
Electrophysiological and Behavioral Responses of an Ambrosia Beetle
to Volatiles of its Nutritional Fungal Symbiont

Christopher M. Ranger1 & Marek Dzurenko2,3
& Jenny Barnett1 & Ruchika Geedi1 & Louela Castrillo4

&

Matthew Ethington5
& Matthew Ginzel5,6 & Karla Addesso7

& Michael E. Reding1

Received: 17 December 2020 /Revised: 23 February 2021 /Accepted: 2 March 2021
# This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021

Abstract
Ambrosia beetles (Coleoptera: Scolytinae) cultivate their fungal symbiont within host substrates as the sole source of nutrition on
which the larvae and adults must feed. To investigate a possible role for semiochemicals in this interaction, we characterized
electrophysiological and behavioral responses of Xylosandrus germanus to volatiles associated with its fungal symbiont
Ambrosiella grosmanniae. During still-air walking bioassays, X. germanus exhibited an arrestment response to volatiles of
A. grosmanniae, but not antagonistic fungi Beauveria bassiana, Metarhizium brunneum, Trichoderma harzianum, the plant
pathogen Fusarium proliferatum, or malt extract agar. Solid phase microextraction-gas chromatography-mass spectrometry
identified 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate and 3-methyl-1-butanol in emissions from A. grosmanniae;
the latter two compounds were also detected in emissions from B. bassiana. Concentration-responses using
electroantennography documented weak depolarizations to A. grosmanniae fungal volatiles, unlike the comparatively strong
response to ethanol. When tested singly in walking bioassays, volatiles identified from A. grosmanniae elicited relatively weak
arrestment responses, unlike the responses to ethanol. Xylosandrus germanus also exhibited weak or no long-range attraction to
the fungal volatiles when tested singly during field trials in 2016–2018. None of the fungal volatiles enhanced attraction of
X. germanus to ethanol when tested singly; in contrast, 2-phenylethanol and 3-methyl-1-butanol consistently reduced attraction
to ethanol. Volatiles emitted by A. grosmanniae may represent short-range olfactory cues that could aid in distinguishing their
nutritional fungal symbiont from other fungi, but these compounds are not likely to be useful as long-range attractants for
improving detection or mass trapping tactics.
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Introduction

Ambrosia beetles (Curculionidae: Scolytinae and
Platypodinae) are characterized by their obligate symbiosis
with fungi (Hulcr et al. 2015). Thirty of the 60 exotic
Scolytinae established in North America are within the tribe
Xyleborini, which includes many species that attack horticul-
tural trees (Agnello et al. 2017; Gomez et al. 2018; Hulcr and
Stelinski 2017; Ranger et al. 2016). Dispersing female
xyleborine beetles carry spores of their fungal symbiont(s)
within mycetangia in the form of pits, grooves, sacs, or invag-
inated pouches (Hulcr et al. 2015; Vega and Biedermann
2020). The fungal symbionts are mainly in the genera
Ambrosiella, Fusarium, and Raffaelea and rely on ambrosia
beetles for dispersal and propagation (Kostovcik et al. 2015;
Mayers et al. 2015; Wingfield et al. 2017). During tunnel
excavation by female xyleborine beetles into host trees, spores
are transferred to the tunnel walls for establishing fungal
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gardens (Batra 1985). Females begin ovipositing eggs after
sowing the fungal symbiont that serves as the sole source of
nourishment for developing larvae and maturing adults
(Biedermann and Taborsky 2011).

Xylosandrus germanus is a xyleborine ambrosia beetle na-
tive to southeast Asia but now established throughout much of
Europe and North America (Dzurenko et al. 2021; Gomez
et al. 2018). Male X. germanus are flightless, do not possess
a mycetangium, and remain in or near their natal gallery for
life; females disperse to initiate new colonies and attack re-
cently cut logs, saplings, and mature trees of more than 200
species in managed and unmanaged systems (Galko et al.
2018; Ranger et al. 2016, 2021). Thin-barked deciduous spe-
cies are commonly selected in horticultural systems, but co-
niferous species are also attacked. Despite a broad host range,
living but weakened trees in the early stages of physiological
stress are preferentially attacked byX. germanuswhile healthy
trees are rarely attacked and poorly colonized (Ranger et al.
2015). A variety of factors can predispose trees to attack by
X. germanus, including flood and low temperature stress
(Ranger et al. 2021).

During host-selection, ethanol represents an important
long-range attractant and host acceptance cue used by
X. germanus to locate suitable trees for establishing their nu-
tritional symbiont Ambrosiella grosmanniae and rearing off-
spring (Klimetzek et al. 1986; Ranger et al. 2021; Rassati et al.
2020). Ethanol also promotes the growth of A. grosmanniae,
and its presence within host tissues increases the colonization
success of X. germanus (Ranger et al. 2018). Ethanol is in-
duced and emitted from the epidermis of trees in response to
the aforementioned stressors and a variety of other abiotic and
biotic factors (Kimmerer and Kozlowski 1982; Ranger
et al. 2021). Other host-derived compounds tested to date were
weak and inconsistent attractants for X. germanuswhen tested
alone or in combination with ethanol, including an alcohol
(i.e. methanol), aldehyde (i.e. acetaldehyde), ketone (i.e. ace-
tone), spiroacetal (i.e. conophthorin), and several monoter-
penes (i.e. α- and β-pinene, camphene, myrcene, ρ-cymene,
limonene, and eucalyptol) (Dodds and Miller 2010; Kohnle
et al. 1992; Miller et al. 2015; Ranger et al. 2010, 2011, 2014;
VanDerLaan and Ginzel 2013). There is currently no evidence
that X. germanus or other xyleborines produce a long-range
aggregation or sex pheromone, perhaps because males are
flightless and females reproduce through haplodiploidy (Ott
2007; Ranger et al. 2021).

A growing body of research indicates that insects respond
to fungal volatile organic compounds associated with their
sensory environment, but few fungal volatiles have been test-
ed to date for activity in laboratory or natural settings (Davis
et al. 2013). As fungus farming insects, ambrosia beetles rep-
resent a promising model system for symbiosis due to their
close association with fungal species. During olfactometer
studies, Hulcr et al. (2011) demonstrated that three species

of ambrosia beetles were attracted to volatiles emitted from
the mycelium of their fungal symbionts, namely, Xyleborus
glabratus and Raffaelea lauricola, Xyleborus ferrugineus and
Ambrosiozyma ambrosiae, and Xylosandrus crassiusculus
and Ambrosiella roeperi. In contrast, the aforementioned spe-
cies were non-responsive or repelled by mycoparasitic
Trichoderma sp. Olfactometer studies conducted by Egonyu
and Torto (2018) also observed that Xylosandrus compactus
was attracted to volatiles emitted from mycelium of its sym-
biont Fusarium solani (Mart.) Sacc. Characterizing ambrosia
beetle semiochemicals emitted by their fungal symbiont could
provide insight into the evolutionary and ecological basis for
such chemical signals. A specific and conserved association
has been documented among populations of X. germanus and
A. grosmanniae (Mayers et al. 2015), but other ambrosia bee-
tles are associated with multiple different fungi (Kostovcik
et al. 2015). Identifying these semiochemicals might also en-
hance attraction to existing lures for detecting and monitoring
destructive ambrosia beetles.

The overall goal of our current study was to characterize
the response of X. germanus to volatiles associated with its
fungal symbiont A. grosmanniae. We hypothesized that
X. germanuswould exhibit short- and/or long-range behavior-
al responses to volatiles associated with A. grosmanniae due
to their close evolutionary and ecological associations. To test
this hypothesis, the specific objectives were to: (1) compare
the short-range arrestant response of X. germanus to volatiles
emitted from A. grosmanniae relative to the entomopathogen-
ic fungi Beauveria bassiana and Metarhizium brunneum, the
mycoparasitic fungus Trichoderma harzianum, and the plant
pathogen Fusarium proliferatum; (2) identify volatiles emit-
ted from A. grosmanniae and the aforementioned fungi by
solid phase microextraction-gas chromatography-mass spec-
trometry (SPME-GC-MS); (3) characterize olfactory re-
sponses of X. germanus by means of electroantennography
(EAG) to A. grosmanniae fungal volatiles; and (4) evaluate
the short- and long-range behavioral response of X. germanus
to A. grosmanniae fungal volatiles.

Methods and Materials

Culturing of A. grosmanniae

Adult female X. germanus were collected after dispersing
from their overwintering galleries within host tree substrates
using bottle traps (Ranger et al. 2010). Traps were baited with
an ethanol sachet lure (65 mg/d at 30 °C; AgBio, Inc.,
Westminster, CO) and deployed in a mixed hardwood forest-
ed area at the Ohio Agricultural Research and Development
Center in Wayne Co., Ohio, USA (40°45′40.85”N, 81°51′
14.71”W). Adults collected in the traps were prevented from
desiccating by placing a moistened paper towel rolled into a
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tube in the bottom collection vessel of the trap (Ranger et al.
2015). Trap contents were collected daily and transferred to
parafilm-sealed petri dishes containing moistened filter paper
and stored for 24 to 48 h at 3.3 °C. Field collected beetles were
then surface sterilized by briefly (2–3 s) dipping in 70% eth-
anol (aq). Under a laminar flow hood, a sterile transfer needle
was next inserted into the thoracic mycetangia of X. germanus
and streaked onto petri dishes containing 2%malt extract agar.
A representative cultured strain isolated from beetles field
collected beetles in Shreve, Ohio, USA (40°41′36.24”N;
81°55′31.59”W) in May 2010 and designated as XgOH11
was used (Castrillo et al. 2016; Mayers et al. 2015).

Behavioral Bioassay

A still-air walking olfactometer (Fig. 1a, b) described by
Borden et al. (1968) was used to assess the behavioral re-
sponses of X. germanus to volatiles of its fungal symbiont,
A. grosmanniae, as compared to the entomopathogenic fungi
Beauveria bassiana (Balsamo) Vuillemin strain GHA and
Metarhizium brunneum Petch strain F52 (=ARSEF 5198; pre-
viously identified as Metarhizium anisopliae), the

mycoparasitic fungus Trichoderma harzianum Rifai strain
T-22, and the plant pathogen Fusarium proliferatum
(Matsushima) Nirenberg as representative of a non-symbiont
and non-entomopathogen. All fungal strains are maintained
under long-term storage at the USDA-ARS Robert W.
Holley Center for Agriculture & Health in Ithaca, NY
(Castrillo et al. 2016).

The still-air olfactometer consisted of a Plexiglas acrylic plat-
form (36 × 10 cm; L ×W) onwhich ambrosia beetles could walk
that included two rectangular openings (5 × 2.5 cm; L ×W) po-
sitioned 10 cm from either end (Fig. 1a, b). Fine mesh polyester
fabric (35 × 35 squares/cm2) was secured tightly across the sur-
face of the platform using medium size binder clips (3.17 cm
width; 1.6 cm clip capacity) to provide traction for beetles while
walking and to allow beetles to pass over the two rectangular
openings. The platform was then rested on two uncovered poly-
styrene petri dishes so the two rectangular openings were posi-
tioned directly over the open petri dishes. In doing so, volatiles
could emanate upwards from the petri dishes and through the
mesh-covered rectangular openings. The petri dish positioned on
the right-hand side of the observer was empty and not used for
measuring behavioral responses during all bioassays, while the
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Fig. 1 a-e. a, b Still-air walking olfactometer used to measure the arrest-
ment response of female X. germanus to volatile stimuli. As beetles
walked along the platform towards the light source, the duration of time
was measured that beetles spent within the confines of the mesh-covered
rectangular opening above the petri-dish on the left side (indicated by
black horizontal bar in 1B, 2.5 cm). c Duration of time that
X. germanus spent above petri dishes containing cultures of
X. germanus’ nutritional fungal symbiont Ambrosiella grosmanniae,
Ag; entomopathogenic fungi Beauveria bassiana, Bb, and Metarhizium
brunneum, Mb; mycoparasitic fungus Trichoderma harzianum, Th;

fungal plant pathogen Fusarium proliferatum, Fp; and malt extract agar,
MEA. Duration of time that X. germanus spent above petri dishes con-
taining filter paper treated with 40 μl of d 1 mg/ml and e 0.1 mg/ml
dilutions of ethanol, EtOH; 2-ethyl-1-hexanol, 2E1H; 2-phenylethanol,
2PE; methyl benzoate, MB; 3-methyl-1-butanol, 3M1B; and mineral oil,
MO. Different letters within a graph represent significantly different
means using generalized linear models and least square means ((c):
χ2 = 100.70; df = 5; P < 0.0001; (d): χ2 = 249.64; df = 5; P < 0.0001;
(e): χ2 = 17.28; df = 5; P = 0.004)
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petri dish on the left-hand side of the observer contained a clean
MEA plate or a culture of A. grosmanniae, B. bassiana,
M. brunneum, T. harzianum, or F. proliferatum. Cultures were
established on theMEA plates andmaintained at 20 °C for about
14 d before use in the bioassays. Following SPME-GC-MS anal-
yses, additional bioassays were conducted to assess the arrest-
ment response of X. germanus to the following individual com-
pounds: ethanol, 2-ethyl-1-hexanol, 2-phenylethanol, methyl
benzoate, 3-methyl-1-butanol, and a mineral oil control. A strip
of filter paper (4 × 1 cm; L ×W) was treated with 40 μl of 0.1 or
1 mg/ml dilutions in mineral oil of the aforementioned com-
pounds to deliver 4 μg and 40 μg, respectively. After saturation,
the filter paper strip was placed in the center of the petri dish
underneath the left-hand threshold of the walking platform.

A plexiglass chamber (30 × 6 × 10.5 cm; L × W × H)
enclosed on all sides except for the underside was then rested
on top of the platform to confine beetles during the walking
bioassays. The chamber was removed to place a beetle on the
walking platform and then promptly returned. Since recently-
emerged ambrosia beetles exhibit a positive phototaxic response
(Borden et al. 1968; Ranger pers. obs.), a single gooseneck illu-
minator (150 W halogen bulb; 1500 lm/m2 at 2.54 cm from end
of illuminator) generally used for a stereomicroscope was posi-
tioned at the end of the walking platform on the left-most side to
attract beetles during the walking bioassays. Bioassays were oth-
erwise conducted in a completely dark room.

Assessing the behavioral response of X. germanus to volatiles
of the aforementioned cultures or individual compounds was
initiated by using forceps to place a single adult female near
the end of the walking platform opposite the light source.
Recently-emerged 3–4 d old laboratory-reared beetles (Castrillo
et al. 2012) were held at room temperature in a laboratory ex-
posed to natural light in a petri dish containing moistened filter
paper for 3–5 d before use in bioassays. Beetles typically began
walking towards the light source within 30 s of being transferred
to the platform; beetles that did not exhibit a rapid positive
phototaxic response were removed from the chamber and re-
placed. As beetles walked along the platform towards the light
source, a handheld timer was used to record the duration of time
that beetles spent within the confines of the mesh-covered rect-
angular opening in the platform.

Bioassays were conducted during 13:00 to 18:00 EST be-
cause X. germanus exhibits peak phototaxic behavioral and
flight activity during these hours (Ranger, pers. obs.). Clean,
fresh mesh fabric was used over the walking platform to test
each culture or compound. The plexiglass platform and cham-
ber were wiped clean with warm, unscented soapy water,
dried using a paper towel, and allowed to air dry prior to
testing each culture or compound. Lab-reared X. germanus
(n = 20 individual beetles per culture or compound) were only
used once to assess the behaviora l response to
A. grosmanniae, B. bassiana, M. brunneum, T. harzianum,
F. proliferatum, and MEA, along with bioassays testing

ethanol, 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzo-
ate, 3-methyl-1-butanol, and mineral oil. Individual beetles
were not exposed to multiple cultures or compounds. To bal-
ance treatment presentation, at least five beetle replicates were
measured on a given day using all the cultures or individual
volatile compounds (except for F. proliferatum since it was
tested after the other cultures).

Generalized linear models (PROC GENMOD; SAS
Institute Inc., Cary, NC) were used to compare the duration
of time X. germanus spent within the threshold above the petri
dishes containing the various cultures or individual com-
pounds. Due to non-normality, data were initially modeled
using the log link function and a Poisson distribution.
Goodness of fit for the model and overdispersion was then
assessed using the scaled deviance (G2/df) parameter. When
overdispersion was identified by a large departure >1.0 for the
scaled deviance parameter, a negative binomial distribution
and log link function was used to fit the model. Differences
of least square means were used for pairwise comparisons on
treatment effects with significant F-test values from analysis
of variance (α = 0.05).

Analysis of Volatile Emissions

Solid phase microextraction-gas chromatography-mass spec-
trometry was used to collect and identify volatile emissions
from A. grosmanniae , B. bassiana , M. brunneum ,
T. harzianum, F. proliferatum, and a MEA control. Briefly,
cultures were grown on MEA in glass test tubes (20 ×
150 mm) with a threaded black phenolic screw cap. After
autoclaving the test tubes and MEA, an aliquot of 6.5 mL of
agar was pipetted per test tube. Tubes were then placed in a
test tube rack with a 20° tilt to allow the media to solidify at an
angle. Test tubes were inoculated about 14 d before using in
SPME-GC-MS analyses like the behavioral bioassays.

For sampling culture volatiles by SPME, a 1 mm diam.
Hole was pre-drilled into the screw cap of the test tube
(Fig. 2a, b). An autoclaved cork borer was used to cut a cir-
cular disk (1.3 cm) from a blue septa silicone sheet (3 mm
thick; Chromatography Research Supplies Inc., Louisville,
KY). A needle was then used to puncture a hole through the
center of the septum disk, and a piece of PTFE microbore
tubing (0.81 mm I.D., 1.42 O.D.; Cole-Parmer, Vernon
Hills, IL) was pulled through the hole in the septum disk
(Fig. 2a). The disk with tubing in place was then inserted into
the threaded test tube cap with the Teflon tubing extending out
the top of the cap. The purpose of the PTFE tubing was to
avoid puncturing the silicone septa and potentially contami-
nating the GC inlet liner during thermal desorption. Standard
caps on the culture tubes were replaced with the modified and
autoclaved SPME sampling caps immediately before sam-
pling. A syringe containing a retracted SPME fiber (CAR/
PDMS; 75 µm coating; Sigma-Aldrich, St. Louis, Missouri)
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was then inserted through the test tube cap via the Teflon
tubing and secured using a metal clamp and retort stand to
position the end of the exposed fiber about 1 cm above the
cultures (Fig. 2b). Four tubes with cultures incubated for about
14 d after inoculating were analyzed for each species, along
with MEA controls. Sampling was conducted on a laboratory
benchtop with an ambient temperature of 21 °C and overhead
fluorescent lighting. Fibers were exposed for 30 min and then
immediately analyzed by GC-MS.

Fibers were thermally desorbed for 2 min at 225 °C in the
injection port of an Agilent 7890B GC (Agilent Technologies,
Palo Alto, California) with a SPME liner (0.75 mm ×
6.35 mm× 78.5 mm, i.d. × o.d. × length; Restek, Bellefonte,
Pennsylvania) under splitless mode with 2 min splitter off
time. A DB-5MS column (0.25 µm × 30 m × 0.25 mm; i.d.
× length × film thickness; cross-linked/surface bonded 5%
phenyl, 95% methylpolysiloxane; Agilent J&W, Santa
Clara, California) and a temperature program of 50–250 °C
at 3 °C/min were used for the analyses. An Agilent 5977A
mass spectrometer was operated in electron impact mode with
a scan range of 40–415 amu. Compounds that were unique to
the aforementioned fungal cultures and absent in MEA vola-
tile emissions were tentatively identified using NIST library
searches. The following identifications were confirmed by
comparing retention times and fragmentation patterns with
authentic standards (Sigma-Aldrich): 3-methyl-1-butanol
(≥99.0% chemical purity), 2-methyl-1-butanol (≥98.0% puri-
ty), 2-ethyl-1-hexanol (≥99.0% purity), methyl benzoate
(≥99.5% purity), 2-phenylethanol (≥99.0% purity), 1-octen-
3-ol (≥98.0% purity), 2-octenal (≥95.0% purity), methyl
cinnamate (≥99.0% purity), and α-cedrene (≥95.0% purity).

Olfactory Responses

Electroantennography (EAG) was used to measure antennal
olfactory responses of 5 d old laboratory-reared female

X. germanus to 2-ethyl-1-hexanol, 2-phenylethanol, methyl
benzoate, 3-methyl-1-butanol, and ethanol. As described in
greater detail by Ranger et al. (2014), the recording and indif-
ferent electrodes contained Beadle-Ephrussi saline and a silver
wire held in place using stainless steel electrode holders
(Syntech, Buchenbach, Germany). The indifferent electrode
was inserted into the foramen of a recently-excised
X. germanus head, and the recording electrode was directed
to the center of the antennal club where the majority of porous
olfactory sensilla are located (Ranger et al. 2017).
Micromanipulators were magnetically mounted onto the sur-
face of an antivibration table and recordings were made within
a Faraday cage (CleanBench, TMC, Peabody, MA). Antennal
preparations were positioned at the end of a stainless steel
odor delivery tube (diameter 0.64 cm) through which humid-
ified and carbon-filtered air passed at 150 mL/min at approx-
imately 2.5 cm/s.

Dilutions of 2-ethyl-1-hexanol, 2-phenethylethanol, meth-
yl benzoate, 3-methyl-1-butanol, and ethanol (≥99.5; Sigma-
Aldrich) were prepared in mineral oil to achieve concentra-
tions of 0.001, 0.01, 0.1, and 1.0 mg/mL. A 20 µL aliquot of
an individual dilution was applied to a filter paper strip
(2.5 cm × 0.5 cm, l × w) within a disposable glass Pasteur
pipette. The pipette tip was inserted into a hole in the odor
delivery tube about 10.8 cm upwind of the antennal prepara-
tion. Antennae were exposed to a 0.5-s stimulus puff delivered
by a Stimulus Controller CS 55 (Syntech) through the Pasteur
pipette at 30 mL/min.

Terpinolene (1.0 mg/mL delivered as 20 µg in 20 µL;
>92% purity, Contech Enterprises, Inc., Victoria, BC) was
used as a reference stimulus (Ranger et al. 2014). Delivery
of the reference stimulus always preceded and followed stim-
ulus puff dilutions of the aforementioned stimuli at ascending
concentrations. A duration of 60 s was allowed to elapse be-
tween puffs. Concentration-response to each volatile stimulus
was assessed using 16 separate antennal preparations. Signals

Fig. 2 a-d Solid phase
microextraction (SPME)
sampling technique to collect
volatiles emitted from mycelium
of A. grosmanniae (pictured),
B. bassiana, M. brunneum,
T. harzianum, and
F. proliferatum. Teflon tubing
and septum material were fitted
through a pre-drilled hole in the
cap (a, b) to introduce the syringe
into the test tube for fiber
exposure, thereby avoiding the
possibility of contaminating the
SPME syringe and GC-MS inlet
liner with silicone septa
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from the recording electrode were pre-amplified by a high
impedance probe (Universal Single Ended Probe, Syntech)
and further amplified, filtered and optimized using a two-
channel data acquisition controller (IDAC-2; Syntech). The
EAG peak amplitude was measured (mV) and then normal-
ized relative to the response to terpinolene using the following
calculation: [(response to analyte)/(initial + final response to
terpinolene/2)] × 100. Normalizing the EAG response with a
chemical standard corrects for time-dependent variability in
antennal sensitivity and allows relative EAG responses to be
compared with different stimuli with different cohorts of test
insects (Niogret et al. 2011; Kendra et al. 2012). Generalized
linear models (PROC GENMOD) with a normal distribution
were used to analyze relative percent EAG responses of
X. germanus to the four concentrations of each compound
(SAS Institute Inc., Cary, NC). Comparisons were also made
among the five different compounds at each of the four con-
centrations. Differences of least square means were used for
pairwise comparisons on treatment effects (α = 0.05).

Field Behavioral Responses

Trapping experiments were conducted under field conditions
in 2016–2018 to test the attraction of X. germanus to 2-ethyl-
1-hexanol, 2-phenylethanol, methyl benzoate, 3-methyl-1-bu-
tanol, and ethanol. Bottle-traps were prepared according to
Ranger et al. (2010). In short, two rectangular openings
(length 12.5 cm, width 6 cm) were cut into the sides of a 1-
L plastic bottle to allow the entrance of ambrosia beetles. The
1-L bottle was inverted and the mouth was connected to a 0.5-
L plastic bottle using a Tornado Tube (Steve Spangler
Science, Englewood, Colorado). Lures were secured using
wire within the top of the 1-L bottle and the 0.5-L bottle was
partially filled with 20 mL of ethanol-free propylene glycol
antifreeze (PEAK® SIERRA®; Old World Industries, LLC,
Northbrook, IL) as a killing and preserving agent.

Two field trapping experiments were conducted per year in
2016–2018. The first field experiment in 2016 consisted of
traps being baited singly with heat-sealed pouch-style emitters
of the following compounds: 2-ethyl-1-hexanol (2.5 mg/d at
25 °C; Synergy Semiochemicals, Burnaby, BC), 2-
phenylethanol (3.0 mg/d at 25 °C; Synergy), methyl benzoate
diluted to 20% with acetyl tributyl citrate to slow the release
rate (10 mg/d at 25 °C; Synergy), 3-methyl-1-butanol (4.5mg/
d at 25 °C; Synergy), and ethanol (16 mg/d at 30 °C; AgBio
Inc., Westminster, CO), or non-baited. The traps were posi-
tioned 0.6 m above ground level by attaching the inverted end
of the 1-L bottle to a metal rod staked in the ground. Traps
were arranged in parallel lines in a randomized complete
block design with five complete blocks within a deciduous
woodlot at the Ohio Agricultural Research and Development
Center, Wooster, Ohio (40°45′40.46”N; 81°51′15.78”W).
Five m was maintained between adjacent traps within a block

and 15 m between adjacent blocks. Traps were deployed from
28–June–2016 to 18–July–2016. Samples were then returned
to the laboratory and identified to species level. The second
field experiment conducted in 2016 consisted of an ethanol
lure combined in the same trap with an individual fungal vol-
atile lure with the aforementioned release rates. Traps were
deployed as previously described and arranged in a random-
ized complete block design with five complete blocks from
18–July–2016 to 8–August–2016 (n = 5 traps per treatment).
Traps baited singly were re-tested from 12–April–2017 to 3–
May–2017, and combined with an ethanol lure from 3–May–
2017 to 31–May–2017, using the aforementioned release rates
and methods for 2016.

Two additional field trapping experiments were conducted
in 2018 using the same randomized complete block design
used in 2016–2017 but with the following reduced release
rates: 2-ethyl-1-hexanol (0.6 mg/d; Synergy), 2-
phenylethanol (0.8 mg/d; Synergy), methyl benzoate diluted
to 20% with acetyl tributyl citrate (2.5 mg/d; Synergy), and 3-
methyl-1-butanol (1.0 mg/d; Synergy). Lures were tested sin-
gly from 16–May–2018 to 29–May–2018 and combined with
ethanol from 29–May–2018 to 26–June–2018.

A generalized linear model (PROC GENMOD) was used
to analyze trap count data of X. germanus (SAS Institute Inc.,
Cary, NC). Due to non-normality, data were initially modeled
assuming a Poisson distribution with a goodness of fit for the
model being assessed using the scaled deviance (G2/df) pa-
rameter. When overdispersion was detected by a large depar-
ture from 1.0 for the scaled deviance parameter, a negative
binomial distribution and log link function was used to fit the
model. Differences of least square means were used for
pairwise comparisons on treatment effects with significant F-
test values from analysis of variance (α = 0.05).

Results

Behavioral Bioassay

During still-air walking bioassays, X. germanus exhibited a
stronger arrestant response to volatiles of its fungal symbiont
A. grosmanniae compared to the entomopathogenic fungi
B. bassiana and M. brunneum, the mycoparasitic fungus
T. harzianum, the plant pathogen F. proliferatum, and a
MEA control (Fig. 1c). As X. germanus oriented along a
walking platform towards a light source (Fig. 1a, b), individ-
ual beetles spent a significantly longer duration arrested over a
culture of A. grosmanniae compared to B. bassiana,
M. brunneum, T. harzianum, F. proliferatum, and a MEA
control (Fig. 1c). No difference was detected in the duration
of time X. germanus spent positioned over the non-symbiont
cultures or the MEA control.
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Based on SPME-GC-MS analyses, subsequent walking
bioassays were conducted to assess the behavioral response
of X. germanus to 2-ethyl-1-hexanol, 2-phenylethanol, methyl
benzoate, and 3-methyl-1-butanol (Fig. 1d-e). When tested
singly, X. germanus spent a significantly longer duration of
time above a strip of filter paper treated with 40 μl of 1 mg/ml
(i.e. 40μg) or 0.1 mg/ml (i.e. 4 μg) of ethanol compared to the
remaining compounds or mineral oil (Fig. 1d-e). At 40 μg,
X. germanus spent a longer duration of time over filter paper
treated with 2-ethyl-1-hexanol and 2-phenylethanol compared
to methyl benzoate; the shortest duration of time was spent
over filter paper treated with mineral oil (Fig. 1d). At 4 μg,
there was no difference in the duration of time X. germanus
spent over filter paper treated with 2-ethyl-1-hexanol, 2-
phenylethanol, methyl benzoate, 3-methyl-1-butanol or min-
eral oil (Fig. 1e).

Analysis of Volatile Emissions

SPME-GC-MS analysis identified four compounds present in
volatile emissions from A. grosmanniae growing on MEA,
including three alcohols (i.e., 3-methyl-1-butanol, 2-
phenylethanol, and 2-ethyl-1-hexanol) and one ester (i.e.,
methyl benzoate) (Table 1). These compounds were not de-
tected in the MEA controls.

Seven compounds were detected by SPME-GC-MS in
emissions from the entomopathogenic fungus B. bassiana
growing on MEA, including three alcohols (i.e., 2-methyl-1-
butanol, 3-methyl-1-butanol,1-octen-3-ol), one aldehydehyde
(i.e., 2-octenal), two esters (i.e., methyl benzoate, methyl
cinnamate), and a tentatively identified sesquiterpene (i.e.,
β-elemene) (Table 1). SPME-GC-MS detected nine com-
pounds in emissions from the mycoparasitic fungus
T. harzianum growing on MEA, including one alcohol (i.e.,
1-octen-3-ol) and eight tentatively identified sesquiterpenes
(Table 1). No unique volatiles were detected in emissions of
the entomopathogenic fungus M. brunneum as compared to
the MEA control. Five tentatively identified sesquiterpenes
were detected in emissions from F. proliferatum (Table 1).

A comparison of volatile emissions determined that two
compound s we r e d e t e c t e d i n em i s s i o n s f r om
A. grosmanniae and B. bassiana, namely, 3-methyl-1-
butanol and methyl benzoate. Two of the tentatively identified
sesquiterpenes were shared between volatile emissions of
T. harzianum and F. proliferatum, namely, α-acoradiene
and β-cedrene.

Electroantennogram Responses

Olfactory responses of X. germanus were measured using EAG
in response to ascending concentrations of 2-ethyl-1-hexanol, 2-
phenylethanol, methyl benzoate, 3-methyl-1-butanol, and etha-
nol (Fig. 3a-e). After normalizing the absolute responses relative

to terpinolene, a positive concentration response was document-
ed for ethanol such that 20 μg in 20 μl elicited a significantly
larger antennal depolarization response than 0.02 and 0.2 μg in
20 μl (Fig. 3a). A positive concentration response was also doc-
umented for methyl benzoate, such that 2 μg and 20 μg in 20 μl
elicited significantly larger antennal responses than 0.02 μg in
20 μl (Fig. 3d). A positive antennal concentration response was
not observed for 2-ethyl-1-hexanol, 2-phenylethanol, or 3-
methyl-1-butanol ranging at concentrations ranging from 0.02–
20 μg in 20 μl (Fig. 3b, c, e).

When compared among the five volatile compounds, eth-
anol at 2 μg and 20 μg in 20 μl elicited significantly larger
depolarizations than the remaining compounds at these corre-
sponding concentrations (Fig. 3a). There was no difference in
depolarizations for 2-ethyl-1-hexanol, 2-phenylethanol,

Table 1 SPME-GC-MS analysis of volatiles associated with the
ambrosia beetle nutritional fungal symbiont Ambrosiella grosmanniae
(A.g.), entomopathogenic fungus Beauveria bassiana (B.b.),
mycoparasitic fungus Trichoderma harzianum (T.h.), and the fungal
plant pathogen Fusarium proliferatum (F.p.)

Species Compounda Formula Mean (±SE)
Composition (%)

A.g. 3-Methyl-1-Butanol‡ C5H12O 93.17 ± 0.51

2-Ethyl-1-Hexanol‡ C8H18O 3.21 ± 0.25

Methyl Benzoate‡ C8H8O2 1.90 ± 0.20

2-Phenylethanol‡ C8H10O 1.72 ± 0.11

B.b. 3-Methyl-1-Butanol‡ C5H12O 13.26 ± 4.92

2-Methyl-1-Butanol‡ C5H12O 27.44 ± 7.65

1-Octen-3-ol‡ C8H16O 19.26 ± 1.64

2-Octenal‡ C8H14O 12.27 ± 7.53

Methyl Benzoate‡ C8H8O2 5.97 ± 1.83

Methyl Cinnamate‡ C10H10O2 10.62 ± 0.84

β-Elemene† C15H24 11.18 ± 3.55

F.p. Acoradiene-derivative† C15H24 5.20 ± 1.30

α-Cedrene‡ C15H24 12.53 ± 3.45

β-Cedrene† C15H24 9.53 ± 0.18

Muurolene-derivative† C15H24 2.48 ± 1.03

α-Acoradiene† C15H24 70.26 ± 1.67

T.h. 1-Octen-3-ol‡ C8H16O 3.56 ± 1.08

α-Copaene† C15H24 21.10 ± 1.37

β-Cedrene† C15H24 32.82 ± 1.33

γ-Muurolene† C15H24 12.32 ± 0.65

(+)-Sativene† C15H24 2.05 ± 0.08

α-Acoradiene† C15H24 5.18 ± 0.31

γ-Acoradiene† C15H24 3.99 ± 0.24

Acorenone-derivative† C15H26O 10.42 ± 1.42

Acorenone† C15H24O 8.58 ± 3.90

a Identifications based on comparing mass spectra in the National Institute
of Standards and Technology (NIST) library (†), or comparing with NIST
and an authentic standard (‡)
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methyl benzoate, and 3-methyl-1-butanol when tested at con-
centrations ranging from 0.02–20 μg in 20 μl.

Field Behavioral Responses

When the fungal volatiles were tested singly at the higher
release rate in 2016, significantly more X. germanus were
attracted to traps baited with ethanol, 2-ethyl-1-hexanol, 2-
phenylethanol, methyl benzoate, or 3-methyl-1-butanol com-
pared to the blank control (Fig. 4a). Ethanol alone attracted the
most X. germanus, while 2-ethyl-1-hexanol and methyl ben-
zoate attracted more X. germanus than 2-phenyethanol and 3-
methyl-1-butanol (Fig. 4a). When re-tested singly in 2017,
there was no difference in the number of X. germanus
attracted to traps baited with 2-ethyl-1-hexanol, 2-
phenylethanol, methyl benzoate, 3-methyl-1-butanol, or the
blank control (Fig. 4c). Traps baited with ethanol alone
attracted significantly more X. germanus than all other
compounds.

When paired with ethanol and tested in 2016, traps baited
with ethanol plus methyl benzoate attracted a comparable
number of X. germanus compared to traps baited with ethanol
alone (Fig. 4b). In contrast, traps baited with ethanol plus 2-
ethyl-1-hexanol, ethanol plus 2-phenylethanol, and ethanol
plus 3-methyl-1-butanol attracted fewer X. germanus than
traps baited with ethanol alone. When re-tested in 2017, traps
baited with ethanol plus 2-ethyl-1-hexanol and ethanol plus
methyl benzoate attracted a comparable number of
X. germanus compared to traps baited with ethanol alone
(Fig. 4d). In contrast, traps baited with ethanol plus 2-
phenylethanol and ethanol plus 3-methyl-1-butanol attracted
significantly fewer X. germanus than ethanol alone.

In 2018with reduced rates of the fungal volatiles, there was
no difference in the attraction of X. germanus to each of the
four fungal volatiles tested singly compared to the non-baited

blank control (Fig. 4e). When combined with an ethanol lure
and tested in 2018, there was no difference in the attraction of
X. germanus to traps baited with ethanol plus 2-ethyl-1-
hexanol and ethanol plus methyl benzoate compared to etha-
nol alone, whereas 2-phenylethanol and 3-methyl-1-butanol
still reduced the attraction of X. germanus to ethanol at the
lower release rate tested in 2018 (Fig. 4f).

Discussion

The role of fungal volatiles in mediating interactions among
fungi and insect symbionts is receiving increased attention,
but has been largely unexplored, especially for bark and am-
brosia beetles associated with symbiotic fungi (Cale et al.
2016). As part of our current study, X. germanus exhibited a
short-range arrestment response to fungal volatiles emitted by
the mycelium of its nutritional fungal symbiont, but not to
emissions from two entomopathogenic fungi, a mycoparasitic
fungus, or a fungal pathogen. SPME-GC-MS identified four
volatile compounds in the emissions of A. grosmanniae grow-
ing on MEA, namely, 2-ethyl-1-hexanol, 2-phenylethanol,
methyl benzoate, and 3-methyl-1-butanol. Compared to etha-
nol, relatively weak antennal depolarizations were exhibited
by X. germanus to these four fungal volatiles. Weak or no
response to the individual volatiles was also documented dur-
ing walking bioassays and field trials. None of the fungal
volatiles enhanced attraction of X. germanus to ethanol when
tested singly in field trials; in contrast, 2-phenylethanol and 3-
methyl-1-butanol consistently reduced attraction to ethanol.
Volatiles emitted by A. grosmanniae may function as short-
range olfactory cues that aid in distinguishing their nutritional
fungal symbiont from other fungi, but these compounds do
not function as long-range attractants. For instance, olfactory
and behavioral responses of X. germanus to these compounds
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could be a function of A. grosmanniae being their sole source
of nutrition, thereby critical semiochemicals linked to their
survival and fitness perhaps by helping to maintain the specif-
ic symbiosis between X. germanus and A. grosmanniae.
These responses could also be related to the association of
these compounds with host trees (Holighaus and Schütz
2006), or represent compounds often found in the beetles en-
vironment (i.e., semiochemical parsimony) as described by
Blum (1996). Similarly, the ‘neutral hypothesis’ proposes that
microbial volatile emissions might influence insect behavior
by coincidence, potentially due to similarity with evolution-
arily relevant infochemicals (Davis et al. 2013).

Our current study supports a small body of work demon-
strating that ambrosia beetles respond to the volatile profile of
their fungal symbiont and can perhaps distinguish it from
other fungal volatile profiles. Xylosandrus compactus
displayed short-range attraction to its fungal symbiont
(F. solani) during olfactometer bioassays, but comparisons
were only made against an agar control (Egonyu and Torto
2018). Similarly, Hulcr et al. (2011) demonstrated that three
species of ambrosia beetles exhibited short-range attraction
exclusively to fungal volatiles emitted from their symbionts,
including Ambrosiella xylebori, Ambrosiozyma sp., and
Raffaelea lauricola, but were non-responsive or repelled by
Trichoderma sp. (Hulcr et al. 2011). However, a limitation of
the study by Hulcr et al. (2011) is that a non-pathogenic, non-

symbiotic fungal species was not tested. Unlike the response
to A. grosmanniae, X. germanus did not exhibit an arrestment
response to volatiles associated with the entomopathogenic
fungi B. bassiana andM. brunneum, the mycoparasitic fungus
T. harzianum, or the plant pathogen F. proliferatum as a rep-
resentative of a non-pathogenic, non-symbiotic fungus.
Additional free-choice studies are warranted to assess what
volatiles influence the short-range behavioral response of
X. germanus to its fungal symbiont. In addition, our SPME-
GC-MS analyses tentatively identified a variety of sesquiter-
penes from T. harzianum that could have repellent activity in
support of bioassays by Hulcr et al. (2011).

Ethanol, 2-methyl-1-propanol, and 3-methyl-1-butanol
were detected by SPME-GC-MS from an unspecified
Ambrosiella sp., and ethanol, ethyl acetate, 2-methyl-1-
propanol, 3-methyl-1-butanol, and 3-methyl-1-butanol acetate
were emitted from R. lauricola, the symbiont of X. glabratus
(Kuhns et al. 2014). SPME-GC-MS analysis of volatile emis-
sions from F. solani, the symbiont of X. compactus, identified
ethanol, 3-methyl-1-butanol, and (E)-β-caryophyllene as pre-
dominant (Egonyu and Torto 2018). We detected 2-ethyl-1-
hexanol, 2-phenylethanol, methyl benzoate, and 3-methyl-1-
butanol by SPME-GC-MS from A. grosmanniae growing on
MEA. SPME can be superior to dynamic headspace sampling
for minimizing the loss or obscuration of highly volatile com-
pounds, but vacuum-assisted sampling as part of the latter
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Fig. 4 a-f. Captures of
X. germanus in traps deployed in
a, b 2016, c, d 2017, and e, f 2018
that were baited singly a, c, e or
paired with ethanol b, d, f to test
the attractiveness of ethanol,
EOH; 2-ethyl-1-hexanol, 2E1H;
2-phenylethanol, 2Pe; methyl
benzoate, MB; 3-methyl-1-
butanol, 3 MB. The following
release rates were tested in 2016–
2017: 2-ethyl-1-hexanol (2.5 mg/
d), 2-phenylethanol (3.0 mg/d),
methyl benzoate (10.0 mg/d), and
3-methyl-1-butanol (4.5 mg/d).
The following release rates were
tested in 2018: 2-ethyl-1-hexanol
(0.6 mg/d), 2-phenylethanol
(0.8 mg/d), methyl benzoate
(2.5 mg/d), and 3-methyl-1-
butanol (1.0 mg/d). Different
letters within a graph represent
significantly different means
using generalized linear models
and least square means ((a): χ2 =
80.83; df = 5; P < 0.0001; (b):
χ2 = 36.57; df = 5; P < 0.0001;
(c): χ2 = 75.98; df = 5;
P < 0.0001; (d): χ2 = 597.16; df =
5; P < 0.0001; (e): χ2 = 48.93;
df = 5; P < 0.0001; (f): χ2 =
79.21; df = 5; P < 0.0001)
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technique is useful for collecting volatile and semi-volatile
compounds (D’Alessandro and Turlings 2006; Jeleń 2003;
Morath et al. 2012). For instance, Egonyu and Torto (2018)
detected 40 compounds emitted by F. solani using dynamic
headspace sampling compared to 9 compounds detected by
SPME. 3-Methyl-1-butanol was a predominant compound
collected using SPME and dynamic headspace sampling from
F. solani (Egonyu and Torto 2018). Similarly, 3-methyl-1-
butanol was a predominant volatile collected by dynamic
headspace sampling, along with eight other compounds, from
fungal symbionts of the mountain pine beetle (Dendroctonus
ponderosae Hopkins) (Cale et al. 2016).

Some of the volatiles identified from ambrosia beetle fun-
gal symbionts appear to be ubiquitous, especially 3-methyl-1-
butanol (Cale et al. 2016; Egonyu and Torto 2018; Korpi et al.
2009; Kuhns et al. 2014; Morath et al. 2012). Our results
suggest A. grosmanniae is associated with a relatively simple
volatile profile but could have a characteristic odor as docu-
mented for other fungi (Morath et al. 2012). Furthermore,
volatile blends likely represent more distinguishing informa-
tion than the presence of individual compounds. Percent com-
positions associated with SPME analyses in our current study
and previous ones (Kuhns et al. 2014) must also be considered
qualitatively since calibrations for specific volatile com-
pounds were not performed. Thus, the abundance and ratio
of volatiles emitted from A. grosmanniae could be quite dif-
ferent from the SPME analyses. As noted by Jeleń (2003),
peak areas of individual compounds extracted by SPME can
be influenced by a variety of factors, including fiber coatings,
temperature, time, pH, and others. The intention of our current
study was to establish a qualitative volatile profile of
A. grosmanniae in pursuit of behaviorally active compounds
rather than quantitatively characterize volatile emissions of
this fungal symbiont.

Notably, 3-methyl-1-butanol and methyl benzoate were
detected in emissions from A. grosmanniae and B. bassiana,
but X. germanus did not exhibit an arrestment response to this
entomopathogenic fungus during our bioassays. Quantitative
analyses of volatile emissions from A. grosmanniae and
B. bassiana would be useful for comparing major, minor,
and trace components between these two species. Crespo
et al. (2008) detected ethanol, sesquiterpenes, and
diisopropyl naphthalenes, while Bojke et al. (2018) detected
3-methylbutanal, fatty acids, and sesquiterpenes by SPME-
GC-MS in volatile emissions from B. bassiana.

As previously noted, ethanol was detected in emissions
from ambrosia beetle fungal symbionts (Egonyu and Torto
2018; Kuhns et al. 2014). We did not detect the emission of
ethanol from A. grosmanniae at 14 days after inoculating the
MEA as part of our current study, but subsequent analyses
have detected the emission of ethanol from A. grosmanniae
at 5 d after inoculating MEA media (Ranger, pers. obs.). The
emission of ethanol from vulnerable host trees (Ranger et al.

2021) and by ambrosia beetle fungal symbionts (Egonyu and
Torto 2018; Kuhns et al. 2014) could account for the strong
behavioral response exhibited by X. germanus and other am-
brosia beetle to this semiochemical. Since ethanol promotes
the growth of Ambrosiella spp. and inhibits the growth of
fungal garden competitors (Ranger et al. 2018), its emission
by Ambrosiella spp. might also serve in a defensive capacity
to suppress the establishment of antagonists. As the profile of
volatiles emitted by fungi can vary depending on substrate,
duration of incubation, nutrients, temperature, and other pa-
rameters (Morath et al. 2012), additional time-course studies
are warranted to further characterize fungal volatiles emitted
by A. grosmanniae. In particular, volatile profiles should be
compared for symbionts growing on MEA alone vs. MEA
infused with sawdust from host trees, along with cultures
within host tree galleries.

Unlike the concentration-response to ethanol, relatively
weak EAG concentration-responses were elicited by 2-ethyl-
1-hexanol, 2-phenylethanol, methyl benzoate, and 3-methyl-
1-butanol as part of our current study. Due to the close evolu-
tionary and ecological association between ambrosia beetles
and their fungal symbionts, the olfactory system of ambrosia
beetles could contain narrowly tuned, highly specific olfactory
receptors that are wired to dedicated neuronal circuits in re-
sponse to these ecologically relevant odors (Andersson et al.
2015). Data from our current study does not support this sce-
nario for 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzo-
ate, or 3-methyl-1-butanol, but a narrowly tuned receptor that
is highly specific to ethanol could be associated with
X. germanus. Single sensillum recordings from the antennal
club of X. germanuswould help to characterize the specificity
of the different sensilla types, particularly for ethanol
(Andersson et al. 2015; Olsson and Hansson 2013).

As compared to ethanol, some arrestment responses were
exhibited by X. germanus to the individual fungal volatiles
tested during the still-air olfactometer bioassays. Still, these
results demonstrate the walking bioassay first described by
Borden et al. (1968) is useful for measuring the behavioral
response of ambrosia beetles. Weak and inconsistent long-
range attraction was exhibited by X. germanus to the individ-
ual fungal volatiles when tested in 2016–2018. None of the
compounds enhanced attraction to ethanol, and 2-
phenylethanol and 3-methyl-1-butanol consistently reduced
attraction to ethanol. 2-Phenylethanol inhibited the response
of Dendroctonus frontalis Zimmermann and Dendroctonus
ponderosae Hopkins to attractants (Pureswaran et al. 2000;
Sullivan et al. 2007) but enhanced the attraction of Ips
paraconfusus Lanier to male-infested logs (Renwick et al.
1976). The basis for inhibition could be related to the variety
of origins of 2-phenylethanol, including bark beetles and as-
sociatedmicroorganisms (Sullivan 2005; Sullivan et al. 2007).
Similarly, X. compactus exhibited antennal responses to meth-
yl isovalerate and 2,3-butanediol in adsorbent-trapped extracts
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f r om F . s o l a n i du r i n g g a s c h r oma t o g r a ph y–
electroantennography experiments (Egonyu and Torto
2018), but unlike ethanol these compounds were only slightly
attractive when tested singly under field conditions.

While semiochemical release rate is critical, Davis et al.
(2013) noted that a central question of insect olfactory re-
sponses to fungal volatiles is whether the insects perceive
the volatiles individually or as a mixture. Individual volatiles
are probably not as informative as blends (Davis et al. 2013),
as demonstrated for insect responses to plant volatiles
(Webster et al. 2008). Still, ethanol alone is highly attractive
to ambrosia beetles and emitted from both their host trees
(Ranger et al. 2021) and fungal symbionts (Egonyu and
Torto 2018; Kuhns et al. 2014). Subsequent studies are being
pursued to test blends of volatiles based on the profile emitted
from A. grosmanniae, but challenges exist with cross-
reactivity and release rates among compounds of varying
chemical classes when pursuing an optimal lure (Nielsen
et al. 2019). Notably, a synthetic blend of fungal volatiles
from R. lauricola consisting of ethyl acetate: ethanol: isoamyl
alcohol: isoamyl acetate (36.5: 29: 22: 12.5) was not alone
attractive to X. glabratus, but did synergistically enhance at-
traction to a Manuka oil lure comprised of host volatiles
(Kuhns et al. 2014).

Our current findings contribute to a small but growing
body of research seeking to characterize how fungal volatiles
mediate interactions between ambrosia beetles and their fun-
gal symbionts. Overall, results from our current study indicate
that X. germanus can sense general volatiles emitted from
A. grosmanniae, but it is unclear if these compounds are re-
lated to symbiosis. Our results also indicate that fungal vola-
tiles identified from A. grosmanniae are not promising semio-
chemicals to enhance the attraction to ethanol for monitoring
or mass trapping purposes. Since ethanol represents a strong
long-range attractant for X. germanus and many other ambro-
sia beetles, a more effective blend could be difficult to
achieve. Still, a range of ecological and practical topics could
be addressed, including further characterization of fungal vol-
atiles and factors influencing emissions, olfactory selectivity
and sensitivity by ambrosia beetles, and lure optimization.
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