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Abstract Novel viewpoint image synthesis is very
challenging, especially from sparse views, due to large
changes in viewpoint and occlusion. Existing image-
based methods fail to generate reasonable results for
invisible regions, while geometry-based methods have
difficulties in synthesizing detailed textures. In this paper,
we propose STATE, an end-to-end deep neural network,
for sparse view synthesis by learning structure and texture
representations. Structure is encoded as a hybrid feature
field to predict reasonable structures for invisible regions
while maintaining original structures for visible regions,
and texture is encoded as a deformed feature map to
preserve detailed textures. We propose a hierarchical fusion
scheme with intra-branch and inter-branch aggregation, in
which spatio-view attention allows multi-view fusion at the
feature level to adaptively select important information by
regressing pixel-wise or voxel-wise confidence maps. By
decoding the aggregated features, STATE is able to
generate realistic images with reasonable structures and
detailed textures. Experimental results demonstrate that
our method achieves qualitatively and quantitatively
better results than state-of-the-art methods. Our method
also enables texture and structure editing applications
benefiting from implicit disentanglement of structure and
texture. Our code is available at http://cic.tju.edu.
cn/faculty/likun/projects/STATE.

Keywords novel view synthesis; sparse views; spatio-
view attention; structure representation;
texture representation

∗ Xinyi Jing and Qiao Feng contributed equally to this work.
1 College of Intelligence and Computing, Tianjin University,

Tianjin 300350, China. E-mail: X. Jing, jingxinyi@tju.edu.cn;
Q. Feng, fengqiao@tju.edu.cn; J. Zhang, jinszhang@tju.edu.cn;
Y. Yu, yuyuanqiang@tju.edu.cn; K. Li, lik@tju.edu.cn (�).

2 School of Computer Science and Informatics,
Cardiff University, Cardiff CF24 4AG, UK. E-mail:
LaiY4@cardiff.ac.uk.

Manuscript received: 2022-02-15; accepted: 2022-06-16

1 Introduction

Given a single image of an object, or several images
from different viewpoints, novel view synthesis aims
to generate a further image seen from a new viewpoint.
This has a wide range of applications in virtual
reality, education, and movie production. It is a
very challenging problem given sparse input views
due to large appearance variations and occlusion.

Existing methods for novel view synthesis can be
classified as image-based or geometry-based. Image-
based methods warp a source image from the source
viewpoint to the target viewpoint by estimating
an affine transformation [1, 2] or an appearance
flow field [3–5]. Flow-based methods can more
flexibly deal with complex deformations than affine
transformation methods. However, due to lack of
geometric information, image-based methods tend to
generate unsatisfactory results for invisible regions,
especially given sophisticated objects or sparse views.
Geometry-based methods first model the 3D structure
of the object in an explicit [6–8] or implicit [9–11]
manner, and then generate the target image by
rotation and projection. Explicit representations
use discrete volumes while implicit methods use
continuous implicit functions. Along with neural
rendering based methods [12], the latter can be
trained without 3D supervision. Although geometry-
based methods can ensure structural consistency and
predict reasonable shapes for the invisible regions,
results are poor for sparse views, and they may
lose texture detail if the representation has limited
resolution.

It is very important to find an effective way to
make better use of multi-view information, especially
for sparse views. Most works [10, 13–16] directly
average the representations from all inputs, where all
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locations of inputs are taken as valid values. However,
not all locations of inputs have a positive impact on
the target image. To solve this problem, Sun et al. [4]
propose a self-learned confidence method to fuse
the resulting images generated by each input at the
pixel level. However, this fusion scheme requires a
large amount of memory and cannot deal with the
unavoidable misalignment problem.

The aforementioned methods encounter three
challenges to synthesizing satisfactory images: (i) the
coupling of shape and texture in the input images,
(ii) potential uncertainties in invisible regions, and
(iii) difficulty in achieving color, texture, and shape
consistency.

To address these problems, in this paper, we
propose an end-to-end deep neural network, STATE,
for sparse view synthesis; it disentangles the input
images into STructure And TExture representations
to ensure both shape and texture consistency.
Although our method does not explicitly control
disentanglement, proper design of the two branches
achieves effective disentanglement of structure and
texture as we verify later through experimental
results. In the structure-aware encoder, we represent
structure as a hybrid feature field, which can predict
reasonable structure for invisible regions. In the
texture-aware encoder, we estimate an appearance
flow field and warp the source image feature from
the source viewpoint to the target viewpoint at the
feature level. To make the best use of multiple images,
we also propose spatio-view attention aggregation
to adaptively fuse multi-view information at the
feature level by regressing pixel-wise or voxel-wise
confidence maps. The final image is delivered by
decoding the aggregated feature of structure-aware
representation and texture-aware representation. Our
model works well for both single view and multi-view
inputs. Experimental results demonstrate that our
method works better than the state-of-the-art. We
also validate our approach by comprehensive ablation
studies. Figure 1 gives some examples of our results.

Our code is available at http://cic.tju.edu.
cn/faculty/likun/projects/STATE to promote
academic development.

Our main contributions are, in summary:
• STATE, an end-to-end deep neural network

to disentangle sparse input images into two
neural embedding representations of structure

Fig. 1 Our STATE model can generate realistic images from sparse
views or even a single image.

and texture; it can help predict reasonable regions
for ones invisible in the source images, while also
recovering detailed textures,

• a hierarchical fusion scheme with intra-branch and
inter-branch aggregation; spatio-view attention
provides multi-view fusion at the feature level
to adaptively select important information by
regressing pixel-wise or voxel-wise confidence
maps, and

• a model which can realize texture or structure
swapping without training due to effective
disentanglement of structures and textures: our
model can be easily and robustly trained with a
hybrid loss such as cosine loss to achieve color,
texture, and shape consistency, leading to state-
of-the-art results.

2 Related work

2.1 Scope

We next review existing work on novel view synthesis
for objects or humans, from a single or multiple
images; methods can be image-based or geometry-
based. The former maintain appearance consistency
by transferring pixels from the source images to the
target image, while the latter maintain structural
consistency by reconstructing the 3D object to render
the novel image.

2.2 Image-based novel view synthesis

Image-based novel view synthesis methods directly
generate pixels or move pixels from the source images
to the target image. Tatarchenko et al. [1] and Yang
et al. [2] generate pixels with affine transformation.
Instead of learning to synthesize pixels from scratch,
Zhou et al. [5] prove that the visual appearances of
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the same instance from different viewpoints are highly
correlated, and such correlation can be explicitly
learned to predict appearance flow [3, 4, 17], i.e., 2D
coordinate vectors specifying which pixels in the input
view can be used to reconstruct the target view. To
use features at different scales, Yin et al. [18] estimate
appearance flows with different resolutions to warp
the source view to the target view. Controlled by the
appearance flow, bilinear sampling is used to move
pixels from the source images to the target image
[4, 5, 17, 19]. To avoid the poor gradient propagation
of bilinear sampling, Ren et al. [3] propose a content-
aware sampling method adopting a local attention
mechanism. Most flow-based methods [4, 5] warp
the input images pixel-wise, which prevents the
network from generating new content for invisible
pixels. Warping the input images at the feature level
can solve this problem [3, 17, 20]. Other methods
synthesize invisible pixels without warping the input
features. Park et al. [21] use a completion network to
hallucinate the empty parts. In summary, image-
based methods can generate detailed textures by
moving pixels from the source images to the target
image, but the results generated by the above
methods lack a consistent shape and so may have
artifacts along the silhouette.

2.3 Geometry-based novel view synthesis

Geometry-based novel view synthesis methods
determine the 3D structure of the object in an explicit
or implicit manner, and then generate the target
image by rotation and projection. Approaches may
be based on depth maps or 3D models (textured
occupancy volumes, colored point clouds, or neural
scene representations). Depth-map-based approaches
[6, 22, 23] typically generate a depth map for each
input view as a 2.5D intermediate representation
which captures hidden surfaces from one or multiple
viewpoints. Point-cloud-based methods [8] generate
a point cloud to be transformed into the target
view. Several recent methods [7, 24–26] reconstruct
an explicit occupancy volume from the input
images, and render it using traditional rendering
techniques. To overcome the memory limitation
of volume representations, some methods leverage
signed distance field encoded volumes [27, 28] or
RGBα-encoded volumes [29, 30], with good results.
Since explicit volumes are discrete, several methods
[10, 31–33] based on implicit volume representations

without any 3D supervision have been proposed. In
order to have better understanding of the structure of
objects, Galama and Mensink [34] propose IterGANs
to iteratively learn an implicit 3D model of the
object. Implicit volume representation has gained
popularity due to its continuous shape and texture
representation. Some methods [9, 11, 35, 36] predict
continuous neural scene representations, and then
use neural rendering to produce the novel view
image. Geometry-based methods can keep structural
consistency and predict reasonable shapes for invisible
regions, but the generated textures tend to lack fine
details.

In this paper, we propose an end-to-end deep
neural network for sparse view synthesis by learning
structure and texture representations. Structure is
encoded as a hybrid feature field; texture is encoded
as a deformed feature map. Each representation
is generated by spatio-view attention aggregation
for multi-view cases. The results generated by our
approach have consistent structures and detailed
textures.

3 Method

3.1 Overview

The inputs of novel view synthesis from N images are
a target camera pose pt and N source images each
coupled with a camera pose (I1

s , p
1
s ), . . . , (IN

s , p
N
s ).

Our goal is to synthesize the target image Ît in the
target camera pose pt. It and Ît denote the ground
truth and synthetic target images, respectively. In
order to generate a result with reasonable structure
and fine texture, we propose a new network STATE
that aggregates information from both structure and
texture representations. As Fig. 2 shows, STATE
consists of a two-branch encoder and a fusion decoder.

The two-branch encoder E(·), consisting of a
structure-aware branch and a texture-aware branch,
encodes the inputs into a structure feature volume fstr
and a texture feature map ftex. It can be written as

(fstr, ftex) = E(pt, (I1
s , p

1
s), . . . , (IN

s , p
N
s )) (1)

The structure-aware branch produces a hybrid feature
field for each view, and then rotates and adaptively
aggregates them into a single feature volume fstr
containing structure information. The texture-aware
branch generates a single feature map ftex containing
texture information by adaptively fusing the flow-
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Fig. 2 Overview of our STATE model.

warped features from the N views.
The fusion decoder D(·) takes the feature volume

fstr and the feature map ftex as input and generates
the target image:

Ît = D(fstr, ftex) (2)
Adaptive fusion of multi-view inputs is explained in

detail in Section 3.3. Note that our model can handle
an arbitrary number of inputs for both training and
testing without modifying the encoder or decoder.

3.2 Two-branch encoder

We use a two-branch encoder to disentangle texture
and structure from the sparse input images; it
includes a texture-aware branch and a structure-
aware branch. For both branches, to cope with
occlusion and large view differences, pixels in the
input images should not have the same contributions.
We thus use a spatio-view attention based on
calculating confidence maps for multi-view images
to obtain the final texture representation ftex and
structure representation fstr. See Section 3.3.

In the texture-aware branch (see Fig. 2), we use an
hourglass network Fwarp to predict a warping field
wi and a confidence map ci

tex for each input view i,
which takes the target pose pt, the i-th source image

Ii
s , and the i-th source pose pi

s as inputs:
(wi, c

i
tex) = Fwarp(pt, I

i
s , p

i
s) (3)

The warping field wi is represented by displacements
between the source image and the target image.
Camera poses pt and pi

s are represented by
quaternions. We expand the dimensions of the
quaternion to match the dimensions of the image,
and then concatenate them to form the input. The
confidence map ci

tex is used to fuse the feature maps
from different views. ci

tex and wi share all weights of
Fwarp except for their output layers. We use a fully
convolutional network Ftex to extract features f̃ i

tex
from the source images, and then warp the features
to get the target features f i

tex:
f̃ i

tex = Ftex(Ii
s) (4)

f i
tex =W(wi, f̃

i
tex) (5)

whereW(·) is the warping function; bilinear sampling
is used in our network.

In the structure-aware branch, we use an encoder
Fstr [10] consisting of a series of 2D convolutions,
reshaping, and 3D convolutions to extract a hybrid
feature field represented as a structure feature volume
for each image:

f̃ i
str = Fstr(Ii

s) (6)
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where f̃ i
str is the structure feature volume in the

corresponding pose pi
s. Each voxel in our 3D feature

volume corresponds to a point in 3D space and
represents information like its color, and whether
it is inside the object or not. Such a 3D feature
volume is more robust than a 2D feature map that
represents depth information, and has been widely
used in 3D reconstruction and novel view synthesis.
It is also reasonable to reshape a 2D feature map
to get a 3D feature volume. A feature map with
[c × d]-dimensional channels can be treated as a
concatenation of d feature maps with c dimensional
channels, each of which represents geometry and
appearance information for a slice in 3D space. Thus,
the feature map with [c × d]-dimensional channels
contains d slices in 3D space and can be reshaped
to a 3D feature volume with a depth resolution of d.
Next, we rotate f̃ i

str from the source pose pi
s to the

target pose pt:
f i

str = R(f̃ i
str, p

i
s, pt), ci

str = 3DConv(f i
str) (7)

where R(·) is a rotation operation with trilinear
sampling, f i

str is the transformed feature volume
having the same shape as f̃ i

str, and 3DConv(·)
represents 3D convolution. The confidence map ci

str
is used to fuse the feature maps from different views.

The texture representation ftex and the structure
representation fstr are decoded by a fusion decoder
described in Section 3.4.
3.3 Spatio-view attention aggregation

Due to occlusions and large view variation, the texture
representation f i

tex of view i may be incomplete.

Missing regions should not have the same weighting
as other regions. Moreover, the visible view should
have more impact on the final result. Similarly, the
structure-aware branch requires different weights for
different regions of f i

str and different views. Therefore,
instead of simply averaging the encoded feature
maps, we apply adaptive aggregation with spatio-
view attention for the texture-aware encoder and the
structure-aware encoder by calculating a confidence
map for each view, as shown in Fig. 3. The pixel-
wise and voxel-wise confidence maps {ci

tex}16i6N and
{ci

str}16i6N are used to fuse the texture features and
structure features of all views using

ftex =
N∑

i=1
f i

tex � Softmaxi(c1
tex, . . . , c

N
tex) (8)

fstr =
N∑

i=1
f i

str � Softmaxi(c1
str, . . . , c

N
str) (9)

We normalize the predicted confidence maps
{ci

tex}16i6N and {ci
str}16i6N by applying Softmax(·)

across them. The normalized confidence maps can
then be used as the weights to aggregate the feature
maps. This mechanism enables the weights to be
automatically adjusted for any number of input views,
which is very flexible. Moreover, fusion at the feature
level needs less memory yet can produce a more
continuous result.
3.4 Fusion decoder

The fusion decoder fuses the texture feature map
and the structure feature volume, and then generates
the final image. After several 3D convolutions, the

Fig. 3 Structures for spatio-view attention aggregation in the texture-aware branch (left) and structure-aware branch (right).
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structure feature volume is turned into a structure
feature map by merging the depth dimension into
the channel dimension. We concatenate the structure
feature map and the texture feature map, and then
get the final image using a U-Net decoder. Instead
of fusion at the pixel level, we fuse the structure
representation and the texture representation at the
feature level, for three reasons: (i) it is difficult to
ensure the alignment of two-branch results, (ii) the
features before the decoder contain more information
than the decoded images, and (iii) fusion at the
feature level enables the network to generate new
content, especially for the invisible regions.

3.5 Loss functions

Because STATE is an end-to-end trainable network,
we directly define several losses in image space to
train our network. Our full training loss consists of a
reconstruction term, a structural term, a perceptual
term, a cosine term, and an adversarial term. The
full loss is formulated as
L = λrLR + λsLS + λpLP + λcLC + λaLA (10)

where λr, λs, λp, λc, and λa weight the five loss terms.
The reconstruction loss directly guides the

similarity between the generated image Ît and the
ground-truth image It at the pixel level, accelerating
convergence. LR is defined as the `1 distance:

LR =
∥∥∥Ît − It

∥∥∥
1

(11)

We use the structural similarity (SSIM) loss LS [37]
with a window size of 11×11 to improve the structural
similarity, and to improve consistency with human
perception. The structural dissimilarity between the
generated image Ît and the ground-truth image It is
given by

LS = 1− SSIM(Ît, It) (12)

In addition to low-level constraints at the pixel
level, we adopt perceptual loss [38] to compute
the difference between the deep features of the
generated image Ît and the ground-truth image It at
a perceptual level; this is formulated as

LP =
∑

i

∥∥∥φi(Ît)− φi(It)
∥∥∥

2
(13)

where φi is the output of the i-th layer of VGG-19
[39] pre-trained on ImageNet [40]. We use layers 1,
6, 11, and 16 to supervise our network.

To ensure color consistency, we calculate the cosine
similarity between the generated image Ît and the
ground-truth image It. Cosine similarity measures

the similarity between two vectors by measuring the
cosine of the angle between them:

LC = 1− cos(Ît, It) (14)
We adopt the discriminator from generative

adversarial networks [41], which has achieved great
progress in image synthesis. It constrains the distance
between the distributions of the generated image Ît
and the ground-truth image It. The discriminator
loss is defined as

LA = E[log(1−D(Ît))] + E[logD(It)] (15)
where D(·) is a patch discriminator, log(·) is the base
2 logarithm, and E[·] is the expectation.
3.6 Implementation details

Our framework is implemented in PyTorch. The
hyper-parameters [λr, λs, λp, λc, λa] were set to
[1, 10, 0.5, 1, 1] for training. The Adam optimizer
[42] was used to optimize our network with the
default parameters (β1 = 0.9 and β2 = 0.999) and
learning rate 2× 10−4. We trained our model with
four source view images until convergence on the
training data, which took approximately 7 days using
a single GeForce GTX 2080 Ti GPU. During testing,
generating an image takes about 90 ms using a single
GeForce GTX 2080 Ti GPU.

4 Experiments

4.1 Datasets

To evaluate the performance of our view synthesis
approach, we conducted experiments on ShapeNet
(using Chair and Car) [43], in which the camera poses
are represented by the rotation components around
the object’s central axis. We used the same training
and testing splits as Refs. [4, 5, 10, 21] (80% of models
for training and the remaining 20% for testing).
Each model was rendered as 256× 256 RGB images
at 18 azimuth angles sampled at 20◦ intervals and
3 elevations (0◦, 10◦, 20◦), for a total of 54 viewpoints
per model.

We also synthesized a dataset Human from 496
real scanned 3D human models from https://web.
twindom.com. Each model was rendered as 256×256
RGB images at 18 azimuth angles sampled at 20◦

intervals and 3 elevations (0◦, 10◦, 20◦), for a total of
54 viewpoints per model. We used 80% of the models
for training and the remaining 20% for testing.

Models in the test images were not included in the
training set.

https://web.twindom.com
https://web.twindom.com
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4.2 Metrics

We used two popular metrics, learned perceptual
image patch similarity (LPIPS) [44] and Fréchet
inception distance (FID) [45], which are generally
considered to be closer to human perception, to
assess the reconstruction errors. LPIPS computes the
distance between the generated image and the ground-
truth image in the perceptual domain. FID calculates
the Wasserstein-2 distance between the distributions
of the generated images and the ground-truth images,
which measures the realism of the generated images.

4.3 Ablation study

We first evaluate our method against four alternative
models to determine the factors that contribute to
achieving reasonable view synthesis from sparse input
images. These models use the same setup, training
schedule, and sequence of input images as STATE. We
used the same training and test scheme as Refs. [4, 10]
for Chair, Car, and Human datasets: training with 4
views and testing with 1–4 views.

The alternative models were as follows.
w/o Tex. This model omits the texture-aware

branch but retains the multi-view adaptive weighting.
It is designed to assess the importance of the texture-
aware branch, and to verify the necessity of the
combination of both texture representation and
structure representation.

w/o Str. The model omits the structure-aware
branch but retains the multi-view adaptive weighting.
It is designed to assess the importance of the

structure-aware branch, and to verify the necessity of
the combination of both texture representation and
structure representation.

w/o SVA. This model is trained with multi-view
averaging fusion, to assess the importance of spatio-
view attention.

w/o Cos. This model omits cosine loss to assess
the importance of cosine loss.

Full. Our full model includes the two-branch
encoder and multi-view fusion at the feature level
with adaptive weighting.

Table 1 gives quantitative results for Chair, Car,
and Human datasets. Our full model outperforms
all the alternatives on Chair and Car datasets in
terms of LPIPS and FID. Note that spatio-view
attention aggregation is not used when the test input
is a single view. Therefore, the LPIPS values of
the w/o SVA model and the Full model are similar
on Human dataset. On the other hand, all the
models in the ablation study are trained on input
with four views, and different confidences are assigned
to different views due to the SVA module of the full
model. However, when the test input is a single
view with low confidence, the results may be affected.
Furthermore, the clothed posed human has complex
color and is asymmetric, which influences the learning
of structures. Therefore, the FID of the Full model
is slightly worse than that of the w/o Cos. model
for four views input for the Human dataset. Various
visual results are presented in Figs. 4–7. It can be
seen that the w/o Tex. model can generate correct

Table 1 Quantitative comparison of four alternative designs

Dataset Method
1 view 2 views 3 views 4 views

LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓

Car

w/o Tex. 0.139 79.143 0.104 57.997 0.096 54.261 0.092 52.961
w/o Str. 0.127 64.788 0.098 44.501 0.089 39.765 0.084 37.901
w/o SVA 0.118 62.619 0.090 42.023 0.081 38.642 0.078 37.258
w/o Cos. 0.136 82.208 0.104 57.810 0.096 53.844 0.092 52.462

Full 0.117 60.387 0.089 39.052 0.080 34.472 0.075 32.290

Chair

w/o Tex. 0.250 64.584 0.113 21.622 0.096 19.488 0.092 18.898
w/o Str. 0.166 33.330 0.141 26.628 0.133 25.145 0.129 24.443
w/o SVA 0.209 48.731 0.100 19.228 0.086 17.336 0.081 16.730
w/o Cos. 0.246 62.418 0.109 20.006 0.093 17.998 0.088 17.461

Full 0.159 30.936 0.096 18.486 0.080 16.547 0.074 15.881

Human

w/o Tex. 0.118 70.431 0.087 64.174 0.082 64.860 0.081 65.550
w/o Str. 0.106 82.642 0.088 76.567 0.081 75.137 0.078 75.357
w/o SVA 0.102 61.274 0.078 57.386 0.072 57.710 0.069 58.330
w/o Cos. 0.110 62.791 0.082 56.604 0.077 56.487 0.076 56.525

Full 0.105 60.056 0.076 55.802 0.070 56.469 0.068 57.055
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Fig. 4 Qualitative comparison with four alternative designs for single-view inputs.

structures, but the textures in the source images
are not well maintained, e.g., the bonnet of the car.
The w/o Str. model can recover detailed textures,
especially for Car and Human datasets, but fails to
maintain shape consistency. The w/o SVA model
fails to effectively fuse the results of the two branches,
and thus the results lose some textures or structures,
such as the texture of the car, the back and the
legs of the chair, and the human’s arms. The w/o
Cos. model cannot ensure color consistency, e.g., on
the bonnet of the car. However, our full model can
achieve consistency of color, texture, and structure.

To verify the disentanglement of textures and
structures, we visualize the results of the two
branches: we output the result of one branch

by zeroing out the features of the other branch.
Figure 8 demonstrates that our method can effectively
disentangle textures and structures to generate
realistic images with correct shapes and textures.

We visualize the confidence maps to demonstrate
the effect of spatio-view attention aggregation in Fig. 9,
taking novel view synthesis from two views as an
example. The first two columns are the source images,
the third column is the generated image, and the
last two columns multiply the confidence map by the
generated image. As can be seen, the generated image
obtains more texture information from source image 2
due to its similarity to the target view, showing that
our spatio-view attention aggregation can select more
relevant information from different input views.
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Fig. 5 Qualitative comparison with four alternative designs for two-view inputs.

Further results are given in the Electronic
Supplementary Material (ESM).

4.4 Comparison to other methods

We compare our method to TBN [10] and pixelNeRF
[11]. For simplicity, we omit comparisons to earlier
works [4, 9] that have already been compared to TBN
or pixelNeRF, and the methods that do not work
well for sparse views [30, 35, 46, 47]. We use the
same training and test scheme as TBN [10] for Chair
and Car datasets: training with 4 views and testing
with 1–4 views. For the case of single-view input, we
use a single view for training, as multi-view adaptive
weighting is not used. Pre-trained TBN [10] models
for Chair and Car datasets were used and we re-
trained TBN [10] on the Human dataset for a fair
comparison, using the same training and test scheme:

training with 4 views and testing with any number
of views. We also re-trained pixelNeRF [11] on the
Car, Chair, and Human datasets for fair comparison:
training with 4 views and testing with 2–4 views. For
single-view input, we used single view for training as
suggested by the author.

Table 2 provides a quantitative comparison on
Chair, Car, and Human datasets. It can be seen
that our proposed method outperforms the other
methods in terms of FID by a significant margin on
the Chair dataset, even in the challenging case of
single-view input. For the Car dataset, benefiting
from spatio-view attention, our method achieves the
best performance for multi-view inputs. The cars are
left–right symmetric, but not front–back. As a result,
our texture-aware branch finds it difficult to provide
reasonable textures when there is heavy occlusion in
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Fig. 6 Qualitative comparison with four alternative designs for three-view inputs.

Table 2 Quantitative comparison on the Chair, Car, and Human datasets

Dataset Method
1 view 2 views 3 views 4 views

LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓

Chair
TBN [10] 0.182 38.446 0.109 21.159 0.093 18.891 0.086 18.051

pixelNeRF [11] 0.183 40.515 0.181 71.560 0.095 28.588 0.068 18.118
Ours 0.159 30.936 0.096 18.486 0.080 16.547 0.074 15.881

Car
TBN [10] 0.112 46.401 0.091 40.404 0.084 38.841 0.080 38.129

pixelNeRF [11] 0.155 91.252 0.145 89.553 0.101 55.887 0.083 41.496
Ours 0.117 60.387 0.089 39.052 0.080 34.472 0.075 32.290

Human
TBN [10] 0.187 92.368 0.093 51.535 0.083 51.573 0.080 52.262

pixelNeRF [11] 0.137 84.211 0.102 67.718 0.078 60.250 0.068 61.453
Ours 0.105 60.056 0.076 55.802 0.070 56.469 0.068 57.055

Average
TBN [10] 0.160 59.072 0.098 37.699 0.087 36.435 0.082 36.147

pixelNeRF [11] 0.158 71.993 0.143 76.277 0.091 48.242 0.073 40.256
Ours 0.127 50.460 0.087 37.780 0.077 35.829 0.072 35.075

front of or behind the car for a single view, leading
to some faults in the final textures, even if the shape
estimated by the structure-aware branch is accurate.

For the Human dataset, our method achieves the best
LPIPS scores for all cases. The clothed posed human
has complex color and is asymmetric, which influences
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Fig. 7 Qualitative comparison with four alternative designs for four-view inputs.

Fig. 8 Disentanglement of textures and structures.

structure learning. Therefore, our FID scores are not
the best for multi-view inputs on the Human dataset.
Nevertheless, considering the average results over all
datasets, our method achieves the best results for all
views except for FID scores for two views.

Visual results for several challenging examples
with large viewpoint transformations from Chair,
Car, and Human datasets are shown in Figs. 10–
12. Due to the representation’s limited resolution,
TBN [10] finds it difficult to recover image details,
such as chair legs, and textures of cars and people.

PixelNeRF [11] generates certain artifacts along
structural edges. In contrast, our method provides
detailed textures while maintaining the structures
of objects: e.g., see the stripes on the car and the
suit on the person. Thanks to the disentangled
learning of the structure representation and the
texture representation, invisible regions and detailed
textures are successfully recovered by our method for
any number of input views. By fusing and decoding
the two representations, our method does not suffer
from missing pixels: our method can generate visually
better and more realistic images.

Further results are given in the ESM.

4.5 User study

To better evaluate our method, we performed a
perceptual evaluation with a user study, including a
comparison to state-of-the-art methods. We showed
results from TBN [10] (Method A), pixelNeRF [11]
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Fig. 9 Confidence maps for different views.

Fig. 10 Qualitative comparison on the Chair dataset.

(Method B), our method (Method C), and the
ground-truth for the same input images, for twelve
cases, with three questions per case (38 questions
in total including asking the gender and age of
the participant): 1–4 views as input on the Car,
Chair, and Human datasets. The results shown were
randomly selected, and the users are required to choose

from A, B, and C the one closest to the ground-truth
in terms of texture, structure, and overall quality for
each case. We collected 111 sets of answers, from 59
females and 52 males, with 108 users aged between
18 and 40, 1 user between 40 and 60, and 2 users over
60. Table 3 presents results of the user study. For
each gender, we give the percentage of participants
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Fig. 11 Qualitative comparison on the Car dataset.

Table 3 User study results

Case
Females Males Independent T test

Method A Method B Method C Method A Method B Method C t p

Case 1 27.12% 16.95% 55.93% 20.51% 9.62% 69.87% −1.487 0.140

Case 2 16.38% 15.82% 67.80% 6.41% 15.38% 78.21% −1.875 0.064

Case 3 13.56% 14.12% 72.32% 8.97% 11.54% 79.49% −1.072 0.286

Case 4 20.34% 12.99% 66.67% 19.23% 14.10% 66.67% −0.086 0.932

Case 5 16.38% 13.00% 70.62% 18.59% 7.69% 73.72% −0.067 0.946

Case 6 9.61% 10.73% 79.66% 13.46% 8.33% 78.21% 0.510 0.611

Case 7 16.95% 9.60% 73.45% 7.05% 11.54% 81.41% −1.685 0.095

Case 8 15.25% 14.13% 70.62% 8.33% 9.62% 82.05% −1.774 0.079

Case 9 15.82% 14.69% 69.49% 10.90% 8.33% 80.77% −1.437 0.154

Case 10 16.95% 15.82% 67.23% 16.67% 10.25% 73.08% −0.489 0.626

Case 11 14.69% 14.69% 70.62% 9.62% 13.46% 76.92% −0.979 0.330

Case 12 12.99% 9.61% 77.40% 12.82% 8.97% 78.21% −0.087 0.931

Average 16.40% 13.47% 70.13% 12.89% 10.76% 76.35% −1.115 0.267

who chose the result from a particular method for
each case, as well as average results over the twelve
cases. In addition to the percentage, we also carried
out an independent T test [48] between the result and
gender: t is a statistical variable calculated from the
results and p is found from a table according to t. A p

value greater than 0.05 means there is no significant

difference between the results for the two genders.
We use 1, 2, and 3 to represent Methods A, B, and
C, respectively, and average the results of the three
questions in each case. Table 3 shows that the user
study results do not depend on gender. Overall, our
method achieves the best results in the user study.

Further results are given in the ESM.
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Fig. 12 Qualitative comparison on the Human dataset.

4.6 Applications

Our method does not explicitly constrain texture
and structure, but as the branches are capable of
generating better structure and texture respectively,
this implicitly leads to disentanglement. We may also
achieve texture or structure swapping with trained
models for novel view synthesis.

Using the texture and structure branches, we
can easily edit the texture and the structure by
changing the inputs to each branch. Figures 13 and
14 show some disentangled results on the Car and
Chair datasets. The first row provides the texture
information and the first column gives the structure
information. Each result in other positions i, j uses

Fig. 13 Results of texture or structure swapping on the Car dataset.

a decoded result of that combination of structure
representation and texture representation. It can be
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Fig. 14 Results of texture or structure swapping on the Chair
dataset.

seen that the structure of the result in each case is
consistent with that of the first item in the row, and
the texture of the result is consistent with the top
item in this column. Figure 15 shows some disentangled
results for various views, showing that our method
achieves the disentanglement of texture and structure.

4.7 Failure cases

Although our method generates realistic images with
reasonable structures and detailed textures in most
cases, it cannot cope well with the structures and
textures that deviate greatly from the training set
distribution. The neural network predicts outputs
by interpolation within in the manifold built on
the training data. Therefore, it is difficult to
predict reasonable results for some challenging cases,
especially those with extremely complex structures
and textures. Figure 16 shows examples in which our
method fails to predict correct textures and shapes
for extremely complex cases.

Fig. 15 Results of texture or structure swapping for various views.

Fig. 16 Failures.
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5 Conclusions

In this paper, we propose STATE, an end-to-
end deep neural network, for view synthesis from
sparse input images by learning structure and
texture representations. Specifically, we propose a
two-branch encoder to extract implicit structure
representation and deformed texture representation.
We also propose spatio-view attention to adaptively
fuse multi-view information at the feature level
by regressing pixel-wise or voxel-wise confidence
maps. By decoding the aggregated feature, STATE
can generate realistic images with reasonable
structures and detailed textures. Experimental results
demonstrate that our method works better than
current state-of-the-art methods. We have validated
our approach via a comprehensive ablation study.
Our method enables texture and structure editing
applications benefiting from implicit disentanglement
of structures and textures.

Despite its good novel view synthesis results, the
training efficiency of our method is not high. Our
method is implemented in PyTorch, and it takes
approximately 7 days to train the model for four
source images using a single GeForce GTX 2080 Ti
GPU. In future, we hope to improve training efficiency
using a Jittor model [49, 50], which is 2.26 times faster
than the equivalent PyTorch model on average.

Availability of data and materials

Our code and further results are available at http://
cic.tju.edu.cn/faculty/likun/projects/STATE.
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