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Deciphering the crosstalk of
immune dysregulation between
COVID-19 and idiopathic
inflammatory myopathy

Zhao Zhang1†, Weidong Tao1†, Debin Cheng1†, Marong Qin2,
Jun Fu1* and Dong Liu1*

1Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China,
2School of Chemistry, Cardiff University, Cardiff, United Kingdom
Background: The coronavirus disease (COVID-19) pandemic is a serious threat

to public health worldwide. Growing evidence reveals that there are certain links

between COVID-19 and autoimmune diseases; in particular, COVID-19 and

idiopathic inflammatory myopathies (IIM) have been observed to be clinically

comorbid. Hence, this study aimed to elucidate the molecular mechanisms of

COVID-19 and IIM from a genomic perspective.

Methods: We obtained transcriptome data of patients with COVID-19 and IIM

separately from the GEO database and identified common differentially

expressed genes (DEGs) by intersection. We then performed functional

enrichment, PPI, machine learning, gene expression regulatory network, and

immune infiltration analyses of co-expressed genes.

Results: A total of 91 common genes were identified between COVID-19 and IIM.

Functional enrichment analysis revealed that these genes weremainly involved in

immune dysregulation, response to external stimuli, and MAPK signaling

pathways. The MCODE algorithm recognized two densely linked clusters in the

common genes, which were related to inflammatory factors and interferon

signaling. Subsequently, three key genes (CDKN1A, IFI27, and STAB1) were

screened using machine learning to predict the occurrence of COVID-19

related IIM. These key genes exhibited excellent diagnostic performance in

both training and validation cohorts. Moreover, we created TF-gene and

miRNA-gene networks to reveal the regulation of key genes. Finally, we

estimated the relationship between key genes and immune cell infiltration, of

which IFI27 was positively associated with M1 macrophages.

Conclusion: Our work revealed common molecular mechanisms, core genes,

potential targets, and therapeutic approaches for COVID-19 and IIM from a

genomic perspective. This provides new ideas for the diagnosis and treatment of

COVID-19 related IIM in the future.
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Introduction

COVID-19 is a severe contagious illness caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), which

primarily spreads through respiratory droplets (1, 2). Since its

emergence in Wuhan at the end of 2019, it has become an

epidemic that affects public health worldwide, infecting billions of

people (3). COVID-19 is a multisystem disease involving the

respiratory, digestive, and musculoskeletal systems (Table 1) (4).

The most common symptoms are fever, cough, myalgia, dyspnea,

and fatigue (5). Increased research has shown that patients with

COVID-19 have several immunological abnormalities that

resemble those of autoimmune diseases (6, 7). SARS-CoV-2

infection can cause chronic inflammatory and immune responses

that not only directly mediate tissue damage but may also induce

serious sequelae of autoimmune disease in susceptible populations

(8–10). With the increasing number of people recovering from

SARS-CoV-2 infection, the connection between COVID-19 and

autoimmune diseases is gaining significance.

Idiopathic inflammatory myopathies (IIM), also known as

myositis, represent a group of autoimmune muscle diseases with

striking heterogeneity, characterized by myositis, progressive

muscle weakness, and inflammatory cell infiltration of the muscle,

along with other visceral organ damage (11). Based on clinical

serology and pathomorphological features, IIM can be categorized

into several disease subtypes, including nonspecific myositis,

dermatomyositis, polymyositis, inclusion body myositis and

necrotizing myopathy (12). Although there has been dramatic

progress in the classification and treatment of IIM, the specific

pathogenesis of IIM has not yet been fully elucidated due to the

multifactorial nature of the disease. Like other types of

autoimmunity, IIM is thought to be a consequence of the

interaction between genetic and environmental risk factors in the

absence of protective factors (13). Dysregulation of the immune

system, especially in the genetic regions of human leukocyte

antigens (HLA), has been recognized as an essential genetic risk

factor for IIM (14). In addition, adaptive and innate immune

mechanisms participate to varying degrees in different subtypes

of IIM.

Notably, viral infection and vaccination have been established

as critical triggers of autoimmunity in patients with IIM (15–18).

Patients with COVID-19 frequently exhibit immune dysregulation,

which can contribute to multiple autoimmune diseases, including

IIM (19). Kharouf et al. observed that the incidence of IIM

increased significantly during the COVID-19 pandemic and that

these patients exhibited unique characteristics and more severe

symptoms (20). The presentation of COVID-19 induced myositis

may vary from significant muscle weakness to typical

dermatomyositis or simply back pain with muscle disease. The

pathophysiological process of the hyperinflammatory response

triggered by COVID-19, leading to extensive endothelial
Abbreviations: COVID-19, Corona Virus Disease 2019; IIM, idiopathic

inflammatory myopathies; GEO, gene expression omnibus; HLA, human

leukocyte antigens; GO, Gene Ontology; AUC, Area Under Curve; ROC,

receiver operating characteristic.
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dysfunction, vasculopathy, and thrombosis is highly similar to

anti-MDA5 myositis (21). A few case reviews have also reported

the risk of anti-MDA5myositis shortly after COVID-19 vaccination

(22, 23). Moreover, patients with autoimmune diseases are more

susceptible to SARS-CoV-2 infections. IIM patients are more

readily hospitalized for COVID-19 all-cause than healthy

individuals, the course of COVID-19 is more severe, and disease

activity and drug exposure are strongly linked to its severity of

COVID-19 (24, 25). Additionally, following recovery from acute

SARS-CoV-2 infection, a large proportion of patients develop a

range of persistent symptoms and complications, also known as

Long COVID (26). Long COVID accumulates in all systems and

organs of the body, with common symptoms including fatigue,

shortness of breath, dyspnea, muscle pain, and joint pain. Certain

symptoms are typical of IIM, causing serious physical and mental

health impacts (27). Growing evidence suggests that Long COVID

seems to be an autoimmune disease in which the infected patient

produces an “autoantibody” that attacks their own tissues, resulting

in a chronic, persistent inflammatory response in recovering

patients (28). Although the link between COVID-19 and

autoimmune diseases has begun to attract the attention of

researchers, few studies have shed light on the common

molecular mechanisms of COVID-19 and IIM.

Here, we aimed to decipher the crosstalk between COVID-19

and IIM from a genetic perspective using bioinformatics analysis.

Moreover, we applied machine learning to identify key biomarkers

for the occurrence of COVID-19-related IIM and evaluated the

effect of these markers on immune infiltration of IIM. These studies

provide a deeper understanding of the comorbidity mechanisms of

COVID-19 and IIM.
Materials and methods

Data collection and processing

The COVID-19 and IIM datasets (GSE171110, GSE128470, and

GSE39454) were retrieved from the GEO database. The GSE171110

dataset consisted of whole-blood gene expression profiles of 44
TABLE 1 The summary of symptoms of COVID-19 affecting the
different systems.

System Symptom

Respiratory
System

cough, dyspnea, fever, chest distress, thoracodynia

Cardiovascular
System

palpitation, thoracodynia, myocardial injury, thrombus,
pulmonary embolism

Digestive System
diarrhea, nausea, vomit, celialgia, abnormal liver function,
liver injury

Nervous System
headache, fatigue, dysolfaction, dysgeusia, apoplexy,
meningitis, encephalitis

Endocrine
System

thyroid dysfunction, insulin resistance, hyperglycemia,
hypophysial dysfunction

Musculoskeletal
System

myalgia, fatigue, joint pain, muscle weakness, muscle injury
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COVID-19 patients and 10 healthy controls (HC). The GSE128470

dataset included gene expression profiles of muscle tissues from 65

patients with IIM and 12 HCs. The GSE39454 dataset included gene

expression profiles of muscle tissues from 31 patients with IIM and

five HCs. Subsequently, the R package “limma” was used to analyze

differentially expressed genes (DEGs). In the GSE171110 dataset, |

log2FoldChange| ≥1 and |adj.P.Val.| <0.05 were set as the threshold.

The GSE128470 dataset was used as the test set, with |

log2FoldChange| ≥0.58496 and |adj.P.Val.| <0.05 set as the

threshold value. The GSE39454 dataset was used as a validation

cohort to verify key diagnostic genes. Subtype classifications of the

IIM cohort are summarized in Table 2.
Functional enrichment analysis

To determine the biological functions and pathways involved in

common genes, we performed and visualized Wikipathway, KEGG

pathway, GO terms, and hallmark gene sets for common genes

using the R package “clusterProfiler.”
PPI analysis

A PPI network of common genes was established in STRING

(version 11.0), with confidence scores >0.15 set as the threshold,

and visualized using Cytoscape (29, 30). In addition, the Molecular

Complex Detection (MCODE) algorithm was used to recognize

densely linked network components in Metascape (31).
Machine learning for the identification of
key genes

To identify key biomarkers for the occurrence of COVID-19

related IIM, we used two machine learning methods for screening

(LASSO and Random forest) (32–35). LASSO was performed by R

package “glmnet,” and the minimum lamba value was set as the

threshold. Random forest algorithm was executed with the R

package “randomForest” with the relative importance score >0.3

set as a threshold. Finally, the intersection of the outputs of the two

algorithms was considered as the key gene.
Frontiers in Immunology 03
Validation of key genes and evaluation of
diagnostic performance

We further validated and evaluated the expression levels of

these key genes in the GSE39454 cohort. Subsequently, ROC curves

were used to evaluate the diagnostic performance of these key genes

by the R package “pROC.”
Constructing regulatory networks of
transcription factors and miRNAs of
key genes

Transcription factors and miRNAs play essential roles in the

regulation of gene expression (36). Subsequently, we established

TF-gene and miRNA-gene networks based on the NetworkAnalyst

database (https://www.networkanalyst.ca/) (37).
Immune infiltration analysis

The CIBERSORT algorithm was used to determine the

infiltration abundance of 22 immune cells in each sample of the

IIM cohort. Spearman’s correlation analysis was used to assess the

relationship between key genes and immune cells.
Scanning for candidate agents

The DSigDB tool was utilized to screen for candidate agents

interacting with key genes (38). The top 11 agents were identified

using p-values.
Statistics

R 4.0.5 software and SPSS 21.0 software were used for statistical

analysis. Wilcoxon was employed to determine the differences

between groups, and p-value <0.05 was set as the threshold (*p

<0.05, **p <0.01, ***p <0.001).
Result

Identification of DEGs in COVID-19 and IIM

A flowchart of the study is presented in Figure 1. Using

principal component analysis, we found that the disease and HC

groups could be separated distinctly in the COVID-19 and IIM

cohorts, respectively (Figures 2A, B). In the COVID-19 dataset,

3,803 DEGs were identified, of which 2,020 were upregulated and

1,783 were downregulated (Figure 2C). In the IIM dataset, 1,040

DEGs were identified, including 650 upregulated and 390

downregulated genes (Figure 2D).
TABLE 2 Summary of subtype classification of the IIM cohort.

Subtype GSE128470 GSE39454

dermatomyositis 12 8

polymyositis 7 8

inclusion body myositis 26 10

necrotizing myopathy 6 5

nonspecific myositis 14 0
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Confirmation of common genes

Subsequently, Wayne analysis was performed to intersect DEGs

in the two datasets (Figure 3A). The results revealed 68 common
Frontiers in Immunology 04
upregulated expression genes and 23 common downregulated

expression genes between the two diseases (Table S1). Heatmaps

showing the expression levels of these genes in the COVID-19 and

IIM cohorts, respectively (Figures 3B, C).
FIGURE 1

Flow chart of this study.
B

C D

A

FIGURE 2

Analysis of DEGs in patients with COVID-19 and IIM. (A) PCA plot for the COVID-19 dataset; (B) PCA plot for the IIM dataset; (C) volcano diagram of
DEGs in the COVID-19 dataset; (D) volcano diagram of DEGs in the IIM dataset.
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Functional enrichment analysis

We performed an enrichment analysis of these common genes

to reveal the comorbidity mechanism between COVID-19 and IIM.

GO terms found that these common genes were mostly involved in

response to external stimuli, immune response, defense response,

and other functions; hallmark gene sets found that these common

genes were predominantly involved in apoptosis, interferon gamma

response, complement and so on; Wikipathways identified these

common genes as involved in complement, and coagulation

cascades, oxidative damage, host–pathogen interaction of human

corona viruses MAPK signaling, etc. (Figure 4).
PPI network

A PPI network of common genes was constructed using

Cytoscape, which contained 89 nodes and 460 edges (Figure 5A).

Moreover, the MCODE algorithm recognized two densely linked

clusters (Figure 5B). Cluster 1 was mostly involved in ossification,

collagen metabolic process and lnterleukin-4 and Interleukin-13

signaling; Cluster 2 was primary involvement in defense response to

virus and type I interferon-mediated signaling pathway

(Figures 5C, D).
Frontiers in Immunology 05
Comorbidity mechanisms between the
different IIM subtypes and COVID-19

Given that the interferon pathway is known to be significantly

upregulated in dermatomyositis, to reduce the bias of our results, we

divided the IIM patients into subgroups of patients with and

without dermatomyositis for further analysis. A total of 68

common upregulated genes and 11 common downregulated genes

were identified between dermatomyositis and COVID-19 (Table

S2), in which two densely linked clusters were identified (Figures

S1A, B). Cluster 1 was correlated with defense response to virus,

type I interferon-mediated signaling pathway, negative regulation of

viral genome replication and organelle inner membrane; Cluster 2

was related to protein processing in endoplasmic reticulum (Figure

S1C). In addition, 64 common upregulated genes and 29 common

downregulated genes were identified between other IIMs and

COVID-19 (Table S3), in which two densely linked clusters were

also identified (Figures S1D, E). Cluster 1 was mostly involved in

proteoglycans in cancer, ossification, regulation of vascular

associated smooth muscle cell proliferation, and regulation of

lymphocyte activation; Cluster 2 was related to defense response

to virus and type I interferon-mediated signaling pathway (Figure

S1F). These findings reduce the bias of our analysis and further

increase the robustness of the results.
B C

A

FIGURE 3

Identification of common molecules in COVID-19 and IIM patients. (A) Intersection of the COVID-19 and IIM DEGs; (B) heat map of common gene
expression in the COVID-19 dataset; (C) heat map of common gene expression in the IIM dataset.
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Machine learning identified key genes in
COVID-19 related IIM

To identify the key genes involved in the occurrence of COVID-

19 related IIM, we screened for common genes using two machine

learning methods. The LASSO algorithm confirmed four common

genes and the random forest algorithm confirmed 19 common

genes (Figures 6A–D). Finally, we intersected the two algorithms

and obtained a total of four genes, which were considered key genes

for COVID-19 related IIM (Figure 6E).
Validation of key genes and diagnostic
performance evaluation

Subsequently, we verified the expression of key genes in the

validation set. The expression levels of these key genes were elevated

in IIM compared to HC, which was consistent with the results of the

test set (Figures 7A–C). ROC curves revealed that the AUC values of

these genes were higher than 0.8 in both the training and validation

sets, indicating that these genes exhibited excellent diagnostic

performance (Figures 7D, E).
Construction of TF-key gene and miRNA-
key gene networks

To reveal the regulatory mechanisms of key genes, we predicted

the upstream and downstream TFs and miRNAs of key genes. It
Frontiers in Immunology 06
was revealed that 14 TFs can regulate CDKN1A, five TFs can

regulate STAB1, four TFs can regulate IFI27 (Figure 8A). As for

miRNAs, we found that 187 miRNAs could interact with CDKN1A,

31 miRNAs could interact with IFI27, and seven miRNAs could

interact with STAB1 (Figure 8B). TFs can regulate the expression of

key genes by binding to specific DNA sequences to control the

transcription of target genes. MiRNAs are important post-

transcriptional regulators that regulate key gene expression by

binding to specific messenger RNA (mRNA) molecules, which

can lead to mRNA degradation or inhibit protein translation. Our

results provide new insights into the upstream and downstream

regulatory mechanisms of key gene expression levels.
Immune infiltration analysis

Considering that immune cell infiltration is an essential feature

in the pathogenesis of IIM, we estimated the infiltration abundance

of 22 immune cell types in the immune microenvironment of IIM

using the CIBERSORT algorithm (Figure 9A). The results revealed

that T cell gamma delta and M1 macrophage showed markedly

increased infiltration abundance in IIM, whereas T cell CD8, Tregs,

NK cell resting, M0 macrophage, and neutrophils exhibited

opposite results (Figure 9B). Correlation analysis showed that the

key genes were related to different infiltrating immune cells

(Figure 9C). In particular, IFI27 was positively linked to M1

macrophage, which is considered an active mediator of virus

infection-associated myositis (Figure 9D).
B

C

A

FIGURE 4

Functional enrichment analysis of common genes. (A) GO term enrichment; (B) hallmark gene set enrichment; (C) Wikipathway enrichment.
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Screening of candidate agents

To identify potential agents for the treatment of COVID-19

related IIM, we predicted the agents that interact with these key

genes using the DSigDB database. We found that 11 agents

interacted with CDKN1A, five agents interacted with IFI27, and 1

agent interacted with STAB1 (Table 3).
Discussion

In the present study, we identified 86 common genes between

COVID-19 and IIM using differential expression analysis, of which

56 were upregulated and 16 were downregulated. Functional

enrichment analysis of common genes showed that these genes

were primarily linked to response to stress, MAPK signaling

pathways and immune dysregulation-related pathways such as

complement and coagulation cascades, interferon response, and

others. MAPK pathways have been recognized as an efficient

transmitter of signals from the cell surface to the nucleus. MAPK

can respond to different extracellular stimuli and thus generate

contingency responses to trigger cascade signals to regulate cell
Frontiers in Immunology 07
proliferation, differentiation, and apoptosis (39, 40). Further

analysis revealed that two closely linked clusters of common

genes were related to inflammatory factors and interferon

signaling. During SARS-CoV2 infection, the body produces large

amounts of inflammatory mediators and chemokines that recruit

immune cell infiltration to mediate inflammatory injury (41). An

over-activated immune response of the organism induces a cytokine

storm, which is positively related to the severity of COVID-19 (42).

Immune dysregulation, especially interferon response, is considered

as an essential sign of the progression and worsening of COVID-19

and IIM (43, 44). Interferons are potent cytokines and components

of the first line of defense against viral infections (45). According to

their distinct molecular characteristics and intracellular recognition

receptors, interferons are classified as types I, II, and III, which

induce hundreds of interferon-stimulated effector genes (ISGs) with

dual roles in antiviral and immunomodulatory functions (46). Both

the early stages of interferons deficiency and the late stages of

interferons persistence can be indicators of severe COVID-19 (47,

48). Similarly, apart from genetic susceptibility and environmental

factors, adaptive and innate immune mechanisms have recently

been shown to be involved in the pathogenesis of IIM via

coordinated interactions (49). Interferon signaling is highly
B

C

D

A

FIGURE 5

Construction of PPI network to identify core clusters. (A) PPI network of the common genes; (B) MCODE algorithm recognizes core clusters; (C, D)
functional enrichment analysis of core clusters.
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represented in the muscle and skin of IIM patients, together with

complement cascade activation, exerting various inflammatory

effects that result in muscle fibrosis (50). In particular, interferon

I signaling is increased in anti-MDA5+ dermatomyositis, which

greatly correlates with disease activity and can be used to predict

patient mortality (51, 52). Therefore, we hypothesized that after

COVID-19 infection, myocytes respond to external stimuli to

activate complement and interferon signaling via MAPK

signaling, which releases large amounts of inflammatory factors.

Ultimately, persistent inflammatory muscle damage can result in

the development of IIM.
Frontiers in Immunology 08
The extrapulmonary manifestation of COVID-19 is thought to

occur through ACE-2 receptor-mediated viral attack (53). Similar

to most other SARS-CoV-2 susceptible regions, the muscle tissue

also highly expresses ACE-2 receptors (54). Viral stinger proteins

can attach to the ACE-2 receptor, allowing the SARS-CoV-2 viral

envelope to bind to the host cell membrane and transfer hereditary

materials into the cell to strike it (55). This indicates that SARS-

CoV-2 may be directly responsible for infecting muscle cells to

activate the immune response (56). Altogether, the integration of

our results may provide a new perspective for understanding the

common pathogenesis of COVID-19 and IIM.
B

C

D

E

A

FIGURE 6

Machine learning was used to identify key genes. (A, B). LASSO algorithm; (C, D) Random forest algorithm; (E) Intersection between the two algorithms.
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To shed further light on the key targets for the emergence of

COVID-19-associated IIM, we used machine learning to screen

four key genes for predicting the occurrence of COVID-19 related

IIM. Interferon alpha-inducible protein 27 (IFI27) acts upstream of

the negative regulation of RNA polymerase II transcription and

regulates the export of proteins from the nucleus. It is involved in

several cellular processes that mediate cytokine signaling in innate

and adaptive immunity (57). An observational multi-cohort study
Frontiers in Immunology 09
found that IFI27 is highly expressed in the lower respiratory airways

of COVID-19 patients and is associated with the presence of a high

viral load (58). The upregulation of IFI27 expression in blood could

be a predictor of respiratory failure in COVID-19 patients. The

aberrant expression of IFI27 is also involved in the development of

several autoimmune diseases (59). CDKN1A encodes a potent

cyclin-dependent kinase inhibitor that functions in DNA damage

repair and execution of apoptosis after caspase activation. CDKN1A
B C

D E

A

FIGURE 7

Validation of key genes and evaluation of diagnostic performance evaluation. (A–C) Expression levels of key genes in the validation set; (D, E) ROC
curves were used to evaluate the diagnostic performance of the key genes in the training and validation sets. **p < 0.01, and ***p < 0.001.
BA

FIGURE 8

Building a regulatory network for key gene expression. (A) TF-genes networks; (B) miRNA-gene networks.
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TABLE 3 Agent candidates interacted with key genes.

Agent P-value Combined Score Genes

tamoxifen 2.49E−04 598.0306794 CDKN1A;IFI27;STAB1

cinnamaldehyde 4.02E−04 951.5310143 CDKN1A;IFI27

Zinc sulfate 0.001207993 464.6813047 CDKN1A;IFI27

0175029-0000 0.001976804 333.9392188 CDKN1A;IFI27

3’-Azido-3’-deoxythymidine 0.002041055 326.765372 CDKN1A;IFI27

L-mimosine 0.002198311 4077.18792 CDKN1A

MCDF 0.002198311 4077.18792 CDKN1A

Dimethyl-IQX 0.002397979 3653.699525 CDKN1A

Thymoquinone 0.002397979 3653.699525 CDKN1A

64551-89-9 0.002397979 3653.699525 CDKN1A

gamma-Tocopherol 0.002397979 3653.699525 CDKN1A
F
rontiers in Immunology
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B

C D

A

FIGURE 9

Immuno-infiltration analysis. (A, B) Abundance of 22 immune-infiltrating cells in IIM; (C) Correlation heat map of key genes and immune-infiltrating
cells; (D) Correlation scatter plot of key genes with M1 macrophages. *p < 0.05, **p < 0.01, and ***p < 0.001.
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is markedly upregulated in COVID-19 dependent muscle loss (60).

Wang et al. (61) revealed that CDKN1A can be used for the early

diagnosis of dermatomyositis as well as promoting the development

of dermatomyositis by regulating immune cell infiltration. STAB1 is

a type l transmembrane receptor, also known as a multifunctional

scavenger receptor, that is highly expressed on macrophage

endothelial cells (62). STAB1 mediates endocytose ligands and is

critical for cell adhesion in chronic inflammation and tumor

metastasis (63). Sotzny et al. (64) found that STAB1 could stratify

patients with post-COVID syndrome and predict the development

of myalgic encephalomyelitis/chronic fatigue syndrome. ROC

curves showed that these genes exhibited high diagnostic value

for the development of IIM and may be expected to be potential

targets for intervention in COVID-19 related IIM.

Transcription factors and miRNAs are pivotal factors that

regulate gene expression in organisms and are involved in

transcriptional regulation and post-transcriptional regulation of

genes, respectively (36). We constructed an interaction network

to elucidate the regulatory network of TFs and miRNAs involving

key genes, which revealed upstream and downstream expression

regulation of key genes. Moreover, we characterized the immune

microenvironment of IIM. Consistent with previous findings, there

was a substantial infiltration of pro-inflammatory immune cells in

the IIM group (follicular helper T cells, gamma delta T cells, andM1

macrophages) and a clear lack of suppressive inflammatory cells

(Tregs) compared to the HC group (65–67). Correlation analysis

revealed that key genes were linked to multiple immune-infiltrating

cells, indicating that key genes may be involved in the progression of

IIM by regulating immune cells. Notably, the expression level of

IFI27 was positively correlated with M1 macrophage. Macrophages

can be classified into classically activated M1 macrophages and

selectively activated M2 macrophages (68). M1 macrophages are

generally polarized by interferon-gamma, secrete large amounts of

pro-inflammatory factors, and play an essential role in the early

stages of inflammation. M2 macrophage express suppressive

inflammatory factors that inhibit the inflammatory response and

tissue repair (34, 35). Watson et al. (69) showed that M1

macrophage were essential mediators of virus-induced myopathy

and that blocking SHP-1 activation in macrophages could prevent

virus-induced myofiber degeneration. Finally, several potential

agents which interact with these key genes were screened. These

agents mainly exert their therapeutic effects by inhibiting the release

of inflammatory mediators and modulating immune cell activity.

Thus, we suggest that these agents target key genes in the treatment

of COVID-19 related IIM. Collectively, our findings provide a

comprehensive analysis to understand the pathogenesis of these

key genes in COVID-19 related IIM.

This study had some limitations. First, this study was based on

the bioinformatics analysis of public databases, and extensive

experiments are necessary to validate the value of these

molecules, pathways, and drugs. Second, this study was a

retrospective analysis based on a public database, with a small

amount of data and the absence of clinical information. Many

patients, especially those infected with SARS-CoV-2 and IIM, will

need to be acquired in the future to further validate the clinical

applicability of our findings.
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Conclusion

In conclusion, our study revealed for the first time the critical

role of MAPK signaling and inflammatory responses in the link

between COVID-19 and IIM comorbidity development. Moreover,

four key genes were screened using machine learning for early

diagnosis and treatment of COVID-19 related IIM. These findings

provide thorough insight into the pathogenesis of comorbid IIM in

patients with COVID-19. As the COVID-19 pandemic continues, a

great deal of work is needed in the future to focus on the crosstalk

between COVID-19 and IIM.
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