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Exploring the phase diagram of 3D artificial spin-ice
Michael Saccone 1,3, Arjen Van den Berg 2,3, Edward Harding2, Shobhna Singh 2, Sean R. Giblin 2,

Felix Flicker2 & Sam Ladak 2✉

Artificial spin-ices consist of lithographic arrays of single-domain magnetic nanowires

organised into frustrated lattices. These geometries are usually two-dimensional, allowing a

direct exploration of physics associated with frustration, topology and emergence. Recently,

three-dimensional geometries have been realised, in which transport of emergent monopoles

can be directly visualised upon the surface. Here we carry out an exploration of the three-

dimensional artificial spin-ice phase diagram, whereby dipoles are placed within a diamond-

bond lattice geometry. We find a rich phase diagram, consisting of a double-charged

monopole crystal, a single-charged monopole crystal and conventional spin-ice with pinch

points associated with a Coulomb phase. In experimental demagnetised systems, broken

symmetry forces formation of ferromagnetic stripes upon the surface, forbidding the lower

energy double-charged monopole crystal. Instead, we observe crystallites of single magnetic

charge, superimposed upon an ice background. The crystallites are found to form due to the

distribution of magnetic charge around the 3D vertex, which locally favours monopole

formation.
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The many-body interaction of dipoles is crucial to under-
standing a diverse range of phenomena across physics,
with its long-range anisotropic nature yielding a wealth of

fascinating phenomena. For example, dipolar interactions can
yield novel vortex stripes in an ultracold quantum gas1, a low
temperature residual entropy in frustrated condensed matter
systems2 and Rosensweig instabilities in ferrofluids3, yielding self-
organised surface structures. The pioneering work of Luttinger
and Tisza4 provided a foundation for understanding dipolar
ordering in simple lattice geometries, but this was only extended
recently to arbitrary geometries5. To date, the experimental pla-
cement of dipoles into complex 3D arrangements has been
lacking, with scientists mainly relying upon arrangements pro-
vided by condensed matter systems. One such model system,
known as spin-ice6, has been studied intensively and has allowed
systematic study of frustration and associated emergence7. These
systems consist of rare earth moments on corner sharing tetra-
hedra. The Hamiltonian consists of dipolar and exchange terms
and the ~10 Bohr magneton moment means that dipolar inter-
actions are important in determining the nature of the ground
state. Since all pairwise interactions within a single tetrahedra
cannot be simultaneously satisfied, the system is geometrically
frustrated. This yields a local ordering principle known as the ice-
rule, in which two spins point into the centre of a tetrahedron and
two spins point out, yielding a macroscopically degenerate
ground state and a residual entropy measured at low temperature.
Interestingly, Monte-Carlo (MC) simulations which encompass
sufficient dynamics via a loop algorithm find an ordered phase in
spin-ice at very low temperatures, which consists of stripes of
anti-parallel spins8 but so far this has not been measured
experimentally.

A new framework to understand the physics of spin-ice was
later proposed which treated each spin as a dimer consisting of
equal and opposite charges9,10. Within this framework local
excitations above the ice-manifold are magnetic monopoles in the
vector fields M and H, since once the chemical potential has been
surpassed, they interact via a magnetic equivalent of Coulomb’s
law. Subsequent studies provided experimental evidence of
magnetic charge transport in bulk spin-ice materials11,12. The
ground state of spin-ice and the associated dynamic route can
then be considered within the framework of magnetic charge,
where the ratio of the chemical potential to the magnetic Cou-
lomb energy of a nucleated pair is an important quantity13. When
this effective chemical potential approaches a value of half the
Madelung constant (M/2= 0.819 for a diamond lattice), a mag-
netic charge crystal is expected, whereby charges of alternating
polarity are tiled throughout the structure13. For the canonical
spin-ice materials, the effective chemical potential is 1.42, sug-
gesting the monopoles are free to propagate through the system,
yielding a disordered spin-ice phase. To observe charge-ordered
states in bulk solid-state systems, one needs to find systems with
specific material properties. One example, the spin-ice candidate
Nd2Zr2O7 has recently shown charge crystal behaviour, combined
with disordered spin background, a signature of magnetic frag-
mentation whereby the local magnetic moment splits into
divergence-full and divergence-free parts14. A tuneable, engi-
neered system has the capability to explore this phase space
systematically.

Artificial spin-ice materials are arrays of lithographically pat-
terned single-domain nanomagnets15,16. As such they are a
powerful means to explore ordering in dipolar systems by design.
Initial studies focussed upon simple square15 and Kagome
arrays17, which has subsequently been extended to a wide range
of 2D geometries providing a means to explore a variety of model
spin systems in statistical physics and more exotic phenomenon
such as topological frustration in the Shatki lattice18 and

superferromagnetism in pinwheel lattices19. To date most ASI
studies have focussed upon 2D systems due to ease of fabrication
but interest has spanned into layered systems20,21 with both
theoretical and experimental studies investigating how these can
be used to realise a range of ground states including model vertex
systems22 and superlattice structures23.

The advent of three-dimensional lithography now allows the
creation of lattices that directly mimic bulk spin-ice
geometries24–27, but with tunability to control factors such as
magnetic moment and lattice spacing. Such 3D artificial spin-ice
(3DASI) systems within a diamond-bond geometry and which
have a Hamiltonian governed purely by dipolar energetics, have
been the focus of nanofabrication efforts using focussed electron
beam induced deposition (FEBID)27 and using two-photon
lithography (TPL)24. Recent work with the TPL methodology
has produced systems with the required geometry and degen-
eracy and through simple linear field driving protocols, mag-
netic charge has been directly observed across the 3DASI
surface24. Theoretical work upon 3DASI geometries has further
demonstrated tensionless Dirac strings and mobile magnetic
monopoles that can be steered using an applied magnetic
field28. Another novel 3D structure which has relevance to
frustration and ASI is the buckyball29, which has been fabri-
cated using TPL and theoretical work indicates tuneable mag-
nonic properties30.

In this article we first use finite temperature MC simulations to
carry out a detailed mapping of ordering in idealised 3DASI
systems within a diamond-bond lattice geometry. We find a rich
phase diagram consisting of a double-charged monopole crystal,
single-charged monopole crystal and a spin-ice phase. We move
on to measure the demagnetised state in an experimental 3DASI
system and find evidence of an out-of-equilibrium state, whereby
crystallites of magnetic charge are superimposed upon an ice
background.

Results and discussion
Simulating the phase diagram of an idealised 3D artificial spin-
ice. Figure 1a, b shows a schematic of the simulated unit-cell
geometry. Compass needle dipoles are placed upon a diamond-
bond lattice, which has a lateral extent of 15 × 15 unit cells and a
thickness of a single-unit-cell. To aid in discussion, we define a
series of sub-lattices which are labelled L1–L4. The upper surface
terminates in coordination-two vertices (L1), below which two
layers of coordination-four vertices are found (L2, L3). Finally,
the lower lattice surface again terminates in coordination-two
vertices (L4). This geometry matches our experimental 3DASI
system. The compass needle model (see Methods), is equivalent
to treating magnetic dipoles as two magnetic monopoles with a
small variable separation. We use a metropolis algorithm to
determine the ground state of the system as a function of the
dipole length (b), with a fixed lattice spacing (a= 1), over a range
of temperatures. We note that in experimental systems, previous
work24 has shown that complex domain walls form at vertices in
order to minimise the total micro-magnetic energy, consisting of
magnetostatic and exchange contributions. The net result of this
is a reduction in the uniform, Ising-like part of the nanowire to
some fraction of the lattice spacing. Hence, even in connected
3DASI systems it is appropriate to explore the phase diagram for
b < 1.

Figure 1c, d show an overview of the phase diagram as a
function of b over a range of temperatures, whilst Fig. 1e, f show
the specific heat Cv and corresponding entropy per site s for four
values of b. To facilitate interpretation, we define an order
parameter (Mc, see Methods) which quantifies the extent to which
a magnetic charge crystal has formed. For lower temperatures, a
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high b lattice yields strong local Coulomb interactions upon
vertices, forcing charge neutrality and a spin-ice ground state as
can be seen in Fig. 1c, d. A representative arrow map of the spin-
ice state is shown in Fig. 1g. Ice vertices dominate the microstate
occurring at frequencies reflecting underlying vertex probabilities
(ergodic balance). The surface L1 layer forms short ferromagnetic
strings as seen in previous theoretical studies31. The magnetic
structure factor (Fig. 1h) shows pinch points associated with a
Coulomb phase and signatures of short-range magnetic strings
with diagonal lines seen along q= [1,1] and q= [−1,−1]. At
b= 1, low temperature, the ground state entropy s0 of spin-ice is

evident (Fig. 1f). In the Methods we calculate s0 analytically using
two models: first, using Pauling’s method of independent
tetrahedra which is well tested in bulk spin-ice. Second, by
assuming that the surfaces order first and constrain subsequent
layers. Figure 1f shows a closer agreement with the latter model, a
fundamental difference between the bulk and slab geometries. As
b decreases, the frustration and ground state entropy disappear.

Reducing b lowers the chemical potential and in the low
temperature regime this yields a phase transition to a double-
charge crystal (CII). Of particular interest is how such a crystal
forms whilst constrained to an odd number of charge layers. The

Fig. 1 Simulating the phase diagram in a 3D artificial spin-ice. a A unit-cell of the simulated geometry. Spins are placed onto the bonds of a diamond-bond
lattice. Magnetic charges are represented as spheres of different colour according to legend. b View of unit-cell along [001] direction. Arrows are coloured
according to layer with cream denoting the surface termination (L1) with coordination-two vertices, yellow (L2), brown (L3) denoting coordination-four
vertices and dark red denoting lower surface termination (L4) with coordination-two vertices. c Phase diagram of 3D artificial spin-ice showing charge
crystal order parameter (Mc) as a function of reduced dipole length, b and temperature, T. d The phase diagram now showing variation of ice-rule vertices
with reduced dipole length, b and temperature, T. Overall, three main phases are observed. e The specific heat Cv and f the entropy per site for four b
values with a= 1. Entropies were normalised to the high-temperature paramagnetic value. At low temperature for b= 1 the residual entropy matches the
analytical prediction (see Methods). g The ice phase, observed for high b and low to intermediate temperatures. h The magnetic structure factor of the ice
phase, showing the typical pinch points associated with a Coulomb phase. i The double-charge monopole crystal, consisting of ±2q upon the surface
terminations, ±4q at L1/L2 and L3/L4 junctions with a neutral layer at L2/L3 vertices. j The magnetic structure factor associated with the double-charge
monopole crystal. k Phase observed for lower b and intermediate temperatures, showing a single-charged monopole crystal and l its associated structure
factor. Colour scales represents intensity.
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state is characterised by ±2q charges upon surface coordination-
two vertices (L1 and L4) and ±4q charges upon L1/L2 and L3/L4
coordination-four vertices, as portrayed in Fig. 1i, d. The order
parameter (Mc) of this CII state is found to be greater than 0.8, as
seen by the yellow region in Fig. 1c. A neutral layer is found in the
centre, consisting of type I vertices. Notably, the sheet geometry
produces a coarse-grained field that is approximately constant
with respect to distance. This makes the inclusion of a neutral
spacing layer more negligible. The magnetic structure factor
(Fig. 1j) shows clear Bragg peaks due to anti-ferromagnetic order
and associated charge ordering. With intermediate values of b,
and at higher temperature, one of the coordination-four double-
charged sheets “spreads” into the neutral layer, creating two
consecutive single charge sheets, as depicted in Fig. 1k, cross-
sectional view shown in Fig. 1d, right-panel and the associated
structure factor shown in Fig. 1l. This state is named CI. This
increases the entropy of the system while maintaining a relatively
favourable environment for charges. As temperature is further
increased, a peak in specific heat (Fig. 1e), corresponding increase
in entropy (Fig. 1f) and decrease in Mc (Fig. 1c) indicates a phase
transition to a paramagnetic state. Overall, the phase diagram
described by MC simulations is also captured analytically with a
simple mean field analysis (See Methods).

Exploring the ordering in experimental 3D artificial spin-ice
systems. A 3DASI system was fabricated to explore the extent to
which the idealised theoretical phase diagram can be captured
experimentally. The system was fabricated using a combination of
two-photon lithography and evaporation (See Methods)24,32.
Figure 2a shows a scanning electron microscopy (SEM) image of
the array which takes a diamond-bond lattice geometry and has a
lateral extent of 50 μm× 50 μm. Figure 2b shows a zoomed top-
view, false-colour SEM image with the upper four sub-lattices
labelled (L1–L4). As in the simulated systems, the lattice termi-
nates in coordination-two vertices upon the surface, with typical
coordination-four vertices found below at the L1/L2 and L2/L3
junctions. The lower L4 sub-lattice, again terminates in
coordination-two vertices.

Our previous work has shown that individual nanowires are
single-domain and magnetic force microscopy (MFM) can be
used to determine the contrast for different vertex types24,32. We
now exploit this to determine the demagnetised configuration
obtained in 3DASI systems. Note, due to the limited resolution of
MFM with lift height, we are only able to measure contrast upon
the upper three layers, L1–L3. MFM was performed over large
portions of the lattice after planar demagnetisation protocols (See
Methods). All vertex types observed in previous experiments24,

Fig. 2 Experimental vertex states and measured magnetic force microscopy contrast. a A scanning electron microscope (SEM) image of the 3D artificial
spin-ice lattice, scale bar is 20 µm. b Top-view, false-colour SEM image of the 3DASI lattice with the individual sub-lattices labelled. Scale bar is 1 µm.
c Magnetic force microscopy (MFM) contrast of the vertex types found upon the L1 coordination-two vertices. d Contrast for vertex types measured at the
L1/L2 vertex. Here, both ice-rule (Type I, Type II) and single-charged vertices (Type III) are observed. e Contrast for vertex types measured at the L2/L3
vertex, which shows a mixture of ice vertices as well as those with single and double magnetic charge (Type IV). Colour scale represents normalised
MFM phase.
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including ice-rule vertices with zero magnetic charge and
monopole states with magnetic charge Q= ±2q are again
observed (Fig. 2c, d). The demagnetised array also contains
previously unseen monopole states of charge Q= ±4q, as can be
seen in Fig. 2e.

Figure 3a shows an experimental magnetic charge map of a
30 μm× 30 μm region of the lattice, determined by MFM, with
experimental images shown in Supplementary Fig. 1. Three
distinct phases are measured and can be readily identified in the
charge map with detailed configuration shown in Fig. 3b–d.
Magnetic charge crystallites can be seen with ±2q tiling, as
highlighted by the green box in Fig. 3a. An arrow map of a typical
charge crystallite region is shown in Fig. 3b, which shows that it
arises due to two types of distinct ordering. The L1 sub-lattice
that consists of alternating coordination two and coordination-

four vertices is found to order into ferromagnetic stripes (MFM
contrast shown in Supplementary Fig. 1a). Analysis of the L1 sub-
lattice, shows that this is the case for the entire measured area,
with coordination-two monopoles being very rare and only
observed upon <1% of vertices consistent with previous work24.
Over large regions of the measured area (~20 %), including in the
charge crystallite regions, the L2 sub-lattice is found to host anti-
ferromagnetic ordering. Typical MFM contrast of such anti-
ferromagnetic ordering is shown in Supplementary Fig. 1b.
Experimental MFM images of the three different phases are
shown in Supplementary Fig. 1c–f, with example charge crystal
patches from additional samples shown in Supplementary
Fig. 1g–j. Arrow maps depicting L1 and L2 magnetisation
separately are shown in Supplementary Fig. 2a, b. Breaks in the
anti-ferromagnetic ordering upon L2, via short ferromagnetic

Fig. 3 Measuring the experimental demagnetised state of a 3D artificial spin-ice. a Global magnetic charge map of the measured sample region. Charged
regions are represented by colour as according to legend. The map shows examples of single-charge crystallite (green outline), the ice phase (orange
outline) and the double-charge crystal (purple). Colour scale represents magnetic charge (q). bMore detailed arrow map of the experimental single-charge
crystallite. It can be seen to consist of ferromagnetic stripes on the surface L1 layer with anti-ferromagnetic ordering upon L2. c Ice phase with type II tiling
and d double-charge crystallite, which only occurs at breaks in the L1 ferromagnetic ordering. Arrows represent the magnetisation of the L1, L2, and
L3 sublattices. Here, the distinction between surface coordination two, and sub-surface coordination-four vertices can be seen. All sublattices are shaded to
guide the eye. Magnetic charges are represented by circles of different colour, superimposed upon vertices.
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strings occurs frequently, with frequency decaying with string
length (Supplementary Fig. 2c, d). Interestingly, we find that
breaks in the anti-ferromagnetic ordering often occurs to mitigate
the formation of ±4q charges. We note that since the
configuration of the charge crystallites observed experimentally
(CIE) has ferromagnetic stripes on L1, it is distinct to the CI
charge crystal seen in simulations.

Between areas of magnetic charge crystallite, large patches of
the ice phase are observed, as shown by the orange region in
Fig. 3a, with full representative arrow map shown in Fig. 3c.
These ice regions are largely composed of type II vertices, which
due to a subtle broken symmetry in 3D geometry, are the lowest
energy vertex type according to micro-magnetic simulations24.
Finally, only very small regions of the double-charge (CII)
crystallite are observed as shown by purple region in Fig. 3a and
associated arrow map in Fig. 3d. The full measured region is
shown in Supplementary Fig 3a, with associated vertex types
shown in Supplementary Fig. 3b and vertex charge shown in
Supplementary Fig. 3c. The vertex statistics show a strong
preference for type III vertices (61.2%), followed by type II
vertices (29.8%). Both low energy type I vertices and high energy
type IV vertices are only observed occasionally at 5.3% and 3.6%
respectively. As would be expected, our measurements indicate
charge neutrality, within error as shown in Supplementary Fig. 3c.
Overall, the charge order parameter as calculated for simulations
takes a value of 0.31, for this experimental system (See Methods).

The magnetic structure factor of the entire measured data is
shown in Fig. 4a, with sub-sets corresponding to individual sub-
lattices shown in Fig. 4(b–d). Focussing upon the data for all
layers (Fig. 4a), the presence of intense Bragg peaks can be seen,
superimposed upon weaker diagonal lines along q= [1,1]. In
order to further interpret this data, we deconvolve the layers. The
L1 structure factor (Fig. 4b) consists of a peak upon q= [0,0],
indicative of ferromagnetic order on the surface. Weaker split
peaks about q= [1/2,1/2] come about due to presence of longer
period domains upon L1, as demonstrated in Supplementary
Fig. 4. The L2 structure factor (Fig. 4c) shows peaks due to both
type II tiling as well as the magnetic charge crystallite regions as
demonstrated in Supplementary Fig. 5. Finally, the L3 structure
factor (Fig. 4d) shows a diffuse signal, with weak Bragg peaks
superimposed. This is consistent with the full arrow map
(Supplementary Fig. 3a), which shows a mixture of charge
ordered and ice states upon L3. Further breakdown of the
structure factor via layer and region can be found in
Supplementary Fig. 6.

Magnetic charge crystallite formation. We now discuss the
observed experimental configuration in terms of the states pre-
dicted by MC simulations. For the real experimental systems
studied here, the scaled needle length (b) depends upon the vertex
type (Supplementary Fig. 7), due to the presence of domain walls
close to the vertex. When considering all ice-rule vertices, an

Fig. 4 Experimental magnetic structure factors. a The magnetic structure factor of all sub-lattices superimposed. Clear Bragg peaks can be seen with
periodicity in two dimensions. b The magnetic structure factor of the L1 sub-lattice. Peaks can be seen at q= [0,0], corresponding to the ferromagnetic
ordering upon the surface. The split peaks about q= [1/2, 1/2], are due to domains on L1 with larger periodicity as demonstrated in Supplementary Fig. 4.
c The structure factor for the L2 sub-lattice. Bragg peaks can be seen, resulting from both type II vertices and charge crystallites d The structure factor for
the L3 sub-lattice. Bragg peaks are again seen and match the periodicity seen for L2 sub-lattice, superimposed upon a diffuse background. Colour scale
represents intensity (I).
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average b of 0.89 is obtained, suggesting a Q= ±4q monopole
crystal would be expected as the ground state. However, a set of
Q= ±2q crystallites form, superimposed upon an ice background.
A number of factors may account for this discrepancy. Previous
work has suggested that in experimental 3DASI systems, mag-
netic charges upon surface coordination-two vertices are very
unfavourable with micro-magnetic calculations of single vertices
suggesting such excitations cost a factor of three larger than
coordination-four monopoles24. The immediate implication of
this is that ferromagnetic stripes upon L1 will forbid the forma-
tion of a Q= ±4q monopole crystal, apart from regions with local
disorder. This is reinforced by the deterministic demagnetisation
protocol which favours the formation of ferromagnetic stripes
upon the surface. Given this constraint, the system can only form
a single charge crystal. However, the formation of a charge
crystallite via a demagnetisation routine remains surprising and
has not been seen previously in either pristine, traditional 2DASI
or more exotic layered 2.5D systems. In the former case, charge
crystals can be formed in modified square ASI by utilising an
MFM tip to selectively switch islands33 but demagnetisation of
conventional square systems yields a low magnetisation, dis-
ordered ice phase with low frequencies of monopole excitations15.
An interesting question is whether conventional (planar) square
ASI has some region of parameter space where charge ordering
may occur naturally after demagnetisation or thermalisation. We
note that in our system, it is the 3D geometry of the vertex that
allows like charges to separate sufficiently, reducing the monopole
energy and allowing the stable formation of charge crystallites.
Furthermore, the charge crystal in the 3DASI lattice yields 3D
shells of attractive charges, with a reduced average separation,
lowering the energy. It is possible, that within a connected regime
that such charge ordering may be accessed by designing the
vertex geometry so as to control degeneracy and monopole
energy. However, we note that previous extensive work has not
found any evidence of this34,35. For pristine Kagome systems,
demagnetisation yields a 2-in/1-out ice-rule throughout the
lattice17 with only thermally annealed systems yielding some
degree of charge ordering36. Modifications of the Kagome geo-
metry, either by tuning island lengths within a single-unit-cell37,
or by placing exotic nano-bridges at vertices, can also yield charge
ordering38.

Considering the dynamics of the demagnetising protocol and
starting in saturating fields, the system becomes uniformly tiled in
type II vertices. Though these are the lowest energy state for
single vertices24, the net magnetisation makes these less
favourable globally. The effective chemical potential upon L124

as modified by surface energetics (μ*= 1.22) means that
deconfined monopoles nucleate and propagate for each 180°
rotation of the field. At threshold fields, nucleation events upon
L1 become less likely, leaving long ferromagnetic strings as
observed in the experimental data. The effective chemical
potential upon the L2 sub-lattice24, within a simple dipolar
approximation is lower (μ*= 1.03) and favours the local
production of correlated charge pairs (type III vertices).
Quenched disorder in the lattice, means that this will occur
more favourably at positions where an L2 nanowire has a slightly
reduced coercive field, with respect to the mean. Such initial
nucleation events seed the formation of charge crystallites. It is
interesting to note that type III vertices have a slightly lower b
value (0.78) due to the complex 3D distribution of magnetic
charge around the vertex. Specifically, the equilibrium distance
between like charges across the vertex is increased, whilst the
distance between opposing charges on the nanowire are
decreased. When taking this into account, the effective chemical
potential is reduced and has value (See methods) of μ*= 0.91,
approaching the critical value of M/2= 0.819. The implication of

this is that nucleated monopole pairs on L2 are particularly stable,
as supported by previous experiments24.Once a single monopole
pair is formed, it is energetically favourable for a charge crystallite
to grow by minimising local vertex-vertex Coulomb interactions
and tiling charges of opposing sign. The residual ice-rule regions
reflect regions which have not yet equilibrated. It is possible that
longer or more complex 3D demagnetisation protocols will
promote more efficient exploration of the energy landscape,
allowing such ice regions to be further minimised.

In summary, returning artificial spin-ice to its three-
dimensional origins unlocks previously inaccessible exploration
of phase space. We anticipate that fine control of 3D vertex
geometry and NiFe thickness will allow suppression of surface
energetics and together with an exploration of more complex
demagnetisation protocols, or thermal relaxation will allow a
realisation of the double-charged crystal. It is also expected that
more sophisticated synchrotron techniques39 may allow imaging
of systems greater than one-unit-cell in thickness.

Methods
Entropy calculations. In this section we provide the details of our analytical
calculation of the ground state entropy of our spin-ice model. We employ the
following conventions.

● We adopt the graph theory terminology of vertices connected by edges. In
our system each edge hosts a single, Ising-like magnetisation.

● Two edges meet at each vertex in layers L1 and L5. Four edges meet at each
vertex in layers L2, L3, L4 ; each of these vertices shares two edges with
vertices in each of its neighbouring layers.

● There are the same number of vertices, N, in each layer.
● Let Sn be the entropy in layer n, in units where KB= 1, and sn= Sn/N is the

entropy per vertex in layer n.
● Let S be the total entropy of the system, and s= S/(5 N).

Paramagnet. we use the high-temperature paramagnetic phase to constrain the
entropy in our numerical calculations. Each domain’s orientation is independent.
In layers 1 and 5 there are two edges per vertex, giving s1,5= log 22, and in the other
layers there are 4 edges per vertex giving s2,3,4= log 24 . Therefore,

s ¼ ð16=5Þlogð2Þ � 2:22 ð1Þ
Spin-ice. for the ice state without field annealing (the physically relevant case
around b/a≈1) we have a net charge of zero at every vertex. Each L1 vertex therefore
has a net magnetisation (1-in 1-out means both domains align). It appears the L1
vertices are completely uncorrelated, even along a single L1 line. Therefore, there
are 2 choices per vertex, and s1= s5= (1/5) log(2) . Each L2 vertex now has two of
its domains fixed by L1 vertices, giving no freedom in these two domains. There are
two remaining independent choices per vertex, giving s2,4= (1/5)log(2). L3 is then
completely constrained by L2 and L4 . Therefore S3= 0 . Overall,

s ¼ ð4=5Þlogð2Þ � 0:55 ð2Þ
This agrees with our numerically calculated result to within standard error. The

value differs from the Pauling estimate in bulk spin-ice; this is because surface
energetics dominate in our single-unit-cell slabs.

Monte-Carlo simulations: The interaction energy between two artificial nano-
magnets may accurately account for their finite size through the compass needle
model. That is, the energy, Eij , between magnets i and j is approximated by con-
sidering two point charges at the end of each nanomagnet that interact with
Coulomb attraction or repulsion:

Eij ¼ αij
μ0m

2

4πL2
1

rai � raj

��� ����
1

rai � rbj

��� ����
1

rbi � raj

��� ��� þ
1

rbi � rbj

��� ���

2
64

3
75 ð3Þ

Here μ0 is the permeability of free space, m is the nanomagnet’s magnetic
moment, and L is the nanomagnet length. rai is the position of a magnetic charge,
the first index a referring to it being positive and the second index i denoting to
which magnet it belongs. αij is the surface energy factor, which for data presented
in this publication was set to 1. Since nanomagnet length wildly influences energy
scales, all computational energies were normalised by their strongest interactions,
such that eEij ¼ Eij=Emax .

From this energy we can see that increasing length of the magnets increases
nearest neighbour dominance. It’s worth noting that the exact distribution of charge
and, therefore, precisely what the “length” of the magnets is, depends largely on the
details of the nanomagnet’s geometry and domain wall arrangement. In this study,
this energy is used in the evaluation of a metropolis method Monte-Carlo analysis.
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Effective chemical potential calculations: The chemical potential of a coordination-
four vertex, upon a diamond-bond geometry has previously been calculated within
a dipolar framework. The energy between any pair of dipoles can be written as:

E12¼
u
4

m̂1 � m̂2 � 3ðm̂1 � r̂Þðm̂2 � r̂Þ
�� ��

r
a

�� ��3 ð4Þ

Where m represents the magnetic moment unit vector, r is the moment separation,
a is the lattice constant and u is the Coulomb energy between charges:

u ¼ μ0Q
2

4πa
ð5Þ

with Q ¼ 2m=a . One can then simply write the chemical potential as the energy
difference between a monopole and an ice-rule state, offset by the magnetic
Coulomb interaction, between created charges:

μ ¼ ðEmonopole � Elr � EiceÞ ð6Þ
with

Elr ¼
u

rcharge
a

ð7Þ

Assuming a perfect dipolar model whereby the charges are separated by a
single-lattice spacing yields a chemical potential μ of 1.03 u. The effective chemical
potential is therefore μ� ¼ μ

u ¼ 1:03
However, in our real experimental system the charge separation in the

monopole state is reduced, with rcharge �0.8a, yielding a reduced μ� ¼ 0:91. This
locally promotes the formation of charge crystallites.

Magnetic charge crystal order parameter: In charge-ordered systems, twofold
degenerate patterns emerge as the ground states. To measure similarity to these
states, we can calculate a charge crystal order parameter defined as:

Mc ¼ ∑i4i Qi

�� �� ð8Þ
4i is a template of +1’s, −1’s, and 0’s representing a ground state. This was

used to calculate the order parameter for both Monte-Carlo simulations, as shown
in Fig. 1c and for experiments.

Magnetic structure factor: In the canonical spin-ice materials, spin-flip neutron
scattering12 provides what is probably the clearest evidence of spin-ice behaviour.
Neutron scattering probes the magnetic structure factor projected along the
direction of neutron propagation. In artificial spin-ice there is a similar tradition of
calculating the structure factors, although neutron scattering is not used as a probe.
Instead, the structure factor can be inferred directly by Fourier transforming the
MFM image16,40. In this work we calculated the magnetic structure factor for spin
configurations modelling those in our real lattices, as well as those generated in our
Monte-Carlo simulations. We calculated the full 3D structure factors before taking
the qZ= 0 slice, suitable for modelling what would be seen when Fourier trans-
forming a surface MFM arrow map.

Mean field analysis: Considering the system in the dumbbell model approximation,

E ¼ 1
2
∑i≠jKijQiQj þ μ∑iQ

2
i ð9Þ

where Qi= ±2, ±1, 0 is the value of the charge on the ith vertex, Kij is the
interaction strength between charges, and μ is the chemical potential of a charge.
We can calculate the Maxwell-Boltzmann distribution in the mean field approx-
imation and motivate how charge ordering differs from spin-ice ground states.
Taking the change of variables Qi= Δi Xi, where Δi is a general charge-ordered
ground state, and introducing a perturbative “field” to this variable h which will
later be set to zero,

E ¼ 1
2
∑ijKij Δi Δj Xi Xj þ μ∑iX

2
i � h∑i Xi: ð10Þ

The variable is approximated by deviations from its mean value, Xi ¼ hXi þ δXi .
The energy gained by a charge-ordered state is called the Madelung constant, which
can be written as α ¼ � 1

N ∑ijKij Δi Δj and α ¼ �∑jKijΔiΔj . Substituting then yields

E ¼ N Xh i2 α

2
� μ

� �
þ �αþ 2μ

� �
Xh i � h

� �
∑iXi ð11Þ

from this we can calculate the partition function of a single variable and, because

they are independent, Z ¼ Z1

� �N
. For a pyrochlore lattice, Qi ¼ ± 2 ðΩ ¼ 1Þ,

± 1 ðΩ ¼ 4Þ, and 0 ðΩ ¼ 6Þ where Ω is the degeneracy. Substituting
k ¼ βð�αþ 2μÞ,

Z ¼ exp �NhXi2 k
2

	 

f2cosh ½2khXi � 2hβ� þ 8cosh ½khXi � hβ� þ 6g ð12Þ

the expectation value of the charge ordering variable is then obtained self

consistently from the partition function:

hXi ¼ �2tanh k
Xh i
2

� �
ð13Þ

This self-consistency equation is relatively standard for mean field theories. At
high values of �k, effectively equivalent to low temperatures, Xh i ¼ ± 2. As �k
becomes closer to zero, these values gradually drop until the system is no longer
ordered. This ordering transition may be characterised for small k Xh i through the
first term of the Taylor series:

Xh i ¼ �k Xh i ð14Þ
This is true when Xh i ¼ 0 and k≤ � 1, meaning below a critical temperature,

the system will transition to a nonzero order parameter, corresponding to a charge
crystal. That critical temperature is

Tc ¼
α� 2μ
kB

ð15Þ
This agrees with the previous experimental results that found a spin-ice ground

state in systems with a reduced chemical potential greater than α
2 and a lack of

discrete transition in this regime. The critical temperature also decreases with
chemical potential as previously observed. Also, since as temperature approaches
zero, the order parameter approaches 2, a double-charged crystal is the anticipated
ground state. One can justify this by considering the lower entropy of the doubly
charged state. Since the experimental system is limited to single charges on the
surface, the maximum order parameter we predict for the charge crystal ground
state of the pyrochlore thin film with 5 charge sites is Ms

c ¼ 1:5.

Fabrication of 3DASI lattices: Three-dimensional artificial spin-ice lattices were
fabricated using two-photon lithography followed by thermal evaporation of
Ni81Fe19. The coverslips were cleaned in acetone in an ultrasonic cleaner and then
washed by isopropyl alcohol (IPA), after which samples were gently dried using
compressed air. The coverslip was prepared for TPL with a droplet of immersion
oil on one side and Nanoscribe negative-tone photoresist (IPL-780) on the reverse
side. The coverslip was then loaded into a Nanoscribe TPL apparatus, and a fab-
rication script created a number of diamond-bond lattice geometries, each with
varying power and scan speed settings. The dimensions of each created lattice are
50 μm× 50 μm× 10 μm. The completed sample was developed in propyl glycol
monomethyl ether acetate (PGMEA) and then rinsed in IPA. An air gun was then
again used to remove excess IPA. The sample was then subject to a 50 nm Ni81Fe19
evaporation, at a base pressure of 1 × 10−6 mBar. Approximately 0.06 g of eva-
porated permalloy was used to achieve this thickness based on previous deposi-
tions. A crystal quartz monitor (QCM) present during evaporation measured the
deposited thickness; this was later confirmed with atomic force microscopy mea-
surements. The resultant structure has a diamond-bond geometry polymer scaffold
with magnetic material upon the upper surface of nanowires forming a crescent-
shaped cross-sectional geometry. Due to line-of-sight deposition, the magnetic
coating creates a 3DASI lattice which is one-unit-cell in thickness, as described
previously28. Individual nanowires are single domain and have a crescent-shaped
cross-section with effective width of 200 nm and length of 866 nm.

Experimental demagnetisation of lattices: We used a demagnetising protocol akin
to method 1 in a previous publication41 with a sample rotating at ~1000 revolutions
per minute, with axis perpendicular to substrate plane. This effectively yields a
rotating magnetic field in the substrate plane. The magnetic field starts at 0 mT and
ramps up to 75 mT at 2.5 Ts−1 where it is held for 1 s. After this, the field ramps
down at 2.5 T s−1 to −75 mT and is held for a second. The field then oscillates,
whilst the magnitude decreases stepwise to zero over a period of five days.

Magnetic force microscopy (MFM): MFM data was captured using a Bruker
(Dimension Icon) scanning probe microscope in tapping mode. Ultra-low moment
probes were magnetised along the tip axis using a 0.5 T permanent magnet. The
samples were placed with the L1 sub-lattice parallel to the probe cantilever with a
45-degree scan angle to the L1 sub-lattice. MFM data were captured using a 65 nm
lift-height. Separate scans with reversed tip magnetisation were performed to verify
consistency of the contrast, and separate scans with the sample rotated 180 degrees
were performed to control for artefacts in the scans. Nominally identical behaviour
with charge crystallites superimposed upon a type II ice background have been
observed in four independent samples.

Data availability
Information on the data presented here, including how to access them, can be found in
the Cardiff University data catalogue at https://doi.org/10.17035/d.2023.0256753033.

Code availability
All codes utilised within this study is available upon reasonable request to the
corresponding author.
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