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Non-iterative Calculation of Quasi-Dynamic Energy

Flow in the Heat and Electricity Integrated Energy
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Suhan Zhang, Student Member, IEEE, Shuai Lu, Member, IEEE, Shixing Ding, Student Member, IEEE, Enbo Luo

Abstract—Quasi-dynamic energy flow calculation is an in-
dispensable tool for the heat and electricity integrated energy
system (HE-IES) analysis. One solves the nonlinear partial
differential algebraic equations to obtain thermal, hydraulic and
electric variations. However, mainstream iteration solvers face the
challenges of inefficiency and bad robustness. For one thing, the
frequent update and factorization of Jacobian matrices utilize
high CPU time. For another, the per-step iteration numbers
grow exponentially as the system loading level creeps up. This
paper presents a novel non-iterative algorithm for the quasi-
dynamic energy flow calculation. The kernel of the proposed
algorithm is to transform these nonlinear equations into linear
recursive ones, by solving which, we obtain explicit closed-form
solutions of unknown variables. In each step, the proposed
algorithm requires only one matrix factorization and fixed times
of arithmetic operations regardless of the loading levels, so that
it achieves small and consistent per-step time costs. A semi-
discrete scheme is used in PDE solution to avoid dissipative and
dispersive errors that are often overlooked in previous literature.
To ensure convergence, we also propose to control the temporal
step sizes adaptively by estimating the simulation errors. Case
studies showed that the proposed method manifested efficient and
robust time performance compared with the iterative algorithms,
and meanwhile preserved high accuracy.

Index Terms—Differential Transformation, Integrated Energy
Systems, Partial Differential Equations, Quasi-Dynamic Energy
Flow, Semi-Analytical Solution

NOMENCLATURE

A. Abbreviation

DHS District heating system.

DT Differential transformation.

EPS Electric power system.

FDM Finite difference method.

HE-IES Heat and electricity integrated energy system.

IU Implicit upwind scheme.

NM Node method.

ODE Ordinary differential equation.
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PDE Partial differential equation.

SAS Semi-analytical solution.

SOE Second-order explicit scheme.

TVD Total variation decreasing.

B. Operators

diag(·) Transform a column vector into a diagonal matrix.

⊗ Convolution.

𝑿 (0 : 𝑘) Linear combination of 𝑿 (0), 𝑿 (1), · · · , 𝑿 (𝑘).

C. Variables

The capitalized/bold forms of these variables denote the

DT/vector of these variables respectively.

¤𝑚/ ¤𝑚in Pipe/node injection mass flow rate.

𝜏s/r Node supply/return temperature.

𝜏in/out,s/r Inlet/outlet temperature of supply/return pipes.

𝜏amb Ambient Temperature.

𝜙 Node power.

𝑒/ 𝑓 Real/imaginary part of bus voltage.

𝑝/𝑞 Active/reactive power.

D. Coefficients

𝛾 Cross-sectional area.

𝜌 Density.

𝐻 Length of pipe.

𝐶p Thermal capacity of mass flow.

𝜆 Overall heat transfer coefficient.

𝐾 Resistance coefficient.

𝑍 Trade-off between heat supply and electric power.

𝑐m1 Heat-to-power ratio.

𝜂e Electrical efficiency.

𝐹in Fuel input rate of steam turbine.

Δ𝑥/Δ𝑡 Spatial/temporal step sizes.

𝜃 Parameter that balances the dissipative/dispersive

errors in PDE solutions.

𝑉/𝐿 Node/loop incidence matrix.

𝐺/𝐵 Conductance/susceptance matrix.

E. Superscripts/Subscripts

D Diagonal matrix generated by diag(·).

PQ/PV/R Row indices of vector/matrix related to

PQ/PV/Slack buses in EPSs.
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R/S/L/I Row indices of vector/matrix related to

slack/source/load/intermediate nodes in DHSs.

SP Specified value.

I. INTRODUCTION

IN the recent decade, the applications of heat and electricity

integrated energy systems(HE-IESs) have been prevailing.

For one thing, the integration of district heating systems

(DHSs) and electric power systems (EPSs) provides more

flexibility and helps improve the economy [1]–[3]; for another,

state changes and outages are transferred from one system

to the other, threatening the overall operation security [4]–

[6]. In view of this, quasi-dynamic energy flow calculation,

which simulates the real operation scenarios and foresees the

upcoming contingencies, becomes indispensable.

In HE-IESs, the aim of quasi-dynamic energy flow calcula-

tion is to obtain: 1) in DHS side, the variations of temperature

distribution, heat power and mass flow, and 2) in EPS side,

the variations of voltage and electric power. This is realized

by solving the partial differential algebraic equations which

are comprised of the EPS models and the DHS models

[7], [8]. Nonlinear power flow equations constitute the EPS

models, whereas the complexity of DHS models depends on

the regulation modes. In quality regulation mode, the operators

fix the mass flow rates and regulate the DHS by adjusting

source supply temperatures, which means the hydraulics are

predetermined and remain unchanged. Hence, the thermal

and energy algebraic equations, and the partial differential

equations (PDEs) governing thermal dynamics in pipes are

linear. These models are relatively easy to solve and their

analytical solutions have been derived in [9]–[12]. In quantity

regulation mode, operators fix the source supply temperatures

and regulate the DHS by adjust mass flow rates. As a result,

couplings between temperature and mass flow variables bring

nonlinearity to DHS models.

Nonlinearity is intractable. Traditional iteration solvers can-

not guarantee to find exact solutions of these nonlinear equa-

tions within prescribed number of steps. Also, in each of

the iteration steps, highly dimensional Jacobian matrices are

updated and factorized, which is computationally intensive.

On the other hand, the convergence of iteration solvers on

this complex systems have not been theoretically secured, so

that divergence is a common issue. In view of this, this paper

focuses on the nonlinear DHS models and aims to develop a

new efficient and robust solver for the quasi-dynamic energy

flow calculation in HE-IESs.

Typically, PDE in the HE-IES models are first converted

into algebraic equations by finite difference methods (FDMs)

with different accuracy and stability properties, which include:

1) implicit upwind (IU) scheme [13]; 2) the modified charac-

teristic line methods [13], [14]; 3) Second-order Explicit(SOE)

scheme [15]. However, little attention is paid to the decayings

of high-frequency components, which are called dissipative

errors [16], and the fake oscillations, which are called dis-

persive errors [16], in solutions by these methods. It is later

shown in case studies that the widely used IU scheme has

distinct dissipative errors and the SOE scheme has distinct

dispersive errors, which undoubtedly weaken the credibility

of the quasi-dynamic energy flow calculation. Choosing proper

temporal and spatial step sizes may help reduce these errors,

but, as shown in Appendix A, this becomes in vain when

mass flow velocities are variable. To reduce the dissipative

and dispersive errors regardless of the mass flow velocities

and spatial/temporal step sizes, schemes with total variation

decreasing (TVD) property have been developed in [16], [17]

and work well.

After applying FDMs to the PDEs, we should solve the con-

sequent nonlinear algebraic equations which are composed of

the discretized PDEs, the nonlinear thermal/hydraulic/energy

equations and the nonlinear power flow equations. Reference

[7] has proposed the HE-FBI method to alternatively solve

these equations until the convergence criteria are satisfied.

However, the alternating solution strategy passes errors be-

tween different iteration loops. For example, the values of EPS

variables used in DHS model calculation may have errors big-

ger than convergence criteria and would not be updated in the

current iteration loop. These errors can be called alternating

errors and increase the risk of divergence. In view of this,

reference [18] and [8] have tried to improve the computation

efficiency and convergence of the DHS side by uncoupling

the DHSs into small simple sub-systems. Reference [19]

has applied holomorphic embedding method to eliminate the

iterations of the EPS side. However, iterations, which account

for most of the computation overhead in quasi-dynamic en-

ergy flow calculation, have not been totally eliminated yet.

Also, these methods are still prone to divergence because of

alternating errors and improper initial guesses.

Recently, differential transformation (DT) has been pro-

posed to solve nonlinear power system models. This method

derives time-polynomial solutions, which are called semi-

analytical solutions (SASs), of electro-mechanical models

[20], [21] and the modified continuation power flow models

[22]. This method demonstrates fast and reliable performance

compared with traditional numerical-integration methods for

the following two reasons: 1) it gets rid of iterations com-

pletely; 2) it constructs high-order approximations conve-

niently. These researches shed light on a new non-iterative

solver of the nonlinear partial differential algebraic models of

HE-IESs. However, DTs developed in [20]–[22] can only cope

with ordinary differential algebraic equations. Therefore, there

is a need for converting the PDEs into ordinary differential

equations (ODEs).

In this paper, we present a non-iterative algorithm for quasi-

dynamic energy flow based on DT. The proposed method is

able to derive SASs of all the unknown variables in the nonlin-

ear models, but requires only fixed computation resources in

each time window. Furthermore, the proposed method solves

EPS and DHS models together and hence alternating errors are

avoided. The kernel of the proposed method is to discretize

the spatial derivative of the PDE only, which converts the PDE

into ODEs. Then we can apply DT to the resulting ordinary

differential algebraic equations of the spatially discretized

HE-IES models. In this paper, we use a scheme with TVD

property to realize the conversion, which reduces dissipative

and dispersive errors effectively. Compared with [23] which
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has used the same TVD scheme, we achieve higher temporal

accuracy because we use DT as the ODE solver instead of

simple forward difference of temporal derivative. Additionally,

to ensure calculation robustness and efficiency, we develop

an easy-implemented adaptive time window control strategy

based on the recursive nature of DT.

The major contributions are summarized as follows.

1) A DT-based non-iterative algorithm is proposed to im-

prove the efficiency and robustness of quasi-dynamic energy

flow calculation in HE-IESs. With the aid of a semi-discrete

TVD scheme, the dissipative and dispersive errors in thermal

dynamics are effectively reduced.

2) An adaptive time window control strategy is designed to

further accelerate the simulation routines and to avoid non-

convergence by selecting appropriate temporal step sizes.

This paper is outlined in the following way: Section II

introduces DT; Section III presents the DT-based PDE solver;

Section IV derives the DTs of nonlinear algebraic equations;

Section V illustrates the generalized DT-based SAS-derivation

framework on a small system, introduces the adaptive time

window control strategy and gives the overall pseudocode

of the proposed method; Section VI gives the case studies;

Section VII concludes.

II. INTRODUCE DIFFERENTIAL TRANSFORMATION

DT derives SASs of state variables of ODEs by obtaining

the coefficients of their Taylor series. Following [20]–[22],

these coefficients are called DT coefficients and are defined

as (1). The corresponding SAS can be written as (2). The

𝐾 + 1-term SAS (2) is called DT-𝐾 for short in this paper.

𝑿 (𝑘) =
1

𝑘!

[
d𝑘𝒙(𝑡)

d𝑡𝑘

]
𝑡=0

(1)

𝒙(𝑡) =

𝐾∑︁
𝑘=0

𝑿 (𝑘) · 𝑡𝑘 (2)

To obtain 𝑿 (0) to 𝑿 (𝐾), DT transforms the original non-

linear ODEs about 𝒙(𝑡) into linear recursive equations about

𝑿 (𝑘) with the following rules, where we denote by 𝒀 (𝑘) the

DT coefficient of 𝒚(𝑡); 𝑐 ∈ R; 𝒙(𝑡), 𝒚(𝑡), 𝑿 (𝑘),𝒀 (𝑘), 𝜹(𝑘) ∈

R
𝑛×1; 𝑿D (𝑘) ∈ R

𝑛×𝑛; diag(·) is an operator which transforms

a column vector into a diagonal matrix.

1) 𝒙(0) → 𝑿 (0).

2) 𝑐𝒙(𝑡) → 𝑐𝑿 (𝑘).

3) 𝒙(𝑡) ± 𝒚(𝑡) → 𝑿 (𝑘) ± 𝒀 (𝑘).

4) diag(𝒙(𝑡))𝒚(𝑡) →

𝑿D (𝑘) ⊗ 𝒀 (𝑘) =
∑︁𝑘

𝑚=0
𝑿D (𝑚)𝒀 (𝑘 − 𝑚).

5) 𝑐 → 𝑐𝜹(𝑘), where

𝜹(𝑘) =

{
1, 𝑘 = 0

0, 𝑘 ≠ 0
.

6) d𝒙(𝑡)/d𝑡 → (𝑘 + 1)𝑿 (𝑘 + 1).

The readers can refer to [20]–[22], [24, §I.8] for proofs and

rules for more complex functions. The next section can be

viewed as a first tutorial of DT.

III. DISCRETIZE AND DERIVE DT OF PDE

The PDE governing thermal dynamics is essentially a one-

dimensional hyperbolic convection equation with source term

[7], which is

𝜕𝜏

𝜕𝑡
+
¤𝑚

𝛾𝜌

𝜕𝜏

𝜕𝑥
+

𝜆

𝛾𝜌𝐶p

(𝜏 − 𝜏amb) = 0, (3)

where 𝜏 is the two-dimensional distribution of temperature

along time 𝑡 and position 𝑥; ¤𝑚 is the mass flow rate; 𝛾 is the

cross-sectional area of the pipe; 𝜌 is the density of mass flow;

𝜆 is the overall hear transfer coefficient; 𝐶p is the thermal

capacity of mass flow; 𝜏amb is the ambient temperature, with

initial condition

𝜏(𝑥, 0) = 𝜑(𝑥), 𝑥 ≥ 0, (4)

and boundary condition

𝜏(0, 𝑡) = 𝜓(𝑡), 𝑡 ≥ 0. (5)

Semi-discrete difference scheme is widely applied to solving

the hyperbolic and parabolic PDEs [17], [25]. By replacing

the spatial derivative 𝜕𝜏/𝜕𝑥 by its discrete approximation,

the PDEs are converted into ODEs, which can be solved

by ODE solvers such as Runge-Kutta and Euler methods. In

the simplest case, we can replace 𝜕𝜏/𝜕𝑥 by the backward

difference quotient (𝜏𝑗 −𝜏𝑗−1)/Δ𝑥 where Δ𝑥 is the spatial step

size. If we assume that total length of the pipe is 𝐻, then the

PDE becomes 𝑀−1 ODEs about temperatures at each discrete

node as shown in Fig. 1 where 𝑀 = 𝐻/Δ𝑥 +1. 𝜏1 corresponds

to the boundary conditions and is viewed as a known variable.

In Out

Mass flow direction

𝜏1 · · · 𝜏𝑗−1 Δ𝑥 𝜏𝑗 Δ𝑥 𝜏𝑗+1 · · · 𝜏𝑀

Fig. 1. Semi-discrete difference of pipe.

However, semi-discrete difference scheme based on back-

ward difference quotient suffers dissipative and dispersive

errors. In this paper, we discretize the spatial derivative of (3)

with the semi-discrete TVD scheme proposed in [17], which

derives

d𝜏𝑗

d𝑡
=
¤𝑚

𝛾𝜌Δ𝑥

(
𝜏𝑗−1 +

Δ𝑥

2
(𝜏𝑗−1)𝑥 − 𝜏𝑗 −

Δ𝑥

2
(𝜏𝑗 )𝑥

)

−
𝜆

𝛾𝜌𝐶p

(𝜏𝑗 − 𝜏
amb), 2 ≤ 𝑗 ≤ 𝑀

(6)

where (𝜏𝑗 )𝑥 denotes the spatial derivative of 𝜏𝑗 and its formula

is not distinct but dynamically decided by minmod slope

limiter

minmod(𝜒1, 𝜒2, 𝜒3) =




min(𝜒1, 𝜒2, 𝜒3) if ∀𝜒𝑖 > 0,

max(𝜒1, 𝜒2, 𝜒3) if ∀𝜒𝑖 < 0,

0 otherwise.

(7)
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where

𝜒1 = 𝜃
𝜏𝑗 (0) − 𝜏𝑗−1 (0)

Δ𝑥
,

𝜒2 =
𝜏𝑗+1 (0) − 𝜏𝑗−1 (0)

2Δ𝑥
,

𝜒3 = 𝜃
𝜏𝑗+1 (0) − 𝜏𝑗 (0)

Δ𝑥
.

𝜃 ∈ [1, 2] balances the dissipative and dispersive errors in the

solutions. Choices of 𝜃 are later studied in Section VI. 𝜏𝑗 (0)

denotes the initial value of 𝜏𝑗 in the current time window. We

put

(𝜏𝑗 )𝑥 =




𝜃
𝜏 𝑗−𝜏 𝑗−1

Δ𝑥
if minmod(𝜒1, 𝜒2, 𝜒3) = 𝜒1,

𝜏 𝑗+1−𝜏 𝑗−1

2Δ𝑥
if minmod(𝜒1, 𝜒2, 𝜒3) = 𝜒2,

𝜃
𝜏 𝑗+1−𝜏 𝑗

Δ𝑥
if minmod(𝜒1, 𝜒2, 𝜒3) = 𝜒3,

0 otherwise.

In each time window, we should first give a distinct formula

to each (𝜏𝑗 )𝑥 according to the output of minmod slope limiter.

Then (6) becomes ODE about 𝜏𝑗−2, 𝜏𝑗−1, 𝜏𝑗 and 𝜏𝑗+1. For the

𝑗 = 2 and 𝑗 = 𝑀 cases where 𝜏0 and 𝜏𝑀+1 do not exist, we

assumes (𝜏𝑗 )𝑥 and (𝜏𝑗−1)𝑥 to be zero in (6).

The scheme (6) will be of second-order spatial accuracy

only in the cases where (𝜏𝑗 )𝑥 = (𝜏𝑗+1 − 𝜏𝑗−1)/(2Δ𝑥) and

(𝜏𝑗−1)𝑥 = (𝜏𝑗 − 𝜏𝑗−2)/(2Δ𝑥) and these cases usually occur

on smooth sections of the solutions. Otherwise, it will be

spatially first-order accurate and these cases usually occur in

discontinuous sections of solutions.

Here, we use DT to solve these ODEs and exemplify the

derivation of DT of (6) by assuming 𝑗 = 2 or 𝑀 . The cases

where 2 < 𝑗 < 𝑀 can be derived in the same way.

In quantity regulation mode, ¤𝑚 is also variable. Applying

transformation rule 6) to left hand side and 2)3)4)5) to right

hand side of

d𝜏𝑗

d𝑡
=
¤𝑚

𝛾𝜌Δ𝑥
(𝜏𝑗−1 − 𝜏𝑗 ) −

𝜆

𝛾𝜌𝐶p

(𝜏𝑗 − 𝜏
amb)

derives

(𝑘 + 1)𝑇𝑗 (𝑘 + 1) =
1

𝛾𝜌Δ𝑥
¤𝑀 (𝑘) ⊗ (𝑇𝑗−1 (𝑘) − 𝑇𝑗 (𝑘))

−
𝜆

𝛾𝜌𝐶p

(𝑇𝑗 (𝑘) − 𝜏
amb𝛿(𝑘))

(8)

where 𝑇𝑗 (𝑘) is the DT of 𝜏𝑗 ; ¤𝑀 (𝑘) is the DT of ¤𝑚.

After the semi-discrete difference of PDE (3), the initial

condition becomes

𝜏𝑗 (0) = 𝜑(𝑥 𝑗 ), 2 ≤ 𝑗 ≤ 𝑀, (9)

where 𝑥 𝑗 is the position of discrete node 𝑗 , and the boundary

condition becomes

𝜏1 (𝑡) = 𝜓(𝑡). (10)

According to transformation rule 1), we obtain

𝑇𝑗 (0) = 𝜑(𝑥 𝑗 ), 1 ≤ 𝑗 ≤ 𝑀.

As for boundary condition 𝜓(𝑡) with distinct formula such

as polynomials, trigonometric functions, etc., we should first

obtain the recursive expression of the DT of 𝜓(𝑡), which is

denoted by Ψ(𝑘). Then derive DT of (10), we obtain

𝑇1 (𝑘) = Ψ(𝑘), 𝑘 ≥ 0.

It is obvious that right hand side of (8) only contains DT

coefficients up to order 𝑘 . If we are given the variation of

¤𝑚, we can derive ¤𝑀 (0) to ¤𝑀 (𝐾) first and then obtain, in the

following order,

1) 𝑇𝑗 (1) by ¤𝑀 (0) and 𝑇𝑖 (0);

2) 𝑇𝑗 (2) by ¤𝑀 (0) to ¤𝑀 (1) and 𝑇𝑖 (0) to 𝑇𝑖 (1);

3) 𝑇𝑗 (3) by ¤𝑀 (0) to ¤𝑀 (2) and 𝑇𝑖 (0) to 𝑇𝑖 (2);

4) ...

5) 𝑇𝑗 (𝐾) by ¤𝑀 (0) to ¤𝑀 (𝐾 − 1) and 𝑇𝑖 (0) to 𝑇𝑖 (𝐾 − 1);

where 2 ≤ 𝑗 ≤ 𝑀 , 1 ≤ 𝑖 ≤ 𝑀 and 𝑇1 (0) to 𝑇1 (𝐾) are given

by the boundary condition.

After obtaining 𝑇𝑗 (0) to 𝑇𝑗 (𝐾), we can obtain the time

polynomial depicting temperature variation as

𝜏𝑗 (𝑡) =

𝐾∑︁
𝑘=0

𝑇𝑗 (𝑘) · 𝑡
𝑘 .

In this section, we apply DT to the PDE of a single pipe

whose initial-boundary conditions and mass flow variation ¤𝑚

are known. However, in HE-IESs, boundary conditions of

pipes and ¤𝑚 are not explicitly given. In following sections,

we will derive the DT of HE-IES models first and illustrate

how to deal with this case in Section V-A.

IV. DERIVE DTS OF NONLINEAR ALGEBRAIC EQUATIONS

A. DTs of DHS Models

This paper considers the quantity regulation mode of DHSs

and hence follows the DHS models and the node type as-

sumptions adopted by [7], [18], [26]. The known and unknown

variables of DHS nodes are shown in Table I where 𝜙/𝜏s/𝜏r/ ¤𝑚in

are respectively heat power/node supply temperature/node

return temperature/node injection mass flow rate.

TABLE I
NODE TYPE ASSUMPTION IN DHSS

Node Type Slack (R) Source (S) Load (L) Intermediate (I)

Known 𝜏s 𝜙, 𝜏s 𝜙, 𝜏r 𝜙 = ¤𝑚in = 0

Unknown 𝜙, 𝜏r, ¤𝑚in 𝜏r, ¤𝑚in 𝜏s, ¤𝑚in 𝜏s, 𝜏r

Below, we use subscript R, S, L and I to denote the

row indices of matrices or vectors related to slack, source,

load and intermediate nodes, respectively. The combination of

these subscripts denotes the combination of these nodes. For

example, subscript R,S denotes the combination of slack and

source nodes.

1) Mass Flow Continuity Equations: node injection mass

flow rate is equal to the mass flow rate that enters into the

node minus the mass flow rate leaves from the node, which

yields

𝑉R,S ¤𝒎 = − ¤𝒎in
R,S, (11)

𝑉L ¤𝒎 = ¤𝒎in
L , (12)

𝑉I ¤𝒎 = 0, (13)



5

where 𝑉 is the node incidence matrix and its element

𝑉𝑖 𝑗 =




1, if pipe 𝑗 flows into node 𝑖

−1, if pipe 𝑗 flows out of node 𝑖

0, otherwise

.

𝑉 describes the supply networks. In this paper, we consider the

case where the mass flow in supply and return networks are

symmetric, so we only need to study the hydraulic equations

of supply networks here. ¤𝒎 is the vector of mass flow rate;

¤𝒎in is the vector of node injection mass flow rate. There is

a minus sign before ¤𝒎in
R,S

to ensure that node injection mass

flow rates of slack and source nodes are negative.

Applying transformation rule 2) to both sides of (11), (12)

and (13) derives

𝑉R,S
¤𝑴 (𝑘) = − ¤𝑴

in
R,S (𝑘), (14)

𝑉L
¤𝑴 (𝑘) = ¤𝑴

in
L (𝑘), (15)

𝑉I
¤𝑴 (𝑘) = 0, (16)

where ¤𝑴 (𝑘) and ¤𝑴
in
(𝑘) are DTs of ¤𝒎 and ¤𝒎in. (14), (15)

and (16) are linear equations for ¤𝑴 (𝑘) and ¤𝑴
in
(𝑘) because

the coefficients of them are elements of node incidence matrix,

which are constant.

2) Loop Pressure Equations: The loop pressure equation

states that the sum of head losses around a closed loop must

be equal to zero, which is

𝐿diag(𝐾)diag( ¤𝒎) ¤𝒎 = 0, (17)

where 𝐿 is the loop incidence matrix and its element

𝐿𝑖 𝑗 =




1, if pipe 𝑗 in loop 𝑖 is clockwise

−1, if pipe 𝑗 in loop 𝑖 is counterclockwise

0, if pipe 𝑗 is not in loop 𝑖

;

𝐾 is the vector of pipe resistance coefficient. The same as 𝑉 ,

𝐿 also describes the supply networks.

Applying transformation rules 2) and 4) to (17) derives

𝐿𝐾D
¤𝑴D (𝑘) ⊗ ¤𝑴 (𝑘) = 0 (18)

where the subscript D denotes the diagonal matrix transformed

by diag(·). The coefficient of ¤𝑴 (𝑘) is a constant coefficient

multiple of ¤𝑴 (0) while ¤𝑴 (0) is the initial value of ¤𝒎. Hence,

the nonlinear equation (17) for ¤𝒎 is transformed into the linear

equation (18) for ¤𝑴 (𝑘).

3) Node Temperature Equations: Node temperature equals

the mixture of pipe outlet temperatures, which, according to

Table I, yields

diag(𝝉s
L,I)𝑉

+
L,I ¤𝒎 = 𝑉+

L,Idiag(𝝉out,s) ¤𝒎, (19)

diag(𝝉r
R,S,I)𝑉

-
R,S,I ¤𝒎 = 𝑉 -

R,S,Idiag(𝝉out,r) ¤𝒎, (20)

where 𝝉s/r is the vector of node supply/return temperatures,

𝝉out,s/r is the vector of the outlet temperatures of supply/return

pipes; 𝑉+ = max(0, 𝑉) while 𝑉− = min(0, 𝑉). Notation

explanations to (19) and (20) can be found in Appendix B.

Applying transformation rules 2) and 4) to (19) and (20)

respectively derives

𝑻s
L,I,D (𝑘) ⊗ 𝑉

+
L,I
¤𝑴 (𝑘) = 𝑉+

L,I𝑻
out,s
D
(𝑘) ⊗ ¤𝑴 (𝑘), (21)

𝑻r
R,S,I,D (𝑘) ⊗ 𝑉

-
R,S,I
¤𝑴 (𝑘) = 𝑉 -

R,S,I𝑻
out,r
D
(𝑘) ⊗ ¤𝑴 (𝑘), (22)

where 𝑻s/r (𝑘) is the DT of 𝝉s/r; 𝑻out,s/r (𝑘) is the DT of 𝝉out,s/r.

In (21), the coefficients of ¤𝑴 (𝑘) are linear combinations of

elements of 𝑻s (0) and 𝑻out,s (0) while the coefficients of ele-

ments of 𝑻s (𝑘) and 𝑻out,s (𝑘) are ¤𝑴 (0). Hence, the nonlinear

equation (19) about ¤𝒎, 𝝉s
L,I

and 𝝉out,s is transformed into the

linear equation (21) about ¤𝑴 (𝑘), 𝑻s
L,I
(𝑘) and 𝑻out,s (𝑘). Similar

observation also applies to (22).

4) Node Power Equations: Heat power produced or con-

sumed at slack/source/load nodes satisfies

𝝓R,S,L = 𝐶pdiag( ¤𝒎in
R,S,L) (𝝉

s
R,S,L − 𝝉

r
R,S,L) (23)

where 𝝓 is the vector of node power.

Applying transformation rules 2) and 4) to right hand side

of (23) derives

𝚽R,S,L (𝑘) = 𝐶p
¤𝑴

in
R,S,L,D (𝑘) ⊗ (𝑻

s
R,S,L (𝑘) − 𝑻

r
R,S,L (𝑘)) (24)

Likewise, the nonlinear equation (23) about 𝝓, ¤𝒎in, 𝝉s and 𝝉r

are transformed into the linear equation (24) about 𝚽
∗ (𝑘),

¤𝑴
in∗
(𝑘), 𝑻s∗ (𝑘) and 𝑻r∗ (𝑘), the coefficients of which are

linear combinations of constants, 𝑻s (0), 𝑻r (0) and ¤𝑴
in
(0).

B. DTs of EPS Models

The power flow models are

𝒑 = diag(𝒆) (𝐺𝒆 − 𝐵 𝒇 ) + diag( 𝒇 ) (𝐵𝒆 + 𝐺 𝒇 ), (25)

𝒒 = diag( 𝒇 ) (𝐺𝒆 − 𝐵 𝒇 ) − diag(𝒆) (𝐵𝒆 + 𝐺 𝒇 ), (26)

diag(𝒆PV)𝒆PV + diag( 𝒇 PV) 𝒇 PV = diag(𝑼SP
PV)𝑼

SP
PV, (27)

𝑒R = 𝑒SP, 𝑓R = 𝑓 SP, (28)

where 𝒑/𝒒 are respectively the vectors of active/reactive

power; 𝒆/ 𝒇 are respectively the vectors of real/imaginary

part of bus voltage; 𝐺/𝐵 are respectively the conduc-

tance/susceptance matrices; 𝑼 is the vector of bus volt-

age magnitude; subscript PV/R denotes the indices of rows

in matrices/vectors related to PV/slack buses; superscript

SP denotes that the values are specified. We denote by

𝑷(𝑘)/𝑸(𝑘)/𝑬 (𝑘)/𝑭(𝑘) the DT of 𝒑/𝒒/𝒆/ 𝒇 respectively.

DTs of (25) to (28) have been derived in [22] using a set

of different notations, which are

𝑷(𝑘) =𝑬D (𝑘) ⊗ (𝐺𝑬 (𝑘) − 𝐵𝑭(𝑘))

+𝑭D (𝑘) ⊗ (𝐵𝑬 (𝑘) + 𝐺𝑭(𝑘)).
(29)

(29) is a linear equation about 𝑷(𝑘), 𝑬 (𝑘), 𝑭(𝑘), the coef-

ficients of which are linear combinations of constants, 𝑬 (0)

and 𝑭(0).

Likewise, we have the DTs of (26), (27) and (28), which

are linear equations about 𝑸(𝑘), 𝑬 (𝑘) and 𝑭(𝑘) as follows.

𝑸(𝑘) =𝑭D (𝑘) ⊗ (𝐺𝑬 (𝑘) − 𝐵𝑭(𝑘))

−𝑬D (𝑘) ⊗ (𝐵𝑬 (𝑘) + 𝐺𝑭(𝑘)).
(30)

𝑬PV,D (𝑘) ⊗ 𝑬PV (𝑘) + 𝑭PV,D (𝑘) ⊗ 𝑭PV (𝑘) = 𝑼SP
PV,D𝑼

SP
PV𝛿(𝑘).

(31)

𝑬R (𝑘) = 𝑒
SP𝛿(𝑘), 𝑭R (𝑘) = 𝑓 SP𝛿(𝑘). (32)
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C. DTs of Coupling Components

According to [26], the relationships between heat and

electric power of extraction steam turbine and gas turbine

respectively satisfy

𝒑 = −𝝓/𝑍 + 𝜂e𝐹in, (33)

𝝓 = 𝑐m1 𝒑, (34)

where 𝑍 is the ratio that describes the trade-off between heat

supplied to the site and the electric power of the extraction

steam turbine; 𝑐m1 is the heat-to-power ratio of the gas turbine;

𝜂e is the electrical efficiency; 𝐹in is the fuel input rate of the

steam turbine.

Applying transformation rules 2), 3) and 5) to (33) and (34)

derives

𝑷(𝑘) = −𝚽(𝑘)/𝑍 + 𝜂e𝐹in𝜹(𝑘), (35)

𝚽(𝑘) = 𝑐m1𝑷(𝑘). (36)

which are linear equations about 𝑷(𝑘) and 𝚽(𝑘).

V. ILLUSTRATE SAS-DERIVATION FRAMEWORK AND

INTRODUCE ADAPTIVE TIME WINDOW CONTROL

A. Illustrating the SAS-derivation framework on a small HE-

IES

Extraction Steam Turbine Gas Turbine

 
PV

Bus 1

Slack 

Bus 3

Slack

Node 1

Source

Node 2

Load

Node 3

Load

Node 4

PQ

Bus 2

Fig. 2. A small HE-IES with four DHS nodes and three EPS buses.

The proposed method is illustrated on the small system

shown in Fig. 2 which is comprised of four DHS nodes and

three EPS buses. The node and loop incidence matrices of the

DHS are respectively

𝑉 =



−1 0 0 −1

0 −1 −1 0

1 1 0 0

0 0 1 1


and

𝐿 =
[
1 −1 1 −1

]
.

We assume the spatial step size Δ𝑥 to be the length of each

pipe. Therefore, PDE of each supply pipe is converted into

an ODE about 𝜏out,s and 𝜏in,s while PDE of each return pipe

is converted into an ODE about 𝜏out,r and 𝜏in,r. We denote

by 𝝉in,s/r the vector of the inlet temperatures of supply/return

pipes. The known and unknown variables in the HE-IES

are shown in Table II and III. There are totally thirty-eight

unknown variables. Different from Table I and the bus type

assumption in power flow model, 𝑝1 is unknown because the

TABLE II
KNOWN AND UNKNOWN VARIABLES OF EPS

Bus Number 1 2 3

Type PV PQ Slack
Known - 𝑝2, 𝑞2 𝑒3, 𝑓3

Unknown 𝑒1, 𝑓1, 𝑝1, 𝑞1 𝑒2, 𝑓2 𝑝3, 𝑞3

electrical output of bus 1 is constrained by the heat output,

which is 𝜙1, of the extraction steam turbine and 𝜙1 is unknown.

𝜙2 is unknown because the heat output of node 2 is constrained

by the electrical output, which is 𝑝3, of the gas turbine and

𝑝3 is unknown.

First, we obtain the zeroth-order DT coefficients, which are

the initial values of variables, by steady-state energy flow

calculation [26]. Then we should derive the DT of known

variables, for example, 𝑇 s
1
(0) to 𝑇 s

1
(𝐾) of 𝜏s

1
. Next, we can

start calculating the first-order DT coefficients of the above

thirty-eight unknown variables based on the following three

steps.

Step 1: Calculate elements of vector 𝑻out,s (1) and 𝑻out,r (1)

by (8). For example,

𝑇
out,s
1
(1) =

1

𝛾𝜌Δ𝑥
¤𝑀 (0) (𝑇 in,s

1
(0) − 𝑇out,s

1
(0))

−
𝜆

𝛾𝜌𝐶p

(𝑇out,s
1
(0) − 𝜏amb𝛿(0)/𝜏b)

where the right hand side are all known. The other seven

unknown first-order DT coefficients can be calculated directly

likewise. That is, there remain thirty unknown first-order DT

coefficients.

Step 2: By (14) and (15), the mass flow continuity equations

are transformed into four linear equations about ¤𝑴 (1) and
¤𝑴

in
(1).

By (18), the loop pressure equation is transformed into

[
1 −1 1 −1

]
diag



𝐾1

𝐾2

𝐾3

𝐾4


· 2 · diag



¤𝑀1 (0)
¤𝑀2 (0)
¤𝑀3 (0)
¤𝑀4 (0)





¤𝑀1 (1)
¤𝑀2 (1)
¤𝑀3 (1)
¤𝑀4 (1)


= 0,

which is one linear equation about ¤𝑴 (1).

By (21) and (22), the node temperature equations are

transformed into

diag

[
𝑇 s

3
(0)

𝑇 s
4
(0)

]
𝑉+

3,4



¤𝑀1 (1)
¤𝑀2 (1)
¤𝑀3 (1)
¤𝑀4 (1)


+ diag

[
𝑇 s

3
(1)

𝑇 s
4
(1)

]
𝑉+

3,4



¤𝑀1 (0)
¤𝑀2 (0)
¤𝑀3 (0)
¤𝑀4 (0)


=

𝑉+
3,4diag



𝑇
out,s
1
(1)

𝑇
out,s
2
(1)

𝑇
out,s
3
(1)

𝑇
out,s
4
(1)





¤𝑀1 (0)
¤𝑀2 (0)
¤𝑀3 (0)
¤𝑀4 (0)


+𝑉+

3,4diag



𝑇
out,s
1
(0)

𝑇
out,s
2
(0)

𝑇
out,s
3
(0)

𝑇
out,s
4
(0)





¤𝑀1 (1)
¤𝑀2 (1)
¤𝑀3 (1)
¤𝑀4 (1)


,

diag

[
𝑇 r

1
(0)

𝑇 r
2
(0)

]
𝑉 -

1,2



¤𝑀1 (1)
¤𝑀2 (1)
¤𝑀3 (1)
¤𝑀4 (1)


+ diag

[
𝑇 r

1
(1)

𝑇 r
2
(1)

]
𝑉 -

1,2



¤𝑀1 (0)
¤𝑀2 (0)
¤𝑀3 (0)
¤𝑀4 (0)


=

𝑉 -
1,2diag



𝑇
out,r
1
(1)

𝑇
out,r
2
(1)

𝑇
out,r
3
(1)

𝑇
out,r
4
(1)





¤𝑀1 (0)
¤𝑀2 (0)
¤𝑀3 (0)
¤𝑀4 (0)


+𝑉 -

1,2diag



𝑇
out,r
1
(0)

𝑇
out,r
2
(0)

𝑇
out,r
3
(0)

𝑇
out,r
4
(0)





¤𝑀1 (1)
¤𝑀2 (1)
¤𝑀3 (1)
¤𝑀4 (1)


,
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TABLE III
KNOWN AND UNKNOWN VARIABLES OF DHS

Node 1 Node 2 Node 3 Node 4 Pipe 1 Pipe 2 Pipe 3 Pipe 4

Type Slack Source Load Load - - - -
Known 𝜏s

1
𝜏s

2
𝜙3, 𝜏

r
3

𝜙4, 𝜏
r
4

- - - -

Unknown 𝜙1, 𝜏
r
1
, ¤𝑚in

1
𝜙2, 𝜏

r
2
, ¤𝑚in

2
𝜏s

3
, ¤𝑚in

3
𝜏s

4
, ¤𝑚in

4
𝜏

out,s/r
1

, 𝜏
in,s/r
1

, ¤𝑚1 𝜏
out,s/r
2

, 𝜏
in,s/r
2

, ¤𝑚2 𝜏
out,s/r
3

, 𝜏
in,s/r
3

, ¤𝑚3 𝜏
out,s/r
4

, 𝜏
in,s/r
4

, ¤𝑚4


𝑃1 (1)

𝑃2 (1)

𝑃3 (1)


=diag


𝐸1 (1)

𝐸2 (1)

𝐸3 (1)


©­«
𝐺


𝐸1 (0)

𝐸2 (0)

𝐸3 (0)


− 𝐵


𝐹1 (0)

𝐹2 (0)

𝐹3 (0)


ª®¬
+ diag


𝐹1 (1)

𝐹2 (1)

𝐹3 (1)


©­«
𝐵


𝐸1 (0)

𝐸2 (0)

𝐸3 (0)


+ 𝐺


𝐹1 (0)

𝐹2 (0)

𝐹3 (0)


ª®¬

+diag


𝐸1 (0)

𝐸2 (0)

𝐸3 (0)


©­«
𝐺


𝐸1 (1)

𝐸2 (1)

𝐸3 (1)


− 𝐵


𝐹1 (1)

𝐹2 (1)

𝐹3 (1)


ª®¬
+ diag


𝐹1 (0)

𝐹2 (0)

𝐹3 (0)


©­«
𝐵


𝐸1 (1)

𝐸2 (1)

𝐸3 (1)


+ 𝐺


𝐹1 (1)

𝐹2 (1)

𝐹3 (1)


ª®¬
,

(37)


𝑄1 (1)

𝑄2 (1)

𝑄3 (1)


=diag


𝐹1 (1)

𝐹2 (1)

𝐹3 (1)


©­«
𝐺


𝐸1 (0)

𝐸2 (0)

𝐸3 (0)


− 𝐵


𝐹1 (0)

𝐹2 (0)

𝐹3 (0)


ª®¬
− diag


𝐸1 (1)

𝐸2 (1)

𝐸3 (1)


©­«
𝐵


𝐸1 (0)

𝐸2 (0)

𝐸3 (0)


+ 𝐺


𝐹1 (0)

𝐹2 (0)

𝐹3 (0)


ª®¬

+diag


𝐹1 (0)

𝐹2 (0)

𝐹3 (0)


©­«
𝐺


𝐸1 (1)

𝐸2 (1)

𝐸3 (1)


− 𝐵


𝐹1 (1)

𝐹2 (1)

𝐹3 (1)


ª®¬
− diag


𝐸1 (0)

𝐸2 (0)

𝐸3 (0)


©­«
𝐵


𝐸1 (1)

𝐸2 (1)

𝐸3 (1)


+ 𝐺


𝐹1 (1)

𝐹2 (1)

𝐹3 (1)


ª®¬
,

(38)

2𝐸1 (0)𝐸1 (1) + 2𝐹1 (0)𝐹1 (1) = 0. (39)

which are four linear equations about ¤𝑴 (1), 𝑻s
L
(1), 𝑻r

S
(1).

𝑻out,s (1) and 𝑻out,r (1) have been calculated in Step 1.

By (24), the node power equations are transformed into



Φ1 (1)

Φ2 (1)

Φ3 (1)

Φ4 (1)


= 𝐶pdiag



¤𝑀 in
1
(1)

¤𝑀 in
2
(1)

¤𝑀 in
3
(1)

¤𝑀 in
4
(1)


©­­­«



𝑇 s
1
(0)

𝑇 s
2
(0)

𝑇 s
3
(0)

𝑇 s
4
(0)


−



𝑇 r
1
(0)

𝑇 r
2
(0)

𝑇 r
3
(0)

𝑇 r
4
(0)


ª®®®¬

+ 𝐶pdiag



¤𝑀 in
1
(0)

¤𝑀 in
2
(0)

¤𝑀 in
3
(0)

¤𝑀 in
4
(0)


©­­­«



𝑇 s
1
(1)

𝑇 s
2
(1)

𝑇 s
3
(1)

𝑇 s
4
(1)


−



𝑇 r
1
(1)

𝑇 r
2
(1)

𝑇 r
3
(1)

𝑇 r
4
(1)


ª®®®¬
,

which are four linear equations about 𝚽(1), ¤𝑴
in
(1), 𝑻s

L
(1)

and 𝑻r
S
(1).

By (29), (30), (31), the power flow equations are trans-

formed into (37), (38) and (39), which are seven linear

equations about 𝑷PV,R (1), 𝑸PV,R (1), 𝑬PV,PQ (1) and 𝑭PV,PQ (1).

By (35) and (36), the coupling component equations are

transformed into

𝑃1 (1) = −Φ1 (1)/𝑍, Φ2 (1) = 𝑐m1𝑃3 (1),

which are two linear equations about 𝑃1 (1), Φ1 (1), Φ2 (1) and

𝑃3 (1). 𝛿(1) = 0 by definition.

There are totally twenty-two linear equations. By combining

and solving these linear equations, we obtain the first-order

DT coefficients of the above mentioned twenty-two variables.

Then there remain eight unknown 𝑻in,s/r (1) which are the

vectors of the DTs of 𝝉in,s/r.

Step 3: Update 𝑻in,s/r (1). Because 𝝉in,s/r equal the temper-

atures of the nodes that the inlets of the pipes are connected

to, we have, for example,

𝑇
in,s
1
(1) = 𝑇 s

1 (1).

Finally, the first-order DT coefficients of all unknown variables

are obtained.

The above three steps is the 𝑘 = 1 case of the more

generalized notation

Step 1: 𝑿 (𝑘) = 𝑩(𝑿 (0 : 𝑘 − 1),𝒀 (0 : 𝑘 − 1), 𝒁(0 : 𝑘 − 1)),

Step 2: 𝑨0𝒀 (𝑘) = 𝑪 (𝑿 (0 : 𝑘),𝒀 (0 : 𝑘 − 1),𝑾 (0 : 𝑘)),

Step 3: 𝒁(𝑘) = 𝑫 (𝒀 (𝑘)),

where 𝑿 (𝑘) is the vector of 𝑻out,s (𝑘) and 𝑻out,r (𝑘). 𝒀 (𝑘)

is the vector of unknown 𝑘th-order DT coefficients of the

variables we solve in Step 2. 𝒁(𝑘) is the vector of 𝑻in,s (𝑘)

and 𝑻in,r (𝑘). 𝑾 (𝑘) is the vector of the 𝑘th DT coefficients

of known variables. 𝑿 (0 : 𝑘) denotes the combinations of

𝑿 (0) to 𝑿 (𝑘). The same notation also applies to 𝒀 (𝑘), 𝒁(𝑘)

and 𝑾 (𝑘). We denote by 𝒙(𝑡), 𝒚(𝑡), 𝒛(𝑡) and 𝒘(𝑡) the original

variables of these DTs. 𝑨0 is the coefficient matrix that relates

only to initial values. This follows from the observations in

the previous section that the coefficients of the 𝑘th-order DT

coefficients are the zeroth-order DT coefficients. Therefore,

inverse of the matrix, 𝑨−1
0 , should be calculated only once in

each step. 𝑩(·) denotes (8). 𝑪 (·) is the known DT coefficients

that we move to the right hand side of equations. 𝑩(·) and

𝑪 (·) are mainly comprised of the convolution operations, ⊗,

of matrices/vectors. 𝑫 (·) assigns the 𝑘th order DT coefficients

of node temperatures to related 𝑻in,s/r (𝑘).

As illustrated above, we can repeat the above three steps,

recursively calculating the DT coefficients from the zeroth-

order to the 𝐾-th order. Finally, the SASs of all variables are

obtained.

B. Adaptive Time Window Control

To strengthen the robustness of the proposed method under

big disturbances, an adaptive time window control strategy,
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which ensures that the temporal step sizes produce results that

satisfy the error tolerances, is developed as follows.

The idea comes from the philosophy of embedded Runge-

Kutta formulas [24], which constructs two Runge-Kutta for-

mulas with different numerical accuracy while sharing the

same function values. Then the difference of these two Runge-

Kutta approximations yield an estimate of the local error which

can be used for step size control.

Here, assuming that we have finished the DT-𝐾 calculation,

we can obtain DT-𝐾 + 1 recursively by one more evaluation

of the three steps in Section V-A. Then we can approximate

the local truncation error of DT-𝐾 , which is the Lagrange

remainder

(𝒙) (𝐾+1) (𝜉)

(𝐾 + 1)!
(Δ𝑡)𝐾+1, where 𝜉 ∈ [0,Δ𝑡],

by the difference between DT-𝐾 and DT-𝐾 + 1, which is

𝒙̃ = 𝑿 (𝐾 + 1) (Δ𝑡)𝐾+1.

To ensure convergence and accuracy requirements, each

component of 𝒙̃ should be within the prescribed error tolerance

vector 𝜀, the component of which is defined as

𝜀𝑖 = Atol +min( |𝑥𝑖 (0) |, |𝑥𝑖 (Δ𝑡) |) · Rtol

where Atol and Rtol are respectively the prescribed absolute

and relative error tolerances. Rtol is prescribed to control

the number of significant figures in the computed values.

min( |𝑥𝑖 (0) |, |𝑥𝑖 (Δ𝑡) |) ensures that both ends of the time win-

dow [0,Δ𝑡] satisfy Rtol. Atol is prescribed to prevent endless

step size diminishing when true values are close to or equal

zero.

We take root mean square error

𝑒𝑟𝑟 =

√√
1

𝑛

𝑛∑︁
𝑖=1

(
𝑥𝑖

𝜀𝑖

)2

to measure the overall relative error of the current time

window. Then we compare 𝑒𝑟𝑟 with 1. If 𝑒𝑟𝑟 ≤ 1, the current

time window is accepted and the computation of next time

window is advanced with a new temporal step size Δ𝑡new. Else,

the current time window is rejected and the computation starts

again with Δ𝑡new until 𝑒𝑟𝑟 ≤ 1.

There comes the problem of the formulation of Δ𝑡new. Based

on the temporal accuracy order 𝐾 + 1, it is natural to take

Δ𝑡 ′new = Δ𝑡 · 𝑓 𝑎𝑐 · (1/𝑒𝑟𝑟)1/(𝐾+1)

where 𝑓 𝑎𝑐 is a conservative factor smaller than one, which

tries to avoid the reject of Δ𝑡 ′new. However, it is also observed

by numerical experiments that the surge of temporal step sizes

increases the probability of the reject of the next time window

while the plunge of temporal step sizes to unnecessarily small

levels significantly reduces efficiency. Therefore, we should set

an upper bound 𝑓 𝑎𝑐max and a lower bound 𝑓 𝑎𝑐min to restrain

the violent variation of temporal step size, which finally yields

Δ𝑡new = min( 𝑓 𝑎𝑐max · Δ𝑡,max( 𝑓 𝑎𝑐min · Δ𝑡,Δ𝑡
′
new)).

A special case where models containing sin or cos pattern

should be further discussed here because the even terms of

Taylor series of sin function at 𝑡 = 𝑘𝜋 (𝑘 ∈ N) equal zero,

making 𝑿 (𝐾) ≠ 0 while 𝑿 (𝐾 + 1) = 0 if 𝐾 is odd. The

cos counterpart encounters the same dilemma if 𝐾 is even. In

the cases where 𝑿 (𝐾 + 1) = 0, we should perform one more

recursive calculation based on DT-𝐾 + 1, and use 𝑿 (𝐾 + 2) to

adjust temporal step sizes.

C. Overall Pseudocode of Quasi-dynamic Energy Flow Cal-

culation under Disturbances

We can set disturbances easily by giving the variation of

known variables, 𝒘(𝑡), in Table II and III. The variation

can be either distinct functions or discrete time-series. In

each time window, we first derive 𝑾 (0) : 𝑾 (𝐾) and then

start the recursive DT calculation. The overall pseudocode of

the proposed DT-based quasi-dynamic energy flow calculation

method is shown in Algorithm 1.

Algorithm 1: DT-based Quasi-dynamic Energy Flow

Calculation

Input: Total simulation time T , 𝒙(0), 𝒚(0), 𝒛(0),

variation of 𝒘(𝑡);

Output: 𝑿 (0) : 𝑿 (𝐾), 𝒀 (0) : 𝒀 (𝐾) and 𝒁(0) : 𝒁(𝐾)

in each time window;

1 begin

2 𝑡 ← 0, 𝑿 (0) ← 𝒙(0), 𝒀 (0) ← 𝒚(0), 𝒁(0) ← 𝒛(0);

3 while 𝑡 < T do

4 Update 𝑨0, calculate 𝑨−1
0 , and 𝑒𝑟𝑟 ← 2;

5 while 𝑒𝑟𝑟 > 1 do

6 Derive 𝑾 (0) : 𝑾 (𝐾);

7 for 𝑘 = 1 : 𝐾 + 1 do

8 Perform Step 1, 2, 3;

9 Derive [𝒙̃, 𝒚̃] and [𝜺𝒙 , 𝜺𝒚];

10 Update 𝑒𝑟𝑟;

11 if 𝑒𝑟𝑟 ≤ 1 then

12 𝑡 ←− 𝑡 + Δ𝑡;

13 Update Δ𝑡new and Δ𝑡 ←− Δ𝑡new;

14 𝑿 (0) ←
∑𝐾
𝑘=0 𝑿 (𝑘)𝑡

𝑘 , 𝒀 (0) ←∑𝐾
𝑘=0 𝒀 (𝑘)𝑡

𝑘 , 𝒁(0) ←
∑𝐾
𝑘=0 𝒁(𝑘)𝑡

𝑘

D. Some special cases

1) Compound node types: In, for example, the Barry Island

system [26], some loads are located in intermediate nodes.

Thereby, according to Table I, 𝜏r of these nodes are both

known and unknown, which is contradictory. Actually, the

real case is, load nodes are connected to intermediate nodes

through implicit pipes whose length is 0 m. As shown in Fig.

3, we can extract a virtual load node and then the original

compound node becomes an intermediate one.

Since the length of Pipe 3 is 0 m, we can not model Pipe 3

by PDE and hence, 𝑇
out,s
3
(𝑘 + 1) and 𝑇

out,r
3
(𝑘 + 1) can not be

obtained in Step 1 of the SAS-derivation framework.

Instead, we have two additional equations,

𝜏
out,s
3

= 𝜏s
1, 𝜏

out,r
3

= 𝜏r
3.
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Node 3

(Virtual)

Node 2

Node 1

Pipe 1 Pipe 2

Pipe 3

(Implicit)
s

1

s

3
r

3

r

1

s

2

r

2

Fig. 3. Dealing with compound node types.

After performing DT, we have

𝑇
out,s
3
(𝑘 + 1) = 𝑇 s

1 (𝑘 + 1), 𝑇out,r
3
(𝑘 + 1) = 𝑇 r

3 (𝑘 + 1).

There are two extra variables and two extra equations. So we

still can successfully perform Step 2 of the SAS-derivation

framework by adding the above two equations to 𝑪 (·).

The cases where source nodes are located in intermediate

nodes can be dealt with likewise.

2) Reverse mass flow rates: DHSs are directed networks,

that is, if mass flow rate of some pipe is reversed at some time

during the simulation, then the mass flow continuity equa-

tions, loop pressure equations and node temperature equations

will have different formulae. Fortunately, these equations are

depicted by node/loop incidence matrices in this paper. We

can obtain the post-reverse equations by reversing columns

related to these reverse pipes in those matrices. As for the

semi-discrete PDE, we should exchange the inlet and outlet in

Fig. 1, and reverse the computation sequence.

Having finished the calculation in one time window, we

judge if, at the end of the current time window [𝑡0, 𝑡1], some

¤𝑚𝑖 < 0. If there is, then we should find the zero 𝑡 ′ of univariate

polynomial equation

𝐾∑︁
𝑘=0

𝑀𝑖 (𝑘)𝑡
𝑘
= 0,

which can be solved by the Newton-Raphson or bisection

method. This is because, after 𝑡 > 𝑡 ′, the equations differ from

the original ones.

These special cases were considered in the following Barry

Island case study.

VI. CASE STUDIES

In this section, we tested the proposed method on 1) a

real DHS with measured data, 2) the Barry Island system

and 3) a 225-node-118-bus big system. In the first system,

we showed that the proposed method can effectively reduce

dissipative and dispersive errors, which improves the accuracy

of PDE solutions. In the second system, we compared the

proposed method with iteration ones in terms of accuracy

and time performance. We analyzed the reason of efficiency

improvement of the proposed method in details and studied

the impact of tuning parameters of the proposed method on

computational performance. In the last system, we mainly

tested the robustness and convergence of the proposed method

under severe disturbances. All the tests were programmed with

MATLAB R2022a on a desktop computer equipped with AMD

Ryzen 7 3700x CPU and 64GB RAM.

Luhua CHP Plant Heat Exchange 

StationL=9250m

Fig. 4. A real DHS located in Shijiazhuang, Hebei Province, China.

A. A Real DHS with Measured Data

As shown in Fig. 4, the real DHS, located in the suburb

of Shijiazhuang, Hebei Province, China, consists of a pair of

supply and return pipes that connect the CHP plant and the

heat exchange station. The parameters and measured data are

given in [27]. The spatial and temporal step sizes were set to

be 370 meters and 180 seconds, respectively. IU scheme, SOE

scheme, node method (NM) and DT-20 were performed.

We first fixed ¤𝑚 to be 2543.5 kg s−1 and gave step bound-

ary condition. The temperature of the inlet, denoted by 𝜏1,

increased from 90.1725 °C to 92.0000 °C at 𝑡 =10 h. The exact

solution of (3), denoted by REF below, was obtained by the

characteristic line method, which is

𝜏(𝑥, 𝑡) = (1 − 𝑒
− 𝜆

𝐶p ¤𝑚
𝑥
)𝜏amb + 𝑒

− 𝜆
𝐶p ¤𝑚

𝑥
𝜏(0, 𝑡 −

𝛾𝜌

¤𝑚
𝑥). (40)

As shown in Fig. 5, solution by the IU scheme was severely

smeared because of its big dissipative errors. Obviously,

high frequency components in the solution were damped out.

Meanwhile, serious oscillation ruined the solution by the SOE

scheme due to its dispersive errors. The solution by DT with

𝜃 = 2 had small dissipative errors while it revealed small

dispersive error in front of the rising edge. The solution by

DT with 𝜃 = 1 had relatively big dissipative error but no

dispersive error. The node method performed best in the test,

showing no dissipative and dispersive errors.
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Fig. 5. Accuracy comparison on step function.

Next, we varied both ¤𝑚 and 𝜏1. The results were compared

with the measured data in Fig. 6. We first knocked out the

IU scheme, because it is of first-order accuracy only and

displayed big dissipative errors, omitting most of the details

of temperature variation. Solutions by the SOE scheme and

NM portrayed and tracked the temperature variations well,

but small oscillations could not be avoided. On the contrary,

solutions by DT got rid of these fake oscillations effectively.

Compared with 𝜃 = 2, 𝜃 = 1 produced more conservative

results. As circled in Fig. 6, the real oscillation was damped
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Fig. 6. Accuracy comparison on a real DHS.

with 𝜃 = 1. However, the root mean square errors (RMSEs)

between the solutions and the measured data, which are

computed in Table IV, showed that DT with 𝜃 = 1 was the

most accurate and was trailed by the NM and DT with 𝜃 = 2.

The exclusive TVD property granted the proposed method

accuracy superiority over others and we think that DT with

𝜃 = 1 should be adopted in this case.

TABLE IV
RMSES AGAINST MEASURED DATA

IU SOE NM DT(𝜃 = 2) DT(𝜃 = 1)

0.2607 0.1773 0.1484 0.1546 0.1253

B. The Barry Island System

To test the accuracy, efficiency and convergence perfor-

mance of the proposed method, the famous Barry Island

system was used here. Each heating and electric load was

given a typical 24-hour variation trajectory, with 15 min as the

interval. These load trajectories are classified into four types,

including Supermarkets, Guaranteed Savings Buildings, Hotels

and Industrial Factories. The reader can refer to [28] for design

philosophy of the test bed and [27] for detailed parameters.

The following methods were performed.

• M1—The HE-FBI iteration solver proposed in [7], which

solves PDE with IU scheme.

• M2—Replace the IU scheme in M1 by SOE scheme.

• M3—Replace the IU scheme in M1 by NM.

• M4—DT-6 with 𝜃 = 1.

• M5—DT-6 with 𝜃 = 2.

The spatial step size for M1, M2, M4 and M5 was 20 m.

The temporal step size for M1, M2 was 60 s. The convergence

performance of M3 is unsatisfactory. For M3, only temporal

step size 10 s produced relatively good results, which was

adopted here. M4 and M5 were performed with adaptive

windows, but results with fixed time windows were obtained

from SASs with temporal step size 60 s. Error tolerance was

set to be 1e-9.

The Reference method (REF) generated reference values

with spatial and temporal step sizes 2 m and 3 s respectively.

The PDE (3) is first spatially discretized by (6) and then

temporally discretized by the Dormand-Prince5 Runge-Kutta

formula [29]. [17] has verified the accuracy of the PDE solver.

The nonlinear algebraic equations and the discretized PDEs

were alternatively solved as [7] does in each of the seven

stages of Dormand-Prince5.

The EPS power flow calculations in M1, M2, M3 and REF

were performed with the state-of-the-art Matpower V7.1 [30].

The simulation results of 𝑻s, ¤𝒎 and 𝒑 are shown in Fig.

7-9. The dissipative errors of M1 and the dispersive errors

of M2 were still obvious in temperatures. Different from the

preceding fixed direction case, M3 could not accurately depict

the temperature variations in the limited convergent range.

However, M4 and M5 obtained fairly good temperature results.

Though mass flow rates were reversed several times in this

case, M1, M2, M4 and M5 still produced accurate ¤𝒎 and 𝒑

trajectories.
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Fig. 7. Node supply temperature in Barry Island case.
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Fig. 8. Mass flow rate in Barry Island case.
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Fig. 9. Electric Power in Barry Island case.

The maximum RMSEs of each variable were listed in Table

V. M5 had the smallest errors, which was trailed by M4. On

one hand, the proposed method diminished dissipative and

dispersive errors effectively with the TVD property. On the

other, the high order temporal accuracy, which was 20 here,

and the strict time window control strategy impeded the growth

of errors. These facts explain the accuracy performance of the

proposed method from the theoretical perspective.

TABLE V
MAXIMUM RMSES

Variable M1 M2 M3 M4 M5

𝑻 s (°C) 1.01e-1 7.57e-2 \ 5.64e-2 5.21e-2
𝑻 r (°C) 3.41e-2 3.52e-2 \ 2.13e-2 1.80e-2

¤𝒎 (kg s−1) 7.27e-3 4.99e-3 \ 3.82e-3 3.17e-3
𝝓 (W) 1.60e+3 1.04e+3 \ 7.49e+2 5.96e+2
𝒑 (p.u.) 1.98e-4 1.28e-4 \ 9.30e-5 7.39e-5
𝒆 (p.u.) 1.34e-7 8.45e-8 \ 6.13e-8 4.89e-8
𝒇 (p.u.) 2.87e-6 1.86e-6 \ 1.35e-6 1.07e-6

The time performance of M1-M5 were compared in Table

VI. M5 spent the shortest time finishing the simulation, trailed

first by M4 and then M1, M2. The efficiency improvement not

only came from the adaptive time window strategy, i.e. fewer

TABLE VI
TIME PERFORMANCE

Time Cost (s) M1 M2 M3 M4 M5

Total 36.17 37.64 \ 27.30 20.86
Per Step 0.025 0.026 \ 0.019 0.018

1 M1 and M2 took 1440 steps, M4 took 1452 steps, M5
took 1183 steps.

TABLE VII
COMPONENTS OF PER-STEP TIME COST (s)

Simulation Routines M1 M5

Matrix Update and Factorization 0.0171 0.0011

Arithmetic Operation1 0.0068 0.0128
Others 0.0007 0.0037

1 For M1, it mainly contains the recursive calculation
of pipe temperatures. For M5, it mainly contains the
convolution operation, ⊗, of matrices/vectors.

total steps, but also from the smaller per-step time cost. To

explain this, the components of time cost in each step were

profiled and listed in Table VII, with M1 and M5 serving

as the representative of iterative and non-iterative solvers re-

spectively. The update and factorization of Jacobian/coefficient

matrices occupy the most computation overhead of M1 be-
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Fig. 10. Computational performance in terms of spatial step size and 𝐾 .

TABLE VIII
AVERAGE NUMBER OF ITERATIONS OF

M1

Iteration Loops Number of iterations

IES loop 10.60
DHS loop 2.24

Hydraulic loop 1.92

cause, as shown in Table VIII, tens of iterations are required

in each step of M1. Different from M1, the time cost of

M5 in matrix computation was tiny. This followed from the

fact, which has been pointed out in Section V-A, that matrix

update and factorization should be performed only once in

each step of M5. Although it took M5 much more time to

perform the arithmetic operations, which mainly consisted of

𝐾 times convolution operations of matrices/vectors, the overall

computational burden was still small. Therefore, the proposed

method (M4) was able to perform more efficiently when the

spatial and temporal step sizes resembled M1 and M2’s. With

the adaptive window strategy, the proposed method (M5) could

further improve the overall efficiency.

Even if we varied different Δ𝑥, the proposed method still

had better per-step time performance as shown in Table IX.

We believe that 𝐾 = 6 has the best time performance in this

system. Because it was observed from Fig. 10 that bigger

𝐾 meant bigger average step size, but the smaller number

of total steps was offset by the spiking per-step time cost,

finally decreasing the overall efficiency. It should be also

noted that infinitely enlarging 𝐾 led to divergence instead

of infinite temporal step size. This is because M4 and M5

are conditionally stable and hence, have limited convergence

region. Their convergence region, which was reflected by

the average temporal step size Δ𝑡, depended on the choice

of Δ𝑥, and we found that bigger Δ𝑥 allowed bigger Δ𝑡.

Therefore, the adaptive time window strategy is critical to

ensure computation convergence when we do not know what

Δ𝑡 ensures convergence. The choice of 𝜃 also influences the

computation performance. M4 and M5 had similar per-step

time cost, but M5 admitted bigger Δ𝑡, which achieved higher

overall efficiency in this system.

C. A 225-DHS-Node and 118-EPS-Bus HE-IES

The 225-DHS-Node and 118-EPS-Bus HE-IES was con-

structed by integrating a real DHS from [31] and an EPS from

TABLE IX
PER-STEP TIME COSTS UNDER DIFFERENT SPATIAL STEP SIZE (10−2 s)

5 m 10 m 20 m 40 m

M1 3.9 2.9 2.4 2.2
M2 4.0 3.0 2.5 2.2
M4 2.6 2.1 1.9 1.8
M5 2.4 2.0 1.7 1.7

TABLE X
MAXIMUM RMSES IN SCENARIO 1

Variable M1 M2 M3 M4 M5

𝑻 s (°C) 1.22e-1 7.69e-2 2.76e-2 4.56e-2 \
𝑻 r (°C) 1.96e-4 1.50e-4 5.59e-3 6.34e-5 \
¤𝒎 (kg s−1) 1.96e-1 8.65e-2 7.00e-2 4.50e-2 \
𝝓 (W) 1.71e+4 7.56e+3 1.17e+4 4.95e+3 \
𝒑 (p.u.) 1.54e-2 6.80e-3 1.05e-2 4.45e-3 \
𝒆 (p.u.) 5.35e-6 2.36e-6 3.64e-6 1.54e-6 \
𝒇 (p.u.) 6.30e-5 2.78e-5 4.29e-5 1.82e-5 \

[32]. The original DHS was modified by adding a loop. An

extraction steam turbine acts as the slack node 1 of DHS and

the PV bus 118 of EPS. A gas turbine acts as the source node

224 of DHS and the slack bus 1 of EPS. The readers can refer

to [27] for detailed parameters.

1) Accuracy and efficiency: M1-M2 with Δ𝑥 =25 m and

Δ𝑡 =60 s, M2 with Δ𝑡 =60 s, M4-M5 with 𝐾 = 20 and

Δ𝑥 =25 m, and REF with Δ𝑥 =5 m and Δ𝑡 =2 s were performed

in the following two scenarios.

• Scenario 1: T =4 h. 𝑇 s
1

increased from 85 °C at 𝑡 =600 s

to 86 °C at 𝑡 =660 s.

TABLE XI
MAXIMUM RMSES IN SCENARIO 2

Variable M1 M2 M3 M4 M5

𝑻 s (°C) 2.32e-2 3.32e-3 1.38e-2 5.55e-4 2.62e-4
𝑻 r (°C) 1.95e-4 5.95e-5 5.59e-3 1.25e-5 8.55e-6

¤𝒎 (kg s−1) 3.92e-3 6.56e-4 5.51e-2 1.66e-4 8.67e-5
𝝓 (W) 5.10e+2 8.69e+1 8.99e+3 1.97e+1 1.22e+1
𝒑 (p.u.) 4.59e-4 7.82e-5 8.10e-3 1.77e-5 1.10e-5
𝒆 (p.u.) 1.86e-7 3.18e-8 3.18e-6 6.69e-9 4.28e-9
𝒇 (p.u.) 1.85e-6 3.14e-7 3.27e-5 7.23e-8 4.44e-8

TABLE XII
TIME PERFORMANCE

Time Cost (s) M1 M2 M3 M4 M5

Scenario 1 180.35 179.54 402.15 146.40 \
Scenario 2 264.57 252.04 848.18 216.24 150.18



13

• Scenario 2: T =4 h. Active load of PQ bus 63 to

77 and PQ bus 100 to 111 changed sinusoidally with

amplitude half of its original value and period 0.35T . The

disturbance started at 𝑡 = T/40 and ended at 𝑡 = 36T/40.

Accuracy and time performance of M1-M5 were compared

in Table X to Table XII. M5 failed in scenario 1, so we

think that M5 is not suitable for cases where there are steep

temperature changes. M3 obtained the most accurate 𝑻s results

since, as shown in Fig. 5, it can effectively get rid of dissipative

and dispersive errors in this case. Except for 𝑻s, the proposed

algorithm obtained more accurate results with smaller total

time costs.

Fig. 11. Load curve when loading level=150%.
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2) Robustness: In DHS, some heat load, for instance, the

Guaranteed Saving Buildings (GSBs), spikes over ten times

within one hour [28]. To test if the proposed method can

produce convergent results and have robust time performance

Fig. 16. Mass flow rates by M4 when final loading level=300%.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time/h

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

M
a

x
im

u
m

 E
q

u
a

ti
o

n
 I

m
b

a
la

n
c
e

Active power Reactive power Voltage

Mass flow continuation Loop pressure Supply temperature

Return temperature Heat power Coupling component

Fig. 17. Maximum equation imbalance when final loading level=300%.

under this kind of severe disturbances, the following scenario

is designed.

• Scenario: T =2 h. Loading level of all load nodes in the

DHS changed from loading level 100% at 𝑡 =10 min to

the target loading level, which ranges between 60% and

300% with step size 10%, at 𝑡 =70 min.

To simulate the real scenario, random noises with uniform

distribution were added to the load curves and initial load

values. The load curve when target loading level = 150%

is shown in Fig. 11. M1-M5 were performed with previous

settings.

The proposed method had consistent and robust time perfor-

mance. As shown in Fig. 13, the per-step time costs of M4 and

M5 were nearly the same under all loading levels. As shown

in Fig. 12 and 14, the total time costs of M4 and M5 increased

linearly as the target loading level grew since Δ𝑡 diminished

and the number of steps slightly increased.

In most cases, iteration solvers, M1-M3, produced divergent

results. The total time costs of M1-M3 grew exponentially as

the loading level grew. This is because the spiking loading

level significantly increased the number of iterations and hence

the per-step time costs. However, M1 and M2 were more

efficient than the proposed method when the loading levels

were smaller than 80% for the number of iterations was tiny.

M1-M3 had similar number of iterations in the convergent

cases, but the per-step time cost of M3 was much bigger

than that of M1 and M2. This is because M3 performed time-

consuming index operations in each step.

In the cases where M1-M3 and even the REF failed, we ver-

ified the correctness of the proposed method as follows. Firstly,

Fig. 16 is drawn to show that the results are reasonable, that

is, they did not converge to meaningless solutions. Secondly,

the results were verified by checking the imbalance of the

nonlinear algebraic equations. We substituted the solutions into

the original algebraic equations and it is shown in Fig. 17 that

the maximum equation imbalance is around 1e-8. Therefore,

the proposed method was able to provide reliable results in

this case, and hence demonstrated good robustness.

The possible explanations to the robustness superiority of
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Fig. 18. Graphical explanation to the robustness of the proposed method.

the proposed method are as follows. 1) First, the proposed

method solves DHS and EPS models together, getting rid of

alternating errors. 2) Second, the adaptive time window control

strategy controls the simulation errors within the prescribed

error tolerance effectively. 3) Third, the proposed method does

not rely on initial guesses while for iteration methods, initial

guesses should be provided within the region of convergence.

The region of convergence is an area probably centered by the

unknown target value. However, the theory of iteration solver

can not figure out the probable location of unknown target

value, and the shape/area of the region of convergence. Fol-

lowing the common practice of solving differential equations,

we assigned the results of the previous time window to the

initial guesses when performing iteration methods. As shown

in Fig. 18, if the distances between these initial guesses and

the target values are longer than the radius of the region of

convergence, the iteration solver diverges. This accounts for

the failures of iteration methods in the robustness tests where

the variables changed violently and hence the target values

are far away from the initial guesses. As shown in Fig. 18,

the proposed method starts the searching of the target value at

𝑡 = 𝑡1 from the initial value at 𝑡 = 𝑡0 with a definite trajectory.

Though the approximation of target value may deviate greatly

from the true values, we can use the adaptive time window

control strategy to detect these errors, and perform simulation

with smaller temporal step sizes again, for example, from 𝑡 = 𝑡 ′

to 𝑡 = 𝑡 ′′. The above steps are conducted repeatedly until the

value that the proposed method finds at 𝑡 = 𝑡1 is within the

error tolerance. Therefore, the proposed method were more

likely to ensure convergence in the preceding robustness tests.

VII. CONCLUSION

This paper proposes a DT-based non-iterative method to

achieve efficient and robust time performance in HE-IES

quasi-dynamic energy flow calculation. A semi-discrete TVD

scheme is solved by DT to reduce dissipative and dispersive

errors in thermal dynamics. An adaptive time window control

strategy is designed to accelerate calculation and avoid non-

convergence issues.

The proposed method has better accuracy performance

compared with the FDM-based methods. But in cases where

there are steep temperature changes, it cannot depict the

temperature variations as accurately as NM. The proposed

method has small and consistent per-step time costs regardless

of loading levels, and thus, displays efficient and robust time

performance. Whereas the iteration methods can only converge

rapidly in lightly loaded cases. To choose parameter 𝜃 and

order 𝐾 should also be careful. In cases where there are

steep temperature changes, we should set 𝜃 = 1 while in

other cases, setting 𝜃 = 2 will be more efficient. Though

small 𝐾 is suggested, we think that the choice of 𝐾 should

be case-specific. Several tests should be performed ahead of

simulation to avoid tiny average temporal step sizes. The

adaptive time window strategy is critical since the proposed

method is conditionally stable.

The proposed method also applies to simplified scenarios

where, for example, the DHSs are in quality regulation mode.

By further considering the equipment models in HE-IESs, the

proposed method is expected to perform efficient dynamic

simulation, which will be our future research purpose.

APPENDIX A

STEP SIZES AND DISSIPATIVE/DISPERSIVE ERRORS

We illustrate the relationships between step sizes and dissi-

pative/dispersive errors using the following thermal-dynamics-

like PDE
𝜕𝜏

𝜕𝑡
+ 𝑣

𝜕𝜏

𝜕𝑥
+ 0.9997(𝜏 − 0.4) = 0

with step boundary condition. 𝑣 is the mass flow velocity.

For the SOE scheme [15]


𝜕𝜏

𝜕𝑡
=
𝜏𝑛+1
𝑘
− 𝜏𝑛

𝑘
+ 𝜏𝑛+1

𝑘+1
− 𝜏𝑛

𝑘+1

2Δ𝑡

𝜕𝜏

𝜕𝑥
=
𝜏𝑛+1
𝑘+1
− 𝜏𝑛+1

𝑘
+ 𝜏𝑛

𝑘+1
− 𝜏𝑛

𝑘

2Δ𝑥

, (A.1)

spatial step size Δ𝑥 and temporal step size Δ𝑡 satisfying

𝑣Δ𝑡/Δ𝑥 = 1 eliminate dissipative and dispersive errors in

solutions effectively, which is shown in Fig. 19(a). 𝑅 = 𝑣Δ𝑡/Δ𝑥

is called Courant-Friedrichs-Lewy (CFL) number in literature

and serves as an important stability indicator of difference

schemes [16]. However, if we increase 𝑣 slightly, then the

dispersive errors, which are the fake oscillations in Fig. 19(b),

become obvious. Therefore, SOE scheme is able to obtain

accurate results when mass flow velocities are fixed, but it is

difficult for the scheme to avoid dispersive errors when mass

flow velocities are variable.

0.5 0.52 0.54 0.56 0.58 0.6

t

1

1.05

1.1

=

SOE Scheme

Exact Solution

(a) Δ𝑥=0.05, Δ𝑡=0.001, 𝑣=50, 𝑅=1

0.5 0.52 0.54 0.56 0.58 0.6

t

1

1.05

1.1

=

SOE Scheme

Exact Solution

(b) Δ𝑥=0.05, Δ𝑡=0.001, 𝑣=55, 𝑅=1.1

Fig. 19. Results by the SOE scheme.

For the IU scheme [13]


𝜕𝜏

𝜕𝑡
=
𝜏𝑛+1
𝑘+1
− 𝜏𝑛

𝑘+1

Δ𝑡

𝜕𝜏

𝜕𝑥
=
𝜏𝑛+1
𝑘+1
− 𝜏𝑛+1

𝑘

Δ𝑥

, (A.2)
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it can be observed from Fig. 20 that neither putting 𝑅 = 1 nor

decreasing Δ𝑥 can eliminate the decaying of high-frequency

components, which are the manifestation of dissipative errors

in solutions. Therefore, solutions by the IU scheme are always

accompanied by the dissipative errors.

0.5 0.52 0.54 0.56 0.58 0.6

t

1

1.05

1.1

=

IU Scheme

Exact Solution

(a) Δ𝑥=0.05, Δ𝑡=0.001, 𝑣=50, 𝑅=1

0.5 0.52 0.54 0.56 0.58 0.6

t

1

1.05

1.1

=

IU Scheme

Exact Solution

(b) Δ𝑥=0.001, Δ𝑡=0.001, 𝑣=50, 𝑅=50

Fig. 20. Results by the IU scheme.

APPENDIX B

NOTATION EXPLANATION

Notation of (19) and (20) can be explained using the supply

network example in Fig. 21 where we assume Node 1 to be

an intermediate node.

𝜏s
1

can be calculated by node temperature mixture equation

[7] as

𝜏s
1 = 𝜏

out,s
1

¤𝑚1

¤𝑚1 + ¤𝑚2

+ 𝜏out,s
2

¤𝑚2

¤𝑚1 + ¤𝑚2

.

Moving ¤𝑚1+ ¤𝑚2 in denominator to the left hand side, we have

𝜏s
1 ( ¤𝑚1 + ¤𝑚2) = 𝜏

out,s
1
¤𝑚1 + 𝜏

out,s
2
¤𝑚2.

Adding ¤𝑚3 and 𝜏
out,s
3

to the equation, and rewriting it as

matrix-vector form, we have

𝜏s
1

[
1 1 0

] 
¤𝑚1

¤𝑚2

¤𝑚3


=
[
1 1 0

] 
𝜏

out,s
1

𝜏
out,s
2

𝜏
out,s
3



¤𝑚1

¤𝑚2

¤𝑚3


.

Because [
1 1 0

]
= max(𝑉1,

[
0 0 0

]
) = 𝑉+

1

where 𝑉1 =
[
1 1 −1

]
denotes the row of node incidence

matrix related to the intermediate node—Node 1, we have

𝜏s
1𝑉

+
1 ¤𝒎 = 𝑉+

1 diag(𝝉out,s) ¤𝒎.

Node supply/return temperature equations (19) and (20) for

other types of nodes can be obtained in a similar way.
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