
J. Int. Financ. Markets Inst. Money 88 (2023) 101821

A
1
(

A
p
a
Y
a

b

c

d

A

J
Q
O
P

K
S
C
C
A
N

1

h
c
a
r
p
a
b

h
R

Contents lists available at ScienceDirect

Journal of International Financial Markets,
Institutions & Money

journal homepage: www.elsevier.com/locate/intfin

larming contagion effects: The dangerous ripple effect of extreme
rice spillovers across crude oil, carbon emission allowance, and
griculture futures markets
u Wei a, Yizhi Wang b,∗, Samuel A. Vigne c, Zhenyu Ma d

School of Finance, Yunnan University of Finance and Economics, Kunming, China
Cardiff Business School, Cardiff University, Aberconway Building, Cardiff CF10 3EU, United Kingdom
LUISS Business School, LUISS University, Rome, Italy
World Resources Institute, Beijing, China

R T I C L E I N F O

EL classification:
50
13
18

eywords:
pillover analysis
rude oil
arbon emission allowance
griculture commodities
ormal and extreme connectedness

A B S T R A C T

The inherent financial interconnections between crude oil prices, carbon emission allowances,
and agriculture commodity futures warrant a thorough investigation as fossil energy con-
sumption, carbon emissions, and agriculture plants are three critical components of global
environmental protection. This paper aims to quantify not only the normal (mean quantile)
static and dynamic spillover effects among them in both time and frequency domains but also
the more critical extreme spillovers that occur across various time horizons. Additionally, we
explore the vital role of carbon futures in hedging risk and enhancing the performance of oil
and agricultural portfolios. Empirical results indicate that, under extreme market situations,
the total spillovers among oil, carbon, and agriculture commodity futures are much larger
than those under normal conditions. Furthermore, soybean and corn are generally the most
potent information transmitters over other futures in the time domain, while carbon emission
allowance futures act as an obvious spillover receiver at both normal and extreme market
conditions across various time frequencies. Both the total spillover and the net spillover are
centered at a short-term frequency (i.e., one to four weeks). Finally, we find that carbon
futures can contribute to improving the hedge effectiveness and performance of oil and
agricultural portfolios. These findings have valuable implications for policymakers, relevant
producers/consumers, as well as futures investors.

. Introduction

The increasing concern over the severe impacts of greenhouse gas emissions on the global natural environment and ecosystems
as triggered significant research into the interdependence among fossil energy, carbon emission allowance, and agriculture
ommodity markets (Neagu and Teodoru, 2019). On the one hand, the extensive use of fossil fuels in industrial production and
griculture plants has unquestionably contributed to greenhouse gas emissions. On the other hand, there are still many controversies
egarding whether the development of agricultural plants will increase or decrease greenhouse gas emissions. Specifically, the
ositive side argues that through photosynthesis in agricultural plants, carbon dioxide in the earth’s air will be absorbed by plants
nd then broken down into carbon and oxygen. The carbon is then processed and transformed into plant bodies (roots, stems, leaves),
io-materials, and fuels for human needs. In addition, the accelerated use of biofuels, such as biomass alcohol and biomass fuels
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produced primarily from corn and soybeans, has significantly reduced dependence on fossil energy sources, thereby reducing carbon
emissions (Mathews, 2008; Fargione et al., 2008; Kauppi and Saikku, 2009; Lippke et al., 2012; DeCicco, 2012; Kim et al., 2020;
Zhang et al., 2023). However, the opposing view suggests that large-scale cultivation of agricultural products, such as oil palm,
could lead to deforestation and loss of biodiversity in the primitive forests, as well as increased carbon emissions from fertilizer and
pesticide production and agricultural machinery use (Persson et al., 2014; Burton et al., 2017; McCalmont et al., 2021; Taheripour
et al., 2019). For example, the Kalimantan region of Indonesia has experienced massive deforestation, turning it into palm plantations
with no biodiversity. To make matters worse, it is not just any forest that has been destroyed, but peatland forests. Peatlands are
special bogs filled with large amounts of under-degraded, black carbon-rich humus that store vast amounts of carbon that are
not released into the atmosphere. The peatlands’ powerful carbon storage capacity makes peatland rainforests twelve times more
effective at carbon storage than typical tropical rainforests. The destruction of the Kalimantan mudflats would release as much carbon
as the entire state of California or 72 large coal power plants emit in an entire year (Carlson et al., 2013; Findlay, 2020). Regardless
of which side one takes, crude oil, carbon emission allowance, and agriculture commodity markets are closely interconnected due to
their fundamental relationships, particularly after the commodity financialization trend that started in the 21st century. However,
most existing studies have only focused on the relationship between two of the three markets mentioned above and have not fully
examined the complex interdependencies of all three markets, particularly the role of the carbon market.

Therefore, the major aim of this paper is to investigate the interdependence effects among crude oil, carbon emission allowance
nd agriculture commodity prices, especially the potentially important status of carbon emissions in the system, which may help us
o understand better the different roles of crude oil, carbon emission allowance and agriculture commodity markets in this tightly
onnected system, and help policymakers, agriculture producers and relevant investors to make better emission and agriculture
evelopment decisions, develop appropriate green and low-carbon production plans, as well as better portfolio allocation and
edging strategies.

Moreover, relevant studies commonly adopt the Granger causality test, variance decomposition, multivariate GARCH model,
r quantile-on-quantile regression to identify the interactions between crude oil, carbon and agriculture commodity markets (Cai
t al., 2022; Pata, 2021; Reboredo, 2014; Ren et al., 2022; Yu et al., 2015; Zheng et al., 2021a; Zheng et al., 2021b). However,
he drawbacks of these methods are also very clear. For example, the Granger causality test and its various extensions, as well
s quantile-on-quantile regression can only examine the dependence between two variables, which are unable to quantify the
omplicated spillover effects among multiple factors. Moreover, results based on variance decomposition, such as the information
hare method of Hasbrouck (1995), are heavily dependent on variable ordering and are also typically applied in a bivariate
nvironment. Finally, although the multivariate GARCH model (MVGARCH) is more suitable to describe volatility spillover effects
mong multiple variables, it is not easy to explain a large number of spillover coefficients when there are more than three variables
onsidered in this model, and it also cannot depict the time-varying volatility spillover effects. Therefore, recent studies turned
o adopt a flexible but more powerful spillover measurement framework developed by a series of novel researches, such as the
pillover index of Diebold and Yilmaz (2012) in the time domain (labeled as DY method hereafter), the spillover method of Baruník
nd Křehlík (2018) in the frequency domain (labeled as BK method hereafter), the quantile spillover approach of Ando et al. (2022),
nd the TVP-VAR based extensions of DY and BK methods by Antonakakis et al. (2020) and Ellington and Baruník (2020). By using
hese spillover measurement methods, many studies explore the spillover/co-movement/interaction/interdependence effects among
rude oil, renewable energy, carbon emission allowance, commodity and financial markets (Adekoya and Oliyide, 2021; Bai et al.,
021; Bouri et al., 2021; Hung and Vo, 2021; Li et al., 2021; Liu and Gong, 2020; Reboredo and Ugolini, 2020; Saeed et al., 2021; So
t al., 2021; Tiwari et al., 2020; Wei et al., 2019; Wei et al., 2022b; Wei et al., 2022c; Zhang and Broadstock, 2020; Zhang and
amori, 2021; Wei et al., 2022; Wei et al., 2023; Wang et al., 2023).

By now, we do not find that existing studies have examined the price/return interdependence among crude oil, carbon emission
llowance and agriculture commodity markets by using neither the connectedness framework of Diebold and Yilmaz (2012) in the
ime domain nor the connectedness measurement of Baruník and Křehlík (2018) in the frequency domain. In addition, existing
tudies also ignore the possibility of significantly different performances in information connectedness among crude oil, carbon
mission allowance and agriculture commodity markets at different market conditions (i.e., various quantiles in their returns),
specially the distinct roles of these markets at extreme market conditions. Additionally, it is well demonstrated that financial
nd commodity markets respond heterogeneously at different time frequencies/horizons to exogenous shocks (Baruník and Křehlík,
018; Bouri et al., 2021; Li et al., 2021; Umar et al., 2021; Wei et al., 2022b; Wei et al., 2022c). This means that, when facing different
arket conditions, e.g., extreme bullish or bearish markets, and at different time frequencies/horizons, policymakers, energy and

griculture producers, as well as investors should make customized regulatory, production and investment decisions accordingly.
More importantly, the interdependence relationships among crude oil, carbon emission allowance and agriculture commodity

arkets during extreme market conditions may be quite different from those under normal market environments, which may provide
aluable decision-support information for policymakers, energy and agriculture producers, as well as relevant investors. Additionally,
t is well known that crude oil, carbon emission allowance and agriculture commodity markets respond heterogeneously at different
ime frequencies/horizons to exogenous shocks, such as economic uncertainty, geopolitical conflict, regulatory policy change, and
ublic health emergency (Baruník and Křehlík, 2018; Umar et al., 2021; Wei et al., 2022b). Therefore, we think that quantifying
learly the extreme interdependence among crude oil, carbon emission allowance and agriculture commodity markets at various
ime frequencies/horizons is more significant for regulatory policy making and risk management during turmoil market conditions,
nd can help to develop appropriate energy and low-carbon agriculture production plans, promote green and low-carbon agricultural
2

echnologies, and establish green and low-carbon agricultural production systems.
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Our empirical results suggest that first, the static mean (average) spillover effects measured by traditional DY and BK methods
how that crude oil, carbon and agriculture commodity futures markets are moderately connected, and the major parts of the
otal spillover are concentrated in short-term frequency. In addition, soybean and corn futures are two major return information
ontributors. Second, the dynamic mean spillover evidence based on TVP-VAR-DY and TVP-VAR-BK models indicate that the total
pillover among crude oil, carbon and agriculture commodity futures fluctuates violently from about 20% to 70%, and this overall
pillover increase significantly during three turmoil periods: 2008–2009 global subprime mortgage crisis and global food crisis,
uropean debt crisis during 2011 to 2012, and the outbreak of COVID-19 pandemic at the beginning of 2020. The time-varying net
pillover findings also suggest that in general soybean and corn dominate other futures, especially during the above three fluctuating
ime periods. Furthermore, the major parts of TSI are centered at short- and medium-term frequencies and the long-term total
pillover only has a tiny share in the overall TSI. Then, the frequency net spillover results demonstrate that different futures play
arious roles in information transmission with time and across different time frequencies. Third, through the quantile spillover
nalysis, we reveal that the total spillover effects among these futures markets at extreme market situations, i.e., at return quantiles
f 0.05 and 0.95, are much larger than the one at median quantile of 0.5, implying that interdependences among crude oil, carbon
nd agriculture futures markets will increase sharply during great turmoil environment. Then, the net spillover indices demonstrate
gain that soybean and corn futures are the two prime return information contributors to other markets across different return
uantiles. However, in terms of major information receivers, we find quite different outcomes in these futures markets. Fourthly,
e find that carbon futures can actually contribute to improving the hedge effectiveness and performance of oil and agricultural
ortfolios, in terms of hedge effectiveness, cumulative returns, and Sharpe ratio. Finally and most importantly, the quantile-frequency
pillover results show that the major net spillover senders and receivers swing across different quantiles and various time frequencies,
uggesting that policymakers, relevant producers/consumers, and investors should understand the unique role of each future in the
nformation transmission mechanism among these markets.

In summary, this paper makes several contributions to relevant studies. First, it is the first to investigate the dynamic normal
onnectedness effects among crude oil, carbon emission allowance, and agriculture commodity markets by using TVP-VAR-based
xtensions of DY and BK connectedness methods, referred to as TVP-VAR-DY and TVP-VAR-BK hereafter. These methods offer
better understanding of the time-varying features of the interdependence relationship among these markets at both time and

requency domains. Second, this paper employs the quantile connectedness measurement approach of Ando et al. (2022) to capture
xtreme interactions among the markets, allowing for quantification of extreme downside and upside connectedness effects and
nabling better risk management strategies under market turmoil conditions. Third, using a new quantile-frequency connectedness
roposed by Wei et al. (2022b), this paper investigates extreme connectedness effects across various time frequencies, providing
eeper interaction information among the markets in terms of different market conditions and various time frequencies. Finally,
his paper investigates the role of carbon futures in hedging risk and enhancing the performance of oil and agricultural portfolios,
xpanding the boundaries of existing research on carbon futures and offering new scenarios for practical applications.

The rest of this paper is organized as: Section 2 briefly reviews the extant literature. Section 3 introduces the major methodologies
dopted; Section 4 describes the data; Section 5 illustrates the empirical results; Section 6 makes some robustness checks and finally
ection 7 concludes.

. Literature review

.1. Research gap identification

There is a vast body of academic literature on the interdependencies among crude oil, carbon emission allowance, and agriculture
ommodity markets. However, the overwhelming majority of studies have only examined the linkages between two of the three
arkets mentioned.

Most existing studies on the topic of crude oil, carbon emission allowance, and agriculture commodity markets focus solely
n the relationship between crude oil and agricultural commodity markets. The primary debate in these studies is whether the
pillover effect is more robust in the crude oil or agricultural markets. Recent studies, however, have produced mixed results. Some
cholars argue that the oil market has a stronger spillover effect on the agricultural market because fossil energy is a crucial input in
gricultural production. For instance, Hasanov et al. (2016) find compelling evidence of causality from crude oil price volatility to
ll edible oil prices by using an asymmetric and unrestricted VAR-GARCH-in-mean-BEKK model. Conversely, several studies suggest
hat agricultural commodity markets have clear spillover effects on crude oil markets. Kang et al. (2019), for example, examine
ime-frequency connectedness and network among crude oil and agricultural commodities and discover that vegetable oils are the
ost significant volatility spillover transmitter to other agricultural commodities, such as dairy products, grains, meat, and sugar,

s well as crude oil. Additionally, they find bidirectional and asymmetric linkages between crude oil and agricultural commodity
arkets across all different frequency bands. Dahl et al. (2020) investigate the volatility spillover effects between crude oil and ten
ajor agricultural commodities using the connectedness measurements of Diebold and Yilmaz (2012). Their findings reveal that

nformation transmission between crude oil and agricultural products is minimal in the pre-2006 sub-sample; however, crude oil
ecomes a net recipient of the information in the post-2006 sub-sample. Moreover, information asymmetry and bidirectional flows
etween crude oil and agricultural commodities strengthen during periods of financial and economic turmoil.

For the sake of clarity, we summarize the relevant research in Table 1. The summary shows that the results are mixed as to
hether the crude oil market or the agricultural commodity market has a larger spillover effect on the other. Moreover, these studies
3

ainly focus on volatility or risk spillovers between crude oil and agricultural commodity markets. Little is known about the return
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Table 1
Summary of literature review on the spillover effects between crude oil and agriculture markets.

Literature Data and data sample Data
frequency

Method Key findings Spillover direction

Chen et al.
(2010)

NYMEX WTI crude oil future,
CBOT soybeans, corn and wheat
futures (1983–2010)

Weekly Autoregressive distributed lag
(ARDL) model

The change in each grain price is
significantly influenced by the
changes in the crude oil price
and other grain prices

Oil price →

Agriculture price

Du et al.
(2011)

NYMEX WTI crude oil future,
CBOT corn and wheat futures
(1998–2009)

Weekly Bivariate stochastic volatility
(SV) model

There is significant volatility
spillover from corn and wheat
markets to crude oil market after
the fall of 2006.

Agriculture
volatility → Oil
volatility

Serra (2011) WTI oil, Brazilian ethanol and
sugar (2000–2009)

Weekly Semi-parametric GARCH
model

Crude oil and sugar prices lead
ethanol prices. Crude oil and
sugar market shocks lead to
increased ethanol price volatility.

Oil and
Agriculture
volatility →

Ethanol volatility

Nazlioglu and
Soytas (2011)

Average oil price of Brent, Dubai,
and WTI; Turkish wheat, maize,
cotton, soybeans, and sunflower
(1994–2010)

Monthly Toda and Yamamoto causality
tests; generalized impulse
response analysis

Turkish agricultural prices do not
significantly react to oil price;
The changes in oil prices and
appreciation/depreciation of the
Turkish lira are not transmitted
to agricultural commodity prices
in Turkey.

Oil price ×→
Agriculture price

Gardebroek
and
Hernandez
(2013)

WTI crude oil FOB spot prices,
CBOT denatured fuel ethanol spot
prices, and No. 2 yellow corn
FOB Gulf prices (1997–2011)

Weekly T-BEKK and DCC MVGARCH
model.

There are significant volatility
spillovers from corn to ethanol
prices, but not the converse.
There are no major
cross-volatility effects from oil to
corn markets.

Corn volatility
→ Ethanol
volatility; Oil
volatility ×→
Corn volatility

Nazlioglu
et al. (2013)

Spot prices of world oil, corn,
soybeans, wheat, and sugar
(1986–2011)

Weekly Causality in variance test There is a volatility spillover
from the wheat to the oil returns
before 2006. There is also
evidence of a bidirectional
volatility spillover between
oil-soybeans and oil-wheat
markets after 2006.

Wheat volatility
→ Oil volatility
before 2006;
Wheat and
Soybeans
volatility ↔ Oil
volatility after
2006

Hasanov
et al. (2016)

Brent spot crude oil, rapeseed oil,
soybean oil, and sunflower oil
(2008–2015)

Daily An asymmetric and
unrestricted
VAR-GARCH-in-mean-BEKK
model

There is strong evidence of
causality from crude oil price
volatility to all edible oil prices.

Oil volatility →

Agriculture
volatility

Mensi et al.
(2017)

The crude oil volatility index
(OVX), the wheat volatility index
(WIV), and the corn volatility
index (CIV) (2012–2016)

Daily Wavelet and copula
approaches

The results support evidence of
time-varying asymmetric tail
dependence between the pair of
cereals as well as between oil and
the two cereals at different time
horizons.

Oil-agriculture
dependence is
detected, but no
spillover
direction for the
copula method
adopted.

Ji et al.
(2018)

NYMEX WTI crude oil, natural
gas futures, IGC’s grains and
oilseeds index (IGCI) and four
commodities: maize, rice, soybean
and wheat (2000–2017)

Daily Copula, VaRs and CoVaRs The significant risk spillovers
from energy to agricultural
commodities are verified by
measuring the conditional
value-at-risk (CoVaR) and delta
CoVaR.

Oil risk →

Agriculture risk

Shahzad
et al. (2018)

WTI crude oil, IGC Commodities:
wheat, maize, soybeans, and rice
(2000–2017)

Daily Copula, VaRs and CoVaRs Varying levels of bi-directional
spillover effects are depicted,
running from crude oil to
commodity markets or vice versa.

Oil risk ↔

Agriculture risk

Dahl et al.
(2020)

Crude oil, wheat, sugar, soybean,
soybean oil, cotton, corn, coffee,
cocoa, canola, and soybeans meal
(1986–2016)

Daily Spillover index method of DY There is minuscule information
transmission among crude oil and
agricultural commodities over the
pre-2006 subsample, however,
crude oil becomes the net
receiver of information over the
post-2006 subsample.

Agriculture
return and
volatility → Oil
return and
volatility after
2006

(continued on next page)
4
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Table 1 (continued).
Yip et al.
(2020)

CBOE commodity implied
volatility indices of crude oil
(OVX), corn (CIV), soybean (SIV),
and wheat (WIV) (2012–2017)

Daily Granger causality test, and
spillover index method of DY

OVX does not Granger cause with
CIV, SIV, and WIV. CIV and WIV
act as the net transmitters,
whereas OVX and SIV are the net
receivers most of the time during
the sample period.

Agriculture
volatility → Oil
volatility

Kumar et al.
(2021)

WTI crude oil, corn, soybean oil,
oats, soybeans, and wheat futures
(2002–2017)

Daily Copula, CoVaR and 𝛥CoVaR Results indicate important risk
spillover from oil to agricultural
markets, especially around the
financial crisis.

Oil risk →

Agriculture risk

Dai et al.
(2022)

Chinese commodity futures
indices: Nanhua industrial index,
agricultural index, metal index,
and energy and chemical index.
Chinese stock market index, WTI
spot price, Chinese economic
policy uncertainty index (EPU)
and the Chinese investor
sentiment index. (2004–2021)

Monthly Maximum overlapping discrete
wave transform (MODWT),
spillover index method of DY,
and cross-quantilogram
dependence.

Table 3 in this paper shows that
agricultural index is net spillover
transmitter, while crude oil is
receptor at medium and long
terms.

In short term:
Oil return →

Agriculture
return In
medium and
long terms:
Agriculture
return → Oil
return

Naeem et al.
(2022)

Oil shocks, grains and oilseeds,
livestock, and softs prices
(2006–2020)

Daily Spillover index methods of DY
and BK

It finds time-varying bi-directional
spillovers in the crude oil and
agricultural markets in both the
time and frequency domains. In
addition, spillovers within
agricultural commodities are
significantly larger than spillovers
across product categories.

Oil return ↔

Agriculture
return

Tiwari et al.
(2022a)

Wheat, corn, sugar, soyabean,
coffee, cotton, gasoline, crude oil,
natural gas, and ethanol futures
(2012–2021)

Daily Quantile connectedness
framework developed by Ando
et al. (2022).

There are significant volatility
spillovers from agricultural
markets to energy markets during
extreme markets conditions and
the dominance of agricultural
markets over energy markets.

Agriculture
volatility → Oil
volatility

Notes: DY and BK indicates the spillover index methods proposed by Diebold and Yilmaz (2012), Baruník and Křehlík (2018), respectively. The symbol → denotes
the spillover direction, ×→ indicates no such spillover direction, and ↔ means a bidirectional spillover effects.

linkages between these two markets, especially in extreme market conditions and across different time frequencies. Therefore, there
is a strong need to fill this research gap by using updated data samples and more powerful econometric models.

Regarding the interdependence between carbon emission allowances and agricultural commodity markets, research to date has
mainly focused on demonstrating that the agricultural industry can reduce carbon emissions and that there is a long-term relationship
between these two factors. For instance, González-Ramírez et al. (2012) describes the basic characteristics of carbon offset markets,
as well as the potential supply of offsets from agricultural sources and associated cost considerations. Cai et al. (2022) examine
the impact of renewable energy consumption, non-renewable energy consumption, agriculture, urbanization, and economic growth
on carbon emissions in selected South Asian economies from 1990 to 2018, using a fully modified ordinary least square method
and variance decomposition analysis. Their empirical results show that renewable energy consumption and the agriculture industry
reduce carbon emissions, while non-renewable energy consumption and urbanization increase environmental degradation. Burton
et al. (2017) prove that the growing demand for palm oil is driving its expansion into tropical Africa, which could lead to significant
carbon emissions if tropical forests are converted to monoculture palm trees. They find that using an agricultural suitability model,
prudent national land use planning can go a long way toward avoiding high carbon emissions while meeting palm oil production
targets. Taheripour et al. (2019) also show that global demand for palm oil has grown rapidly over the past decades. Most of the
production growth has occurred in the carbon and biodiversity-rich forest lands of Malaysia and Indonesia, resulting in record
terrestrial carbon emissions and biodiversity loss. Pata (2021) adopt Fourier cointegration and causality tests to analyze the impact
of renewable energy generation, globalization, and agricultural activities on the ecological footprint and carbon emissions in BRICS
countries during the period 1971–2016. They find the existence of a long-run relationship between the variables considered for
Brazil and China. Long-run elasticities show that globalization increases pollution indicators, while renewable energy generation
significantly reduces environmental pressure in China. The causality results show a bidirectional causality between agriculture and
environmental degradation; and a unidirectional relationship between globalization and the ecological footprint and CO2 emissions.

Many recent studies also concentrate on the nexus between crude oil and carbon markets by employing various statistical and
econometric methods (Reboredo, 2014; Yu et al., 2015; Zheng et al., 2021a; Zheng et al., 2021b; Anh Tu and Rasoulinezhad, 2022;
Ren et al., 2022; Tran, 2022). Almost all of these researches have demonstrated a strong linkage between these two markets. For
instance, Ren et al. (2022) utilize the quantile Granger causality test and the quantile-on-quantile regression methods to prove the
asymmetric interdependence of carbon futures and crude oil futures prices at different time scales. Reboredo (2014) propose a
5

multivariate conditional autoregressive range model to examine volatility dynamics and volatility spillovers between crude oil and
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EUA carbon markets. However, they find no significant spillover effects between these two markets. Yu et al. (2015) analyze the
causal relationship between carbon and crude oil markets using bivariate empirical model decomposition (BEMD) and combined
linear and nonlinear Granger tests using data samples from EUA carbon futures and Brent futures prices. Their study finds that at
the raw data level (without multi-scale decomposition), there is no Granger causality between the carbon and crude oil markets. At
short time scales, the two markets may be uncorrelated; while for medium time scales (more than one week and less than one year),
there are strong bidirectional linear and nonlinear spillover effects between them due to certain additional factors with medium-term
effects, such as major policy changes. For long time scales, a clear linear relationship emerges between the long-term trends of the
two markets. Zheng et al. (2021a) examines the effect of oil shocks on the returns of EUA carbon emission allowances (EUAs)
under different market conditions by using quantile regressions. Its empirical results show that oil supply and demand shocks have
a positive impact on the return of EUAs, but oil risk shocks have a negative impact. Meanwhile, oil shocks tend to be stronger in
bear and normal market conditions. Moreover, the asymmetry of oil demand and risk shocks is more pronounced in bearish market
conditions.

Finally, only a few papers investigate the linkages between the three markets: crude oil, carbon emission allowance, and
griculture commodity markets. The main conclusion of these studies is that the expansion of the biofuels market in recent years
as greatly increased the interdependence between crude oil, carbon emission allowance, and agricultural commodity markets.
owever, no quantitative measures of such interdependencies are provided, nor are the possible financial implications of these

nterdependencies discussed. By way of example, Dodder et al. (2015) argue that the rapid growth of the biofuels market has both
reated and strengthened the link between agriculture and energy markets. The evolution of the biofuels market over the next
0–20 years and the impact on energy, agriculture, and the environment is uncertain. The biofuels market is more influenced by
rude oil prices than natural gas prices. In addition, scenarios without cellulosic feedstocks reduce total ethanol production and
aise ethanol and corn prices. In terms of environmental impact, higher ethanol consumption due to higher crude oil prices will
educe CO2 emissions. Cheng et al. (2018) investigates some determinants of carbon intensity, including non-fossil energy sources,
conomic growth, energy consumption, and oil prices, for 28 countries in the European Union (EU) using a panel quantile regression
pproach. The empirical results show that the effects of these determinants on carbon intensity are heterogeneous and asymmetric at
ifferent orders of magnitude. Specifically, non-fossil energy sources can significantly reduce carbon intensity but show a U-shaped
elationship. In addition, they find an inverse U-shaped relationship between crude oil prices and carbon intensity.

To date, the existing literature has not investigated the price/return interdependence among crude oil, carbon emission
llowance, and agriculture commodity markets using either the connectedness measurements in the time domain or in the frequency
omain. Given the multifaceted and complex interlinkages between these markets, as identified in our literature review, it is vital
o explore these relationships more fully. Therefore, in our research, we delve into the spillover effects among crude oil, carbon
mission allowance, and agriculture commodity markets in both time and frequency domains.

Furthermore, while previous research has indicated that purchasing carbon futures contracts may mitigate the impacts of price
luctuations in the carbon markets for companies or portfolios exposed to carbon emissions or carbon pricing risk, there is a
oticeable gap in the literature demonstrating the potential crucial role of the carbon market in hedging risk and improving the
erformance of oil-agriculture portfolios using real-world data. Accordingly, our research explores how carbon futures may serve
s a mechanism to hedge risk and enhance the performance of oil and agricultural portfolios.

. Methodology

.1. The new quantile-frequency connectedness method

A recent research of Wei et al. (2022a) proposes a new quantile-frequency spillover measurement, combining the quantile
pillover method of Ando et al. (2022) and the frequency spillover by Baruník and Křehlík (2018). This new approach can calculate
he spillover effects among assets across various quantiles (i.e., market conditions) and time frequencies (i.e., time horizons), which
rovides researchers a more powerful tool to investigate the normal and extreme spillover among assets in frequency domain. This
ethod is firstly extended from the quantile spillover rising from a quantile VAR (QVAR) approach at 𝜏 quantile. A QVAR model

is presented as Eq. (1):

𝑌𝑡 = 𝛽(𝜏) +
𝑝
∑

𝑙𝑎𝑔=1
𝐵𝑙𝑎𝑔(𝜏)𝑌𝑡−𝑙𝑎𝑔 + 𝜖𝑡(𝜏), 𝜖𝑡(𝜏) ∼ 𝑁(0, 𝛴(𝜏)), (1)

where 𝑌𝑡 is a n dimension interested variable, e.g., the returns of n assets. 𝜏 is the set conditional quantile that are examined in this
QVAR model with value from 0 to 1, and p is the lags of this QVAR determined by some information criteria. 𝛽(𝜏) is the intercept
item, 𝐵𝑙𝑎𝑔(𝜏) is the autoregressive coefficient matrix, and 𝜖𝑡(𝜏) is the residual item with the variance–covariance matrix 𝛴(𝜏). Following
the approach of standard spillover measurement process, the forecast error variance decomposition (FEVD) at quantile 𝜏 is presented
by a moving average construction of QVAR model as Eq. (2):

𝑄𝜏 (𝑌𝑡|𝛹𝑡−1) =
∞
∑

𝐶𝑖(𝜏)𝜖𝑡−𝑖(𝜏), 𝜖𝑡(𝜏) ∼ 𝑁(0, 𝛴(𝜏)), (2)
6
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where 𝛹𝑡−1 denotes information set known by the time of t -1. 𝐶𝑖(𝜏) =
∑𝑝

𝑙𝑎𝑔=1 𝐵𝑙𝑎𝑔(𝜏)𝐶𝑖−𝑙𝑎𝑔(𝜏) and 𝐶𝑖(𝜏) = 0 when i < 0. Next, through
he generalized forecast error variance decomposition (GFEVD), we can identify the contribution of each variable to the other ones.
hen the H -step-ahead GFEVD is measured as Eq. (3):

𝐺𝐹𝐸𝑉 𝐷(𝑦𝑗 , 𝜖𝑘(𝜏),𝐻) =
𝛴−1
𝑘𝑘

∑𝐻−1
ℎ=0 ((𝐶ℎ(𝜏)𝛴)𝑗𝑘)2

∑𝐻−1
ℎ=0 (𝐶ℎ(𝜏)𝛴𝐶 ′

ℎ(𝜏))𝑗𝑗
, (3)

where 𝐺𝐹𝐸𝑉 𝐷(𝑦𝑗 , 𝜖𝑘(𝜏),𝐻) measures the contribution of the 𝑘th innovation 𝜖𝑘(𝛼) at quantile 𝜏, to the H -step-ahead GFEVD of the
𝑗th variable. Moreover, we label Eq. (3) as 𝛩𝑗𝑘,(𝜏)(𝐻), and standardize it as follows Eq. (4):

�̃�𝑗𝑘,(𝜏)(𝐻) =
𝛩𝑗𝑘,(𝜏)(𝐻)

∑𝑛
𝑗,𝑘=1 𝛩𝑗𝑘,(𝜏)(𝐻)

. (4)

In Eq. (4), we define ∑𝑛
𝑘−=1 �̃�𝑗𝑘,(𝜏)(𝐻) = 1 and ∑𝑛

𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝐻) = 𝑛. After the calculation of Eq. (4), five categories of spillover
indices are defined as Eqs. (5)–(9):

𝑇𝑆𝐼(𝜏)(𝐻) =

∑𝑛
𝑗=1,𝑘=1,𝑗≠𝑘 �̃�𝑗𝑘,(𝜏)(𝐻)
∑𝑛

𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝐻)
× 100, (5)

𝑇𝑂𝑗→∗ ,(𝜏)(𝐻) =

∑𝑛
𝑘=1,𝑘≠𝑗 �̃�𝑘𝑗,(𝜏)(𝐻)

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝐻)

× 100, (6)

𝐹𝑅𝑂𝑀𝑗←∗ ,(𝜏)(𝐻) =

∑𝑛
𝑘=1,𝑗≠𝑘 �̃�𝑗𝑘,(𝜏)(𝐻)

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝐻)

× 100, (7)

𝑁𝐸𝑇𝑗,(𝜏)(𝐻) = 𝑇𝑂𝑗→∗ ,(𝜏)(𝐻) − 𝐹𝑅𝑂𝑀𝑗←∗ ,(𝜏)(𝐻) (8)

𝑁𝑃𝐷𝑆𝑗𝑘,(𝜏)(𝐻) = (
�̃�𝑘𝑗,(𝜏)(𝐻)

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝐻)

−
�̃�𝑗𝑘,(𝜏)(𝐻)

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝐻)

) × 100. (9)

The Eq. (5) 𝑇𝑆𝐼(𝜏)(𝐻) depicts the total spillover index at quantile 𝜏, indicating the overall spillover effects among all the variables.
hen Eqs. (6) and (7), i.e., 𝑇𝑂𝑗→∗ ,(𝜏)(𝐻) and 𝐹𝑅𝑂𝑀𝑗←∗ ,(𝛼)(𝐻), denote the spillover effects sent and received by variable j to (from)

all the others at quantile 𝜏. In addition, Eq. (8) 𝑁𝐸𝑇𝑗,(𝜏)(𝐻) measures the difference of TO and FROM effects in variable j. Lastly,
𝑃𝐷𝑆𝑗𝑘,(𝛼)(𝐻) defined in Eq. (9) calculate the net pairwise directional spillover between variables j and k.
These spillover indices introduced in Ando et al. (2022) can be labeled as quantile spillover measures, which enable us to

nvestigate both the normal and extreme spillover effects, i.e., interactions at median and extreme tails, among a variety of assets.
owever, this quantile spillover approach of Ando et al. (2022) can only tell us what happens in the dependences among variables

panning various quantiles in time domain, which means that it cannot identify these quantile spillover effects across different time
requencies. However, the benchmark research of Baruník and Křehlík (2018) and many other relative papers have demonstrated
hat the interdependence effects among assets response idiosyncratically to shocks at different time frequencies/horizons. Thus, we
mploy a new quantile-frequency spillover measurement recently proposed by Wei et al. (2022a) to further inspect the spillover
mong crude oil, carbon and agriculture commodity futures at both normal and extreme market conditions across different time
orizons. This new quantile-frequency spillover measurement is built as follows:

First, at a specific quantile of 𝜏, the frequency spillover response at frequency 𝜔 is defined as Eq. (10):

𝐶(𝜏)(𝑒−𝑖𝜔) =
𝐻−1
∑

ℎ=0
𝑒−𝑖𝜔ℎ𝐶ℎ(𝜏), 𝑖 =

√

−1 (10)

Then, the generalized causality spectrum across frequency band 𝜔 ∈ (−𝜋, 𝜋) is defined as Eq. (11):

(𝑓(𝜏)(𝜔))𝑗𝑘 =
∑−1

𝑘𝑘 |(𝐶(𝜏)(𝑒−𝑖𝜔)
∑

)𝑗𝑘|2

(𝐶(𝜏)(𝑒−𝑖𝜔)
∑

𝐶 ′
(𝜏)(𝑒

+𝑖𝜔))𝑗𝑗
. (11)

here (𝑓(𝜏)(𝜔))𝑗𝑘 is the part of the response in variable j at the frequency 𝜔 due to the shock of variable k at both the 𝜏 quantiles
f j and k. Therefore, the new definition of GFEVD can be calculated through a weighted averaging process as Eq. (12):

𝛩𝑗𝑘,(𝜏)(𝑑) =
1
2𝜋 ∫𝑑

𝑊𝑗,(𝜏)(𝜔)(𝑓(𝜏)(𝜔))𝑗𝑘𝑑𝜔, (12)

where d is a predetermined frequency band between s and l and 𝑠, 𝑙 ∈ (−𝜋, 𝜋). Moreover, the weighting function is calculated as
Eq. (13):

𝑊𝑗,(𝜏)(𝜔) =
𝐶𝜏 (𝑒−𝑖𝜔)

∑

𝐶 ′
𝜏 (𝑒

+𝑖𝜔)𝑗𝑗
1
2𝜋 ∫ 𝜋

−𝜋 (𝐶(𝜏)(𝑒−𝑖𝑟)
∑

𝐶 ′
𝑡 (𝑒+𝑖𝑟))𝑗𝑗𝑑𝑟

(13)

Then the contribution of kth innovation at quantile 𝜏, i.e., 𝜖𝑘(𝜏), to the H -step-ahead FEVD of variable j is measured as Eq. (14):

�̃�𝑗𝑘,(𝜏)(𝑑) =
𝛩𝑗𝑘,(𝜏)(𝑑)

∑𝑛 , (14)
7
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where,

𝛩𝑗𝑘,(𝜏)(∞) = 1
2𝜋 ∫

𝜋

−𝜋
𝑊𝑗,(𝜏)(𝜔)(𝑓(𝜏)(𝜔))𝑗𝑘𝑑𝜔. (15)

Finally, we can define five quantile-frequency spillover indices (at quantile 𝜏, and through a specific frequency band d) analogous
to the quantile spillover ones calculated in Eq. (5) to Eq. (9) as follows Eqs. (16)–(20):

𝑇𝑆𝐼(𝜏)(𝑑) = (

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝑑)

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(∞)

−
𝑇 𝑟{�̃�𝑗𝑘,(𝜏)(𝑑)}

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(∞)

) × 100, (16)

𝑇 𝑜𝑗→∗ ,(𝜏)(𝑑) = ((
𝑛
∑

𝑘=1,𝑗≠𝑘
�̃�𝑘𝑗,(𝜏)(𝑑))

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝑑)

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(∞)

) × 100, (17)

𝐹𝑅𝑂𝑀𝑗←∗ ,(𝜏)(𝑑) = ((
𝑛
∑

𝑘=1,𝑗≠𝑘
�̃�𝑗𝑘,(𝜏)(𝑑))

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝑑)

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(∞)

) × 100, (18)

𝑁𝐸𝑇(𝜏)(𝑑) = 𝑇𝑂𝑗→∗ ,(𝜏)(𝑑) − 𝐹𝑅𝑂𝑀𝑗←∗ ,(𝜏)(𝑑), (19)

𝑁𝑃𝐷𝑆𝑗𝑘,(𝜏) = ((�̃�𝑗𝑘,(𝜏)(𝑑) − �̃�𝑘𝑗,(𝜏)(𝑑))

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(𝑑)

∑𝑛
𝑗=1,𝑘=1 �̃�𝑗𝑘,(𝜏)(∞)

) × 100. (20)

where 𝑇 𝑟(⋅) in Eq. (16) is the trace operator, calculating the sum of the elements on the main diagonal of an 𝑛 × 𝑛 matrix.

3.2. Portfolio allocation and evaluation methods

In this paper, we adopt two traditional portfolio allocation methods, namely the minimum variance portfolio (MVP) of Miller
(1960) and the minimum correlation portfolio (MCP) of Christoffersen et al. (2014) to construct the crude oil and agriculture
commodity portfolios. Furthermore, as noted in Broadstock et al. (2022), connectedness information among assets are valuable for
portfolio optimization, and those portfolios based on minimum connectedness (MCoP) are observed to be superior to some traditional
ones, such as MVP and MCP portfolios. Following the method of Broadstock et al. (2022), a minimum connectedness portfolio with
n assets, labeled as MCoP1, is designed as Eq. (21):

𝑀𝐶𝑜𝑃 1 ∶ 𝑊𝑃𝐶𝐼𝑡 =
𝑃𝐶𝐼−1𝑡 𝐼

𝐼𝑃𝐶𝐼−1𝑡 𝐼
(21)

where 𝑤𝑃𝐶𝐼𝑡 is the 𝑛 × 1 weights vector, I represents a 𝑛 × 1 vector of ones. PCI_t denotes the PCI matrix at time t, and PCI is the
pairwise connectedness index between two assets defined in Broadstock et al. (2022). Furthermore, a recent work of Chen et al.
(2010) further suggest that the net pairwise directional connectedness (NPDC) is another effective measures of interdependences
between two assets in a multi-asset system, and then offer another minimum connectedness portfolio, labeled as MCoP2, as Eq. (22):

𝑀𝐶𝑜𝑃 2 ∶ 𝑊𝑁𝑃𝐷𝐶𝑡
=

𝑁𝑃𝐷𝐶−1
𝑡 𝐼

𝐼𝑁𝑃𝐷𝐶−1
𝑡 𝐼

(22)

where 𝑁𝑃𝐷𝐶𝑡 is the matrix of the net pairwise directional connectedness at time t. Moreover, we choose three commonly used
measurements to evaluate the performances of various portfolio allocations. The first one is cumulative return, which is calculated
by summing a portfolio’s returns over a holding period. The other two is the hedge effectiveness (HE) of the Ederington (1979) and
the Sharpe ratio proposed by Sharpe (1966), which are defined as Eqs. (23) and (24):

𝐻𝐸 = 1 −
𝑣𝑎𝑟(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜)

𝑣𝑎𝑟(𝑅𝑖)
, (23)

and

𝑆𝑅 =
�̄�𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

√

𝑣𝑎𝑟(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜)
, (24)

where 𝑣𝑎𝑟(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) is the variance of different portfolio returns, and 𝑣𝑎𝑟(𝑅𝑖) denotes the return variance of a specific un-hedged
asset. �̄�𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 is the mean return of a portfolio. A higher HE indicates a better hedging effect on a portfolio and vice versa. Similar
to HE, a higher Sharpe ratio indicates better portfolio performance.

4. Data

4.1. Futures markets variables’ selection

This paper aims to quantify the connectedness effects among crude oil, carbon emission allowance and agriculture commodity
futures. Thus, we select weekly prices of nine leading futures worldwide traded at different futures exchanges as: (1). Brent oil
8
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Table 2
Descriptive statistic of weekly returns for crude oil, carbon and agriculture futures.

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil

Obs. 746 746 746 746 746 746 746 746 746
Mean 2.21E−05 9.40E−03 6.09E−04 7.40E−04 3.71E−05 7.68E−04 8.48E−04 9.73E−04 2.67E−04
Std. dev. 0.049 0.283 0.034 0.042 0.043 0.044 0.039 0.041 0.035
Skewness −0.677 20.274 −0.901 −0.461 0.024 0.049 −0.166 0.178 −0.462
Kurtosis 7.342 521.767 6.269 6.272 4.403 4.03 5.738 3.982 6.357
Jarque–Bera 643.007*** 8416228.603*** 432.988*** 359.175*** 61.227*** 33.288*** 236.510*** 33.891*** 376.834***
Q (4) 3.008 2.144 3.744 11.046** 6.343 7.718 3.184 5.704 10.401**
Q (26) 49.131*** 60.010*** 39.927** 34.519 27.785 23.832 40.875** 29.814 28.335
Q (52) 66.512* 62.352 83.095*** 76.391** 80.655*** 51.194 92.608*** 60.982 61.829
ADF −26.520*** −25.974*** −26.706*** −28.976*** −27.720*** −27.026*** −27.225*** −26.001*** −28.183***
P-P −26.502*** −25.982*** −26.695*** −28.966*** −27.702*** −27.016*** −27.217*** −25.995*** −28.165***

Notes: The Jarque–Bera statistic tests for the null hypothesis of normality in the distribution. 𝑄(𝑛) is the Ljung–Box 𝑄 statistics with lag length of n. ADF and
P-P are statistics of Augmented Dickey–Fuller and Phillips–Perron unit root test.
*Indicate rejection at the 10% significant level.
**Indicate rejection at the 5% significant level.
***Indicate rejection at the 1% significant level.

futures traded in ICE (labeled as Brent oil hereafter). For the crude oil aspect, brent crude oil is commonly used as a benchmark for
the crude oil market due to its easy transportability, wide trading, and reliable price movements that are viewed as a good indicator
of global oil market conditions. Many previous studies used Brent crude oil prices as a measure of oil prices in their analysis (Abbas
et al., 2018, Zhang and Liu, 2019, Halkos and Tzeremes, 2020, Adeniran et al., 2020); (2). Carbon futures of the European Union
Allowances (EUA) in the European Climate Exchange (EUA carbon); (3). Soybean futures in Chicago Board of Trade (Soybean); (4).
Corn futures in Chicago Board of Trade (Corn); (5). Chicago soft red winter wheat futures in Chicago Board of Trade (Wheat); (6).
Sugar #11 futures in ICE (Sugar); (7). Cotton #2 futures in ICE (Cotton); (8). Coffee C futures in ICE (Coffee) and (9). RBD palm
olein futures in Dalian Commodity Exchange (DCE Palm oil).

This study applies the weekly frequency data. Weekly data is more suitable for capturing the time-varying interdependences
among asset prices than daily and monthly data (Kang et al., 2017; Wei et al., 2022a; Gharbi et al., 2023; Focacci, 2023). According
to Kang et al. (2017), on the one hand, daily prices often face bias in bid–ask spreads and the problem of asynchronous trading.
On the other hand, monthly data has defects of time summation and compensation effects that will obscure the true interaction
relationships among assets. The data sample in this paper spans from October 29, 2007 to February 18, 2022 with 747 weekly
price observations. The reason for choosing October 29, 2007 as the starting date of the sample is that Dalian Commodity Exchange
launched its RBD palm olein futures on October 29, 2007 and this contract is listed as the second largest agriculture commodity
futures.1 All the weekly futures prices are turned into logarithm returns for further analysis.

Table 2 reports the descriptive statistics of these return series and it shows several commonly recognized stylized facts for
speculative asset returns. For example, the unconditional means of these futures returns are very small compared with their standard
deviations. Except for the return of EUA carbon, most returns have small skewness, and all the returns show quite a high degree
of kurtosis. The Jarque–Bera tests indicate that all the return series are not normally distributed, but the Ljung–Box Q statistics
demonstrate no united evidence of autocorrelations in these returns. Finally and most importantly, the Augmented Dickey–Fuller
and Phillips–Perron unit root tests prove that all the return series are stationary, and can be modeled directly without further
transmission.

5. Empirical results

5.1. Static mean spillover evidence by simple DY and BK models

In this subsection, we first use the simple spillover methods of Diebold and Yilmaz (2012) and Baruník and Křehlík (2018) to
depict the static mean (average) interactions among crude oil, carbon and agriculture commodity futures in time and frequency
domain, respectively. Table 3 shows the results of DY method, and Tables 4 to 6 present the results of BK approach.

Firstly, Table 3 indicates that the total spillover (TSI) among crude oil, carbon and agriculture commodity futures is measured
as 36.53%, indicating a moderate connection among them in the time domain. Moreover, the pairwise directional spillover effects
among them are generally low with measurements generally smaller than 10%. Within them, we find that the pairwise directional
spillover indices between EUA carbon and other futures are all very tiny with values no more than 1%, indicating its loose
dependence with other futures markets. However, we also see some relatively large pairwise directional spillover indices between
soybean, corn and wheat futures. For instance, the pairwise spillover between corn and wheat are as high as 20.69% and 18.13%,
respectively, which may be determined by the inherent substitution effects among them. Finally, the net spillover indices shown at
the bottom row of Table 3 imply that soybean and corn futures are the two major return spillover information senders, and coffee
and palm oil seem to be the two main spillover information receivers.

1 According to the ’Global futures and options trading reaches record level in 2020’ released by Futures Industry Association https://www.fia.org/resources/fia-
9

eleases-data-futures-and-options-volume-trends-first-half-2021.

https://www.fia.org/resources/fia-releases-data-futures-and-options-volume-trends-first-half-2021
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Table 3
Static mean spillover measurements among crude oil, carbon and agriculture futures markets by DY method in the time domain.

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil FROM

Brent oil 68.28 0.3 6.25 4.75 1.36 5.04 4.78 2.4 6.84 3.52
EUA carbon 0.39 96.22 0.13 1.15 0.18 0.13 1.42 0.06 0.32 0.42
Soybean 4.04 0.13 46.28 18.48 10.31 3.93 3.97 3.44 9.43 5.97
Corn 2.9 0.37 18.15 46.23 18.13 3.54 4.54 2.91 3.21 5.97
Wheat 1.1 0.22 11.65 20.69 52.56 2.67 4.02 3.09 4.01 5.27
Sugar 4.94 0.73 5.6 5.05 3.39 65.58 5.04 5.43 4.26 3.82
Cotton 4.67 0.95 6.17 6.72 4.9 4.81 64.36 3.05 4.38 3.96
Coffee 2.5 0.08 5.36 4.7 4.24 5.86 3.39 71.41 2.44 3.18
Palm oil 6.78 0.25 12.96 4.6 4.61 3.85 4.11 2.53 60.31 4.41
TO 3.04 0.34 7.36 7.35 5.24 3.31 3.48 2.55 3.88 TSI
NET −0.49 −0.08 1.39 1.37 −0.03 −0.51 −0.49 −0.63 −0.53 36.53

Notes: This table reports the directional spillover among crude oil, carbon and agriculture futures markets by the method of
Baruník and Křehlík (2018) in time domain. The rightmost column (FROM) of this table indicates the directional spillover from
all others to a specific futures market. The penultimate row (TO) of this table indicates the directional spillover to all others from
a specific futures market. The bottom row (NET) shows the net spillover, i.e., the difference between TO and FROM spillover of
a specific futures market. The number in the bottom right corner of this table (indicated in bold face) is the TOTAL spillover
index (TSI) of all the futures markets.

Table 4
Static mean spillover measurements among crude oil, carbon and agriculture futures markets by BK method at short-term
frequency (1 to 4 weeks).

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil FROM

Brent oil 50.66 0.17 4.16 2.99 1 3.56 3.51 1.88 5.21 2.5
EUA carbon 0.25 69.93 0.07 0.66 0.17 0.07 1.18 0.06 0.3 0.31
Soybean 2.93 0.08 34.43 12.96 7.4 3.01 2.99 2.37 7.27 4.33
Corn 2.28 0.28 14.04 35.95 13.54 2.67 3.62 2.14 2.54 4.57
Wheat 0.76 0.18 8.74 15.49 39.89 1.8 3.17 2.16 3.26 3.95
Sugar 4.14 0.55 4.44 3.87 2.89 49.32 4.2 4.32 3.49 3.1
Cotton 3.14 0.79 3.82 4.32 3.67 3.71 48.25 2.28 3.13 2.76
Coffee 1.85 0.05 3.59 3.09 2.85 4.32 2.46 52.12 1.73 2.21
Palm oil 4.23 0.23 8.45 2.79 3.17 2.72 2.92 1.49 46.19 2.89
TO 2.18 0.26 5.26 5.13 3.85 2.43 2.67 1.86 2.99 TSI
NET −0.32 −0.05 0.92 0.56 −0.1 −0.67 −0.09 −0.36 0.1 26.62

Notes: This table reports the directional spillover among crude oil, carbon and agriculture futures markets by the method of
Baruník and Křehlík (2018) in frequency domain. The rightmost column (FROM) of this table indicates the directional spillover
from all others to a specific futures market. The penultimate row (TO) of this table indicates the directional spillover to all
others from a specific futures market. The bottom row (NET) shows the net spillover, i.e., the difference between TO and FROM
spillover of a specific futures market. The number in the bottom right corner of this table (indicated in bold face) is the TOTAL
spillover index (TSI) of all the futures markets.

Then Tables 4 to 6 show the frequency spillover among crude oil, carbon and agriculture commodity futures across three different
ime horizons, i.e., roughly 1 to 4 weeks (one week to one month), 4 to 26 weeks (one month to half a year), and longer than 26
eeks. Firstly, the total spillover indices at three time frequencies are 26.62%, 8.71% and 1.20%, respectively. This means that the
ajor part of TSI is centered at short time frequency (roughly 1 to 4 weeks), and only very tiny part of it is observed at long time

requency (longer than 26 weeks). Secondly, regarding to the pairwise directional spillover indices, in Tables 4 to 6 we also find that
he relatively large ones are estimated between soybean, corn and wheat futures, confirming again the findings in Table 3. Finally,
et spillover evidence shows that, soybean and corn futures are always the dominant information contributors to other futures, and
ther agriculture futures, such as sugar, cotton, coffee and palm oil, are major information receivers at different time frequencies.

All in all, the static mean (average) spillover effects shown in Tables 3 to 6 indicate that in general, crude oil, carbon and
griculture commodity futures markets are moderately connected, and the major part of the total spillover are concentrated at
hort-term frequency. In addition, soybean and corn futures seem to be the two major return information contributors. However,
o time-varying spillover results are revealed in section, which are more significant for timely regulatory decisions and flexible
nvestment strategies.

.2. Dynamic mean spillover evidence by TVP-VAR-DY and TVP-VAR-BK models

In this sub-section, we employ two TVP-VAR based extensions of DY and BK models proposed by Antonakakis et al. (2020)
nd Ellington and Baruník (2020), which we call as TVP-VAR-DY and TVP-VAR-BK, respectively. Although many recent researches
sing rolling-window method to get the time-varying spillover proof among assets, Antonakakis et al. (2020) show that TVP-VAR
ased spillover method have three clear advantages over DY and BK methods based on traditional constant coefficient VAR (CC-
AR): (1) TVP-VAR based spillover measures are not sensitive to outliers in data sample; (2) it does not loose initial data observations
s CC-VAR when estimating the first rolling-window results; and (3) TVP-VAR based spillover approach does not need choose the
10
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Table 5
Static mean spillover measurements among crude oil, carbon and agriculture futures markets by BK method at medium-term
frequency (4 to 26 weeks).

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil FROM

Brent oil 15.5 0.11 1.83 1.55 0.31 1.3 1.12 0.46 1.44 0.9
EUA carbon 0.12 23.09 0.05 0.43 0.02 0.05 0.21 0 0.02 0.1
Soybean 0.97 0.05 10.43 4.85 2.56 0.81 0.86 0.94 1.9 1.44
Corn 0.54 0.08 3.62 9.06 4.04 0.76 0.82 0.68 0.6 1.24
Wheat 0.3 0.03 2.57 4.58 11.15 0.76 0.75 0.82 0.67 1.16
Sugar 0.7 0.16 1.02 1.04 0.44 14.32 0.75 0.98 0.67 0.64
Cotton 1.35 0.15 2.05 2.1 1.08 0.97 14.17 0.67 1.1 1.05
Coffee 0.57 0.03 1.55 1.42 1.22 1.36 0.82 16.95 0.63 0.84
Palm oil 2.24 0.02 3.96 1.58 1.26 0.99 1.04 0.91 12.43 1.33
TO 0.76 0.07 1.85 1.95 1.22 0.78 0.71 0.61 0.78 TSI
NET −0.15 −0.03 0.41 0.71 0.05 0.14 −0.34 −0.24 −0.55 8.71

Notes: This table reports the directional spillover among crude oil, carbon and agriculture futures markets by the method of
Baruník and Křehlík (2018) in frequency domain. The rightmost column (FROM) of this table indicates the directional spillover
from all others to a specific futures market. The penultimate row (TO) of this table indicates the directional spillover to all
others from a specific futures market. The bottom row (NET) shows the net spillover, i.e., the difference between TO and FROM
spillover of a specific futures market. The number in the bottom right corner of this table (indicated in bold face) is the TOTAL
spillover index (TSI) of all the futures markets.

Table 6
Static mean spillover measurements among crude oil, carbon and agriculture futures markets by BK method at long-term frequency
(longer than 26 weeks).

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil FROM

Brent oil 2.11 0.02 0.25 0.22 0.04 0.18 0.15 0.06 0.2 0.12
EUA carbon 0.02 3.2 0.01 0.06 0 0.01 0.03 0 0 0.01
Soybean 0.13 0.01 1.42 0.67 0.35 0.11 0.12 0.13 0.26 0.2
Corn 0.07 0.01 0.49 1.22 0.55 0.1 0.11 0.09 0.08 0.17
Wheat 0.04 0 0.35 0.62 1.51 0.11 0.1 0.11 0.09 0.16
Sugar 0.09 0.02 0.13 0.14 0.05 1.94 0.09 0.13 0.09 0.08
Cotton 0.19 0.02 0.29 0.3 0.15 0.13 1.94 0.09 0.15 0.15
Coffee 0.08 0 0.22 0.2 0.17 0.19 0.11 2.34 0.09 0.12
Palm oil 0.31 0 0.56 0.23 0.18 0.14 0.14 0.13 1.69 0.19
TO 0.1 0.01 0.26 0.27 0.17 0.11 0.1 0.08 0.11 TSI
NET −0.02 0 0.06 0.1 0.01 0.02 −0.05 −0.03 −0.08 1.20

Notes: This table reports the directional spillover among crude oil, carbon and agriculture futures markets by the method of
Baruník and Křehlík (2018) in frequency domain. The rightmost column (FROM) of this table indicates the directional spillover
from all others to a specific futures market. The penultimate row (TO) of this table indicates the directional spillover to all
others from a specific futures market. The bottom row (NET) shows the net spillover, i.e., the difference between TO and FROM
spillover of a specific futures market. The number in the bottom right corner of this table (indicated in bold face) is the TOTAL
spillover index (TSI) of all the futures markets.

olling-window size as CC-VAR method does, which may be very subjective and lead to estimation bias. Therefore, in this sub-section
e present the TVP-VAR based mean spillover measurements in Figs. 1 to 3.

The upper panel of Fig. 1 shows the dynamic mean TSI throughout the whole data sample, i.e., October 29, 2007 to February
8, 2022. First of all, we find that the total spillover among crude oil, carbon and agriculture commodity futures fluctuate violently
rom about 20% to 70%. Across the whole data sample, three special time periods should be mentioned. The first one is the turmoil
eriod of 2008–2009 global subprime mortgage crisis and global food crisis. During that time, the Brent oil price rises to about 140
SD per barrel in July 2008 and drops sharply to about 39 USD per barrel in December 2008, and the global price of food index

eleased by IMF also swings dramatically between about 124 points on June 2008 and 85 points on February 2009. In the period
f 2008–2009, we also find high degree of TSI among crude oil, carbon and agriculture commodity futures over 40%, implying that
arge oil and food price volatility may drive stronger connections among these futures markets. The second one is the period of
uropean debt crisis during 2011 to 2012. At that time, Brent oil price keeps very high levels ranging from about 100 to 125 USD
er barrel, and the global price of food index are also running at high levels between about 110 to 130 points. The third time period
s after the outbreak of COVID-19 pandemic at the beginning of 2020. During that time, Brent oil price crashes from approximate
7 USD per barrel on December 2019 to about 18 USD per barrel on April 2020, and since then, crude oil prices have soared all
he way to over $100 a barrel. Similarly, the global price of food index drops from about 104 points on January 2020 to 92 points
n April 2020, and then have soared to over 139 points at the end of January 2022, reaching a new all-time peak. Clearly, the TSI
n Fig. 1 also experiences a sudden and extremely rapid rise and keeps a relatively high level of about 30% to 50%.

Then the lower panel of Fig. 1 demonstrates the dynamic mean net spillover at time domain. It shows that for most of the time,
he net spillover indices of soybean (light gray area) and corn (yellow area) dominate other futures with positive measurements,
specially during the turmoil periods of 2008–2009 global financial crisis, the European debt crisis of 2011–2012, and 2020 COVID-
9 pandemic, implying their leading role of information transmission among these futures markets. However, sugar (green area),
11
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Fig. 1. Total and net spillover measurements of crude oil, carbon and agriculture commodity futures markets based on TVP-VAR-DY method.

coffee (brown area) and palm oil (dark gray area) futures seems to keep negative net spillover indices, indicating that they are net
information receivers at most of the time.

Figs. 2 and 3 further present the dynamic total and net spillover effects at three different time frequencies. Fig. 2 shows that
the major parts of TSI are centered at short- and medium-term frequencies, i.e., the blue and orange area, while the long-term total
spillover only has very small share in the overall TSI. This means that most investors have more consistent investment behavior in
short term; while in the medium and long term, investors’ behavior shows greater heterogeneity (Kang et al., 2019). Moreover, we
also find that the short- and medium-term TSIs swing more violently with time than the one at long-term frequency, especially during
the three turmoil time periods of 2008–2009 global financial crisis, 2011–2012 European debt crisis, and 2020 COVID-19 pandemic.
Fig. 3 further illustrates the net spillover effects of these nine futures at three time frequencies. From the three panels of Fig. 3, we
can see the roles of these futures in net spillover change a lot with time from short-term frequency to medium- and long-term ones.
On the one hand, in the first half of the data sample, roughly from December 2007 to December 2014, soybean, palm oil and cotton
look more impressive to other futures, and sugar is clearly the major information receiver at short-term frequency. Nevertheless,
at medium- and long-term frequencies, corn and sugar become the main information senders, and palm oil futures turns to be the
primary information recipient. On the other hand, in the second half of the data sample, roughly from December 2014 to February
2022, corn and soybean are the major information transmitters, while palm oil is the principle receiver at short-term frequency.
However, no distinct futures are observed to the stable information senders of recipients at medium- and long-term frequencies.

These outcomes reveal consistent but more fruitful conclusions in Fig. 1 and Tables 3 to 6. For one thing, Figs. 2 and 3
demonstrate that both the total and net spillover effects among crude oil, carbon and agriculture commodity futures are centered at
short-term frequency, and both of them increase significantly during turmoil market conditions. For another, it shows that different
futures play various roles in information transmission with time and across different time frequencies, suggesting that policy makers
and investors should be very cautious when making regulatory policy or investment strategy in turmoil market environment with
12
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Fig. 2. Total spillover measurements of crude oil, carbon and agriculture commodity futures markets at various frequencies based on TVP-VAR-BK method. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.3. Extreme spillover evidence by a new quantile-frequency spillover method

The empirical analysis in Section 5.1 and Section 5.2 can only reveal the mean (normal) spillover effects among crude oil, carbon
and agriculture commodity futures. As noted above, these spillover effects increase significantly during turmoil market conditions
and switch remarkably across different time frequencies. We therefore want to know not only the mean (normal) spillover effects
but these interactions at extreme market conditions across various time frequencies. To achieve this purpose, we utilize the new
quantile-frequency spillover approach introduced in Section 3. The empirical results are shown in Tables 7 to 10, and Figs. 4 to 7.

Firstly, Table 7 indicates the median (quantile = 0.5) spillover, including total, pairwise directional, to and from spillover, in
time domain among crude oil, carbon and agriculture futures markets, which is comparable to the findings in Table 3 measured
at mean quantile. It is no surprise that the results in Tables 7 and 3 show a high degree of agreement. For example, the TSI in
Table 6 is estimated as 36.27%, and the one in Table 3 is 36.53%. Furthermore, the TO and FROM spillover effects in Tables 7 and
3 are also very close to each other. Finally, the bottom row (NPDC) in Table 7 shows the counts of positive net pairwise directional
spillover of one specific futures market, i.e., the larger the number is, the more powerful information spillover of this market than
the others. It indicates that corn soybean and wheat have 8, 6 and 5 counts of positive net pairwise directional spillover, indicating
their dominant role in information transmission among these futures markets. This result is also in line with the one revealed in
Table 3.

Then, Tables 8 and 9 demonstrate the extreme downside (left-tail, quantile = 0.05), and extreme upside (right-tail, quantile =
0.95) spillover, respectively, in time domain among crude oil, carbon and agriculture futures markets. We can find that, firstly,
the total spillover at extreme downside and upside tails are 78.42% and 77.23%, which are much larger than the one at normal
condition. This means that the interactions among crude oil, carbon and agriculture futures markets goes up dramatically at extreme
market conditions. Next, we find that the there is no clear difference between the extreme downside and upside TSI among these
futures markets, implying that crude oil, carbon and agriculture commodity futures similarly connected with each other tightly no
matter in bearish or bullish market environment. Then, in terms of TO and FROM spillover measurements, we can see that these
two indices for EUA carbon futures are all the smallest ones in Tables 7 to 9, e.g., 0.36% and 0.31% in Table 7, indicating that
the carbon futures market seems to be a very week player in the information transmission mechanism at either normal or extreme
market conditions. Finally, according to the counts of NPDC in Tables 8 and 9, soybean, corn and wheat futures obtain 7, 8 and 6
times of positive net pairwise directional spillover, further confirming their leading roles in information transmission among crude
oil, carbon and agriculture commodity futures markets. Nevertheless, Brent crude oil and EUA carbon futures get relatively small
numbers of NPDC counts in Tables 8 and 9, revealing their vulnerable roles in extreme market environment.

In order to gain a better understanding of the pairwise directional connectedness effects among crude oil, carbon, and agriculture
commodity futures markets, we present in Fig. 4 a network diagram depicting the net pairwise directional connectedness at normal
(quantile = 0.5), extreme downside (left-tail, quantile = 0.05), and extreme upside (right-tail, quantile = 0.95) conditions. The two
red/green circles in each panel of Fig. 4 represent the two primary NPDC senders/receptors based on the total NPDC they transmitted
or received, while the bold straight line with arrow in each panel depicts the largest NPDC between two futures markets, with the
pink numbers beside the straight lines indicating the corresponding NPDC measures. Our results reveal that the connectedness
13
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Fig. 3. Total spillover measurements of crude oil, carbon and agriculture commodity futures markets at various frequencies based on TVP-VAR-BK method. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

structure of each panel in Fig. 4 varies depending on the NPDC measured at different return quantiles, i.e., 0.5, 0.05, and 0.95,
which correspond to normal, extreme left-tail, and extreme right-tail conditions, respectively. This indicates that the pairwise return
connectedness patterns among crude oil, carbon, and agriculture commodity futures markets are quantile-dependent, and that the
roles of each futures market evolve in different market environments. Specifically, under normal market conditions (quantile = 0.5),
corn and soybean futures are the two primary information senders, with soybean futures having the largest NPDC effect on the palm
oil market. However, Brent oil and coffee futures markets are the two primary information receivers. Under extreme bearish market
conditions (quantile = 0.05), while corn and soybean futures remain the two major information transmitters, EUA carbon and coffee
14
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Table 7
Normal (quantile = 0.50) spillover in time domain among crude oil, carbon and agriculture futures markets.

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil FROM

Brent oil 68.56 0.32 6.09 4.68 1.31 4.97 4.8 2.66 6.61 3.49
EUA carbon 0.39 97.23 0.07 0.69 0.03 0.01 1.44 0.04 0.1 0.31
Soybean 4.13 0.16 46.38 18.29 10.3 3.92 3.92 3.46 9.43 5.96
Corn 2.91 0.35 18.13 46.49 17.91 3.53 4.53 2.93 3.22 5.95
Wheat 1.19 0.33 11.65 20.39 52.76 2.77 3.93 3.06 3.93 5.25
Sugar 4.85 0.71 5.56 4.99 3.4 66.08 4.95 5.34 4.13 3.77
Cotton 4.54 1.06 6.57 6.97 4.86 4.74 63.97 3.08 4.22 4
Coffee 2.52 0.04 5.57 4.82 4.52 5.78 3.46 70.97 2.33 3.23
Palm oil 6.5 0.27 12.77 4.5 4.55 4.09 3.99 2.17 61.17 4.31
TO 3 0.36 7.38 7.26 5.21 3.31 3.45 2.53 3.77 TSI
NPDC 1 4 6 8 5 2 4 2 4 36.27

Notes: This table reports the directional spillover among crude oil, carbon and agriculture futures markets at quantile of 0.5
(median) in time domain. The rightmost column (FROM) of this table indicates the directional spillover from all others to a
specific futures market. The penultimate row (TO) of this table indicates the directional spillover to all others from a specific
futures market. The bottom row (NPDC) shows the counts of positive net pairwise directional spillover of one specific futures
market, i.e., the larger the number is, the more powerful information spillover of this market than the others. The number in
the bottom right corner of this table (indicated in bold face) is the TOTAL spillover index (TSI) of all the futures markets.

Table 8
Extreme downside (left-tail, quantile = 0.05) spillover in time domain among crude oil, carbon and agriculture futures markets.

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil FROM

Brent oil 18.49 2.71 11.49 11.41 10.53 11.71 11.44 10.64 11.57 9.06
EUA carbon 6.72 49.91 5.87 6.99 5.9 5.87 7.87 5.72 5.17 5.57
Soybean 10.79 2.07 17.21 13.82 12.39 10.54 10.77 10.53 11.88 9.2
Corn 10.4 2.33 13.64 17.08 13.64 10.69 11.2 10.37 10.66 9.21
Wheat 9.94 1.95 12.7 14.2 17.87 10.66 11.22 10.67 10.79 9.13
Sugar 11.45 2.14 11.34 11.57 11.04 18.4 11.79 11.32 10.94 9.07
Cotton 10.91 2.72 11.48 11.91 11.41 11.72 18.22 10.87 10.76 9.09
Coffee 10.88 2.13 11.61 11.44 11.37 11.63 11.28 18.99 10.67 9
Palm oil 12.18 1.8 12.82 11.65 11.29 10.77 10.76 10.67 18.07 9.1
TO 9.25 1.98 10.11 10.33 9.73 9.29 9.59 8.98 9.16 TSI
NPDC 3 0 7 8 6 3 5 2 2 78.42

Notes: This table reports the directional spillover among crude oil, carbon and agriculture futures markets at quantile of 0.05 (left tail) in time domain. The
rightmost column (FROM) of this table indicates the directional spillover from all others to a specific futures market. The penultimate row (TO) of this table
indicates the directional spillover to all others from a specific futures market. The bottom row (NPDC) shows the counts of positive net pairwise directional
spillover of one specific futures market, i.e., the larger the number is, the more powerful information spillover of this market than the others. The number in
the bottom right corner of this table (indicated in bold face) is the TOTAL spillover index (TSI) of all the futures markets.

Table 9
Extreme upside (right-tail, quantile = 0.95) spillover in time domain among crude oil, carbon and agriculture futures markets.

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil FROM

Brent oil 19.26 1.84 11.4 11.21 10.16 11.86 11.14 11.32 11.82 8.97
EUA carbon 5.61 56.34 5.14 6.23 5.21 5.03 6.53 5.39 4.51 4.85
Soybean 10.75 1.51 17.98 13.42 11.95 10.89 10.45 10.79 12.25 9.11
Corn 10.4 1.75 13.22 17.53 13.53 10.92 11.12 10.7 10.83 9.16
Wheat 9.54 1.54 12.1 14.19 18.31 11.11 11.12 11.49 10.6 9.08
Sugar 11.41 1.4 11.19 11.61 11.31 18.58 11.72 11.8 10.98 9.05
Cotton 10.94 1.96 11.01 11.74 11.56 11.98 18.9 11.03 10.88 9.01
Coffee 10.78 1.63 11.35 11.46 11.86 12.03 11.01 19.08 10.81 8.99
Palm oil 11.57 1.55 12.67 11.55 10.93 11.25 10.86 10.68 18.94 9.01
TO 9 1.46 9.79 10.16 9.61 9.45 9.33 9.25 9.19 TSI
NPDC 1 0 7 8 6 5 2 3 4 77.23

Notes: This table reports the directional spillover among crude oil, carbon and agriculture futures markets at a quantile of 0.95
(right tail) in the time domain. The rightmost column (FROM) of this table indicates the directional spillover from all others to
a specific futures market. The penultimate row (TO) of this table indicates the directional spillover to all others from a specific
futures market. The bottom row (NPDC) shows the counts of positive net pairwise directional spillover of one specific futures
market, i.e., the larger the number is, the more powerful information spillover of this market than the others. The number in
the bottom right corner of this table (indicated in boldface) is the TOTAL spillover index (TSI) of all the futures markets.

utures become the primary information receivers. Furthermore, in extreme bullish market environments (quantile = 0.95), corn
and soybean continue to be the two primary information deliverers, but EUA carbon and Brent oil futures markets switch to being
the two primary information recipients. These findings highlight the complexity of the return information linkages among crude
oil, carbon, and agriculture commodity futures markets, with the major NPDC information receivers changing significantly under
different market conditions, despite corn and soybean futures appearing to be the major information senders.
15
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Fig. 4. Normal and extreme net pairwise directional connectedness (NPDC) in time domain (quantile = 0.5, 0.05 and 0.95 respectively).
Notes: The two red/green circles in each panel of this figure indicate the two major NPDC senders/receptors counted by the total NPDC they transmitted or
received. The bold straight line with arrow in each panel presents the largest NPDC between two futures markets, and the pink numbers beside straight lines
with arrows are the NPDC measures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Additionally, Figs. 5 to 7 provide further insight into the NPDC effects among crude oil, carbon, and agriculture commodity
utures markets at different return quantiles and various time frequencies. These figures help to understand the return connectedness
tructures not only at normal and extreme market situations but also their differences across different time horizons. In Fig. 5, the
hree panels depict the NPDC effects at normal market conditions (quantile = 0.5) across short to long terms, respectively. Comparing

Fig. 5 with the left panel of Fig. 4, it can be observed that at normal situations, corn and soybean futures are consistently the
two major information transmitters to other markets across different time frequencies. However, at short time frequency (1 to 4
weeks), sugar and coffee futures become the two primary information recipients, while cotton and palm oil futures are the chief
information receivers at medium- and long-term frequencies. Moreover, comparing Fig. 6 with the middle panel of Fig. 4 reveals that
the NPDC structures at extreme bearish market (quantile = 0.05) differ significantly from those in the time domain. For instance,
corn and soybean futures are no longer the two major information senders. Instead, Brent crude oil and palm oil futures dominate
message sending at short-term frequency, Fig. 7 and sugar and wheat futures become prime information transmitters at medium- and
long-term frequencies. Finally, illustrates the NPDC network at extreme bullish market (quantile = 0.95). Similarly, at short-term
frequency, corn and wheat are the two key information deliverers, while EUA carbon and Brent oil markets are major receivers at
short-term frequency. At medium- and long-term frequencies, corn and Brent oil become the two significant information senders,
and wheat and coffee futures are the two major acceptors.

To sum up, Table 10 reports the quantile net and total spillover in both time and frequency domain among crude oil, carbon
and agriculture futures markets. Panel A of Table 10 mainly summarizes the net and total spillover of these futures markets in
time domain. These results suggest that, first of all, the total spillover effects at extreme quantiles, i.e., 78.42% at quantile of
0.05 and 77.23% at quantile of 0.95, are much larger than the one at median quantile, i.e., 36.27% at quantile 0.5, implying that
interdependences among crude oil, carbon and agriculture futures markets will increase sharply during great turmoil situations.
Then, the net spillover indices demonstrate again that soybean and corn futures are the two prime return information contributors
to other markets across different return quantiles, suggesting their dominant roles in information exchanges among these futures in
no matter normal or extreme market conditions. However, in terms of major information receivers, we find quite different outcomes.
At normal market conditions, coffee, cotton and Brent oil futures seem to be the main receivers, while at both extreme bearish and
bullish markets, EUA carbon futures accepts most of the net spillover from other markets, indicating its clear passive position in the
information exchange mechanism.

On the other hand, the frequency spillover evidence shown in Panel B of Table 10 offers us deeper view into the information
interdependences among crude oil, carbon and agriculture commodity futures markets. On the one side, the total spillover effects are
found to centered at short-term frequency, implying that the primary information exchanges among these futures markets happen
within 1 to 4 weeks. On the other side, we also find that the major net spillover senders and receivers swing across different quantiles
and various time frequencies, suggesting that policy makers, relevant producers/consumers, and investors should understand the
unique role of each futures in the information transmission mechanism among these markets. To be specific, at normal market
conditions (quantile = 0.5), soybean and corn futures remain the two primary net spillover transmitters to others spanning from
short- to long-term frequencies. Regarding to net spillover receptors, sugar, coffee and Brent oil futures are the three major receptors
at short-term frequency, while cotton and palm oil turn to the prime receivers at medium- and long-term frequencies. When referring
to the situations of extreme bearish market (quantile = 0.05), the major net spillover senders and receptors are very different
from those at normal market conditions (quantile = 0.5). For instance, at short-term frequency, Brent crude oil and palm oil
futures become the two dominant information senders, and EUA carbon and sugar futures are the two major information receivers.
Nevertheless, at medium- and long-term frequencies, we can see that wheat and sugar futures turn to be the key information
transmitters, while Brent oil and palm oil futures switch to be obvious net spillover recipients. This means that Brent crude oil
and palm oil futures can lead other futures markets in short term, but lag others in medium and long terms when facing extreme
downside market environment. In addition, we observe that the EUA carbon market obtains three negative net spillover indices
across all time frequencies in extreme bearish market situations, indicating its passive role in the information exchanges among
these futures markets. Finally, in terms of extreme bullish market situations (quantile = 0.95), we find that the performances of these
utures are more complicated than what they do in normal and extreme bearish market conditions. At short term frequency, corn and
heat futures dominate others by their large positive net spillover indices. Moreover, all the other agriculture commodity futures,

ncluding soybean, sugar, cotton, coffee and palm oil, get positive net spillover measures, while the net spillover for EUA carbon
nd Brent oil are −0.36 and −3.20, respectively, indicating the leading characters of agriculture commodity futures in information
ransmission over crude oil and carbon futures markets. At medium- and long-term frequencies, corn futures is still the powerful
nformation sender, but Brent oil switches from net spillover receiver at short term to information contributor in these cases. In
ddition, wheat, coffee and palm oil futures also turn to be net spillover receivers at medium- and long-term frequencies. Moreover,
n line with the findings at extreme downside market situations, EUA carbon market gets three negative net spillover indices spanning
ll time frequencies here, further confirming its reactive character in the information exchanges among these futures markets.

To summarize, the overall evidence in Table 10 demonstrates that, firstly, the total spillover among crude oil, carbon and
griculture commodity futures in extreme market conditions (quantiles = 0.05 and 0.95) are much larger than the one at normal
arket situations (quantile = 0.5), and these total spillover effects are centered at short-term frequency (1 to 4 weeks). Secondly,

oybean and corn futures are two major net spillover senders to other futures across all quantiles in time domain, and at normal
arket cases spanning from short-term to long-term frequencies. Thirdly, the findings revealed at extreme market situations offer
s quite different and more complicated net spillover evidence from those at normal environments. Brent oil and palm oil can
ead information transmission to other futures during extreme bearish market at short-term frequency, while they reverse to be net
17

pillover receptors at medium- and long-term frequencies (4 to 26 weeks and longer). These reversion roles in net spillover effects are
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Fig. 5. Normal (quantile = 0.5) net pairwise directional connectedness (NPDC) in frequency domain.
Notes: The two red/green circles in each panel of this figure indicate the two major NPDC senders/receptors counted by the total NPDC they transmitted or
received. The bold straight line with arrow in each panel presents the largest NPDC between two futures markets, and the pink numbers beside straight lines
with arrows are the NPDC measures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
18



Journal of International Financial Markets, Institutions & Money 88 (2023) 101821Y. Wei et al.
Fig. 6. Extreme left-tail (quantile = 0.05) net pairwise directional connectedness (NPDC) in frequency domain.
Notes: The two red/green circles in each panel of this figure indicate the two major NPDC senders/receptors counted by the total NPDC they transmitted or
received. The bold straight line with arrow in each panel presents the largest NPDC between two futures markets, and the pink numbers beside straight lines
with arrows are the NPDC measures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
19



Journal of International Financial Markets, Institutions & Money 88 (2023) 101821Y. Wei et al.
Fig. 7. Extreme right-tail (quantile = 0.95) net pairwise directional connectedness (NPDC) in frequency domain.
Notes: The two red/green circles in each panel of this figure indicate the two major NPDC senders/receptors counted by the total NPDC they transmitted or
received. The bold straight line with arrow in each panel presents the largest NPDC between two futures markets, and the pink numbers beside straight lines
with arrows are the NPDC measures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
20
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Table 10
Quantile net and total spillover in time and frequency domain among crude oil, carbon and agriculture futures markets.

Net Total

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee Palm oil

Panel A: Spillover in time domain

Quantile 1: 0.50 −0.49 0.05 1.42 1.31 −0.04 −0.46 −0.56 −0.70 −0.54 36.27
Quantile 2: 0.05 0.20 −3.58 0.91 1.12 0.60 0.22 0.50 −0.02 0.05 78.42
Quantile 3: 0.95 0.03 −3.39 0.67 0.99 0.54 0.40 0.31 0.25 0.18 77.23

Panel B: Spillover in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 4 weeks −0.34 0.06 0.90 0.58 −0.16 −0.63 −0.02 −0.36 −0.02 25.71
Frequency 2: 4 to 26 weeks −0.13 −0.01 0.45 0.62 0.10 0.14 −0.45 −0.28 −0.44 9.03
Frequency 3: longer than 26 weeks −0.02 0.00 0.08 0.11 0.02 0.03 −0.08 −0.05 −0.08 1.52
Quantile 2: 0.05
Frequency 1: 1 to 4 weeks 2.15 −3.26 0.79 0.62 −0.26 −0.66 −0.02 −0.45 1.09 52.69
Frequency 2: 4 to 26 weeks −1.57 −0.24 0.11 0.43 0.71 0.64 0.38 0.33 −0.79 21.80
Frequency 3: longer than 26 weeks −0.38 −0.08 0.00 0.07 0.16 0.24 0.14 0.09 −0.25 3.92
Quantile 3: 0.95
Frequency 1: 1 to 4 weeks −0.36 −3.20 0.43 0.59 0.99 0.27 0.26 0.54 0.47 60.42
Frequency 2: 4 to 26 weeks 0.31 −0.17 0.20 0.35 −0.36 0.11 0.03 −0.22 −0.25 14.44
Frequency 3: longer than 26 weeks 0.07 −0.02 0.04 0.05 −0.09 0.02 0.02 −0.06 −0.04 2.36

Notes: This table reports the static net and total quantile spillover indices among crude oil, carbon and agriculture futures markets
in time and frequency domains across different time frequencies. The bold numbers indicate the two largest net spillover indices
at a specific quantile. The underlined numbers indicate the two smallest net spillover indices at a specific quantile. Frequency 1
to 3 are set be 1 to 4 weeks (one month), 4 to 26 weeks (about half a year), and longer than 26 weeks, respectively.

lso found in sugar, wheat and coffee futures at extreme market conditions, suggesting the fickle states of crude oil and agriculture
utures in information exchanges at different time frequencies during turmoil market environments. Finally, no matter in normal
r extreme market situations, EUA carbon futures are proved to be passive information receiver across various time frequencies,
mplying that it is very susceptible by information from crude oil and agriculture futures markets.

.4. Economics and financial mechanisms behind spillover analysis

The first research gap, which states that spillover effects exist among crude oil, carbon emission allowance, and agriculture
ommodity markets in both time and frequency domains, is supported by the statistical results mentioned above. The economics
nd financial mechanisms behind the spillover analysis can be concluded as follows.

The spillover connectedness between crude oil, carbon, and agriculture commodity futures markets is primarily driven by the
conomic principles of supply and demand, as well as speculation and hedging. In the case of crude oil, the futures market allows
roducers to hedge against price fluctuations and ensure a stable income stream, while buyers can secure future supplies at a
nown price. The market also allows for speculation, as investors can bet on future price movements based on various economic
nd geopolitical factors. The same principles apply to carbon and agriculture commodities, where the futures market provides a
echanism for hedging against price risk and speculating on future price movements.

Short-term spillovers between these markets are primarily driven by changes in supply and demand, as well as economic and
eopolitical events that affect one or more of these markets. For example, a severe drought could impact agriculture prices, which
ay in turn affect the prices of carbon credits and crude oil if they are used in agricultural production. Similarly, changes in oil prices

ould impact the cost of production for agriculture commodities, which could lead to short-term spillover effects. Since soybean and
orn futures have been evidenced as the primary sources of return spillover (especially in the short term), they could be perceived
s leading indicators for short-term price variations in the crude oil and carbon markets. Therefore, they might serve as effective
redictors of price shifts in these markets. However, this potential predictive power is time-varying and may not remain consistent
cross different market conditions (e.g., stable versus extreme markets) and temporal horizons.

The findings in this section may seem counterintuitive at first glance, as soybean and corn serve as the information transmitter
hile crude oil acts as the recipient in some cases. However, there are several possible explanations for this result. First, there is a

ubstitutive relationship between fossil fuels and biofuels. Biodiesel and bioethanol, which are mainly extracted from soybean and
orn, respectively, are regarded as substitutes for fossil fuels such as crude oil (Naeem et al., 2022). Changes in the relative prices
f biofuels and fossil fuels motivate users to switch their energy consumption mix (Chang and Su, 2010), affecting the demand for
ossil fuels. Therefore, any shocks to soybean and corn prices can lead to changes in the price of crude oil. Similarly, Sun et al.
2021) found significant causality running from agricultural commodity prices to crude oil prices. Second, producing agricultural
roducts entails large expenditures on fossil energy sources and electricity (Kirikkaleli and Güngör, 2021), due to oil-dependent
nputs such as fertilizers, transportation, and machinery (Rafiq et al., 2009; Sun et al., 2021). Accordingly, price fluctuations in
gricultural futures can channel agricultural production activities to fossil energy markets. Third, the much greater global emphasis
nd reliance on biofuels, particularly ethanol and soy-diesel, as energy sources during the last 10–15 years may have contributed to
he facilitation of information transfer from agricultural markets to energy markets (Miljkovic et al., 2016). The mandates that have
21
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Table 11
Simple statistics for portfolio weights and hedge effectiveness for crude oil and agriculture commodity portfolios with/without
EUA carbon futures. (Weekly returns, full sample from October 2007 to February 2022).

Mean Std. Dev. HE

Brent oil 0.06/0.07 0.05/0.05 0.79/0.79
Soybean 0.12/0.12 0.05/0.05 0.57/0.56
Corn 0.03/0.03 0.04/0.04 0.72/0.72
Wheat 0.09/0.08 0.03/0.03 0.72/0.72
Sugar 0.09/0.08 0.04/0.04 0.74/0.73
Cotton 0.16/0.17 0.08/0.08 0.66/0.66
Coffee 0.17/0.18 0.11/0.11 0.70/0.69
DCE Palm oil 0.26/0.27 0.09/0.08 0.58/0.57

Notes: The numbers in the columns of Mean and Std. Dev. are the means and standard deviations of asset weights for each
asset in the crude oil and agriculture commodity portfolios with/without EUA carbon futures. HE column reports the hedge
effectiveness for each asset in the crude oil and agriculture commodity portfolios with/without EUA carbon futures. Numbers
before and after ‘‘/’’ are those measurements for portfolios with and without carbon futures.

ed to an increased amount of ethanol being blended into gasoline in the United States and Brazil, two of the leading agricultural
xporters worldwide, may have transformed the pricing mechanism of agricultural commodities related to biofuels, such as soybeans
nd corn, enhancing their influence on energy prices (Vatsa and Miljkovic, 2022). In addition, due to portfolio diversification and
isk management, the financialization of commodities may also be responsible for information transmission from agriculture markets
o energy markets (Nguyen et al., 2020). It is well established that agricultural yield anomalies are highly vulnerable to climate
scillations (Anderson et al., 2017; Li et al., 2020), and there is a great deal of volatility in agricultural commodity markets due to
limate deterioration and the increased frequency of climate risk events (Bonato et al., 2022). Consequently, there is a considerable
mount of information transmission from the agricultural market to the energy market. Equally, Tiwari et al. (2022a) discovered
he dominance of agricultural commodities over energy markets during extreme market states. Fasanya and Akinbowale (2019)
how that the returns on crude oil are a net receiver of returns spillover, while the returns on soybeans are a net transmitter of
eturns spillover. Borgards et al. (2021) also demonstrate that compared to energy commodities, agricultural commodities seem to
ndergo greater price overreactions regarding magnitude and frequency during financial turmoil. Finally, geopolitical factors that
ffect agricultural producing regions can also have an impact on crude oil prices. If there is unrest in a major agricultural producing
ountry, it could disrupt the supply of these commodities and lead to higher prices, which could also impact the price of crude
il (Campbell, 2016; Leibfritz et al., 2016).

.5. The roles of carbon futures in crude oil and agriculture portfolios

The connectedness evidence shown in Sections 5.1 to 5.3 indicates that EUA carbon futures is a major net connectedness receiver
n this system, especially during extreme market conditions (i.e., quantile = 0.05 and 0.95). As pointed out by the several recent
esearches (Borgards et al., 2021; Chen et al., 2010; Tiwari et al., 2022a; Tiwari et al., 2022b), the major net connectedness receiver
n a multi-asset system is usually weakly correlated with other assets. Therefore, it can be used as a hedge instrument for others for
he reason that the price movement of this asset usually lags behind other assets. In this sub-section we further test whether carbon
utures can provide hedging effects on the crude oil and agriculture commodity portfolios.

Firstly, we report the asset weights and hedge effectiveness for crude oil and agriculture commodity portfolios with or without
UA carbon futures to demonstrate the hedging effects of carbon futures. We can find in Table 11 that, the crude oil and agriculture
ommodity portfolios with or without EUA carbon futures have no significant differences in the asset weights for Brent oil and
arious agriculture commodity futures, indicating the incorporation of carbon futures does not change much the asset allocations
n crude oil and agriculture commodity portfolios. However, the HE column in Table 11 shows that the hedge effectiveness for all
he crude oil and agriculture commodity futures with carbon futures are not less than those without carbon futures. In particular,
oybean, sugar, coffee and palm oil futures get higher HE in the portfolio with carbon futures than those in the portfolio without
t. This finding suggests oil-agriculture portfolios may get hedging benefits by incorporating carbon futures in these portfolios, even
ithout much adjustment to the existing asset weights in the portfolio.

Secondly, in addition to HE, cumulative return, which are calculated by summing a portfolio’s returns over a holding period, is
nother important criterion for evaluating the performance of different portfolios. Therefore, we report the cumulative returns of
rude oil and agriculture commodity portfolios with or without carbon futures by different portfolio allocation methods in Fig. 8. It
ndicates clearly that in all four allocation methods, i.e., minimum variance portfolio (MVP), minimum correlation portfolio (MCP),
inimum connectedness portfolio by PCI (MCoP1), and minimum connectedness portfolio by NPDC (MCoP2), the portfolios with

arbon futures have significantly larger cumulative returns than the ones without carbon futures. This evidence further confirms that
arbon futures can enhance the profits of crude oil and agriculture commodity portfolios by providing additional hedging effects on
hem.

Thirdly, the cumulative return criterion only takes into account the profitability of the portfolios, but ignores the volatility
f the portfolio’s returns (market risk). Therefore, we further indicate the Sharpe ratio (SR), which can be considered as a risk-
djusted return, of various crude oil and agriculture commodity portfolios with or without carbon futures in Table 12. For more
obust conclusions, we consider not only the ‘‘crude oil + agriculture commodity’’ portfolios, but also the portfolios with various
22
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Fig. 8. Cumulative returns of crude oil and agriculture portfolios with or without carbon futures by different portfolio allocation methods.

Table 12
Sharpe ratio (SR) for MVP, MCP, and MCoP portfolios of crude oil and agriculture futures portfolios with/without carbon futures in full sample and different
crisis periods.

Portfolios Sharpe ratio

MVP 𝛥 SR MCP 𝛥 SR MCoP1 𝛥 SR MCoP2 𝛥 SR

Panel A: Full sample
Oil + Agriculture 0.0229 0.0171 0.0216 0.0265
Oil + Agriculture + Carbon 0.0276 0.0047 0.0343 0.0172 0.0357 0.0141 0.0343 0.0078
Agriculture 0.0294 0.022 0.0229 0.0406
Agriculture + Carbon 0.0344 0.0050 0.0356 0.0136 0.0361 0.0132 −0.0099 −0.0505
Panel B: Global financial crisis
Oil + Agriculture 0.0023 0.0136 0.0169 −0.0023
Oil + Agriculture + Carbon −0.0257 −0.028 0.0892 0.0756 −0.0313 −0.0482 0.009 0.0113
Agriculture 0.0094 0.025 0.0182 −0.0098
Agriculture + Carbon −0.0182 −0.0276 0.0917 0.0667 0.0701 0.0519 0.0919 0.1017
Panel C: European debt crisis
Oil + Agriculture 0.0202 0.0272 0.0267 0.062
Oil + Agriculture + Carbon −0.0027 −0.0229 −0.0205 −0.0477 −0.014 −0.0407 −0.0089 −0.0709
Agriculture 0.0073 0.0029 0.0201 −0.02
Agriculture + Carbon −0.0122 −0.0195 −0.0391 −0.042 −0.019 −0.0391 0.0214 0.0414
Panel D: COVID-19 pandemic
Oil + Agriculture 0.1791 0.1182 0.0977 0.0938
Oil + Agriculture + Carbon 0.1923 0.0132 0.1936 0.0754 0.1636 0.0659 0.1377 0.0439
Agriculture 0.1764 0.1392 0.1223 0.1238
Agriculture + Carbon 0.1886 0.0122 0.1949 0.0557 0.2067 0.0867 0.2068 0.083

Notes: This table reports the Sharpe ratios for MVP, MCP, and MCoP portfolios of crude oil and agriculture futures portfolios with/without carbon futures. MVP
and MCP are minimum variance and minimum correlation portfolios. MCoP1 and MCoP2 indicate the minimum connectedness portfolios based on PCI and
NPDC criteria, respectively. Full sample indicates data sample used is from Oct., 2007 to Feb., 2022. Global financial crisis, European debt crisis, and COVID-19
pandemic denote data samples are from Jan., 2008 to Dec. 2009, Jan., 2009 to Dec., 2012, and Jan., 2020 to Dec., 2021, respectively. The bold numbers
indicate the positive 𝛥SRs, which mean that the portfolios with carbon futures have larger SR than those without carbon futures.

agriculture commodity futures in Table 12. Similarly, MVP, MCP, MCoP1 and MCoP2 are four allocation methods adopted in this
paper. Table 12 reports not only the Sharpe ratio, but also the difference in SR (𝛥𝑆𝑅) between portfolio with carbon futures and
the one without carbon futures. On the one hand, the SR results based on full sample in Panel A of Table 12 show that there are
7 out of 8 (𝛥𝑆𝑅𝑠) are positive, suggesting clearly that portfolios with carbon futures generally perform better than those without
it. This finding furthers prove the hedging effects of carbon futures on both crude oil and agriculture commodity markets. On the
other hand, Panels B to D reveal the Sharpe ratio results during three major crisis periods, i.e., global financial crisis, European debt
crisis, and COVID-19 pandemic. Panels B to D show that portfolios with carbon futures have different Sharpe ratios during different
23
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crisis periods. For example, portfolios with carbon futures have higher SRs during recent COVID-19 pandemic than those in global
financial crisis and European debt crisis. To be more specific, the SRs of portfolios with carbon futures are all larger than those
without it during COVID-19 pandemic, while almost all of the portfolios with carbon futures perform worse than those without it
during European debt crisis. These findings may suggest that the carbon futures plays different roles during various crisis periods
that are caused by different shocks. In summary, we find in Table 12 that 21 out of 32 (𝛥𝑆𝑅𝑠) are observed to be positive, further
confirming the benefits of adding carbon futures into crude oil and agriculture commodity portfolios.

To sum up, the statistical analysis of the roles played by carbon futures in crude oil and agriculture portfolios suggests that
carbon futures can effectively hedge risk and improve the performance of these portfolios. These findings not only can fill our
second research gap but also have important financial implications that highlight the potential benefits of using carbon futures in
managing investment risk. Carbon futures can be used to hedge risk and enhance the performance of oil and agricultural portfolios
because of the relationship (in other words, connectedness, which we have proven above) between carbon prices and the prices of
these commodities. Carbon prices are affected by government policies and regulations aimed at reducing carbon emissions, while the
prices of oil and agricultural commodities are affected by a wide range of factors such as weather conditions, supply and demand,
and geopolitical events. Carbon futures can be used as a hedge against regulatory risk, as they allow investors to lock in a price
for carbon emissions in the future. This can be particularly useful for oil and agricultural companies, as they may face increasing
regulatory pressure to reduce their carbon emissions in the coming years. By using carbon futures to hedge against this risk, these
companies can protect themselves against the potential negative impact of future carbon regulations on their profitability. In addition
to hedging risk, carbon futures can also enhance the performance of oil and agricultural portfolios by providing diversification
benefits. Carbon futures have low correlation with traditional asset classes, such as stocks and bonds, and can therefore provide
a source of diversification for a portfolio. This can help to reduce overall portfolio risk and increase returns. Furthermore, as the
world transitions to a low-carbon economy, demand for carbon credits is likely to increase, which could result in higher carbon
prices. This could benefit companies that have invested in carbon futures as a way to hedge against regulatory risk, as well as those
that have invested in renewable energy and other low-carbon technologies.

6. Robustness checks

The objective of this study is to not only measure the usual (mean quantile) static and dynamic spillover effects among them
in both time and frequency domains but also to quantify the significant extreme spillovers a cross different time horizons using a
recently proposed quantile-frequency spillover approach. However, there are some potential issues in our main empirical analysis,
so several robustness tests should be processed.

6.1. Results of return connectedness based on daily returns

First, in this study, we try to explore the extreme price volatility among crude oil, carbon emission allowance and agriculture
futures market, the reasons why we only Brent crude oil futures for the study are based on the following reasons. Firstly, Brent
crude oil futures are among the most liquid and actively traded futures contracts in the world, which can provide better statistical
power and reliability to the results. Secondly, Brent crude oil futures are considered as the international benchmark for crude oil
pricing, and many other crude oil futures, including West Texas Intermediate (WTI), are priced relative to Brent. Hence, it may be
easier to compare the spillover effects with other markets using a common benchmark. In the end, the research period we selected is
2007 to 2022. It may be easier to obtain reliable and consistent data for Brent crude oil futures compared to other crude oil futures.
This could be because Brent crude oil futures have been traded for a longer time and are more established in the global market.
However, to strengthen the robustness of our conclusions, we have chosen to re-examine the main analysis using the NYMEX WTI
crude oil futures price.

Secondly, the reason for using RBD palm olein futures in the Dalian Commodity Exchange (DCE) is that it is currently the most
heavily traded palm oil futures contract globally, as reported by the Futures Industry Association (FIA).2 The Crude Palm Oil (FCPO)
Futures traded on the Malaysia Derivatives Exchange (MDE) is now the second largest palm oil futures contract. Therefore, for this
robustness check, we have opted to use the palm oil futures traded on the Malaysia Derivatives Exchange (MDE) to repeat the
empirical analysis.

Thirdly, data at higher frequencies offer more advantages as they can capture additional information related to trading activities
inherent in daily returns. Therefore, we have chosen to use daily returns of crude oil, carbon, and agriculture commodity futures
as another robustness check to re-conduct the empirical analysis.

Table 13 presents a summary of all the new results. The table shows that even when using daily returns of WTI oil, carbon,
and agricultural commodity futures, the empirical results are highly consistent with those reported in Table 10 based on weekly
returns. Firstly, the time-frequency evidence in Panel A of Table 13 indicates that the total connectedness effect among WTI crude
oil, carbon, and agriculture futures markets during extreme turmoil environments (i.e., 76.95% at 0.05 quantile and 76.26% at 0.95
quantile) is much larger than that observed during normal market conditions (i.e., 26.39% at 0.50 quantile). Furthermore, the net
connectedness measures in Panel A of Table 13 reveal that soybean, corn, and wheat futures are the three primary contributors
to return information for other markets across different return quantiles, consistent with the findings in Table 10. However, there

2 https://www.fia.org/resources/fia-releases-data-futures-and-options-volume-trends-first-half-2021
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Table 13
Quantile net and total connectedness among daily crude oil, carbon and agriculture futures returns (Full sample).

Net Total

WTI oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee MDE Palm oil

Panel A: Connectedness in time domain

Quantile 1: 0.50 −0.24 0.04 1.03 0.78 0.26 −0.21 −0.30 −0.27 −1.09 26.39
Quantile 2: 0.05 −0.14 −3.26 0.92 0.56 0.74 0.35 0.74 0.43 −0.34 76.95
Quantile 3: 0.95 −0.41 −3.03 0.91 0.61 0.88 0.54 0.39 0.25 −0.14 76.26

Panel B: Connectedness in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 5 days −0.21 0.05 0.73 0.65 0.17 −0.23 −0.26 −0.28 −0.62 21.16
Frequency 2: 5 to 22 days −0.02 −0.01 0.22 0.10 0.07 0.01 −0.03 0.01 −0.35 3.85
Frequency 3: longer than 22 days −0.01 0.00 0.08 0.03 0.03 0.01 −0.01 0.00 −0.13 1.38
Quantile 2: 0.05
Frequency 1: 1 to 5 days 0.14 −2.66 0.91 0.75 −0.23 0.09 0.51 −0.38 0.89 57.37
Frequency 2: 5 to 22 days −0.20 −0.44 0.02 −0.13 0.70 0.19 0.16 0.58 −0.88 14.32
Frequency 3: longer than 22 days −0.08 −0.16 −0.01 −0.06 0.28 0.07 0.07 0.23 −0.35 5.25
Quantile 3: 0.95
Frequency 1: 1 to 5 days −0.63 −2.68 0.69 0.43 0.71 0.00 0.55 0.57 0.36 61.41
Frequency 2: 5 to 22 days 0.16 −0.27 0.16 0.14 0.13 0.40 −0.11 −0.23 −0.37 10.92
Frequency 3: longer than 22 days 0.06 −0.09 0.06 0.05 0.04 0.15 −0.05 −0.09 −0.14 3.92

Notes: This table reports the static net and total quantile connectedness indices among crude oil, carbon and agriculture futures markets in time and frequency
domains across different time frequencies. The bold numbers indicate the two largest net connectedness indices at a specific quantile. The underlined numbers
indicate the two smallest net connectedness indices at a specific quantile. Frequency 1 to 3 are set be 1 to 5 days (one week), 5 to 22 days (about one month),
and longer than 22 days, respectively.

are some slightly different findings with regards to connectedness receivers. For example, with daily returns, MDE palm oil futures
become a major net connectedness receptor at 0.05 and 0.50 quantiles, whereas in Panel A of Table 10, coffee futures are a primary
receiver. Nevertheless, both Tables 10 and 13 demonstrate that EUA carbon futures are the primary net connectedness receptors
in both weekly and daily return conditions at 0.05 and 0.95 quantiles. Moreover, Panel A of Table 13 indicates that in the daily
return case, WTI crude oil futures are weak information receivers across different market conditions. This finding is consistent with
the conclusions of several previous studies (Dahl et al., 2020, Du et al., 2011, Nazlioglu et al., 2013, Tiwari et al., 2020, Yip et al.,
2020).

Secondly, the connectedness measurements in the frequency domain across different return quantiles shown in Panel B of
able 13 generally confirm the findings in Table 10. Firstly, all the total connectedness effects across different market conditions
re centered at the short-term frequency, indicating that information transfer in this system primarily focuses on the short-term
requency. Secondly, the main net connectedness senders and receivers oscillate at different market conditions and across various
requencies. Similar to the results in Table 10, in a normal market environment (quantile = 0.50), soybean and corn futures remain

the two main transmitters of net connectedness to others from short to long frequencies. Regarding net connectedness receivers,
sugar, cotton, coffee, and palm oil futures are the major receptors at the short-term frequency, and cotton and palm oil are the prime
receivers at medium- and long-term frequencies. It is worth noting that, even using daily returns, although not very significantly, WTI
oil futures are always a net connectedness recipient at normal market conditions across different time frequencies, further confirming
the results shown in Table 10. Regarding extreme bearish market conditions (quantile = 0.05), the daily return connectedness effects
are also roughly in line with those findings based on weekly returns in Table 10. For instance, at the short-term frequency (1–5
days), soybean, palm oil, and corn futures are the three major information senders, and EUA carbon is still the largest connectedness
receptor. A slight difference is that crude oil is no longer the largest daily return information transmitter, but it still maintains
a positive net connectedness. Similar to Table 10, at medium- and long-term frequencies, wheat remains the main information
sender, while coffee instead of sugar becomes the second-largest information receiver. Moreover, we see that palm oil is still the
major net connectedness receptor, and EUA carbon instead of crude oil turns out to be another main information recipient. It is
also worth mentioning that, consistent with the results in Table 10, crude oil is still a net connectedness receiver at medium- and
long-term frequencies during an extreme bearish situation. Finally, in terms of extreme bullish market conditions (quantile = 0.95),
the outcomes in Table 13 are essentially consistent with those revealed in Table 10. For example, at the short-term frequency (1–5
days), soybean, corn, and wheat are the three primary information senders, while carbon and crude oil futures are the two major
recipients. These findings are highly consistent with those in Table 10. Furthermore, at medium- and long-term frequencies, although
soybean instead of corn becomes the largest information transmitter, sugar, corn, and wheat still have positive net connectedness,
indicating their leading role in daily return information exchange in this system. Moreover, also consistent with those in Table 10,
crude oil keeps its role as an information sender at medium- and long-term frequencies during an extreme bullish market.

Finally, in summary, we find that even when using daily returns, which contain more market information than those in
weekly returns, the connectedness measures are highly consistent with the findings revealed in Table 10 based on weekly returns.
Specifically, each table in Tables 10 and 13 contains 108 net connectedness measurements. If we disregard the absolute numerical
magnitude and only examine the positive and negative signs of these net connectedness indices, we find that among the 108 numbers
in each table, 90 numbers have the same positive and negative signs, resulting in an 83.33% agreement rate for their sign agreement.
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Table 14
Quantile net and total connectedness among weekly crude oil, carbon and agriculture futures returns (Global financial crisis, 2008–2009).

Net Total

WTI oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee MDE Palm oil

Panel A: Connectedness in time domain

Quantile 1: 0.50 −0.13 0.02 1.70 1.00 −0.32 −1.49 −0.49 0.01 −0.31 55.62
Quantile 2: 0.05 1.62 −10.45 −3.89 −4.39 14.24 −3.03 4.06 8.71 −6.87 88.89
Quantile 3: 0.95 −5.64 −9.61 −2.58 3.44 17.12 14.76 −9.96 0.51 −8.04 88.88

Panel B: Connectedness in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 4 weeks −0.23 0.12 1.33 −0.60 −0.19 −0.69 0.50 −0.58 0.33 41.79
Frequency 2: 4 to 26 weeks 0.09 −0.08 0.32 1.36 −0.12 −0.68 −0.83 0.49 −0.55 11.94
Frequency 3: longer than 26 weeks 0.01 −0.02 0.05 0.24 −0.01 −0.12 −0.16 0.10 −0.09 1.88
Quantile 2: 0.05
Frequency 1: 1 to 4 weeks 1.59 −10.20 −3.80 −4.28 13.90 −2.96 3.97 8.50 −6.71 86.79
Frequency 2: 4 to 26 weeks 0.03 −0.22 −0.08 −0.09 0.30 −0.06 0.08 0.18 −0.14 1.86
Frequency 3: longer than 26 weeks 0.00 −0.03 −0.01 −0.01 0.04 −0.01 0.01 0.02 −0.02 0.24
Quantile 3: 0.95
Frequency 1: 1 to 4 weeks −0.38 −0.63 −0.16 0.23 1.12 0.96 −0.65 0.04 −0.53 47.88
Frequency 2: 4 to 26 weeks −2.23 −3.80 −1.03 1.36 6.78 5.85 −3.95 0.20 −3.18 35.20
Frequency 3: longer than 26 weeks −3.03 −5.17 −1.40 1.85 9.22 7.95 −5.37 0.27 −4.33 5.80

Notes: This table reports the static net and total quantile connectedness indices among crude oil, carbon and agriculture futures markets in time and frequency
domains across different time frequencies. The bold numbers indicate the two largest net connectedness indices at a specific quantile. The underlined numbers
indicate the two smallest net connectedness indices at a specific quantile. Frequency 1 to 3 are set be 1 to 4 weeks (one month), 4 to 26 weeks (about half a
year), and longer than 26 weeks, respectively.

Table 15
Quantile net and total connectedness among weekly crude oil, carbon and agriculture futures returns (European debt crisis, 2010–2012).

Net

WTI oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee MDE Palm oil

Panel A: Connectedness in time domain

Quantile 1: 0.50 −0.29 −0.51 1.80 1.43 0.25 −1.01 −0.53 −0.61 −0.54 41.92
Quantile 2: 0.05 0.49 −0.59 0.20 1.33 0.59 −0.41 0.12 −1.84 0.11 84.08
Quantile 3: 0.95 0.33 −1.81 0.15 0.35 0.97 0.15 −0.24 0.25 −0.15 82.92

Panel B: Connectedness in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 4 weeks 0.15 −0.65 1.18 0.67 0.56 −1.91 −0.01 −0.13 0.15 29.38
Frequency 2: 4 to 26 weeks −0.37 0.13 0.53 0.67 −0.26 0.77 −0.45 −0.41 −0.60 11.03
Frequency 3: longer than 26 weeks −0.06 0.02 0.10 0.09 0.05 0.14 −0.07 −0.07 −0.09 1.50
Quantile 2: 0.05
Frequency 1: 1 to 4 weeks 1.21 −0.33 −0.05 −1.07 0.97 −2.08 2.30 −0.07 −0.88 58.56
Frequency 2: 4 to 26 weeks −0.69 −0.28 0.06 2.13 −0.28 1.60 −1.76 −1.46 0.69 22.81
Frequency 3: longer than 26 weeks −0.03 0.03 0.19 0.27 −0.11 0.06 −0.41 −0.30 0.30 2.71
Quantile 3: 0.95
Frequency 1: 1 to 4 weeks −0.44 −4.49 −0.30 1.49 1.21 0.71 −0.05 2.43 −0.57 49.33
Frequency 2: 4 to 26 weeks 0.61 2.20 0.38 −0.92 −0.14 −0.50 −0.20 −1.74 0.31 28.64
Frequency 3: longer than 26 weeks 0.15 0.48 0.06 −0.22 −0.10 −0.06 0.01 −0.44 0.10 4.95

Notes: This table reports the static net and total quantile connectedness indices among crude oil, carbon and agriculture futures markets in time and frequency
domains across different time frequencies. The bold numbers indicate the two largest net connectedness indices at a specific quantile. The underlined numbers
indicate the two smallest net connectedness indices at a specific quantile. Frequency 1 to 3 are set be 1 to 4 weeks (one month), 4 to 26 weeks (about half a
year), and longer than 26 weeks, respectively.

More importantly, if we compare only the signs of net connectedness for crude oil and carbon futures in Tables 10 and 13, we can
find that 21 out of 24 numbers have the same signs, indicating an 87.5% agreement rate for the roles of crude oil and carbon futures
in this system. Therefore, the results in Table 13 confirm that our major findings in our main empirical analysis are quite robust.

6.2. Results of return connectedness during different crisis periods

In this subsection, we aim to test the robustness of our findings by evaluating the connectedness effects among crude oil, carbon,
nd agricultural commodity futures during three major crisis periods: the global financial crisis (GFC) from 2008 to 2009, the
uropean debt crisis from 2010 to 2012, and the COVID-19 pandemic from 2020 to 2021. The empirical results are summarized in
ables 14 to 16, respectively.

Firstly, Tables 14–16 show that the total connectedness effects among the three markets during the three turmoil periods are all
arger than those in the full sample shown in Table 10. For instance, the TCI during the three crises at quantiles of 0.50, 0.05, and
26
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Table 16
Quantile net and total connectedness among weekly crude oil, carbon and agriculture futures returns (COVID-19 pandemic, 2020–2021).

Net Total

WTI oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee DCE Palm oil

Panel A: Connectedness in time domain

Quantile 1: 0.50 0.58 −1.13 1.10 1.48 −0.74 −0.18 −0.59 −0.21 −0.31 42.84
Quantile 2: 0.05 −10.47 −6.99 10.52 −10.79 9.83 3.65 9.51 −9.25 3.98 89.05
Quantile 3: 0.95 0.52 1.03 −0.95 −0.74 −0.56 1.79 −0.39 −1.00 0.31 81.12

Panel B: Connectedness in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 4 weeks −0.03 −0.05 1.00 1.45 −1.02 −0.61 −0.67 −0.05 −0.03 32.98
Frequency 2: 4 to 26 weeks 0.52 −0.94 0.10 0.03 0.25 0.36 0.06 −0.14 −0.23 8.68
Frequency 3: longer than 26 weeks 0.08 −0.14 0.01 0.00 0.04 0.06 0.01 −0.03 −0.04 1.18
Quantile 2: 0.05
Frequency 1: 1 to 4 weeks −10.34 −6.89 10.30 −10.70 9.77 3.66 9.48 −9.16 3.88 86.67
Frequency 2: 4 to 26 weeks −0.34 −0.23 0.34 −0.36 0.33 0.12 0.32 −0.31 0.13 2.85
Frequency 3: longer than 26 weeks −0.04 −0.03 0.04 −0.05 0.04 0.02 0.04 −0.04 0.02 0.37
Quantile 3: 0.95
Frequency 1: 1 to 4 weeks 0.19 0.64 0.03 −0.19 −1.70 2.46 −0.49 −1.54 0.60 68.64
Frequency 2: 4 to 26 weeks 0.31 0.35 −0.87 −0.48 1.01 −0.60 0.08 0.46 −0.27 11.08
Frequency 3: longer than 26 weeks 0.01 0.05 −0.12 −0.07 0.13 −0.07 0.02 0.08 −0.02 1.39

Notes: This table reports the static net and total quantile connectedness indices among crude oil, carbon and agriculture futures markets in time and frequency
domains across different time frequencies. The bold numbers indicate the two largest net connectedness indices at a specific quantile. The underlined numbers
indicate the two smallest net connectedness indices at a specific quantile. Frequency 1 to 3 are set be 1 to 4 weeks (one month), 4 to 26 weeks (about half a
year), and longer than 26 weeks, respectively.

0.95 are over 41%, 84%, and 81%, respectively, while in the full sample, these figures are estimated to be about 36%, 78%, and
77%, respectively. This evidence is consistent with the stylized fact that dependence among markets increases during turmoil periods,
particularly during market crashing time. The total spillover connectedness of crude oil, carbon emission allowance, and agriculture
futures markets during the GFC, European Debt Crisis, and the COVID-19 pandemic periods are all larger than the non-turmoil
periods because during crisis periods, financial markets experience increased uncertainty and volatility. As a result, shocks in one
market can spill over and affect other markets, leading to a higher level of connectedness among markets. Additionally, during crisis
periods, investors tend to shift their portfolio allocations, which can also increase the degree of interdependence among markets.
Therefore, the total volatility spillover connectedness among these markets tends to be higher during crisis periods than during non-
turmoil periods. Secondly, we find that even during different crisis environments, agriculture commodity futures, such as soybean,
corn, and wheat, generally maintain their roles as net connectedness senders. Additionally, EUA carbon futures are generally major
net connectedness receptors across different crisis periods, especially at extreme bearish market conditions (quantile = 0.05). Finally,
the role of the crude oil market appears to have varied during different crises. For example, during the global financial crisis, it is
a weak net connectedness transmitter at quantiles of 0.50 and 0.05, while it becomes a clear receiver at the quantile of 0.95. In the
European debt crisis, crude oil futures played more of a role as a net connectedness sender, especially at extreme market conditions.
However, during the recent COVID-19 pandemic, crude oil futures were obviously a net connectedness receptor at extreme bearish
environments and a moderate transmitter at normal and extreme bullish conditions. The reasons of these statistical results can be
linked to the demand for agricultural commodities tends to be more stable and less sensitive to economic fluctuations, as people still
need to eat even during a recession. On the other hand, crude oil and carbon emission allowance markets are more volatile during
financial crises because they are more sensitive to changes in economic activity and investor sentiment. As a result, agricultural
commodity futures tend to maintain their roles as net connectedness senders, as they are less affected by financial crises and can
still provide stability to the other markets.

In conclusion, the connectedness effects of EUA carbon and agriculture commodity futures in Tables 14 to 16 during crisis
periods are generally consistent with those in Table 10 based on the full data sample. However, crude oil futures show different
roles in information transmission during these crises. These differences may be attributed to the fact that the performance of crude
oil markets is highly dependent on the shocks from economic fundamentals, which are affected differently by different crises. For
example, the 2008 global financial crisis was mainly caused by excessive innovation and speculation in the derivatives of the U.S.
real estate market. The European debt crisis was mainly triggered by the serious government deficits and sovereign debt defaults
of some countries, such as Greece. These two crises may not have had direct impacts on the crude oil markets, but the COVID-19
pandemic, on the other hand, had a huge direct impact on the supply and demand side of all real economies, and thus on the supply
and demand behavior of the crude oil market. The above findings suggest that the connectedness effects among crude oil, carbon,
and agriculture commodity futures will vary in different crisis periods. As a result, we need to be very careful when allocating
portfolios of crude oil, carbon, and agriculture assets, especially during turmoil market conditions.

6.3. Results of volatility connectedness

The previous analyses have yielded a relatively clear understanding of the return connectedness among crude oil, carbon, and
27
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Journal of International Financial Markets, Institutions & Money 88 (2023) 101821Y. Wei et al.

a
a
f
r
s

Table 17
Quantile net and total connectedness among weekly crude oil, carbon and agriculture futures volatility (Full sample).

Net Total

WTI oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee DCE Palm oil

Panel A: Connectedness in time domain

Quantile 1: 0.50 −0.42 0.76 0.01 1.39 −1.12 −0.91 0.07 −0.13 0.35 30.55
Quantile 2: 0.05 −0.12 −0.02 0.04 0.40 0.29 0.05 0.03 −0.55 −0.12 40.47
Quantile 3: 0.95 38.28 −9.81 −5.10 −5.26 −4.75 −3.75 −5.71 −3.93 0.01 94.15

Panel B: Connectedness in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 4 weeks 0.03 −0.04 −0.24 −0.14 0.26 0.16 −0.02 −0.13 0.12 1.96
Frequency 2: 4 to 26 weeks −0.10 0.07 −0.53 −0.32 0.75 0.33 −0.18 −0.39 0.37 7.84
Frequency 3: longer than 26 weeks −0.35 0.73 0.78 1.86 −2.14 −1.40 0.26 0.38 −0.13 20.79
Quantile 2: 0.05
Frequency 1: 1 to 4 weeks −0.10 −0.06 −0.38 −0.36 0.53 0.37 −0.02 −0.29 0.30 4.87
Frequency 2: 4 to 26 weeks −0.42 −0.04 −0.69 −0.61 1.37 0.83 −0.33 −0.76 0.66 16.49
Frequency 3: longer than 26 weeks 0.40 0.08 1.11 1.37 −1.60 −1.15 0.38 0.50 −1.08 19.10
Quantile 3: 0.95
Frequency 1: 1 to 4 weeks 10.85 −2.55 −1.67 −1.55 −2.07 −0.81 −1.74 −1.30 0.83 23.14
Frequency 2: 4 to 26 weeks 21.92 −5.57 −2.92 −2.94 −2.93 −2.27 −3.29 −2.32 0.31 52.68
Frequency 3: longer than 26 weeks 5.51 −1.69 −0.51 −0.77 0.25 −0.67 −0.68 −0.31 −1.13 18.33

Notes: This table reports the static net and total quantile connectedness indices among crude oil, carbon and agriculture futures markets in time and frequency
domains across different time frequencies. The bold numbers indicate the two largest net connectedness indices at a specific quantile. The underlined numbers
indicate the two smallest net connectedness indices at a specific quantile. Frequencies 1 to 3 are set to be 1 to 4 weeks (one month), 4 to 26 weeks (about half
a year), and longer than 26 weeks, respectively.

Table 18
Quantile net and total connectedness among daily crude oil, carbon and agriculture futures volatility (Full sample).

Net Total

WTI oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee MDE Palm oil

Panel A: Connectedness in time domain

Quantile 1: 0.50 0.07 2.53 −0.41 −0.10 −0.23 −0.31 −1.10 −0.01 −0.45 12.30
Quantile 2: 0.05 −0.13 −0.04 −0.09 −0.14 0.28 0.02 −0.05 −0.02 0.17 16.96
Quantile 3: 0.95 40.58 −11.08 −7.27 −7.90 −5.20 −4.96 −3.12 −4.28 3.23 88.89

Panel B: Connectedness in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 5 days −0.05 −0.03 −0.01 0.01 −0.02 0.04 0.01 −0.02 0.07 0.43
Frequency 2: 5 to 22 days −0.10 0.02 −0.04 0.02 −0.07 0.10 −0.01 −0.05 0.12 1.24
Frequency 3: longer than 22 days 0.22 2.54 −0.36 −0.13 −0.13 −0.45 −1.10 0.05 −0.64 10.62
Quantile 2: 0.05
Frequency 1: 1 to 5 days −0.11 −0.02 −0.02 0.02 −0.05 0.12 0.01 −0.02 0.07 1.18
Frequency 2: 5 to 22 days −0.18 −0.04 −0.06 0.05 −0.11 0.29 0.02 −0.06 0.10 3.04
Frequency 3: longer than 22 days 0.17 0.01 0.00 −0.21 0.44 −0.39 −0.08 0.06 0.00 12.74
Quantile 3: 0.95
Frequency 1: 1 to 5 days 9.69 −2.65 −1.74 −1.87 −1.25 −1.19 −0.75 −1.02 0.77 21.22
Frequency 2: 5 to 22 days 15.96 −4.36 −2.86 −3.10 −2.05 −1.95 −1.23 −1.68 1.27 34.96
Frequency 3: longer than 22 days 14.93 −4.08 −2.67 −2.93 −1.90 −1.82 −1.15 −1.57 1.19 32.71

Notes: This table reports the static net and total quantile connectedness indices among crude oil, carbon and agriculture futures markets in time and frequency
domains across different time frequencies. The bold numbers indicate the two largest net connectedness indices at a specific quantile. The underlined numbers
indicate the two smallest net connectedness indices at a specific quantile. Frequency 1 to 3 are set be 1 to 5 days (one week), 5 to 22 days (about one month),
and longer than 22 days, respectively.

among these markets. Understanding volatility connectedness is equally important for policy makers and investors to better
comprehend the interdependencies among these markets. Therefore, this sub-section aims to address this gap by presenting more
evidence on volatility connectedness under different time frequencies and market conditions. Firstly, we use the commonly employed
GARCH model to estimate the weekly and daily volatility of crude oil, carbon, and agriculture commodity futures. Next, we adopt
the quantile-frequency connectedness method to estimate the results for weekly and daily volatility, as shown in Tables 17 and 18,
respectively.

We employ the simple and powerful GARCH(1,1) model to gauge the conditional volatilities of the crude oil, carbon, and
griculture commodity markets. The reason for choosing the GARCH(1,1) model in this paper is twofold: on the one hand, Hansen
nd Lunde (2005) compare 330 ARCH-type models in terms of their ability to describe and forecast the conditional variance, and
ind no evidence that a GARCH(1,1) is outperformed by more sophisticated GARCH-type models. On the other hand, although some
elevant studies continue to use the EGARCH or GJR-GARCH model to incorporate the volatility leverage effect in their volatility
pillover analyses, the seminal work of Merton (1974) points out that the volatility leverage effect arises from the fact that a drop
28
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Table 19
Quantile net and total connectedness among weekly crude oil, carbon and agriculture futures volatility (Full sample, based on GJR-GARCH model).

Net Total

Brent oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee DCE Palm oil

Panel A: Connectedness in time domain

Quantile 1: 0.50 0.46 0.51 −0.72 1.91 −1.00 −0.96 −0.57 −0.09 0.45 27.45
Quantile 2: 0.05 −0.46 −0.05 0.42 0.44 0.19 0.22 −0.10 −0.65 −0.02 35.35
Quantile 3: 0.95 12.49 −10.97 0.48 0.76 −2.54 0.38 −0.38 −3.84 3.63 88.89

Panel B: Connectedness in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 4 weeks −0.29 −0.11 −0.03 −0.17 0.18 0.18 0.18 −0.08 0.14 2.09
Frequency 2: 4 to 26 weeks −0.46 0.06 −0.34 0.23 0.05 −0.05 0.32 −0.20 0.39 10.38
Frequency 3: longer than 26 weeks 1.21 0.56 −0.35 1.85 −1.23 −1.08 −1.07 0.19 −0.08 14.97
Quantile 2: 0.05
Frequency 1: 1 to 4 weeks −0.35 −0.12 −0.04 −0.41 0.34 0.32 0.28 −0.24 0.22 4.31
Frequency 2: 4 to 26 weeks −0.64 −0.09 −0.16 −0.32 0.58 0.54 0.41 −0.57 0.26 17.32
Frequency 3: longer than 26 weeks 0.54 0.16 0.63 1.16 −0.72 −0.64 −0.78 0.16 −0.50 13.73
Quantile 3: 0.95
Frequency 1: 1 to 4 weeks 3.60 −3.16 0.14 0.22 −0.73 0.11 −0.11 −1.11 1.05 25.62
Frequency 2: 4 to 26 weeks 7.06 −6.20 0.27 0.43 −1.43 0.21 −0.22 −2.17 2.05 50.23
Frequency 3: longer than 26 weeks 1.83 −1.61 0.07 0.11 −0.37 0.06 −0.06 −0.56 0.53 13.04

Notes: This table reports the static net and total quantile connectedness indices among crude oil, carbon and agriculture futures markets in time and frequency
domains across different time frequencies. The bold numbers indicate the two largest net connectedness indices at a specific quantile. The underlined numbers
indicate the two smallest net connectedness indices at a specific quantile. Frequency 1 to 3 are set be 1 to 4 weeks (one month), 4 to 26 weeks (about half a
year), and longer than 26 weeks, respectively.

in a stock price will increase the leverage of the firm as long as debt stays constant. This increase in leverage might explain the
increase variance associated with the price drop. However, there are no such economic fundamentals in futures markets as there
are in stock markets. Therefore, we argue that this leverage effect is not present in the futures markets for crude oil, carbon and
agricultural commodities, and we do not use these volatility models that incorporate the leverage effect. In addition, many related
researches focusing on the risk/volatility spillover effects on crude oil, carbon, and agriculture commodity markets also adopt this
simple GARCH(1,1) model to measure the conditional volatilities (Nazlioglu et al., 2013; Al-Maadid et al., 2017; Boubaker and Raza,
2017; Hamadi et al., 2017; Shahzad et al., 2018).

Tables 17 and 18 present novel and more comprehensive evidence on the time and frequency volatility connectedness among
rude oil, carbon, and agriculture commodity futures under different market conditions, extending the research of Tiwari et al.
2020). Tiwari et al. (2020) demonstrate significant volatility spillovers from agricultural markets to energy markets during extreme
arket conditions, and report the dominance of agricultural markets over energy markets, using the QVAR-based connectedness
ethod of Ando et al. (2022). However, their research has some limitations in distinguishing different volatility statuses. Specifically,

hey treat a quantile of 0.05 (0.95) as an extreme negative (positive) market condition. As volatility estimations are always
ositive, a lower quantile (e.g., 0.05) indicates a very low volatile market environment, rather than an extreme negative (bearish)
arket condition. Similarly, a higher quantile (e.g., 0.95) reflects a highly turbulent market condition, instead of an extreme
ositive (bullish) market condition. Moreover, their research lacks evidence on extreme connectedness at different time frequencies.
herefore, we re-examine the quantile volatility connectedness among crude oil, carbon, and agriculture commodity futures by
edefining volatility statuses at various quantiles, and further explore these connectedness effects across different time frequencies.

Tables 17 and 18 provide highly consistent evidence on the time and frequency volatility connectedness among crude oil, carbon,
nd agriculture commodity futures across different volatility statuses (quantiles). At very low (quantile = 0.05) and moderate

(quantile = 0.50) volatile market conditions, measured by daily or weekly data, agriculture commodities, such as soybean, corn,
wheat, sugar, and palm oil, are the dominant net connectedness senders. However, at very high volatile market environments
(quantile = 0.95), crude oil is the dominant net connectedness sender to other futures across short to long terms. These findings
uggest that agriculture futures, while not very strong, act as information senders of volatility connectedness effects at low and
oderate turmoil market conditions, whereas crude oil is an absolute leading volatility connectedness transmitter to other futures
nder very high volatile market environments. Moreover, EUA carbon futures are generally a net connectedness receptor at different
arket conditions and frequencies, particularly during very high turmoil circumstances.

In summary, the results of volatility connectedness presented in Tables 17 and 18 differ from those of return connectedness,
urther highlighting the fact that return and volatility are distinct measures of asset performance. While return evaluates profits,
olatility assesses risk, indicating that return and volatility connectedness effects among different assets need not be perfectly aligned.
he information on connectedness in returns can be useful for better portfolio allocation, whereas that in volatilities may aid in
uperior risk management strategies.

To prove our arguments above, we further use the GJR-GARCH(1,1) model to re-estimate the weekly and daily volatilities of the
rude oil, carbon, and agriculture commodity markets, and then calculate the quantile-frequency connectedness results in Tables 19
nd 20, respectively. Comparing the results of Tables 19 and 20 with those of Tables 17 and 18, we find very consistent findings
etween them. To be simple, in very low (quantile = 0.05) and moderate (quantile = 0.50) volatile market environments, whether
29
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Table 20
Quantile net and total connectedness among daily crude oil, carbon and agriculture futures volatility (Full sample, based on GJR-GARCH model).

Net Total

WTI oil EUA carbon Soybean Corn Wheat Sugar Cotton Coffee DCE Palm oil

Panel A: Connectedness in time domain

Quantile 1: 0.50 0.10 1.85 −0.19 −0.14 −0.03 −0.07 −0.87 0.01 −0.66 10.33
Quantile 2: 0.05 −0.09 0.00 0.02 −0.10 0.28 0.04 −0.01 −0.10 −0.05 14.40
Quantile 3: 0.95 23.31 −10.80 −2.43 −7.05 −2.69 −2.45 −3.61 8.04 −2.31 89.13

Panel B: Connectedness in frequency domain

Quantile 1: 0.50
Frequency 1: 1 to 5 days −0.02 0.00 0.00 0.00 −0.02 0.03 0.00 −0.01 0.02 0.24
Frequency 2: 5 to 22 days −0.12 0.14 −0.03 0.02 −0.13 0.18 −0.05 −0.09 0.08 1.80
Frequency 3: longer than 22 days 0.24 1.71 −0.16 −0.17 0.12 −0.28 −0.82 0.11 −0.76 8.29
Quantile 2: 0.05
Frequency 1: 1 to 5 days −0.04 0.00 −0.01 0.01 −0.04 0.08 0.00 −0.03 0.05 0.66
Frequency 2: 5 to 22 days −0.21 0.00 −0.07 0.04 −0.22 0.45 −0.06 −0.19 0.24 4.21
Frequency 3: longer than 22 days 0.16 0.01 0.10 −0.16 0.54 −0.49 0.06 0.12 −0.34 9.54
Quantile 3: 0.95
Frequency 1: 1 to 5 days 2.64 −1.02 −0.46 −0.75 −0.34 −0.27 −0.67 1.12 −0.25 10.66
Frequency 2: 5 to 22 days 12.18 −5.29 −1.59 −3.64 −1.45 −1.30 −2.28 4.56 −1.19 47.55
Frequency 3: longer than 22 days 8.32 −4.49 −0.41 −2.66 −0.86 −0.89 −0.62 2.45 −0.85 30.95

This table reports the static net and total quantile connectedness indices among crude oil, carbon and agriculture futures markets in time and frequency domains
across different time frequencies. The bold numbers indicate the two largest net connectedness indices at a specific quantile. The underlined numbers indicate
the two smallest net connectedness indices at a specific quantile. Frequency 1 to 3 are set be 1 to 5 days (one week), 5 to 22 days (about one month), and
longer than 22 days, respectively.

measured by daily or weekly data, most net connectedness senders are agricultural commodities such as soybeans, corn, wheat,
sugar and palm oil. However, when the market environment is very volatile (quantile = 0.95), we find that crude oil is a dominant
net connectedness sender to other futures over the short to long term. These results suggest that agricultural futures, although not
very strong, act as information senders of volatility connectedness effects in low and moderately turbulent market conditions. Crude
oil, on the other hand, is an absolute leading transmitter of volatility connectedness effects to other futures in very highly volatile
market environments. Moreover, we find that EUA carbon futures is roughly a net connectedness receptor under different market
conditions and different time frequencies, especially under very high turbulence conditions.

7. Conclusions

The key roles of crude oil price, carbon emission allowance, and agriculture plantations in global environmental protection
and sustainable development have garnered a great deal of academic attentions. Therefore, quantifying the interactions among the
prices of crude oil, carbon emission allowance and agriculture commodity futures can help us to make better regulatory policy and
investment decisions in this field. However, there is no literature focusing on the spillover, especially the spillover at extreme market
conditions, among crude oil, carbon emission allowance and agriculture commodity futures, which is the gap that this paper seeks to
fill. More importantly, there is no literature concentrating on the potential roles of the carbon market in hedging risk and improving
the performance of oil-agriculture portfolios, which could provide policymakers and investors with a new angle on their regulatory
and investment strategies. Besides adopting a series of mean (normal market) spillover measures, such as those commonly used
static DY and BK, TVP-VAR-DY, and TVP-VAR-BK methods (Antonakakis et al., 2020; Ellington and Baruník, 2020; Baruník and
Křehlík, 2018;Diebold and Yilmaz, 2012), this paper also utilizes a new quantile-frequency spillover approach of Wei et al. (2022a)
and Bai et al. (2023) to identify these spillover effects at extreme market environments spanning various time frequencies, which
may contributes more valuable information for market risk management during turmoil market periods.

The major empirical findings of our study have significant policy and economic implications. Firstly, we observe that the spillover
effects among crude oil, carbon emission allowance, and agricultural commodity futures markets are considerably higher during
extreme market conditions compared to normal situations. This implies a faster contagion of market risks among these futures
markets and a decrease in diversification effects during extremely volatile market environments. In such scenarios, policy makers,
particularly financial market supervisors, should develop timely firewall policies and implement risk assessment tools such as stress
testing and value-at-risk estimation and backtesting models. These measures can monitor market risks and prevent the rapid spread
of severe failures among different futures markets. Futures portfolio managers should hedge market risks by using other types of
instruments to offset the damping diversification effects.

Secondly, we find that soybean and corn futures play a crucial role in information transmissions across different market situations
at time domain. This indicates the significant influence of soybean and corn futures on both fossil energy and carbon emission
allowance prices. As they are essential agriculture plants and the main source of biofuel production, policy makers and portfolio
managers should closely monitor their price movements. Price regulation, planting and reclamation policy, as well as asset allocation
decisions concerning soybean and corn commodities can be more conducive to the efficient promotion of global environmental
protection and sustainable development.
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Thirdly, we observe a passive position of carbon futures in the information spillover under almost all situations. This suggests
hat the price of carbon emission allowance is more likely to be influenced by the prices of other futures, particularly the strong ones
uch as soybean and corn futures. Thus, proactive policy makers and portfolio managers should focus more on the price fluctuations
n oil and agriculture commodities instead of carbon products.

Fourthly, our new quantile-frequency spillover results show that during extreme bearish market environments in short-term
requency and extreme bullish market conditions in medium- and long-term frequencies, crude oil futures become the powerful
nformation contributor over others. This implies that policy makers and fund managers should watch for the leadership effect of
rude oil markets in extreme situations at specific time horizons. For example, when facing a market crash, futures trading managers
ust promptly adjust their crude oil position in their portfolio in the short term to avoid the risk contagion effects due to crude oil
rice volatility in the face of extreme market collapse scenarios.

Furthermore, we show that carbon futures contribute significantly to improving hedging effects and performance (e.g., cumu-
ative returns and Sharpe ratios) of various oil/agricultural portfolios. This encourages not only policy makers to further support
he development of carbon markets, but also portfolio managers, oil/agriculture producers and consumers to actively adopt carbon
utures in their risk management and production applications. Fourth, the new quantile-frequency connectedness results show that
rude oil futures turn out to be the strongest volatility information sender in extreme bullish market conditions (quantile = 0.95)

across different time frequencies, suggesting that policy makers and portfolio managers should pay close attention to the leading
effect of the crude oil market in extreme bullish markets and adjust the crude oil position in their portfolio promptly for fear of risk
contagion effects from crude oil price volatility.

Finally, we observe that the major parts of both total and net spillover effects are concentrated at short-term frequency (1 to
4 weeks), implying that, on the one hand, policy makers should focus on developing short-term policy combinations to achieve
more effective regulation outcomes rather than long-term regulatory policies. On the other hand, futures traders should pay more
attention to the short-term risks and spillovers of their positions and strive to strike a balance between investment returns and risks
through more short-term investments.
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