaptic plasticity induction (Figure  1). We developed a novel geometric 
readout of combined CaN- CaMKII dynamics (Figures 2–4) to predict the outcomes from a range of 
plasticity experiments with heterogeneous conditions: animal developmental age (Figure 5), aCSF 
composition (Figure 6), temperature (Supplemental files), and in vivo- like firing variability (Figure 7). 
This readout provides a simple and intuitive window into the dynamics of the synapse during plasticity. 
Our model is thus based on the joint activity of these two key postsynaptic enzymes at both fast and 
slow time scales and considers the stochastic dynamics of their activities dictated by the upstream 
calcium- dependent components at both the pre- and postsynapse. On this basis alone, our model 
is akin to biological processes where the outcome is jointly determined by several stochastic signal-
ling components and a combination of multiple enzyme activities, that is, are multi- dimensional. The 
principal assumption underlying the proposed ‘geometric readout’ mechanism is that all information 
determining the induction of LTP vs. LTD is contained in the time- dependent spine Ca2+/calmodulin- 
bound CaN and CaMKII concentrations, and that no extra elements are required. Further, since both 
CaN and CaMKII concentrations are uniquely determined by the time course of postsynaptic Ca2+ 
concentration, the model implicitly assumes that the LTP/LTD induction depends solely on spine Ca2+ 
concentration time course, as in previously compared simplified models (see Introduction).

Effect of jitttering on Mean time (s) spent by joint enzymes trajectories in LTP/LTD regions. Contour plot shows 
2Post1Pre50 and 1Pre1Post10 (300 at 5 Hz) without (grey contour plot) and with jittering (coloured contour plot). 
The circles and squares correspond to the marks in panel a. (d) Effect of sparsity on Mean time (s) spent by joint 
enzymes trajectories in LTP/LTD regions. Contour plot in grey showing 0% sparsity for 2Post1Pre50 300 at 5 Hz 
(see Figure 2j). The contour plots show the protocol with spike removal sparsities at 0% (NC), 30% (LTP), and 
80% (NC). The triangles correspond to the same marks in panel a. (e) Distribution of the 50 ms jittering applied 
to the causal protocol 1Pre1Post10, 300 at 5 Hz in which nearly half of the pairs turned into anticausal. The mean 
frequency is 5 ±13.5 Hz making it to have a similar firing structure and position in the LTP region. The similar occurs 
for 2Post1Pre50 (panel c). (f) Mean weight change (%) combining both jittering (panel a) and sparsity (panel b) 
for 2Post1Pre50, 300 at 5 Hz. (g) Mean weight change (%) of pre and postsynaptic Poisson spike train delivered 
simultaneously for 10 s. The plot shows the plasticity outcome for different presynaptic firing rate (1000/frequency) 
for a fixed postsynaptic baseline at 10 Hz. The upper raster plot depicts the released vesicles at 40 Hz and the 
postsynaptic baseline at 10 Hz (including the AP evoked by EPSP). (h) Mean weight change (%) varying the rate of 
pre and postsynaptic Poisson spike train delivered simultaneously for 10 s. The heat map data along the vertical 
white dashed line is depicted in panel g.

Figure 7 continued
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In addition to providing a new model of CA3- CA1 synapse biophysics, the main contribution of this 
work is the novel readout mechanism mapping synaptic enzymes to plasticity outcomes. This readout 
was built based on the concept that the full temporal activity of CaN- CaMKII over the minutes- 
timescale stimulus duration, and not their instantaneous levels, is responsible for changes in synaptic 
efficacy (Fujii et al., 2013). We instantiated this concept by analysing the joint CaN- CaMKII activity in 
the two- dimensional plane and designing polygonal plasticity readout regions (Figure 3a). Here, we 
used only a two- dimensional readout, but anticipate a straightforward generalisation to higher dimen-
sions. The central discovery is that these trajectories, despite being stochastic, can be separated in 
the plane as a function of the stimulus (Figure 3). This is the basis of our new synaptic plasticity rule. 
We generalised previous work with plasticity induction based on single threshold and a slow variable 
(Badoual et  al., 2006; Rubin et  al., 2005; Clopath and Gerstner, 2010; Graupner and Brunel, 
2012). In contrast, previous models assume that plasticity is explainable in terms of synaptic calcium 
or enzyme response to single BAP- EPSP pairings (Shouval et al., 2002; Karmarkar and Buonomano, 
2002). We expect that future studies using high temporal resolution measurements such as those 
provided by recent FRET tools available for CaMKII (Chang et al., 2017; Chang et al., 2019) will bring 
refinements to our model with the possibility to further test our readout predictions.

Let us describe the intuition behind our model more concisely. First, we abstracted away the sophis-
ticated cascade of plasticity expression. Second, the plasticity regions, crossed by the trajectories, are 
described with a minimal set of parameters. Importantly, their tuning is quite straightforward and 
done only once, even when the joint activity is stochastic. The tuning of the model is possible thanks 
to the decoupling of the plasticity process from the spine biophysics which acts as a feedforward 
input to the plasticity Markov chain and from the distributions of the different trajectories, which are 
well separated. The separability afforded by the geometrical readout, along with the model flexibility 
via fitting the plasticity regions, enabled us to reproduce data from nine different experiments using 
a single fixed set of model parameters. In contrast, we found that classic spike- timing (Song et al., 
2000; Pfister and Gerstner, 2006) or calcium- threshold (Graupner and Brunel, 2012) models could 
not reproduce the range of protocols from Tigaret et al., 2016 (Figure 2b–d). More complicated 
molecular- cascade models have been shown to account for individual plasticity experiments (Antunes 
et al., 2016; Jędrzejewska- Szmek et al., 2017; Mäki- Marttunen et al., 2020; Bhalla, 2017), but 
have not been demonstrated to reproduce the wide range of protocols presented here while consid-
ering experimental heterogeneity.

For some protocols, the CaMKII- CaN trajectories overshot the plasticity regions (e.g. Figure 3d). 
Although abnormally high and prolonged calcium influx to cells can trigger cell death (Zhivotovsky 
and Orrenius, 2011), the effects of high calcium concentrations at single synapses are poorly under-
stood. Notably, a few studies have reported evidence consistent with an overshoot, where strong 
synaptic calcium influx does not induce LTP (Yang et al., 1999; Tigaret et al., 2016; Pousinha et al., 
2017).

Our model included critical components for plasticity induction at CA3- CA1 synapses: those 
affecting dendritic spine voltage, calcium signalling, and enzymatic activation. We were able to use 
our model to make quantitative predictions, because its variables and parameters corresponded to 
biological components. This property allowed us to incorporate the model components’ dependence 
on developmental age, external Ca/Mg levels, and temperature to replicate datasets across a range 
of experimental conditions. The model is relatively fast to simulate, taking ∼1 min of CPU time to run 
1 min of biological time. These practical benefits should enable future studies to make experimental 
predictions on dendritic integration of multiple synaptic inputs (Blackwell et al., 2019; Oliveira et al., 
2012; Ebner et al., 2019) and on the effects of synaptic molecular alterations in pathological condi-
tions. In contrast, abstract models based on spike timing (Song et al., 2000; Pfister and Gerstner, 
2006; Clopath and Gerstner, 2010) or simplified calcium dynamics (Shouval et al., 2002; Graupner 
and Brunel, 2012) must rely on ad hoc adjustment of parameters with less biological interpretability.

Intrinsic noise is an essential component of the model. How can the synapse reliably express plas-
ticity but be noisy at the same time (Yuste et al., 1999; Ribrault et al., 2011)? Noise can be reduced 
either by redundancy or by averaging across time, also called ergodicity (Sterling and Laughlin, 
2015). However, redundancy requires manufacturing and maintaining more components, and there-
fore costs energy. We propose that, instead, plasticity induction is robust due to temporal averaging 
by slow- timescale signalling and adaptation processes. These slow variables display reduced noise 
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levels by averaging the faster timescale stochastic variables. This may be a reason why CaMKII uses 
auto- phosphorylation to sustain its activity and slow its decay time (Chang et al., 2017; Chang et al., 
2019). In summary, this suggests that the temporal averaging by slow variables, combined with 
the separability afforded by the multidimensional readout, allows synapses to tolerate noise while 
remaining energy- efficient.

A uniqueness of our model is that it simultaneously incorporates biological variables such as elec-
trical components at pre and postsynaptic sites, some with adaptive functions such as attenuation, 
age and temperature, stochastic noise and fast and slow timescales. Some of these variables have 
been modelled by other groups, for example stochasticity, BaP attenuation or pre- synaptic plasticity 
(Cai et al., 2007; Shouval and Kalantzis, 2005; Zeng and Holmes, 2010; Miller et al., 2005; Yeung 
et al., 2004; Shah et al., 2006; Deperrois and Graupner, 2020; Costa et al., 2015), but generally 
independently from each other. To position the uniqueness of our model in this broader context, 
we also provide a direct comparison of our model with some of the most recent leading models of 
excitatory synapse plasticity and the experimental work they reproduce (Appendix 1—table 2 and 
Appendix 1—table 3).

We identified some limitations of the model. First, we modelled only a single postsynaptic spine 
attached to a two- compartment neuron (soma and dendrite). Second, the model abstracted the 
complicated process of synaptic plasticity expression. Indeed, even if this replicated the early phase 
of LTP/LTD expression in the first 30–60 min after induction, we did not take into account slower 
protein- synthesis- dependent processes, maintenance processes, and synaptic pruning proceed at 
later timescales (Bailey et al., 2015). Third, like most biophysical models, ours contained many param-
eters. Although we set these to physiologically plausible values and then tuned to match the plasticity 
data, other combinations of parameters may fit the data equally well (Marder and Taylor, 2011; 
Mäki- Marttunen et  al., 2020) due to the ubiquitous phenomenon of redundancy in biochemical 
and neural systems (Gutenkunst et al., 2007; Marder, 2011). Indeed synapses are quite heteroge-
neous in receptor and ion channel counts (Takumi et al., 1999; Sabatini and Svoboda, 2000; Racca 
et al., 2000; Nimchinsky et al., 2004), protein abundances (Shepherd and Harris, 1998; Sugiyama 
et al., 2005), and spine morphologies (Bartol et al., 2015; Harris and Stevens, 1989), even within 
the subpopulation of CA1 pyramidal neuron synapses that we modelled here. Fourth, the activation 
of clustered synapses could influence the plasticity outcome, and the number of synapses activated 
during plasticity induction can be difficult to control experimentally. Our model concerns plasticity at 
a single synapse, which is also important during synaptic cluster activation (Ujfalussy and Makara, 
2020). We drew from data in Tigaret et al., 2016 where there is little indication of simultaneous clus-
tered synaptic activation. Furthermore, our simulations are in good agreement with plasticity experi-
ments using local field potential recordings (Dudek and Bear, 1993) where the number of activated 
synapses is uncertain. This indicates that the model proposed here can account for this aspect of 
synaptic plasticity heterogeneity. Finally, our readout model does not correspond to a specific molec-
ular cascade beyond CaN and CaMKII activations. However, we anticipate that the same mapping 
could be implemented by simple biochemical reaction networks, with for example, transition rates 
based on Hill functions for the plasticity boundaries.

Since the model respected the stochasticity of vesicle release (Rizzoli and Betz, 2005; Alabi and 
Tsien, 2012), NMDAr (Nimchinsky et al., 2004; Popescu et al., 2004; Iacobucci and Popescu, 2017; 
Sinclair et al., 2016), and VGCC opening (Magee and Johnston, 1995; Sabatini and Svoboda, 2000; 
Iftinca et al., 2006), the magnitude of plasticity varied from simulation trial to trial. This suggests that 
the rules of plasticity are inherently stochastic (Bhalla, 2004; Antunes et al., 2016) and that the vari-
ability observed in these experiments (Inglebert et al., 2020; Tigaret et al., 2016; Dudek and Bear, 
1992; Dudek and Bear, 1993; Mizuno et al., 2001; Meredith et al., 2003; Wittenberg and Wang, 
2006) is partly due to stochastic signalling. With our current model, we have been able to reproduce 
nine experiments with a single set of parameters. By running extensive simulations over the space 
of protocols beyond those tested experimentally (Figure 3h and i; Figure 4f; Figure 5c, e and f; 
Figure 6e and f), we made testable predictions for plasticity outcomes that should therefore be of a 
high level of confidence. For example, Tigaret et al., 2016 did not find LTD when using classic post- 
before- pre stimulation protocols, but the model predicted that LTD could be induced if the number 
of pairing repetitions was extended (Figure 3h and i). The model also predicts that the lack of LTD 
induced by FDP in adults can be recovered using doublets, triplets or quadruplets of spikes in the 
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protocols (Figure 5d). We tested the model’s sensitivity to spike time jitter and spike failure in the 
stimulation protocols (Figure 7). Our simulations predict that this firing variability can alter the rules of 
plasticity, in the sense that it is possible to add noise to cause LTP for protocols that did not otherwise 
induce plasticity.

What do these results imply about the rules of plasticity in vivo? First, we noticed that successful 
LTP or LTD induction required a balance between two types of slow variables: those that attenuate, 
such as presynaptic vesicle pools and dendritic BaP, versus those that accumulate, such as slow enzy-
matic integration (Cai et  al., 2007; Mizusaki et  al., 2022; Deperrois and Graupner, 2020). This 
balance is reflected in the inverted- U shaped magnitude of LTP seen as a function of post- synaptic 
firing rate (Figure 7h). Second, although spike timing on millisecond timescales can in certain circum-
stances affect the direction and magnitude of plasticity (Figure 3), in order to drive sufficient activity 
of synaptic enzymes, these patterns would need to be repeated for several seconds. However, if these 
repetitions are subject to jitter or failures, as observed in hippocampal spike trains in vivo (Fenton and 
Muller, 1998; Wierzynski et al., 2009), then the millisecond- timescale information will be destroyed 
as it gets averaged out across repetitions by the slow integration processes of CaMKII and CaN 
(Figure 7a–d). The net implication is that millisecond- timescale structure of individual spike pairs is 
unlikely to play an important role in determining hippocampal synaptic plasticity in vivo (Froemke and 
Dan, 2002; Sadowski et al., 2016; Graupner et al., 2016).

In summary, we presented a new type of biophysical model for plasticity induction at the rat CA3- 
CA1 glutamatergic synapse. Although the model itself is specific to this synapse type, the study’s 
insights may generalise to other synapse types, enabling a deeper understanding of the rules of 
synaptic plasticity and brain learning.

Materials and methods
Experimental datasets
The datasets at the basis of our model were obtained directly from the authors Tigaret et al., 2016 
or extracted from graphs in the references in Appendix 1—table 2 using WebPlotDigitizer v 4.6 soft-
ware (Rohatgi, A.). The dataset from Tigaret et al., 2016 is freely available upon request.

Code availability
All simulations were performed in the Julia programming language (version 1.4.2). This choice was 
dictated by simplicity and speed (Perkel, 2019). The code for the Markov chains is mostly automati-
cally generated from reactions using the Julia package Catalyst.jl (Loman et al., 2022), and could be 
exported to an SBML representation for porting to other languages. The model is available on GitHub 
at SynapseElife (copy archived at Veltz, 2023).

Simulating the synapse model is equivalent to sampling a piecewise deterministic Markov process, 
and this relies on the thoroughly tested Julia package PiecewiseDeterministicMarkovProcesses.jl. 
These simulations are event- based, and no approximation is made beyond the ones required to inte-
grate the ordinary differential equations by the LSODA method (Livermore Solver for Ordinary Differ-
ential Equations). We ran the parallel simulations in the Nef cluster operated by Inria.

Notation
We write  1A  for the indicator of a set  A , meaning that  1A(x) = 1  if  x  belongs to  A  and zero otherwise.

Vesicle release and recycling
The detailed exocytosis model we implemented was motivated by taking into account the following 
minimal requirements: synaptic failures (which impact STDP protocols), vesicle depletion (for 
frequency/pulse number repetition dependent protocols), external calcium (motivated by Inglebert 
et al., 2020). This is best modeled by counting the released vesicles, hence our choice of a stochastic 
model. In biological synapses, an action potential arriving at the presynaptic terminal can trigger 
the release of a neurotransmitter–filled vesicle, which activates postsynaptic receptors. We derived a 
vesicle–release Markov chain model based on a deterministic approach described in Sterratt et al., 
2011.

https://doi.org/10.7554/eLife.80152
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Vesicles can be in two states, either belonging to the docked pool (with cardinal  D ) with fast 
emptying, or to the reserve pool (with cardinal  R ) which replenishes  D  (Rizzoli and Betz, 2005). Initially 
the docked and reserve pools have D0 and R0 vesicles, respectively. The docked pool loses one vesicle 
each time a release occurs (Rudolph et al., 2015), with transition  D → D − 1  (Figure 8). The reserve 
pool replenishes the docked pool with reversible transition  (R, D) ↔ (R − 1, D + 1) . Finally, the reserve 
pool is replenished towards initial value  R0  over a timescale  τ

ref
D   via the transition  (R, D) → (R + 1, D) .

In addition to the stochastic dynamics in Table 1, each spike triggers a vesicle release  D → D − 1  
with probability  prel :

 
910prel([Ca]pre, [Ca2+]o, D) =

(
[Ca]pre

)s

(
[Ca]pre

)s + h([Ca2+]o)s 1D>0, h([Ca2+]o) = 0.654 + 1.349
1 + e4·([Ca2+]o−1.708 mM)

 
 (1)

which is a function of presynaptic calcium  [Capre]  and extracellular calcium concentration, [Ca2+]o, 
through the threshold  h([Ca2+]o) . The function  prel  was fitted in Figure 8e against data from Tigaret 

Figure 8. Presynaptic release model validation. (a) Presynaptic calcium in response to the protocol 1Pre, 300 pulses at 5 Hz displaying adaptation. (b) 
Release probability for the same protocol as panel A but subjected to the docked vesicles availability. (c) Number of vesicles in the docked and reserve 
pools under depletion caused by the stimulation from panel a. (d) Plot of the mean (300 samples) release probability (%) for different frequencies for 
the protocol 1Pre 300 pulses at [Ca2+]o = 2.5 mM. (e) Release probability (%) for a single presynaptic spike as a function of [Ca2+]o. Note that King et al., 
2001 model was multiplied by the experimentally measured release probability at [Ca2+]o = 2 mM since their model has this calcium concentration as 
the baseline.

Table 1. Stochastic transitions used in the presynaptic vesicle pool dynamics.
Note that the rates depend on the number of vesicles in each pool (Pyle et al., 2000).

Transition Rate Initial Condition

 (R, D) → (R − 1, D + 1)  (D0 − D) · R/τD  D(t = 0) = D0 

 (R, D) → (R + 1, D − 1)  (R0 − R) · D/τR  R(t = 0) = R0 

 (R, D) −→ (R + 1, D)  (R0 − R)/τ ref
R  

https://doi.org/10.7554/eLife.80152


 Research article Neuroscience | Computational and Systems Biology

Rodrigues et al. eLife 2023;12:e80152. DOI: https://doi.org/10.7554/eLife.80152  23 of 63

et al., 2016; Hardingham et al., 2006. To decide whether a vesicle is released for a presynaptic spike, 
we use a phenomenological model of  Capre  (see Figure 8a) based on a resource- use function (Tsodyks 
and Markram, 1997):

 




dCapre
dt

= −Capre
τpre

Capre(0) = 0
dCajump

dt
=

1 − Cajump
τrec

− δCa · Cajump · Capre Cajump(0) = 1.
  

(2)

Upon arrival of the presynaptic spikes,  t ∈ (t1, · · · , tn) , we update  Capre  according to the determin-
istic jump:

 Capre → Capre + Cajump.  

Finally, after  Capre  has been updated, a vesicle may be released with probability  prel  (Figure 8b).
Parameters for the vesicle release model are given in Table 2. We constrained these parameters 

against the data reported by Hardingham et  al., 2006 and Tigaret et  al., 2016. Because [Ca2+]o 
modifies the release probability dynamics (King et al., 2001), we fixed an initial release probability 
to 68% for [Ca2+]o = 2.5 mM as reported by Tigaret et al., 2016 (initial value in Figure 8b and d). 
Additionally, Hardingham et al., 2006 reports a 38% reduction in the initial release probability when 
changing [Ca2+]o from 2.5 mM to 1 mM. Taking these into account, the decreasing sigmoid function in 
the Figure 8e depicts our [Ca2+]o- dependent release probability model ( prel ).

Figure  8e shows that our  prel  function is in good agreement with a previous analytical model 
suggesting that  prel([Ca2+]o) ∝ ([Ca2+]o)2 mM−2

  (King et  al., 2001). Our model also qualitatively 
reproduces the decrease of calcium dye fluorescence levels after 20 s of theta trains from Tigaret 
et al., 2016. We interpret their fluorescence measurements as an effect of short- term depression (see 
Figure 8b).

Table 2. Parameter values for the presynaptic model.
Our model does not implement a larger pool of ∼ 180 vesicles (CA3- CA1 hippocampus) sometimes 
named ‘reserve pool’ (Südhof, 2000) or ‘resting pool’ (Alabi and Tsien, 2012). Furthermore, what 
we term the ‘reserve pool’ in our model is sometimes called the ‘recycling pool’ in other studies, for 
example Rizzoli and Betz, 2005; Alabi and Tsien, 2012.

Name Value Reference

Vesicle release model (stochastic part)

Initial number of vesicles at D  D0 = 25 
5–20 (Rizzoli and Betz, 2005; Alabi and Tsien, 
2012)

Initial number of vesicles at R  R0 = 30 17–20 vesicles (Alabi and Tsien, 2012)

Time constant R→ D (D recycling)  τD = 5 s 1 s (Rizzoli and Betz, 2005)

time constant D → R (R mixing)  τR = 45 s 
20 s (when depleted) to 5 min (hypertonic shock) 
(Rizzoli and Betz, 2005; Pyle et al., 2000)

Time constant 1→ R (R recycling)  τ
ref
R = 40 s 20–30 s (Rizzoli and Betz, 2005)

Release probability half- activation 
curve  h see Equation 1

Release probability sigmoid slope  s = 2 fixed for all [Ca2+]o

Vesicle release model (deterministic part)

 Capre  attenuation recovery  τpre = 0.02 s 
50- 500 ms with dye (Maravall et al., 2000) therefore 
< 50 to 500 ms without dye

Deterministic jump attenuation 
recovery  τrec = 20 s 

∼20 s (Rizzoli and Betz, 2005)

Deterministic jump attenuation 
fraction  δca = 0.0004 Forsythe et al., 1998

https://doi.org/10.7554/eLife.80152
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Despite these agreements between our model and previous work, it is a simplified presyn-
aptic model that does not encompass the highly heterogeneous nature of vesicle release. Vesicle 
release dynamics are known to be sensitive to various experimental conditions such as tempera-
ture (Fernández- Alfonso and Ryan, 2004), the age for some brain regions (Rudolph et al., 2015) 
or magnesium concentration (Hardingham et al., 2006). Although we did not consider this for the 
presynaptic model, note that we do incorporate such experimental parameters (age, temperature, 
[Ca2+]o, [Mg2+]o) to our model of NMDArs, which is the main postsynaptic calcium source. Further-
more, since our model of vesicle dynamics is simple,  τrec  in Equation 2 has two roles: to delay the  prel  
recovery caused by  Capre  inactivation (enforced by  δCa  in Equation 2) and to prevent vesicle release 
after HFS- induced depression (King et al., 2001; Rizzoli and Betz, 2005). Our presynaptic model 
for  prel  is purely phenomenological as, in principle, the  [Ca2+]  jump parameter  δCa  should depend on 

 [Ca2+]o , but replacing the model with a more physiological model would not affect the results, since 
the measured dependence of release probability on  [Ca2+]o  is already satisfied by this phenomenolog-
ical model. Also, multi- vesicular release (MVR) at SC- CA1 synapses was shown to be prominent after 
manipulations that increase release probability, for example during the facilitation seen with paired- 
pulse stimulations (Christie and Jahr, 2006; Oertner et al., 2002). Yet, we chose not to incorporate 
this mechanism in the pre- synaptic model because we do not hold enough information on how MVR 
participates to plasticity outcomes of the different protocols we used in this study.

Model compartments
Our model has three compartments. 1) a spherical dendritic spine linked by the neck to 2) a cylindrical 
dendrite connected to 3) a spherical soma. The membrane potential of these compartments satisfy 
the equations below (parameters in Table 3). Since the dendrite is a single compartment, the precise 
spine location is undefined. For more detailed morphological simulations to predict plasticity, see 
Ebner et al., 2019, Chindemi et al., 2022 and Jędrzejewska- Szmek et al., 2017. The distance from 
the soma to the spine functionally mimics the BaP attenuation as shown in Golding et al., 2001, and 
it is set to 200 µm for all simulations, except in Figure 3—figure supplement 4e and Figure 4—figure 
supplement 1c. In these panels, we modified this distance parameter as described in the graph y- axis 
obtaining results similar to Ebner et al., 2019. The different currents in the soma, dendrite and spine 
are described in Equations 3–5.

Membrane potential and currents
The membrane potential of these compartments satisfy the equations below (parameters in Table 3). 
The different currents are described in the following sections.

 
Csp · dVsp

dt
= gneck · (Vdend − Vsp) + gsp

L · (Erev − Vsp) + IT + IL + IR + INMDA + IAMPA + ISK   
(3)

 
Cdend ·

dVdend
dt

= gadapt
BaP · (Vsoma − Vdend) + gneck · (Vsp − Vdend) + gdend

L · (Erev − Vdend) + IGABA  
(4)

 
Csoma · dVsoma

dt
= gadapt

BaP · (Vdend − Vsoma) + gsoma
L · (Erev − Vsoma) + λage · (IBaP + INa) + IK   

(5)

Action-potential backpropagation (BaP)
Postsynaptic currents
The postsynaptic currents are generated in the soma, backpropagated to the dendritic spine via a 
passive dendrite which filters them. The soma generates BaPs using a version of the Na+ and K+ 
channel models developed by Migliore et al., 1999. The related parameters are described in Table 4 
(the voltage unit is mV). We used the following the units:  αx(V/mV) [ms−1]  and  βx(V/mV) [ms−1] .
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Sodium channel

αm(Vsoma) = 0.4 · Vsoma+30

1−e−
Vsoma+30

7.2

βm(Vsoma) = 0.124 · Vsoma+30

e
Vsoma+30

7.2 −1
minf(Vsoma) = αm(Vsoma)

αm(Vsoma)+βm(Vsoma)

mτ (Vsoma) = 1
αm(Vsoma)+βm(Vsoma)

αh(Vsoma) = 0.01 · Vsoma+45

e
Vsoma+45

1.5 −1

βh(Vsoma) = 0.03 · Vsoma + 45

1 − e−
Vsoma+45

1.5
dh
dt = αh(Vsoma) · (1 − h) − βh(Vsoma) · h

dm
dt = minf−m

mτ

INa = γNa · m3 · h · (ErevNa − Vsoma).  

 

Potassium channel

αn(Vsoma) = e−0.11·(Vsoma−13)

βn(Vsoma) = e−0.08·(Vsoma−13)

ninf(Vsoma) = 1
1+αn(Vsoma)

nτ (Vsoma) = max
(

50 · βn(Vsoma)
1+αn(Vsoma) ; 2

)

dn
dt =

ninf − n
nτ

IK = γK · n · (ErevK − Vsoma)  

To trigger a BaP, an external current  IBaP  is injected in the soma at times  t ∈ {t1, ..., tn}  (postsynaptic 
input times) for a chosen duration  δinj  with amplitude  Iamp (nA) . Taking  H   as the Heaviside function, 
this is expressed as:

 
IBaP =

n∑
i=1

H(ti) · (1 − H(ti + δinj)) · Iamp.
  

The currents underlying the BaP in the soma are filtered in a distance- dependent manner by the 
dendrite before reaching the dendritic spine. Biologically, BaP adaptation is caused by the inactivation 
of sodium channels and variations in sodium and potassium channel expression along the dendrite 
(Jung et al., 1997; Golding et al., 2001). We used a phenomenological model, implementing distant- 
dependent BaP amplitude attenuation by modifying the axial resistance  g

adapt
BaP   (see Equation 4 and 

Equation 5) between the dendrite and the soma as follows (Figure 9c top):

 
gadapt

BaP = λ · gdiff · ϕdist(dsoma), ϕdist(dsoma) = 0.1 + 1.4
1 + e0.02·(dsoma−230.3µm)   

(6)

where  dsoma  is the distance of the spine from the soma and where the factor is dynamically regulated 
based on a resource- use equation from Tsodyks and Markram, 1997 with a dampening factor  λaux  
changing the size of the attenuation step  δdecay :

 
dλ
dt

= 1 − λ

τrec
− δdecay · λ−1

aux · λ · IBaP(t)
  

 
dλaux

dt
= 1 − λaux

τrec
− δaux · λaux · IBaP(t).

  

The BaP attenuation model is based on Golding et  al., 2001 data for strongly attenuating 
neurons. Therefore, the second type of attenuation (weakly attenuating) in neurons is not considered 
(dichotomy in Figure 9a). Figure 9a compares Golding’s data to our model and illustrates the effect 
of BaP attenuation in the upper panels of Figure 9a, b.

Table 4 shows the BaP attenuation parameters. The plasticity outcomes as function of the dendritic 
spine distance from the soma are shown in Figure 3—figure supplement 4e and Figure 4—figure 
supplement 1c.

Age-dependent BaP adaptation
Neuronal bursting properties are altered during development through development through the 
maturation and expression of potassium and sodium channels (Gymnopoulos et al., 2014), which 
change the interaction of hyperpolarizing and depolarizing currents (see Figure 9b; Grewe et al., 
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Table 3. Parameters for the neuron electrical properties.
* The membrane leak conductance in the spine is small since the spine membrane resistance is so 
high that is considered infinite ( > 106MΩ ) (Koch and Zador, 1993). The current thus mostly leaks 
axially through the neck cytoplasm. The dendrite leak conductance is also small in order to control 
the distance- dependent attenuation by the axial resistance term  g

adapt
BaP   in Equation 4 and Equation 

5. The table provides the parameters associated with these equations which were adjusted (see 
comparison with Reference value) to fit the dynamics seen in Golding et al., 2001 and Buchanan 
and Mellor, 2007 experiments as in Figure 9a and b.

Name Value Reference

Passive cable

Leak reversal potential  Eleak = −70 mV   69 mV   (Spigelman et al., 1996)

Membrane leak conductance 
per area (for spine and passive 
dendrite)  gleak = 4 · 10−6 nS/µm2

 * see table legend (Koch and Zador, 1993)

Membrane leak conductance 
per area (only soma)  gsoma = 5.31 · 10−3 nS/µm2

 
 3 · 10−4 to 1.3 · 10−3nS/µm2

  (Fernandez and 
White, 2010)

Membrane capacitance per area  Cm = 6 · 10−3 pF/µm2
 

 1 · 10−2 pF/µm2
  

(Hines and Carnevale, 1997)

Axial resistivity of cytoplasm  Ra = 1 · 10−2 GΩµm 
 2 · 10−3 GΩµm 
(Golding et al., 2001)

Dendrite

Dendrite diameter  Ddend = 2 µm same as Yi et al., 2017

Dendrite length  Ldend = 1400 µm 
apical dendrites, 1200–1600 μm 
López Mendoza et al., 2018

Dendrite surface area  Adend = 8.79 · 103 µm2
  π · Ddend · Ldend  

Dendrite volume  Voldend = 4.4 · 103µm3
  π · (Ddend/2)2 · Ldend  

Dendritic membrane 
capacitance  Cdend = 52.77 pF   Cm · Adend  

Dendrite leak conductance  g
dend
L = 3.51 · 10−2 nS  gleak · Adend  

Dendrite axial conductance  gdiff = 50 nS  Ra · Adend  

Soma

Soma diameter  Dsoma = 30 µm 21 μm (Stuart et al., 2016) page 3

Soma area (sphere)  Asoma = 2.82 · 103 µm2
 

 (4π/3) · (Dsoma/2)3
 ;

 2.12 · 103 µm2
  

(Zhuravleva et al., 1997)

Soma membrane capacitance  Csoma = 16.96 pF   Cm · Asoma 

Soma leaking conductance  g
soma
L = 15 nS 

 gsoma · Asoma 
(Fernandez and White, 2010)

Dendritic spine

Spine head volume  Volsp = 0.03 µm3
 Bartol et al., 2015

Spine head surface  Asp = 4.66 · 10−1 µm2
  4π · (3Volsp/4π)2/3

 

Spine membrane capacitance  Csp = 2.8 · 10−3 pF   Cm · Asp 

Spine head leak conductance
 g

sp
L = 1.86 · 10−6 nS 

 gleak · Asp 

Table 3 continued on next page
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Name Value Reference

Dendritic spine neck

Spine neck diameter  Dneck = 0.1 µm 0.05–0.6 μm Harris et al., 1992

Neck length  Lneck = 0.2 µm  0.7 ± 0.6 µm  (Adrian et al., 2017)

Neck cross- sectional area  CSneck = 7.85 · 10−3 µm2
  π · (Dneck/2)2

 

Neck resistance  gneck = 3.92 nS ≈ 255.1 MΩ 

 CSneck/(Lneck · Ra)  

 50 to 550 MΩ (275 ± 27 MΩ)  (Popovic 
et al., 2015)

Table 3 continued

Figure 9. AP Evoked by EPSP. (a) Model and data comparison for the distance- dependent BaP amplitude attenuation measured in the dendrite and 
varying the distance from the soma. The stimulation in panel a is set to reproduce the same stimulation as Golding et al., 2001. Golding described two 
classes of neurons: those that are strongly attenuated and those that are weakly attenuated (dichotomy mark represented by the dashed line). However, 
in this work we consider only strongly attenuated neurons. (b) Attenuation of somatic action potential from Buchanan and Mellor, 2007 and model 
in response to five postsynaptic spikes delivered at 100 Hz. The value showed for the model is the spine voltage with distance from the soma set to 
zero (scale 25 ms, 20 mV). (c) Top panel shows the  λsoma  used in Equation 6 to modify the axial conductance between the soma and dendrite. Bottom 
panel shows the age- dependent changes in the step of the resource- use equation (Equation 7) that accelerates the BaP attenuation and decreases 
the sodium currents in Equation 5. (d) Probability of evoking an AP multiplied by the successfully evoked AP,  pAP(Vevoked) · 1(evoked) , for the protocol 
1Pre, 300 at 5 Hz (2.5 mM Ca). (e) Two- pool dynamics with the same stimulation from panel D showing the vesicle release, the reserve and docked pools, 
and the evoked AP. (f) Probability of evoking an AP for the protocol 1Pre 300 pulses at different frequencies (3 and 5 Hz have the same probability).
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2010; Jung et al., 1997). We fitted the data of the age dependent somatic attenuation profiles from 
Buchanan and Mellor, 2007 (Figure 9b) with our model by including an age- dependent BaP ampli-
tude attenuation factor. We define the attenuation factor  λage  (Figure 9c bottom), as follows.

 

dλaux
dt

=
1 − Iage

τ
age
rec

− δage · λage · IBaP(t), δ
age
rec = 1.391 · 10−4

1 + e0.135·(age−16.482 days) .
  

(7)

In Equation 5, the age effects are introduced by multiplying the sodium  INa  and the external  IBaP  
currents by the attenuation factor  λage .

AP evoked by EPSP
Biologically, a presynaptic stimulation triggers a BaP if sufficient depolarization is caused by the EPSPs 
reaching the soma (Stuart et al., 2016). To model this effect for some LFP recordings protocols, we 
included an option to choose whether an EPSP can evoke an AP using an event generator resembling 
the previous presynaptic release probability model  prel , as in Equation 1. Like  prel , the BaPs evoked 
by EPSPs are calculated offline, before the postsynaptic simulation. We use a variable  Vevoke  which is 
incremented by 1 at each presynaptic time  t ∈ (t1, ..., tn)  and has exponential decay:

 




dVevoke
dt

= −Vevoke
τv

Vevoke(0) = 0

Vevoke −→ Vevoke + 1.   

(8)

Table 4. The Na +and K+conductances intentionally do not match the reference because models 
with passive dendrite need higher current input to initiate action potentials (Levine and Woody, 
1978).
Therefore, we set it to achieve the desired amplitude on the dendrite and the dendritic spine 
according to the predictions of Golding et al., 2001 and Kwon et al., 2017.

Name Value Reference

Soma parameters for Na +and K+ channel

Sodium conductance  γNa = 8 · 102 nS generic value, see legend commentary

Potassium conductance  γK = 40 nS generic value, see legend commentary

Reversal potential sodium  ErevNa = 50 mV  Migliore et al., 1999

Reversal potential potassium  ErevK = −90 mV  Migliore et al., 1999

BaP attenuation parameters

Attenuation step factor (age)  δage 

see Equation 7 and Figure 9b and c 
bottom Buchanan and Mellor, 2007; 
Golding et al., 2001

Attenuation step factor  δdecay = 1.727 · 10−5
 

adjusted to fit Buchanan and Mellor, 2007; 
Golding et al., 2001

Auxiliary attenuation step factor  δaux = 2.304 · 10−5
 

adjusted to fit Buchanan and Mellor, 2007; 
Golding et al., 2001

Recovery time for the 
attenuation factor  τrec = 2 s 

adjusted to fit Buchanan and Mellor, 2007; 
Golding et al., 2001

Recovery time for the age 
attenuation factor  τ

age
rec = 0.5 s 

adjusted to fit Buchanan and Mellor, 2007; 
Golding et al., 2001

AP evoked by EPSP

Decay time for Vevoke  τV = 0.04 s Hines and Carnevale, 1997

Delay AP evoked by EPSP  δdelay−AP = 0.015 s Fricker and Miles, 2000
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Since the BaPs evoked by EPSPs are triggered by the afferent synapses and are limited by their 
respective docked pools ( D ), we use the previous  prel  to define the probability of an AP to occur. We 
test the ratio of successful releases from 25 synapses to decide if a BaP is evoked by an EPSP, setting 
a test threshold of 80%. Therefore, we express the probability of evoking an AP,  pAP(Vevoke) , with the 
following test:

 

∑25 1(rand < prel(Vevoked, [Ca2+]o, D))
25

> 80% .
  

In real neurons, the EPSP summation dynamics in the soma and dendrites depend on the complex 
neuron morphology (Etherington et al., 2010; Ebner et al., 2019) which was not implemented by 
our model. Instead our ‘AP evoked by EPSP test’ is a simplified way to produce BaPs, similar to an 
integrate- and- fire model (Sterratt et al., 2011).

Previous work (Mayr and Partzsch, 2010) suggests that low- frequency stimulation, as used in 
Dudek and Bear, 1992 ([Ca2+]o = 2.5 mM), can evoke BaPs with a ∼5% probability. Our model accounts 
for this, but also allows the probability of eliciting an AP to increase with stimulation frequency (Ether-
ington et al., 2010). This is captured by  Vevoke  as shown in Figure 9f. Figure 9d, e show how a 5 Hz 
stimulation can evoke APs. The delay between the EPSP and the evoked AP is set to  δdelay−AP = 15ms , 
similar to the EPSP- spike latency reported for CA1 pyramidal neurons (Fricker and Miles, 2000).

AMPAr
Markov chain
The AMPArs are modeled as a Markov chain (Figure 10) described by Robert and Howe, 2003 and 
Coombs et al., 2017 and adapted to temperature changes according to Postlethwaite et al., 2007. 
Here, we introduce the additional parameters  ρ

AMPA
f , ρAMPA

b   to cover AMPAr temperature- sensitive 
kinetics (Postlethwaite et al., 2007). The corresponding parameters are given in Table 5.

The AMPAr conductance is given as the sum of the occupancies of the three subconductance 
states  O2 ,  O3  and  O4  of the Markov chain in Figure 10. The AMPAr current is then:

 IAMPA = (ErevAMPA − Vsp) · (γA2 · O2 + γA3 · O3 + γA4 · O4).  

Figure 10. AMPAr Markov chain with three sub- conductance states and two desensitisation levels. It includes parameters  ρ
AMPA
f  ,  ρ

AMPA
b   (binding and 

unbinding of glutamate) which depend on temperature. Open states are  O2 ,   O3 , and ; closed states are  C0 ,  C1 ,  C2 ,  C3 , and  C4 ; desensitisation states 
are  D0 ,  D1 ,  D2 ,  D3 , and  D4 ; deep desensitisation states are  D22 ,  D23 , and  D24 .
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The adaptation of the Markov chain from Robert and Howe, 2003 is made by changing the 
forward  ρ

AMPA
f   and backward  ρ

AMPA
b   rates in a temperature- dependent manner matching the decay 

time reported by Postlethwaite et al., 2007:

 ρAMPA
f = 10.273

1+e−0.473·(T−31.724◦C) , ρAMPA
b = 5.134

1+e−0.367·(T−28.976◦C) .  

The effects of temperature change on AMPAr dynamics are presented in Figure 11, which also 
shows that the desensitisation is not altered by temperature changes (Figure 11b and c). The recovery 
time from desensitisation is the same as at room temperature (Robert and Howe, 2003). Desensiti-
sation measurements are required to account for a temperature- dependent change in the rates of the 
‘vertical’ transitions in Figure 10, see Postlethwaite et al., 2007. This could be relevant for presyn-
aptic bursts as indicated in Figure 11b–c.

Table 5. Parameter values for the AMPAr Markov chain and glutamate release affecting NMDAr, 
AMPAr.
Properties of GABA release are the same as those for glutamate.

Name Value Reference

Glutamate parameters

Duration of glutamate in the cleft  gluwidth = 0.001 s Spruston et al., 1995

Concentration of glutamate in the 
cleft  gluamp = 103 µM  Spruston et al., 1995

Glutamate variability (gamma 
distribution Γ )  glucv = Γ(1/0.52, 0.52) Liu et al., 1999

Glutamate signal  Glu 

 glucv · gluamp  for AMPAr, 
NMDAr and copied to GABA 
neurotransmitter

AMPAr parameters

Number of AMPArs  NAMPA =120 Bartol et al., 2015

Reversal potential  ErevAMPA = 0 mV  Bartol et al., 2015

Subconductance O2  γA2 = 0.0155 nS  0.0163 nS  (Coombs et al., 2017)

Subconductance O3  γA3 = 0.026 nS  0.0287 nS  (Coombs et al., 2017)

Subconductance O4  γA4 = 0.0365 nS  0.0378 nS  (Coombs et al., 2017)

glu binding  k1 = 16 µM−1s−1
 Robert and Howe, 2003

glu unbinding 1  k−1 = 7400 s−1
 Robert and Howe, 2003

glu unbinding 2  k−2 = 0.41 s−1
 Robert and Howe, 2003

Closing  α = 2600 s−1 Robert and Howe, 2003

Opening  β = 9600 s−1
 Robert and Howe, 2003

Desensitisation 1  δ1 = 1500 s−1
 Robert and Howe, 2003

Desensitisation 2  δ2 = 170 s−1
 Robert and Howe, 2003

Desensitisation 3  δ0 = 0.003 s−1
 Robert and Howe, 2003

Re- desensitisation 1  γ1 = 9.1 s−1
 Robert and Howe, 2003

Re- desensitisation 2  γ2 = 42 s−1
 Robert and Howe, 2003

Re- desensitisation 3  γ0 = 0.83 s−1
 Robert and Howe, 2003
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Postsynaptic Ca2+ influx
The effects of experimental conditions on the calcium dynamics are due to receptors, ion channels 
and enzymes. A leaky term models the calcium resting concentration in the Equation 9. The calcium 
fluxes from NMDAr and VGCCs (T, R, L types) are given in Equation 10. The diffusion term through 
the spine neck is expressed in Equation 11. Finally, the buffer, the optional dye and the enzymatic 
reactions are given in Equation 12 (parameter values given at the Table 6):

 

dCa
dt

= Ca∞ − Ca
τCa

+
  

(9)

 

CaNMDA + IT + IR + IL
2 · F · Asp

+
  

(10)

 

max(Ca∞, Ca/3) − Ca
τCaDiff

−
  

(11)

 
dBuffCa

dt
− dDye

dt
+ enzymes.

  
(12)

Despite the driving force to the resting concentration,  Ca∞ = 50 nM  , the tonic opening of T- type 
channels causes calcium to fluctuate making its mean baseline value dependent on temperature, 
extracellular calcium, and voltage. The effects of this tonic opening in various experimental conditions 
are shown in Figure 6—figure supplement 2f. To avoid modelling dendritic calcium sources, we use 
a dampening term as one- third of the calcium level since calcium imaging comparing dendrite and 
spine fluorescence have shown this trend (Segal and Korkotian, 2014). Equation 11 implements the 
diffusion of calcium from the spine to the dendrite through the neck. The time constant for the diffu-
sion coefficient  τCaDiff  , is estimated as described in Holcman et al., 2005. The calcium buffer and the 
optional dye are described as a two- state reaction system (Sabatini et al., 2002):

 

dBuffCa
dt

= kBuff
on · (Buffcon − BuffCa) · Ca − kBuff

off · BuffCa
dDye

dt
= k Fluo5

on · (Fluo5fcon − Dye) · Ca − k Fluo5
off · Dye.

  

(13)

Tigaret et al., 2016 experiments used the synthetic calcium- indicator dye Fluo- 5f, which is well- 
modelled by a single Ca2+- dye binding reaction (Maravall et al., 2000; Bartol et al., 2015). Although 
we include a detailed model of Calmodulin, which is a major endogenous calcium buffer, the other 
types are poorly quantified experimentally. Instead, we used a parsimonious generic buffer model that 
represents an aggregate of these largely unknown endogenous buffers. Future iterations of the model 
could include more detailed versions of these endogenous buffers, for example calbindin (Bartol 
et al., 2015).

Unlike other calcium- based plasticity models (Graupner and Brunel, 2012) using the dye fluores-
cence decay as an approximation to calcium decay, our model is based on receptor and ion channel 
kinetics. Additionally, our model can simulate the dye kinetics as a buffer using (Equation 13) when 
appropriate. Figure 12 highlights differences between calcium and dye dynamics which is affected 
by the laser- induced temperature increase (Wells et al., 2007; Deng et al., 2014). We estimated 
the calcium reversal potential for the calcium fluxes using the Goldman–Hodgkin–Katz (GHK) flux 
equation described in Hille, 1978. The calcium ion permeability,  PCa , was used as a free parameter 
adjusting a single EPSP to produce a calcium amplitude of ∼3 µM (Chang et al., 2017). This free 
scaling is needed to compensate for the fact that that GHK equation is derived for a model that 
assumes ionic currents pass through the membrane as a distributed and continuous flux, rather that 
the ion channels we modelled as having discrete conductance levels. Although this adaptation implies 
that we are using the magnitude of the GHK flux in a phenomenological way, it nevertheless captures 
the nonlinear dependence of relative calcium flux on extracellular calcium concentration.

 

ϕ(Vsp, T) = zCa · Vsp · F/(R · (T + 273.15K))

ΦCa(Vsp, [Ca2+]i) = −PCa · zCa · F · ϕ(Vsp, T) · [Ca2+]i − [Ca2+]o · e−ϕ

1 − e−ϕ
,
  

(14)

where  ΦCa(Vsp, [Ca2+]i)  is used to determine the calcium influx through NMDAr and VGCC in the 
Equation 15, Equation 16, Equation 17 and Equation 18 using the spine membrane voltage and 
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Figure 11. Effect of temperature on AMPArs. (a) Probability of AMPAr opening ( 
O2+O3+O4

NAMPA  ) and the decay time at different temperatures, in response to 
1 mM glutamate applied for 1 ms (standard pulse). Postlethwaite et al., 2007 data (our model) suggests that AMPAr decay time at 35°C is  ∼ 0.5 ms  
( ∼ 0.6 ms ) and at 25°C is  ∼ 0.65 ms  ( ∼ 0.95 ms ). This shows a closer match towards more physiological temperatures. (b) Desensitisation profile of 
AMPAr at 35°C showing how many AMPAr are open in response to repeated glutamate saturating pulses (5 mM Glu for 20 ms) separated by an interval 
(x- axis). (c) Same as in panel b but for 25°C.

Table 6. Postsynaptic calcium dynamics parameters.
Note that the buffer concentration, calcium diffusion coefficient, calcium diffusion time constant and 
calcium permeability were considered free parameters to adjust the calcium dynamics.

Name Value Reference

Buffer and dye

Association 
buffer constant  k

Buff
on = 247 µM−1s−1

 Bartol et al., 2015

Dissociation 
buffer constant  k

Buff
off = 524 s−1

 Bartol et al., 2015

Generic buffer 
concentration  Buffcon = 62 µM   76.7 µM   (Bartol et al., 2015)

Calcium dynamics

Calcium baseline 
concentration  Ca∞ = 0.05 µM  

 0.037 ± 0.005 to 0.054 ± 0.005 µM    
(Maravall et al., 2000) 

Calcium decay 
time  τCa = 10−2 s 

0.05–0.5 s with dye (Maravall et al., 2000) 
therefore < 0.05–0.5 s undyed (unbuffered)

Calcium diffusion 
coefficient  DCa = 333.8 µm2s−1

 
 200 to 400 µm2s−1

  (Bartol et al., 2015; Holcman 
et al., 2005)

Calcium diffusion 
time constant

 
τCaDiff = Volsp

2D2
Ca·Dneck

+ L2
neck

2DCa
= 5 · 10−4 s

 

 8 ms for a  

 Volsp = 0.7 µm3
  (Holcman et al., 2005)

GHK equation

Temperature  T = 35◦C  
converted to Kelvin in the Equation 14 given the 
protocol

Faraday constant  F = 96.485 C mol−1 Hille, 1978

Gas constant  R = 8.314 J K−1 mol−1 Hille, 1978

Calcium 
permeability  PCa = 45 µm s−1

 

adjusted to produce 3μM Calcium in response 
to a Glu release supplementary file from Chang 
et al., 2017

Calcium ion 
valence  zCa = 2 Hille, 1978

https://doi.org/10.7554/eLife.80152
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calcium internal concentration  [Ca2+]i . Note that for simplicity the calcium external concentration 

 [Ca2+]o  was kept fixed during the simulation and only altered by experimental conditions given by the 
aCSF composition.

NMDAr - GluN2A and GluN2B
Markov chain
In hippocampus, NMDArs are principally heteromers composed of the obligatory subunit GluN1 and 
either the GluN2A or GluN2B subunits. These N2 subunits determine the kinetics of these recep-
tors, with the GluN1/GLUN2B heteromers displaying slow kinetics (∼250 ms) and the GluN1/GluN2A 
heteromers displaying faster kinetics (∼50 ms). We modeled both NMDA subtypes. The NMDAr 
containing GluN2A is modeled with the following Markov chain (Popescu et al., 2004):

 
A0

ka·[Glu]·ρN M D A
f−−−−−−−−−⇀↽−−−−−−−−−

k−a·ρN M D A
b

A1
kb·[Glu]·ρN M D A

f−−−−−−−−−⇀↽−−−−−−−−−
k−b·ρN M D A

b

A2
kc·ρN M D A

f−−−−−−−⇀↽−−−−−−−
k−c·ρN M D A

b

A3
kd·ρN M D A

f−−−−−−−⇀↽−−−−−−−
k−d·ρN M D A

b

A4
ke·ρN M D A

f−−−−−−−⇀↽−−−−−−−
k−e·ρN M D A

b

AO1
kf·ρN M D A

f−−−−−−−⇀↽−−−−−−−
k−f·ρN M D A

b

AO2
  

where we have introduced the additional parameters  ρ
NMDA
f , ρNMDA

b   to account for temperature 
dependence (below).

The NMDAr containing GluN2B is modeled with a Markov chain based on the above GluN2A 
scheme. We decreased the rates by ∼75% in order to match the GluN2B decay at 25°C as published 
in Iacobucci and Popescu, 2018.

Figure 12. Differences between dye measurements and simulated calcium. (a), Pre and postsynaptic stimuli as used in Tigaret et al., 2016. (b), Calcium 
imaging curves (fluorescence ΔF/A) elicited using the respective stimulation protocols above with Fluo5 200 μM (extracted from Tigaret et al., 2016). 
Scale 100 ms, 0.05 ΔF/A. (c), Dye simulation using the model. The dye is implemented by increasing temperature to mimic laser effect on channel 
kinetics and decreases the interaction between NMDAr and voltage elicited by BaP. Temperature effects over NMDAr are shown in Korinek et al., 
2010. Also, the effects of temperature on calcium- sensitive probes shown in Oliveira et al., 2012 (baseline only, likely related to T- type channels). Other 
examples of laser heating of neuronal tissue are given in Deng et al., 2014. Such a dye curve fitting was obtained by increasing temperature by 10°C to 
mimic laser- induced heating (Wells et al., 2007; Deng et al., 2014). We achieved a better fit by decreasing the amplitude of the BaP that reaches the 
dendrite. Additionally, for fitting purposes, we assumed that a temperature increase lead to a decrease in BaP amplitude. Scale 0.6 µM dye, 100 ms. (d), 
Calcium simulation without dye. Scale 0.85 µM Ca2+, 100 ms.
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Table 7. NMDAr parameters.
The existing model of NMDAr (GluN2A) was adapted to obtain the NMDAr (GluN2B) model. The 
decay time of NMDAr (GluN2B) was fitted to match decay time in Iacobucci and Popescu, 2018 
and the temperature dependence uses the EPSP decay time from Korinek et al., 2010.

Name Value Reference

NMDAr (GluN2A)

Glutamate binding  ka = 34 µM−1s−1
 Popescu et al., 2004

Glutamate binding  kb = 17 µM−1s−1
 Popescu et al., 2004

Forward rate  kc = 127 s−1
 Popescu et al., 2004

Forward rate  kd = 580 s−1
 Popescu et al., 2004

Opening rate  ke = 2508 s−1
 Popescu et al., 2004

Opening rate  kf = 3449 s−1
 Popescu et al., 2004

Closing rate  k−f = 662 s−1
 Popescu et al., 2004

Closing rate  k−e = 2167 s−1
 Popescu et al., 2004

Backward rate  k−d = 2610 s−1
 Popescu et al., 2004

Backward rate  k−c = 161 s−1
 Popescu et al., 2004

Glutamate unbinding  k−b = 120 s−1
 Popescu et al., 2004

Glutamate unbinding  k−a = 60 s−1
 Popescu et al., 2004

NMDAr (GluN2B)

Glutamate binding  sb = 0.25kb 
adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Glutamate binding  sc = 0.25kc 
adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Forward rate  sc = 0.25kc 
adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Forward rate  sd = 0.25kd  
adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Opening rate  se = 0.25ke 
adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Opening rate  sf = 0.25kf  

adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Closing rate  s−f = 0.23k−f  

adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Closing rate  s−e = 0.23k−e 
adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Backward rate  s−d = 0.23k−d  

adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Backward rate  s−c = 0.23k−c 
adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Glutamate unbinding  s−b = 0.23k−b 

adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Glutamate unbinding  s−a = 0.23k−a 
adapted from GluN2A (Popescu et al., 2004; Iacobucci and 
Popescu, 2018)

Other parameters

Table 7 continued on next page
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Name Value Reference

Total number of NMDAr  NNMDA = 15 
5–30 (Spruston et al., 1995; Bartol et al., 2015; Nimchinsky 
et al., 2004)

Distribution of GluN2A and 
GluN2B defined by rage fitted from Sinclair et al., 2016, see Figure 13b and e

NMDAr conductance 
depending on calcium  γNMDA fitted from Maki and Popescu, 2014, see Figure 13c

NMDAr reversal potential Erev NMDA = 0 mV  Destexhe et al., 1994

Fraction of calcium carried by 
NMDAr  fCa = 0.1 Griffith et al., 2016

Table 7 continued

Figure 13. NMDAr changes caused by age, temperature and extracellular and magnesium concentrations in the aCSF. (a) Decay time of the NMDAr- 
mediated EPSP recorded from neocortical layer II/III pyramidal neurons (grey) (Korinek et al., 2010) compared to the decay time from the GluN2B 
channel estimated by our model (yellow) and data from Iacobussi’s single receptor recording (purple) (Iacobucci and Popescu, 2018). (b), Comparison 
of our model of the GluN2B:GluN2A ratio and the GluN2B:GluN2A ratio from the mouse CA1 excitatory neurons. (c), Comparison of our model of 
NMDAr conductance change as a function of extracellular calcium, against data (Maki and Popescu, 2014). (d), Forward and backwards temperature 
factors implemented to approximate NMDAr subtypes decay times at room temperature (Iacobucci and Popescu, 2018) and temperature changes 
observed in Korinek et al., 2010. (e), NMDAr subtype number in our model as a function of animal age. We added noise to have a smoother transition 
between different ages. (f), Calcium concentration changes for causal and anticausal protocols in response to different aCSF calcium and magnesium 
compositions with fixed Ca/Mg ratio (1.5). Scale bars 50 ms and 5 μM.
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B0

sa·[Glu]·ρN M D A
f−−−−−−−−−⇀↽−−−−−−−−−

s−a·ρN M D A
b

B1
sb·[Glu]·ρN M D A

f−−−−−−−−−⇀↽−−−−−−−−−
s−b·ρN M D A

b

B2
sc·ρN M D A

f−−−−−−−⇀↽−−−−−−−
s−c·ρN M D A

b

B3
sd·ρN M D A

f−−−−−−−⇀↽−−−−−−−
s−d·ρN M D A

b

B4
se·ρN M D A

f−−−−−−−⇀↽−−−−−−−
s−e·ρN M D A

b

BO1
sf·ρN M D A

f−−−−−−−⇀↽−−−−−−−
s−f·ρN M D A

b

BO2
  

The different rates are given in Table 7.

NMDAr and age switch
The age- dependent expression ratio of the subtypes GluN2A and GluN2B ( rage ) was obtained from 
experimental data of mouse hippocampus (Sinclair et al., 2016). We added noise to this ratio causing 
∼1 NMDAr subunit to flip towards GluN2A or GluN2B (see Figure 13e). The population of 15 total 
NMDArs is divided in the two subtypes according to the ratio plotted in Figure 13b, as a function of 
age. The ratio to define the number NMDAr subtypes as function of age reads:

 

rage = 0.507 + 0.964
1 + e0.099·(age−25.102 days) + N (0, 0.05)

NGluN2B = round
(

NNMDA · rage
rage + 1

)

NGluN2A = round
(

NNMDA
rage + 1

)
.

  

The round term in the two previous equations ensures that we have an integer value for the NMDAr 
subtypes, making the stair shaped curve seen in Figure 13e.

NMDAr and temperature
We adjusted the GluN2A and GluN2B forward and backward rates to follow the temperature effects 
on NMDAr- mediated EPSPs (Korinek et al., 2010), see Figure 13a and d. Because GluN2B dominates 
the NMDAr- mediated EPSP, we fit the GluN2B decay time to data on the NMDAr- mediated EPSP,w as 
function of temperature as reported by Korinek et al., 2010 using logistic functions  ρ

NMDA
f   and  ρ

NMDA
b  . 

The decay time comparison is shown in Figure 13a. Then, we applied the same temperature factor 

 ρ
NMDA
f   and  ρ

NMDA
b   for GluN2A. The decay times of GluN2A and GluN2B are similar to those reported 

by Iacobucci and Popescu, 2018. The forward and backward factors are described as follows:

 
ρNMDA

f = −1230.680 + 1239.067
1 + e−0.099·(T+37.631◦C) , ρNMDA

b = 3.036 + 1621.616
1 + e−0.106·(T−98.999◦C) .

  

NMDAr current and Ca2+-dependent conductance
NMDAr conductance is modulated by external calcium and is modelled according to the next equa-
tions using NMDAr subconductances  AO1  and  AO2  (GluN2A), and  BO1  and  BO2  (GluN2B).

 

γNMDA = 33.949pS + 58.388
1 + e4·([Ca2+]o−2.701 mM) pS

B(Vsp, [Mg]o) = 1

1 + [Mg]o
3.57mM

· e−0.062·Vsp/mV

NMDA = (BO1 + BO2 + AO1 + AO2) · B(Vsp, [Mg]o) · γNMDA

INMDA = (ErevNMDA − Vsp) · NMDA   

We modified the conductance  γNMDA  as a function of extracellular calcium from that reported by 
Maki and Popescu, 2014. The reported NMDAr conductance at [Ca2+]o = 1.8 mM is  53 ± 5pS . Here, we 
used the higher conductance  91.3 pS  for NMDAr (for both subtypes) at [Ca2+]o = 1.8 mM to compen-
sate for the small number of NMDArs reported by Nimchinsky et al., 2004. Hence, we adjusted the 
Maki and Popescu, 2014 data to take into account this constraint: this caused a rightward- shift in the 
NMDA- conductance curve (Figure 13c). The calcium influx  CaNMDA  is modulated by the GHK factor, 
Equation 14, as a function of the internal and external calcium concentrations and the spine voltage:

 CaNMDA = fCa · ΦCa · NMDA.  (15)
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The combined effect of extracellular Magne-
sium (Jahr and Stevens, 1990) and Calcium 
concentration are displayed in Figure 13f.

GABA(A) receptor
Since the precise delay of GABA release relative 
to glutamate is not known, we assumed GABA 
and glutamate release are synchronized for 
simplicity (see Table  5). We used the GABA(A) 
receptor Markov chain (Figure  14) presented 
in Busch and Sakmann, 1990; Destexhe et al., 
1998 and we estimated temperature adaptations 
using the measurements reported by Otis and 

Mody, 1992. Table 8 presents the GABAr model parameters.

GABA(A)r and temperature
Because the amplitude of GABA(A) current is altered by the GABAr reversal potential shift during 
development (Rinetti- Vargas et al., 2017), we applied temperature changes only to the closing rates 
using a logistic function for  ρ

GABA
b  , estimated by fitting to the measurements from Otis and Mody, 

1992 (data comparison in the Figure 15b and e).

 
ρGABA

b = 1.470 − −1.279
1 + e0.191·(T−32.167◦C)  . 

GABA(A)r current and age switch
The GABA(A)r- driven current changes during development (Meredith et  al., 2003) passing from 
depolarizing (excitatory) to hyperpolarizing (inhibitory) (Chamma et al., 2012). The reversal potential 
of chloride ions permeating GABA(A)r shifts from above the membrane resting potential (inward 
driving force - excitatory) to below the membrane resting potential (outward driving force - inhibitory; 
Rinetti- Vargas et al., 2017). This effect mediated is associated with the KCC2 pump (K Cl co- trans-
porter) which becomes efficient in extruding chloride ions during maturation (Rinetti- Vargas et al., 

Figure 14. GABAr Markov chain model. Closed states 
( C0 ,  C1  and  C2 ) open in response to GABAr and can go 
either close again or open ( O1  and  O2 ).

Table 8. GABAr parameters.
The GABAr number and conductance were modified to fit GABAr currents as in Figure 15b and e.

Name Value Reference

GABA(A) receptor

Number of GABAr  NGABA = 34 30 Edwards et al., 1990

Chloride reversal potential see age- dependent equation fitted from Rinetti- Vargas et al., 2017

GABAr conductance  γGABA = 0.036 nS 0.027 nS  (Macdonald et al., 1989)

Binding  rb1 = 20 µM−1 s−1
 Busch and Sakmann, 1990

Unbinding  ru1 = 4.6 · 103 s−1
 Busch and Sakmann, 1990

Binding  rb2 = 10 µM−1s−1
 Busch and Sakmann, 1990

Unbinding  ru2 = 9.2 · 103 s−1
 Busch and Sakmann, 1990

Opening rate  rro1 = 3.3 · 103 s−1
 Busch and Sakmann, 1990

Opening rate  rro2 = 10.6 · 103 s−1
 Busch and Sakmann, 1990

Closing rate  rc2 = 400 s−1
 

temperature changes to fit Otis and Mody, 1992; 
Busch and Sakmann, 1990

Closing rate  rc2 = 9.8 · 103 s−1
 

temperature changes to fit Otis and Mody, 1992; 
Busch and Sakmann, 1990

https://doi.org/10.7554/eLife.80152


 Research article Neuroscience | Computational and Systems Biology

Rodrigues et al. eLife 2023;12:e80152. DOI: https://doi.org/10.7554/eLife.80152  38 of 63

2017). To account for the GABA(A)r age- dependent shift, we fit a function for the chloride reversal 
potential ( ECl

rev ) to the data published by Rinetti- Vargas et al., 2017 (Figure 15c):

 

ECl
rev = −92.649 + 243.515

1 + e0.091·(age−0.691 days)

IGABA = (O1 + O2) · (ECl
rev − Vdend) · γGABA.  

VGCC - T, R, and L type
Markov chain
A stochastic VGCC model was devised using the channel gating measurements from rat CA1 
(2–8 weeks) pyramidal neurons by Magee and Johnston, 1995 at room temperature. Our model has 
three different VGCC subtypes described by the Markov chains in Figure 16: the T- type (low- voltage), 
the R- type (medium- to- high- voltage) and the L- type (high- voltage).

Figure 15. GABA(A)r current, kinetics and chloride reversal potential. (a) States of GABA(A)r Markov chain at 25°C in response to a presynaptic 
stimulation. Opened =  O1 + O2 , closed =  C0 + C1 + C2 . (b) Model and data comparison (Otis and Mody, 1992) for GABA(A)r current at 25°C. Even 
though data were recorded from P70 at 25°C and P15 at 35°C, we normalize the amplitude to invert the polarity and compare the decay time. This 
is done since the noise around P15 can either make GABAr excitatory or inhibitory as shown by  Ecl  data in panel c. (c) Chloride reversal potential 
( ECl

rev ) fitted to Rinetti- Vargas et al., 2017 data. Note that we used both profiles from axon and dendrite age- depended  ECl
rev  changes since exclusive 

dendrite data is scarce. (d) States of simulated GABA(A)r Markov chain at 35°C in response to a presynaptic stimulation. (e) Model and data comparison 
(Otis and Mody, 1992) for GABA(A)r current at 25°C (same normalization as in panel b). (f) Change in the polarization of GABA(A)r currents given the 
age driven by the  ECl

rev .

Figure 16. From left to right, R-, L-, and T- type VGCCs Markov chain adapted from Magee and Johnston, 1995. The R- (left scheme) and T- type (right 
scheme) have a single open state (red colour), respectively,  Or  and  OT  . The L- type VGCC (middle) has two open states,  OL1  and  OL2 .
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The VGCC Markov chain models were derived from voltage activation and inactivation profiles 
reported in Magee and Johnston, 1995. The T- (Figure 17a and d) and R- type (Figure 17b and e) 
models are composed of independent activation (m) and inactivation (h) gating variables, while the 
L- type (Figure 17c) model has one closed state but two open states, to capture the two timescales 
of channel closing kinetics reported by Magee and Johnston, 1995. The VGCC model equations are 
given below. We used the following the units:  αx(V/mV) [ms−1]  and  βx(V/mV) [ms−1] .

 

R-type h-gate rates

τR⋆
h = 100

hR⋆
inf (Vsp) = 1

1+e
Vsp+39

9.2

αR
h (Vsp) =

hR
inf
τR

h

βR
h (Vsp) =

1−hR
inf

τR
h  

 

L-type rates

αL(Vsp) = 0.83

1+e
13.7−Vsp

6.1

βL
1 (Vsp) = 0.53

1+e
Vsp−11.5

6.4

βL
2 (Vsp) = 1.86

1+e
Vsp−18.8

6.17  

Figure 17. VGCC rates and temperature factors. (a), Activation ( αm(Vsp) ) and deactivation rates ( βm(Vsp) ) for the T- type m- gate. (b), Activation 
( αm(Vsp) ) and deactivation rates ( βm ) for the R- type m- gate. (c), Activation ( αm(Vsp) ) and both deactivation rates ( β

L
2 (Vsp)  and  β

1
2(Vsp) ) for the L- type 

VGCC. (d), Activation ( αh(Vsp) ) and deactivation rates ( βh(Vsp) ) for the T- type h- gate. (e), Activation ( αh(Vsp) ) and deactivation rates ( βh(Vsp) ) for the 
R- type h- gate. (f), Temperature factor applied to all the rates, forward change ( ρ

VGCC
f  ) for the  α  rates and backward change ( ρ

VGCC
b  ) for the  β  rates.

 Continued on next page
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T-type h-gate rates
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VGCC and temperature
We used the same temperature factor for every VGCC subtype, respectively  ρ

VGCC
f   and  ρ

VGCC
b   (see 

Figure 17f), as follows:

 
ρVGCC

f = 2.503 − 0.304
1 + e1.048·(T−30.668◦C) , ρVGCC

b = 0.729 + 3.225
1 + e−0.330·(T−36.279◦C) .

  

The VGCC subtypes have different sensitivities to temperature, with temperature factors for decay 
times ranging from 2 (Iftinca et al., 2006) to 50- fold (Peloquin et al., 2008). T- type isoforms further 
complicate the issue: different isoforms can have temperature factors that either speed up or slow 
down the kinetics. For instance, when passing from room to physiological temperatures, the Ca3.3 
isoform has a closing rate ∼50% faster (Iftinca et al., 2006), but the Ca3.1 isoform becomes ∼15% 
slower. For simplicity in our model, the same temperature factor was adopted for all VGCC subtypes.

VGCC currents
The VGCC currents are estimated using the GHK (Equation 14), as follows:

 IT = γT · ΦCa · OT   (16)

 IR = γR · ΦCa · OR  (17)

 Continued
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 IL = γL · ΦCa · (OL1 + OL2)  (18)

Table  9 presents the parameters to model the VGCC channels. VGCC rates and temperature 
factors are shown in Figure 17.

SK channel
The small potassium (SK) channel produces hyperpolarizing currents which are enhanced in the 
presence of intracellular calcium elevations. We included SK channels to incorporate a key negative 
feedback loop between spine calcium and voltage due to the tight coupling that exists between SK 
channels and NMDArs (Adelman et al., 2012; Griffith et al., 2016). Although there are a few publi-
cations on the single channel recording of SK channels (Hirschberg et al., 1998; Hirschberg et al., 
1999) and at least one stochastic model of SK channel (Stanley et al., 2011), we chose to model SK 
channels deterministically. In tests, we found that this assumption had only a negligible impact on the 
outcomes of plasticity protocols (data not shown). Although SK channels can additionally be regulated 
by metabotropic glutamate receptors and muscarinic receptors (Tigaret et al., 2016), we did not 
include these regulatory steps in the model. The SK channel current was based on the description 
from Griffith et al., 2016 as follows:

 

dmsk
dt

=
r(Ca) · ρSK

f − msk

τSK/ρSK
b

r(Ca) = Caσ

Caσ + hσSK
ISK = γSK · (ESK

rev − Vsp) · msk · NSK   

There is little information on how temperature effects SK channel function, but van Herck et al., 2018 
suggests a left- ward shift in the SK half- activation when changing from 37°C ( hSK = 0.38 ± 0.02 µM  ) to 
25°C ( hSK = 0.23 ± 0.01 µM  ); that is a 65% decrease. Thus, to mimic temperature dependence of SK, 

Table 9. VGCC parameters.
The number of VGCC was set to 3 to reproduce the calcium dynamics measured with a dye as in 
Figure 12 (Tigaret et al., 2016).

Name Value Reference

VGCC

VGCC T- type conductance  γCaT = 12 · 103 nS same as Magee and Johnston, 1995

VGCC R- type conductance  γCaR = 17 · 103 nS same as Magee and Johnston, 1995

VGCC L- type conductance  γCaL = 27 · 103 nS same as Magee and Johnston, 1995

number of VGCCs 3 for each subtype 1–20 Higley and Sabatini, 2012

Table 10. SK channel parameters.

Name Value Reference

SK channel

Number of SK channels  NSK = 15 Lin et al., 2008

SK conductance  γSK = 104 nS Maylie et al., 2004

SK reversal potential  ESK
rev = −90mV Griffith et al., 2016

SK half- activation  hSK = 0.333 µM  Griffith et al., 2016

SK half- activation slope  σ = 6 4 Griffith et al., 2016

SK time constant  τSK = 0.0063 s Griffith et al., 2016

https://doi.org/10.7554/eLife.80152
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we decrease the decay time of the SK hyperpolarizing current by a factor of two when passing from 
physiological to room temperature.

 
ρSK

b = 149.37 − 147.61
1 + e0.093·(T−98.85◦C) , ρSK

f = 0.005 + 2.205
1 + e−0.334·(T−25.59◦C)   

Table 10 presents the parameters to model the SK channel.

Enzymes - CaM, CaN, and CaMKII
To model enzyme dynamics, we adapted a monomeric CaM- CaMKII Markov chain from Chang et al., 
2019 which was built on the model by Pepke et al., 2010. Our adaptation incorporates a simplified 
CaN reaction which only binds to fully saturated CaM, i.e. CaM bound to four calcium ions on its N 
and C terminals (see Markov chain in Figure 18). A consequence of the Pepke coarse- grained model 
is that calcium binds and unbinds simultaneously from the CaM terminals (N,C). We assumed a lack of 
dephosphorylation reaction between CaMKII and CaN since Otmakhov et al., 2015 experimentally 
suggested that no known phosphatase affects CaMKII decay time which is probably caused only by 
CaM untrapping (Otmakhov et  al., 2015). This was previously theorized in the Michalski’s model 
Michalski, 2013, and it is reflected in Chang data (Chang et al., 2019; Chang et al., 2017). The struc-
ture of the corresponding Markov chain is shown in Figure 18.

Chang et  al., 2019 data provides a high- temporal resolution fluorescence measurements for 
CaMKII in dendritic spines of rat CA1 pyramidal neurons and advances the description of CaMKII 
self- phosphorylation (at room temperature). We modified Chang’s model of CaMKII unbinding rates 

 k2, k3, k4, k5  to fit CaMKII dynamics at room/physiological temperature as shown by Chang et al., 2017 
supplemental files. Previous modelling of CaMKII Chang et al., 2019; Pepke et al., 2010 used a 
stereotyped waveform with no adaptation to model calcium. Our contribution to CaMKII modelling 
was to use calcium dynamics sensitive to the experimental conditions to reproduce CaMKII data, 
therefore, allowing us to capture physiological temperature measurements from Chang et al., 2017. 
Note that the CaMKII dynamic has two time scales and we capture only the fastest timescale which 
ends after stimulation ceases (at 60 s). The slowest dynamic occurs at the end of the stimulus, close to 
the maximum (Figure 19a). This may be caused by the transient volume increase in the dendritic spine 
as measured by Chang et al., 2017. Table 11 shows the concentration of the enzymes and Table 12 
shows the parameters to model enzymes reactions in shown in Figure 18.

We provide an example of equation describing the binding reaction associated to the state  CaM0 . 
Note that these equations are automatically generated by the code which implements Table 12.

 

CaM0
dt

= −
k2C

f
2

· CaM0 · Ca2 + k2C
b · CaM2C

−
k2N

f
2

· CaM0 · Ca2 + k2N
b · CaM2N

−kCaM0
f · CaM0 · mKCaM + kCaM0

b · KCaM0 + k2 · PCaM0.  

The CaN concentration was chosen as the total concentration used in a previous model (Stefan 
et al., 2008) (1.6 μM) scaled by a factor of 12 due to a higher CaN concentration in dendritic spines 
(Goto et al., 1986; Baumgärtel and Mansuy, 2012) and taking into account the discrepancy between 
different CaN concentration studies (Kuno et al., 1992; Goto et al., 1986). Kuno et al., 1992 proposes 
9.6 μg/mg (7.0+2.6 μg/mg for Aα and Aβ isoforms) for the catalytic subunit A of CaN (CaNA) in the 
hippocampus, while Goto et al., 1986 proposes 1.45 μg/mg (presumably for both isoforms). There is 
therefore a lack of consensus on CaN concentration in neurons, which seems to range between 1 and 
10 μg/mg. However, models of CaN in spines (Stefan et al., 2008) use low values of CaN concentra-
tion (e.g. 1.6 μM), without adjusting for the fact that these values were estimated from measurements 
from the entire neuropil. There is little information on CaN concentration in spines, but Kuno et al., 
1992 note that the concentration of CaN is 50% to 84% higher in synaptosomes than in neuronal 
nuclei. With this information in mind, we set CaN spine concentration 20 μM in our model. CaN was 
entirely activated through CaM for the following reason: CaNA is activated by calcium- CaM in a highly 
cooperative manner (Hill coefficient 2.8–3), whereas the activation of CaN by calcium (via CaNB) is at 
most 10% of that achieved with CaM (Stemmer and Klee, 1994). In other words, CaNA affinity for 
CaM is 16 nM to 26 pM (Creamer, 2020), while CaNB affinity for calcium ranges from 15 μM to 24 nM 
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Figure 18. Coarse- grained model of CaM, CaMKII, and CaN adapted from Chang et al., 2019 and Pepke 
et al., 2010. Figure 18 is adapted from Figure 5 from Pepke et al., 2010. Reaction from the CaM- Ca reactions 
(first layer) are attributed to 2Ca release and binding from different CaM saturation states CaM2C (2Ca bound 
to terminal C), CaM2N (2Ca bound to terminal N), CaM0 (no calcium bound), CaM4(Ca bound to both C and N 
terminal). Note that CaN is allowed to bind only to fully saturated CaM. Activated CaN is represented by the state 
CaNCaM4. Reactions between the first (CaM- Ca reactions) and the second layer (KCaM- Ca reactions) represent 
the binding of free/monomeric CaMKII (mKCaM) (Pepke et al., 2010) to different saturation levels of CaM. 
Reactions within the layer KCaM- Ca represent the binding of calcium to Calmodulin bound to CaMKII (KCaM0, 
KCaM2C, KCaM2N, KCaM4). Transition of layer KCaM- Ca reactions to layer KCaM- phosphorylation represents 
CaMKII bound to CaM that became phosphorylated (PCaM states) (Pepke et al., 2010; Chang et al., 2017; 
Chang et al., 2019). PCaM can become self- phosphorylated (Autonomous layer with P and P2) and release CaM. 
Once the KCaM deactivates from autonomous states, it returns to free monomeric CaMKII (mKCaM). The CaMKII 
activity in this work represent the states (KCaM +PCaM + P + P2). See Chang et al., 2019 for further explanation 
on this system. CaNCaM4 represents the CaN activity. For graphical reasons, we could not show the complete list 
of reactions as given in Table 12.
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(Kakalis et al., 1995). CaN decay time was modeled using experimental spine CaN activity dynamics 
measured in Fujii et al., 2013.

The lack of reactions between CaN and CaMKII
The protein phosphatases responsible for CaMKII dephosphorylation have not been established 
unequivocally (Lisman, 1989). Our model of CaMKII is based directly on a quantitative model fit to 
FRET imaging data (Chang et al., 2017; Chang et al., 2019), which implicitly account for the effects 
of any ‘hidden’ phosphatases, absorbing their contribution into the decay rates of the CaMKII activity. 
As pointed out by Otmakhov et al., 2015, FRET sensor imaging of CaMKII activity unfortunately 

mouse

d e f

Figure 19. CaMKII temperature changes in the model caused by 1Pre, 30 at 0.49 Hz with glutamate uncaging (no failures allowed), 1 mM Ca, 2 mM 
Mg, P4- 7 organotypic slices from mouse hippocampus. (a) CaMKII fluorescent probe lifetime change measured by Chang et al., 2017 for 25°C (blue) 
and 35°C (red). The decay time ( τ  ) was estimated by fitting the decay after the stimulation (30 pulses at 0.49 Hz) using a single exponential decay, 

 y = a · e−t·b .(b) Simulation of the CaMKII concentration change (with respect to the baseline) at 25°C in response to same protocol applied in the panel 
a. The simulations on the panels b, c, e, f show the mean of 20 samples. (c) Same as in panel b but for 35°C. (d) Estimated temperature change factor 
for the dissociation rates  k2 ,  k3 , and  k5  in the Markov chain in Figure 18. (e) Change in the concentration of the CaMKII states (25°C) which are summed 
to compose CaMKII change in the panel b. (f) Same as in panel e for 35°C with reference to the panel c.

Table 11. Concentration of each enzyme.

Name Value Reference

Enzyme concentrations

Free CaM concentration (spine)  CaMcon = 30  µM Kakiuchi et al., 1982

Free KCaM concentration (spine)  mKCaMcon = 70  µM Feng et al., 2011; Lee et al., 2009

Free CaN spine concentration 
(spine)  mCaNcon = 20  µM >10 μM (estimation from Kuno et al., 1992)

https://doi.org/10.7554/eLife.80152
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Table 12. Parameters for the coarse- grained model published in Pepke et al., 2010 and adapted by 
Chang et al., 2019 and this work.
Pepke et al., 2010 rate adaptation for the coarse- grained model  adapt(a, b, c, d, Ca) = a·b

c+d·Ca . Refer 
to Figure 18 for definition of variables.

REACTIONS Value Reference

Coarse- grained model, CaM- Ca reactions

CaM0+2 Ca⇒ CaM2C 
CaM2N+2 Ca⇒ CaM4  k

2C
f = adapt(k1C

on , k2C
on , k1C

off , k2C
on , Ca) Pepke et al., 2010

CaM0+2 Ca⇒ CaM2N 
CaM2C+2 Ca⇒ CaM4  k

2N
f = adapt(k1N

on , k2N
on , k1N

off , k2N
on , Ca) Pepke et al., 2010

CaM2C⇒ CaM0+2 Ca 
CaM4⇒ CaM2N+2 Ca  k

2C
b = adapt(k1C

off , k2C
off , k1C

off , k2C
on , Ca) Pepke et al., 2010

CaM2N⇒ CaM0+2 Ca 
CaM4⇒ CaM2C+2 Ca  k

2N
b = adapt(k1N

off , k2N
off , k1N

off , k2N
on , Ca) Pepke et al., 2010

 k1C
on = 5 µM−1s−1

 
1.2 to 9.6 μM-1s-1 (Pepke et al., 
2010)

 k2C
on = 10 µM−1s−1

 5 to 35 μM-1s-1 (Pepke et al., 2010)

 k1N
on = 100 µM−1s−1

 
25 to 260 μM-1s-1 (Pepke et al., 
2010)

 k2N
on = 200 µM−1s−1

 
50 to 300 μM-1s-1 (Pepke et al., 
2010)

 k
1C
off = 50 s−1

 10 to 70 s-1 (Pepke et al., 2010)

 k
2C
off = 10 s−1

 8.5 to 10 s-1 (Pepke et al., 2010)

 k
1N
off = 2000 s−1

 

1 . 103 to 4 . 103 s-1 (Pepke et al., 
2010)

 

 k
2N
off = 500 s−1

 

0.5 . 103 to > 1.103 s-1 (Pepke et al., 
2010)

Coarse- grained model, KCaM- Ca reactions

KCaM0+2 Ca⇒ KCaM2C 
KCaM2N+2 Ca⇒ KCaM4  k

K2C
f = adapt(kK1C

on , kK2C
on , kK1C

off , kK2C
on , Ca) Pepke et al., 2010

KCaM0+2 Ca⇒ KCaM2N 
KCaM2C+2 Ca⇒ KCaM4  k

K2N
f = adapt(kK1N

on , kK2N
on , kK1N

off , kK2N
on , Ca) Pepke et al., 2010

KCaM2C⇒ KCaM0+2 Ca 
KCaM4⇒ KCaM2N+2 Ca  k

K2C
b = adapt(kK1C

off , kK2C
off , kK1C

off , kK2C
on , Ca) Pepke et al., 2010

KCaM2N⇒ KCaM0+2 Ca 
KCaM4⇒ KCaM2C+2 Ca  k

K2N
b = adapt(kK1N

off , kK2N
off , kK1N

off , kK2N
on , Ca) Pepke et al., 2010

 kK1C
on = 44 µM−1s−1

 Pepke et al., 2010

 kK2C
on = 44 µM−1s−1

 Pepke et al., 2010

 kK1N
on = 76 µM−1s−1

 Pepke et al., 2010

 kK2N
on = 76 µM−1s−1

 Pepke et al., 2010

 k
K1C
off = 33 s−1

 Pepke et al., 2010

 k
K2C
off = 0.8 s−1

 0.49 to 4.9 s-1 (Pepke et al., 2010)

 k
K1N
off = 300 s−1

 
Pepke et al., 2010

Table 12 continued on next page
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does not capture the identity of the phosphatases involved in the dephosphorylation of CaMKII. More 
specifically, Otmakhov et al., 2015 observed no significant changes in the decay constant of their 
CaMKII FRET sensor when selectively inhibiting PP1 and PP2A. Given that these two phosphatases 
are widely used in models to determine plasticity, we believe that our model is more aligned with data 
of CaMKII activity in vivo.

Yet, our decision to include CaN in the model was determined by the evidence supporting CaN 
as the strongest candidate for calcium- sensitive protein phosphatase in the brain (Baumgärtel and 
Mansuy, 2012). Furthermore, the central role of CaN in synaptic plasticity has been demonstrated 
both pharmacologically and with genetic manipulation (Onuma et al., 1998; Malleret et al., 2001).

REACTIONS Value Reference

 k
K2N
off = 20 s−1

 6 to 60 s-1 (Pepke et al., 2010)

Coarse- grained model, CaM- mKCaM reactions

CaM0+mKCaM⇒ mKCaM0  k
CaM0
f = 0.0038 µM−1s−1

 Pepke et al., 2010

CaM2C+mKCaM⇒ 
mKCaM2C  k

CaM2C
f = 0.92 µM−1s−1

 Pepke et al., 2010

CaM2N+mKCaM⇒ 
mKCaM2N  k

CaM2N
f = 0.12 µM−1s−1

 Pepke et al., 2010

CaM4+mKCaM
⇒ mKCaM4  k

CaM4
f = 30 µM−1s−1

 14 to 60 μM-1s-1 (Pepke et al., 2010)

mKCaM0⇒ CaM0+mKCaM  k
CaM0
b = 5.5 s−1

 Pepke et al., 2010

mKCaM2C⇒ 
CaM2C+mKCaM  k

CaM2C
b = 6.8 s−1

 Pepke et al., 2010

mKCaM2N⇒ 
CaM2N+mKCaM  k

CaM2N
b = 1.7 s−1

 Pepke et al., 2010

mKCaM4
⇒ CaM0+mKCaM  k

CaM4
b = 1.5 s−1

 1.1 to 2.3 s-1 (Pepke et al., 2010)

Coarse- grained model, self- phosphorylation reactions

KCaM0⇒ PCaM0 KCaM2N⇒ 
PCaM2N KCaM2C⇒ 
PCaM2C KCaM4⇒ PCaM4  k1 = 12.6 s−1

 Chang et al., 2019

Fraction of activated CaMKII  F = CaMKII/mKCaMcon 
see Equation 19 (Chang et al., 
2019)

PCaM0⇒ P+CaM0 
PCaM2N⇒ P+CaM2N 
PCaM2C⇒ P+CaM2C 
PCaM4⇒ P+CaM4  k2 = 0.33 s−1

 
 0.33 s−1  ; adapted from Chang 
et al., 2019

P⇒mKCaM  k3 = 4 · 0.17s−1
 

 0.17s−1  adapted from Chang et al., 
2019

P⇒P2  k4 = 4 · 0.041s−1
 

 0.041s−1  adapted from Chang 
et al., 2019

P2⇒P  k5 = 8 · 0.017s−1
 

 0.017s−1  adapted from Chang 
et al., 2019

Calcineurin model, CaM- CaM4 reactions

CaM4+mCaN⇒mCaNCaM4  k
CaN
f = 10.75 µM−1s−1

 
 46 µM−1s−1

  (Quintana et al., 
2005)

mCaNCaM4⇒CaM4+mCaN  k
CaN
b = 0.02 s−1

 fit (Fujii et al., 2013) see Figure 20

Table 12 continued
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Temperature effects on enzymatic activity
We included temperature factors in the coarse- grained model using Chang’s data (Chang et  al., 
2019), as shown in Figure 19. For CaMKII, we fit the modified dissociation rates of the phosphoryla-
tion states k2, k3, and k5 to match the data on relative amplitude and decay time using the following 
logistic function:

 
ρCaMKII

b = 162.171 − 161.426
1 + e0.511·(T−45.475◦C) .

  

For CaN, we fit the Fujii et al., 2013 data at 25°C as seen in Figure 20a. However, since CaN- CaM 
dissociation rates at physiological temperatures were not reported, we set the temperature factor to 
CaN that fits the outcomes of the protocols that we aimed to reproduce. A reference value from the 
CaN- AKAP79 complex (Li et al., 2012) showed a  Q10 = 4.46 = (2.19 s−1/9.78 s−1) , which is nearly the 
temperature factor used in our model for CaN. Therefore, both the association and dissociation rates 
are modified using the following logistic functions:

 

ρCaN
f = 2.503 − 0.304

1 + e1.048·(T−30.668◦C)

ρCaN
b = 0.729 + 3.225

1 + e−0.330·(T−36.279◦C) .
  

Positioning of the plasticity regions
Tigaret et al., 2016 LTP protocols were used to set the LTP region and as a first approximation of the 
LTD region. See Figure 21 TopDudek and Bear, 1992, Dudek and Bear, 1993 and Inglebert et al., 
2020 were used to further define the LTD region. See Figure 21 Middle and Bottom. We highlight 
further a few points. For simplicity, we positioned the right border of the LTD region at the left border 
of the LTP region. The bottom part of the geometrical readout, under 4 μM of CaMKII, does not code 
for any dynamics. Note that some protocols may also enter and leave the plasticity regions multiple 
times, for example, TBS in Figure 5b, protocols in between LTD/LTP region in Figure 3d and age 
related LTD in Figure 5f. Because of this, we created an integrate and leak variable instead of using 
the time spent for predicting plasticity (see next section). This way, only after a certain time spent in a 
region would the synaptic weights start to change, as in Figure 23h. The coordinates of the plasticity 
regions are given in the last two rows of Table 13.

-

Figure 20. CaN temperature changes in our model caused by 1Pre, 100 at 20 Hz with glutamate uncaging (no failures allowed), 2 mM Ca, Mg- free, 
11–13 days in vitro. (a), Simulated CaN change (blue solid line) in response to the same stimuli of the CaN measurement from Fujii et al., 2013 RY- CaN 
fluorescent probe (green solid line). The decay time ( τ  ) estimated from data ( y = a · e−t·b

 ) is 94.83 s (dashed purple line) and 82.66 s for our model 
(solid purple line). (b), Simulated CaN change for physiological temperature with decay time of 54.44 s. (c), Temperature change,  ρ

CaN
f   and  ρ

CaN
b  , 

applied to CaN association and dissociation rates.
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Geometrical readout
We describe here the geometrical readout mechanism which allows for plasticity outcome assign-

ment. First, we define the following variables 
which are representative of ‘active CaMKII’ and 
‘active CaN’:

Figure 21. Positioning the plasticity regions. The figure shows how Tigaret et al., 2016, Dudek and Bear, 1992, Dudek and Bear, 1993 and Inglebert 
et al., 2020 contributes to define the plasticity regions. In summary, Tigaret et al., 2016 data was used to define the LTP region, and Dudek and Bear, 
1992, Dudek and Bear, 1993, Inglebert et al., 2020 data were used to define the LTD region.

Figure 22. Plasticity Markov Chain.
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Active CaN

CaN = CaN4

Active CaMKII

KCaM = KCaM0 + KCaM2C + KCaM2N + KCaM4

PCaM = PCaM0 + PCaM2C + PCaM2N + PCaM4

CaMKII = KCaM + PCaM + P + P2.   

(19)

The first two equations of (20) represent the total activation of K and P components of CaMKII 
associated with CaM as defined in the code that accompanies Chang et al., 2019. The last equation 
is from Chang et al., 2019.

Calcium entry in the spine initiates a cascade of events that ultimately leads to long term plasticity 
changes. Specific concentrations of CaMKII and CaN trigger activation functions  actD  and  actP  when 
they belong to one of the two polygonal regions (P and D), termed plasticity regions in the main text:

 

d
dt

actD = aD · 1D − bD · (1 − 1D) · actD
d
dt

actP = aP · 1P − bP · (1 − 1P) · actP.
  

The variables  actD  and  actP  act as low pass filters of CaMKII and CaN activities with some memory 
of previous passages in the respective plasticity regions. To specify the LTP/LTD rates, termed  Drate  
and  Prate , we use the activation functions,  actD  and  actP , as follows:

 

Prate(actP) = t−1
P

act2P
act2P + K2

P

Drate(actD) = t−1
D

act2D
act2D + K2

D
.
  

Table 13. Parameters of the plasticity readout.
The variables in this table were fitted as described in the section Positioning of the plasticity regions.

Name Value

Leaking variable (a.u.)

Rise constant inside the LTD region  aD = 100 a.u. · s−1
 

Rise constant inside the LTP region  aP = 200 a.u. · s−1
 

Decay constant outside the LTD region  bD = 2 · 10−2 a.u. · s−1
 

Decay constant outside the LTP region  bP = 0.1 a.u. · s−1
 

Plasticity Markov chain

LTD rate time constant  tD = 18 s 

LTP rate time constant  tP = 13 s 

Half occupation LTP  KP = 1.3 · 104 a.u. 

Half occupation LTD  KD = 8 · 104 a.u. 
Plasticity regions (vertices determining the polygons)

LTP region (CaN, CaMKII) [6.35,1.4], [10,1.4], [6.35,29.5], [10,29.5]

LTD region (CaN, CaMKII)
[6.35,1.4], [6.35,23.25], [6.35,29.5], [1.85,11.32] 
[1.85,23.25], [3.76,1.4], [5.65,29.5]

https://doi.org/10.7554/eLife.80152
https://github.com/ryoheiyasuda/CaMKII_Simulation/blob/master/CaMKII_SimRev.py
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The Markov plasticity chain (see Figure 22) starts with initial conditions  NC = 100 ,  LTD = 0  and 
 LTP = 0 .

Table 13 provides the parameters that define the boundaries of the plasticity regions (see Figure 21 
and Figure 23b).

Figure 23 shows how the readout works to predict plasticity for a single orbit. Figure 23a shows 
the enzyme’s activity alone which is combined to form an orbit as shown in Figure 23b. The region 
indicator of the respective orbit is shown in Figure 23c. Simultaneously, Figure 23d depicts the leaky 
activation  actP  and  actD , which will define the rate of plasticity induction in Figure 23e and f. The 
rates in the plasticity Markov chain will not reset to 0 if the orbit leaves the readout. The plasticity 
Markov chain is shown in Figure 23g with the prediction outcome represented as a weight change 
(%). Figure 23h shows the rate,  Prate  and  Drate , activation profile. The LTP activation rate is steep, 
meaning that orbits do not need to spend a long time inside the readout to promote LTP induction, 
while the LTD region requires five- fold longer activation times.
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Appendix 1

Appendix 1—table 1. Synaptic plasticity protocol parameters.
To fit the data from publications displaying a parameter interval (e.g. 70–100), we used a value within the provided limits. Otherwise, 
we depict in parentheses the value used to fit to the data. Further information is available in the github code and Appendix 1—table 
3. Some of these experiments did not control AP generation following EPSP stimulation: Mizuno et al., 2001, Dudek and Bear, 
1992 Dudek and Bear, 1993. We modeled this effect, described below. In addition, Tigaret et al., 2016 used GABA(A)r blockers, 
which we modelled by setting the GABAr conductance to zero. Also, Mizuno et al., 2001 LTD protocol used a partial NMDA 
blocker, which we modelled by reducing NMDA conductance by 97%.

Experiment Paper Repetitions Freq (Hz) Age (days) Temp. ( ◦C ) [Ca2+]o(mM) [Mg2+]o(mM)

STDP Tigaret et al., 2016 300 5 56 35 2.5 1.3

STDP Inglebert et al., 2020 100, positive delays 0.3 21 (30.45) 1.3—3 Ca/1.5

STDP Inglebert et al., 2020 150, negative delays 0.3 14 30 1.3—3 Ca/1.5

STDP Meredith et al., 2003 20 0.2 9—45 24—28 2 2

STDP Wittenberg and Wang, 2006 70—100 5 14—21 (22.5–23) 2 1

pre- burst Tigaret et al., 2016 300 and 900 3 and 5 56 35 2.5 1.3

FDP Dudek and Bear, 1992 900 1—50 35 35 2.5 1.5

FDP Dudek and Bear, 1993 900 1 7—35 35 2.5 1.5

TBS Dudek and Bear, 1993 3—4 (5) epochs
4Pre at 100 Hz, 10 x 
at 5 Hz 6, 14 and 17 35 2.5 1.5

LFS Mizuno et al., 2001 1—600 1 12—28 (26.5–31) 2.4 0

https://doi.org/10.7554/eLife.80152
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Appendix 1—table 2. Comparison of recent computational models for plasticity highlighting the experimental conditions 
implemented and the experiments in the hippocampus and cortex they reproduce.
See Appendix 1—table 3 for additional details on experimental conditions of experimental works.

Model
Graupner and 
Brunel, 2012 Ebner et al., 2019

Jędrzejewska- Szmek et al., 
2017 Inglebert et al., 2020 Chindemi et al., 2022 This paper

Model framework
Extension of Shouval 
et al., 2002

Extension of 
Clopath et al., 
2010 and modified 
from Hay et al., 
2011

Modified from Evans et al., 
2013

Extension of Graupner and 
Brunel, 2012

Extension of Graupner and 
Brunel, 2012

Parameter

Temperature Absent Absent
Temperature corrected ion 
channels (but not receptors)

No temperature control needed 
(experiments covered are at 30° C) Only in the GHK equation

Temperature is selectable 
on the dendritic spine 
level for ion channels, 
receptor and the calcium 
cascade

Development Absent Absent Absent Absent Absent

Age is selectable and 
implemented by GABAr 
and NMDAr switch and 
BaP maturation

aCSF Absent Absent Absent

Phenomenological changes in 
pre and post amplitudes to mimic 
extracellular calcium effects

In vivo or in vitro changes for 
release probability, calcium 
reversal potential on NMDAr- 
induced calcium influx

External Ca and Mg are 
selectable and affect 
release probability, 
reversal potential, 
NMDAr and VGCCs 
calcium current driving 
force

Plasticity experiments (quant. 
comparisons only)

Sjöström et al., 2001 X X X

Wittenberg and Wang, 2006 X X

Wang et al., 2005 X

Sjöström and Häusser, 2006 X X X

Nevian and Sakmann, 2006 X

Letzkus et al., 2006 X

Weber et al., 2016 X

Fino et al., 2010 X

Pawlak and Kerr, 2008 X

Shen et al., 2008 X

Inglebert et al., 2020 X X

Markram et al., 1997 X

Rodríguez- Moreno and 
Paulsen, 2008 X

Egger et al., 1999 X

Tigaret et al., 2016 X

Dudek and Bear, 1992 X

Dudek and Bear, 1993 X

Mizuno et al., 2001 X

Meredith et al., 2003 X

O’Connor et al., 2005 (not 
included due to space) X

Bittner et al., 2017 (not 
included due to space) X
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Appendix 1—table 3. Comparison of the experimental conditions for the differentdatasets in 
Appendix 1—table 2 covering experiments from neocortex, hippocampus and striatum.

Experimental work Age (days) [Ca2+]o (Mm) [Mg2+]o (Mm) Temperature (°C)

Sjöström et al., 2001 12–21 2.5 1 32–34

Wittenberg and Wang, 2006 14–21 2 1 24–30 or 30–34

Wang et al., 2005
embryonic day 
17–18 3 2 room

Sjöström and Häusser, 2006 14–21 2 1 32–35

Nevian and Sakmann, 2006 13–15 2 1 32–35

Letzkus et al., 2006 21–42 2 1 34–35

Weber et al., 2016 49–77 1.25 1.3 or 0.1 32–35

Fino et al., 2010 15–21 2 1 34

Pawlak and Kerr, 2008 19–22 2.5 2 31–33

Shen et al., 2008 19–26 2 1 room

Inglebert et al., 2020 14–20 1.3–3.0 Ca/1.5 30

Markram et al., 1997 14–16 2 1 32–34

Rodríguez- Moreno and Paulsen, 
2008 9–14 2 2 room

Egger et al., 1999 12–14 2 1 34–36

Tigaret et al., 2016 50–55 2.5 1.3 35

Dudek and Bear, 1992 35 2.5 1.5 35

Dudek and Bear, 1993 7–35 2.5 1.5 35

Mizuno et al., 2001 12–28 2.4
Mg- Free (most 
experiments) 30

Meredith et al., 2003 9–45 2 2 24–28

O’Connor et al., 2005 14–21 2 1 27.5–32

Bittner et al., 2017 42–63 2 1 35
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