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a b s t r a c t

Depth images can be easily acquired using depth cameras. However, these images only contain partial
information about the shape due to unavoidable self-occlusion. Thanks to the availability of large
datasets of shapes, it is possible to use a learning-based approach to produce complete shapes from
single depth images. State-of-the-art generative adversarial network (GAN) architectures can produce
reasonable results. However, the use of relatively local convolutions restricts GAN architectures from
producing globally plausible shapes. In this study, we develop a novel dynamic latent code selection
mechanism in which the model learns to select only important codes from the latent space. Further-
more, a novel 3D self-attention (3DSA) layer is introduced that is able to capture non-local relationships
across the 3D space. We further design a GAN architecture that uses a multistage encoder–decoder
to recover the shape, where our 3DSA layer is introduced to the discriminator to help attend to
global features, which stabilizes the model learning and encourages shape refinement, making our
reconstruction more structurally plausible. Through extensive experiments, we demonstrate that our
method outperforms other state-of-the-art methods for single depth image 3D reconstruction.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Many tasks of modern technology, such as robotic vision and
bstacle avoidance, rely heavily on 3D reconstruction for which
epth images are a common source of data. Until recently, captur-
ng depth information was challenging, but with the availability
f low-cost depth cameras, depth images can now be quite easily
btained, allowing datasets to be created [1] that make possible
ovel applications such as virtual reality (VR) [2,3]. However,
stimating the full 3D shape from a depth image, which only
epresents one viewpoint, is still challenging. Since a depth image
nly contains partial information about the shape due to unavoid-
ble self-occlusion [4], shape completion is naturally present
s part of many 3D application pipelines, e.g., SLAM [5], robot
rasping [6] or autonomous driving [7]. A single depth image may
ot be sufficiently descriptive to fully reconstruct a shape, causing
oles and spurious surfaces in the reconstruction. Ideally a system
hould be able to cope with such difficult or unusual viewpoints.
he alternative, capturing sufficient depth maps to form complete
D data, is not feasible for many real-world applications due to
he increase in cost and time. For example, in indoor scene mod-
ling, capturing complete furniture would be near-impossible due
o substantial occlusion.
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Our work focuses on reconstructing a 3D shape from a single
depth image using a 3D convolution neural network (CNN). The
CNN approach shows impressive results compared to other non-
learning-based models [8–10] where the bounding ray cone or
voxel hashing are used. Non-learning models usually require mul-
tiple viewpoints of the shape, while the learning-based models
can learn from existing full shapes to reconstruct complete shapes
from single depth images [11,12], or single RGB images [13–15].

In this work, we present a model capable of producing a
complete shape from a single depth image. Given a 2.5D depth
image as input, the model can learn to reconstruct a high reso-
lution shape. As shown in Figs. 1 and 2, an end-to-end learning
model containing a sequence of multiple encoder–decoders with
global and local skip links is trained to complete the volumetric
shape, where the later stages take both the input and outputs
from previous stages to further improve completion. We also
introduce a self-attention layer that helps refine the 3D shapes,
mimicking the human ability to focus on a region of interest in
the volumetric space. In addition, if a 3D shape is missing certain
features (e.g., due to occlusion), self-attention aids in improving
its details by exploiting clues from non-local regions. Such non-
local information is useful as only partial single-view depth is
given. For example, the geometry of one table leg gives a useful
clue for reconstructing the other table legs. We further introduce
a dynamic latent space where the model has the ability to select
only relevant codes to estimate 3D shapes. As we will later
demonstrate, this strategy provides a strong sparse regularization

that improves the robustness. Furthermore, we extend the shape
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Fig. 1. The generator turns an input volume from a depth image to a high-resolution 3D volumetric output.
Fig. 2. The discriminator takes the concatenation of the original single view volume and either the ground truth or the reconstructed shape as its input. We also
introduce a 3D self-attention layer to the discriminator to improve the generated shape.
completion to a multi-task setting, where the generated shape is
further classified into one of the object categories, as shown in
Fig. 3. As properly completed shapes are easier to classify, these
two tasks help with each other, contributing to improved shape
completion results.

Our contributions are:

• We propose a cascade architecture consisting of multiple
encoder–decoder blocks with additional skip links, which
provides better 3D reconstruction than a single encoder–
decoder.

• We incorporate a self-attention layer to refine the 3D shapes,
mimicking human ability to focus on a region of interest in
the volumetric space.

• We introduce a dynamic latent space where the model has
the ability to select only relevant latent codes to estimate
3D shape. This provides a strong sparse regularization that
enhances the robustness of the network.

• A classifier network is introduced as an auxiliary task to
provide additional guidance to the reconstruction model.
413
Extensive experiments show that our method outperforms state-
of-the-art methods.

2. Related work

Our work reconstructs a complete 3D shape from a single
depth image, so we review related papers which use either a
single RGB or depth image as input to reconstruct a 3D object.
This is a challenging problem, and has received significant at-
tention in recent years. Reconstructing 3D shapes from single
RGB images requires addressing the domain differences, as it can
be difficult to obtain training data in both domains. Yan et al.
[16] built a model that uses RGB images as input. The authors
generate the dataset inputs by using projection (i.e. rendering).
The projection was made from 24 different angles. Furthermore,
the network model contains a 2D encoder and a 3D decoder,
and the authors add a transformer layer to get target projection.
However, the model results in shapes that are of low resolution.
Yu et al. [17] took multiview images as input. They estimated a
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Fig. 3. The classifier that classifies the type of the shape helps the generator
to produce shapes with proper structure and details to improve the chance of
correct classification.

depth image for each input image. After that, they reconstructed
a coarse volumetric shape by fusing multiview depth images, and
then utilized a refinement model to reconstruct a high-resolution
shape.

Xie et al. [18] took a similar approach, but the model has a
used network where high-quality parts are selected and fused.
y applying a differentiable renderer on the reconstructed shape,
uang et al. [19] found nearest neighbor images from the dataset
o semantically enhance the reconstructions. Wu et al. [13] em-
loyed synthetic data as ground truth to disentangle unwanted
eatures like color and texture. After that, the model is fine-
uned on realistic appearance images to improve its performance.
hang et al. [14], on the other hand, used a depth estimator as a
iddle step before generating a 3D shape, in a way similar to Wu
t al. [13] but with skip links used for shape refinement. Wu
t al. [15] estimated the 2.5D depth image from a given 2D image
efore reconstructing a full 3D shape. They proposed to penalize
he reconstructed shape according to the lack of realism of its
ppearance. Xian et al. [20] also estimated multi-depth images
s an intermediate step, and then projected the depth images to
point cloud followed by voxelization. Hui et al. [21] estimated

opology as a step before predicting a mesh. Hafiz et al. [22] took a
ifferent approach, using a single encoder and multiple decoders
o predict point clouds from multiple viewpoints, which were
hen fused to obtain a complete shape.

The approach [23] investigated was reconstruction through
eformation. The authors suggested retrieving the closest shape
rom the dataset to the given input image. Then both the image
nd the retrieved shape are used as input for the model. The out-
ut of the model is a vector containing an offset of control points
or free-form deformation (FFD). Kanazawa et al. [24] demon-
trated deforming a mesh shape based on an image collection as
round truth rather than a 3D shape. Their model also learns to
ind the keypoints used for mapping the input texture. Wang et al.
25] worked on deforming a mesh driven by a single image; the
odel consists of three blocks: the first block deforms an ellipsoid
esh and each following block completes the deformation by

ncreasing the number of vertices. Miao et al. [26] leveraged a
ifferentiable renderer, and the model processed an input image
o generate offset values to deform an ellipsoid mesh.

Wen et al. [27] also deformed an ellipsoid. However, features
xtracted were split to edge features and local features, and the
dge features were used to deform the ellipsoid to a coarse shape
hile local features were for refining the shape.
Richter and Roth [28] built a 3D shape from a single image

here the method reconstructs a low resolution model, along
ith depth images for each higher resolution. The shape is then
btained through the fusion of those images. Peng et al. [29]
tilized a transformer for each view’s latent codes before fusing.
414
Lin et al. [30] generated 3D data from multiple viewpoints of
an image by using an image encoder and a 3D decoder, which
are then combined to produce a complete shape. In addition to
using a 2D-encoder and a 3D-decoder, Gao et al. [31] also trained
a 3D autoencoder to concatenate the latent codes for enhanced
reconstruction. In the works of Yang et al. [32],Robert et al. [33]
a single image is used as input and a mixed dataset of labeled and
unlabeled samples for training. Robert et al. [33] employed two
models, each one is responsible for reconstructing a partial shape,
while Jiang et al. [34] introduced two losses: a geometric loss that
forces each view of the reconstructed shape to be close to the
ground truth, and an adversarial loss that is responsible for find-
ing the differences in the output and the ground truth. Gwak et al.
[35] addressed an ill-posed problem which takes one or more
views of the shape as input, and through adversarial learning,
it aims to make the shape more plausible rather than with fine
details. To produce higher resolution shapes, some works utilize
space partitioning data structures such as octrees. Given an input
image, Tatarchenko et al. [36] used an octree as the output of a
CNN, which is able to reconstruct high-resolution (up to 5123)
voxel grids.

Hane et al. [11] used an octree to represent the boundaries
of the shape, which they first reconstructed at a low resolution
and then refined using a ‘‘block octree’’. Wang et al. [37] took
as input an incomplete point cloud represented by an octree.
Due to incomplete input and the nature of octree representa-
tion, the authors add dynamic skip connections, which leads to
improved performance. The work Yang et al. [12] instead recon-
structed a shape by giving a single depth image to the model with
an adversarial component for the purpose of refinement. These
methods are capable of generating high-resolution 3D shapes.
However, the generated shapes may still suffer from incorrect
structure and/or geometry, because these methods largely de-
pend on convolution layers which only capture local information.
To produce appropriate reconstruction from partial single-view
information, non-local relationships between locations are es-
sential. This however is not considered in previous single depth
image 3D reconstruction works.

Some works address 3D shape completion with more general
partial input, although they can also be applied to cope with
single-depth input as a special case. Hu et al. [38] leveraged a
generator to complete shapes where the model renders multi-
view depth images and pools across all outputs. Wang et al. [39]
proposed to use a GAN model to reconstruct coarse shapes, fol-
lowed by refinement to match the ground truth while Huang et al.
[40] completed shapes implicitly by generating latent vectors of
depth shapes. However, both Wang et al. [39], Huang et al. [40]
suffer from geometric inconsistency. Wen et al. [41] addressed
the issue by adding folding-block and skip attention where the
features’ locations are matched against the input.

In the work [42] they implemented parallel models for com-
plete and incomplete shapes where the models share weights
during training to preserve geometric consistency. However, the
models may not work well for unseen objects. ForkNet [43]
addresses this issue, and the model consists of three parallel
generators with shared latent features. Two branches reconstruct
the SDF (Signed Distance Field) representation and complete the
surface respectively, while the third branch concatenates features
from both previous reconstruction branches to semantically com-
plete the volume scene. Park et al. [44] also suggested using an
SDF, where the input is a latent code concatenated with 3D point
locations to elevate a high dimensional representation. At first,
the model optimizes the weights and the latent code to generate
plausible SDF values while during inference, the model optimizes
latent code to generate an appropriate SDF.

Wu et al. [45] claimed that the Chamfer Distance is not sen-
sitive to outliers, and queries for nearest points could make
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Fig. 4. The n-dimensional latent code is first processed by two fully connected layers to predict an n-dimensional weight vector. Then the top K codes are selected
ccording to the weight vector and values in the remaining dimensions are set to zero, leading to a sparsified latent space.
he model unaware of the shape density. So they also added a
iscriminator that separates the points to form groups based on
he shape surface. Alliegro et al. [46] introduced a contrastive
odel. They utilized pretrained encoders to capture semantic in-

ormation and geometry features. The model naturally completes
he missing parts, Li et al. [47] leveraged a transformer to ex-
ract meaningful features. The model generates features for both
artial and complete shapes, and learns to complete a shape by
atching partial to complete features. Chen et al. [48] proposed

o locate anchor points instead of generating them. The network
earns to locate sparse points that capture global features. Wang
t al. [49] sorted generated latent features based on activation
cores, and the sorted features were then utilized to reconstruct
complete shape. Zhang et al. [50] suggested using k-nearest
eighbor points to capture local features before using an MLP
Multi-layer Perceptron) to generate the latent features.

Some methods achieve 3D reconstruction by locally deforming
D planar patches to provide local structures. Yang et al. [51]
uggested extracting features of a point cloud to guide the model
o deform 2D planes. On the other hand, Wei et al. [52] believed
he randomness of the 2D plane generation could introduce noise
o the complete shape. To address this, they added rules for
enerating the planes, which could enhance the deformation and
econstruction.

Xiao et al. [53] proposed to use folding blocks on latent fea-
ures to enhance the reconstruction for regions with missing
oints.
Previously described methods require paired data of incom-

lete/complete shapes for supervision during training. Alterna-
ively, some unsupervised models try to avoid such explicit
upervision. Zhang et al. [54] generated full 3D shapes in an
nsupervised manner through Generative Adversarial Network
GAN) inversion.

Given a pre-trained GAN for complete shape generation, the
ethod tries to optimize the latent code for the GAN such that

t produces a complete shape that matches the partial input.
o achieve this, the generated complete shape goes through a
egradation function to retain partial points that match the input
ased on k-nearest neighbors, and both Chamfer Distance and
eature Distance are used to measure the differences between the
egraded and the input shapes, which in turn optimizes the latent
ode through gradient descent. The method can achieve similar
erformance as supervised approaches.
415
In this paper, we address the problem of 3D completion from
single-view depth input. We introduce a 3D self-attention (3DSA)
layer and develop a GAN-based framework including the 3DSA
layer in the discriminator which effectively improves the perfor-
mance of 3D reconstruction. We also present a novel dynamic
latent space, that can learn to weight latent features and select
important latent dimensions. Furthermore, the model consists of
multiple stages where the next stage further refines prediction
from the previous stage.

3. 3Dcascade-GAN

Our model addresses the problem of reconstructing a 3D shape
from a single depth image where the 3D space is voxelized. The
voxel representation provides flexibility for topological change,
which is required when turning the depth image into a complete
3D shape. A cascade approach was adopted in which shape es-
timation was enhanced at each stage of the model. In addition,
instead of passing the entire latent vector, we suggest a selection
process to dynamically select appropriate latent codes. Further-
more, self-attention has the ability to find links between features;
the self-attention layer works globally on the whole space while
convolution works on the local region with the volume occupancy
represented by 1 for occupied and 0 for unoccupied.

Our model takes 643 voxels representing the input depth
image and reconstructs the 3D shape sampled to 2563 voxels to
retain more details.

3.1. Network architecture

Our 3DCascade-GAN consists of two components: the gen-
erator and discriminator. Figs. 1, 2 and 3 show the complete
network architecture where Fig. 1 is the multistage encoder–
decoder (generator), Fig. 3 is the classifier and Fig. 2 is the
discriminator.

Generator. The generator is multistage (three stages), and
each stage is an identical encoder–decoder-like network (except
the last stage where we add two up-sampling layers). The en-
coder contains four 3D CNN layers starting with an input X that
is 643 in size (the depth view of the shape); the kernel size for
each layer of 4 × 4 × 4, and 1 × 1 × 1 strides. Each layer uses a
leaky ReLU activation function, and after each convolution layer,
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max pooling layer with a kernel size of 2 × 2 × 2 follows
2 × 2 × 2 strides; the size of the feature maps for each layer is
64, 128, 256 and 512, respectively, followed by a fully connected
layer to map the higher abstraction of the shape and generate a
1000-dimensional latent code. Before the decoder runs, a selector
layer processes the latent vector to select the top K codes, where
K is set to 100 (for different K values, see the Dynamic Latent
Code and the ablation sections). Another fully connected layer is
then introduced which generates a 512-dimensional feature map.
The decoder consists of four layers of transpose convolution with
each layer followed by a ReLU. Skip links are used between the
encoder and decoder where feature maps are concatenated; skip
links enhance the shape details, as the latent code appears to
preserve the general structure of shape without any fine details.
No max pooling is used in the decoder; however, a kernel size of
4 × 4 × 4 and 2 × 2 × 2 strides is used, and each layer is followed
by a ReLU except for the last layer where we used sigmoid. Note,
the third stage has extra up-sampling layers so as to reconstruct
to 643.

We concatenate both the output y1 and the original input X at
the feature channel to form 643

× 2, which will be the input for
stage two. The process is also repeated for stage three, where the
input is a concatenation of stage one y1 and stage two y2 and the
original input X , the concatenated input size is 643

×3. We found
that the model tends to rely heavily on stages two and three,
and consequently the output at stage one could be fragmented
and not useful. To address this issue, we added global skip links
between the encoder in stage one and the decoder in stage three.

Discriminator. The discriminator is useful to ensure the com-
pletion of the partial input shape. The input for the discriminator
is either a fake pair (2.5D and the recovered shape) or a real pair
(2.5D and ground truth). Again, the component contains seven 3D
convolution layers. Each layer has a kernel size of 4 × 4 × 4
nd strides of 2 × 2 × 2. At the end of each layer, a ReLU
ctivation function is used; however, the last layer consists of
sigmoid to generate a semantic representation of the shapes.
inally, we applied the strategy of Yang et al. [12] by outputting
he mean of a vector feature rather than a scalar in order to stabi-
ize training because the discriminator cannot discriminate high
imension data (the input concatenated with either ground truth
r the reconstructed shape) and the model usually collapses at
n early stage. Our 3DSA layer is introduced to capture non-local
elationships.

Classifier. The classifier network consists of 7 CNN layers each
ith kernel size of 4 × 4 × 4 and 1 × 1 × 1 strides. Each layer is
ollowed by max pooling layers with kernel size of 2 × 2 × 2

416
ollows 2 × 2 × 2. For the activation function, we use Leaky
ReLU. The resulting output is reshaped to form a 4 element vector
representing the categories {chair, bench, table, couch}, followed
by a softmax layer to reconstruct the one-hot vector. It was not
necessary to use the full 2563 resolution as input to the classifier,
and so we applied max pooling to reduce the input dimensions
to 643.

3.2. Dynamic latent code selection

In a typical encoder–decoder architecture, the latent space is
fixed l ∈ Rn, where n is the latent dimension. However, for a
given shape, not all the latent dimensions are relevant. Responses
from such irrelevant dimensions may have negative impact on
the reconstruction quality. To address this, as shown in Fig. 4,
we introduce a selection process such that only selected latent
dimensions are retained, with the remaining components in the
latent code set to zero. Specifically, the model first learns to
predict the weight for each latent dimension, collectively as a
latent weight vector w ∈ (0, 1)n, denoted as w = ω(l), where ω(·)
is the weight prediction network, and in practice, it is achieved by
passing the latent code l through two fully connected (FC) layers
each with n units, and ReLU and sigmoid activation functions are
used after the two FC layers respectively. This makes the output
w to be in the range (0, 1) for each dimension. Then, we use the
predicted weights to determine which latent components should
be retained, namely, only those with the weights in the top K
weights (where K is a hyper-parameter) are kept. Then the ith
component of the output latent code l̃ satisfies:

li = li · 1(wi ∈ WK ), (1)

where 1(·) is 1 if the predicate is true, and 0 otherwise. WK is
the set containing the top K weights. This approach achieves two
effects. On the one hand, by suppressing low-weight (i.e., rec-
ognized as unimportant) components, this avoids their negative
impacts. On the other hand, the network strives to reconstruct
high-quality complete 3D shapes with at most K latent compo-
nents, essentially serving as a strong sparse regularization, that
helps improve the robustness of the network. Note that while
selecting K latent components, we maintain their positions in the
latent space, rather than removing zero components. This makes

the follow-up FC layers more efficient to learn.
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Fig. 6. Visual comparison of completed single categories on same view samples.

.3. 3D self-attention layer

A limitation of convolutions is that they can only capture local
eatures, and so convolution tends to distort the shapes when
ttempting to recover non-local features. To overcome this issue,
e introduce a self-attention layer in this task. Self-attention has
een shown to be effective in the GAN framework for improving
mage generation [55] and due to the nature of the input in
ur problem (i.e., single-view depth images), significant informa-
ion is missing. The self-attention mechanism focuses attention
n the most important global features, which helps to reduce
istortion in the reconstruction. The paper [55] incorporates a
elf-attention mechanism for both the generator and the discrim-
nator. However, in our 3D reconstruction setting, self-attention
an only be applied to feature maps with relatively low resolution
e.g. around 163) since the relationships between every pair of
ocations need to be considered. This is still useful to help recover
ore global structures. As we will later show, incorporating such
3D self-attention (3DSA) layer in the generator is unable to

apture meaningful non-local relationships and actually leads to
orse performance. We therefore only consider incorporating the
DSA layer in the discriminator network.
The network architecture for the 3DSA layer is illustrated

n Fig. 5. The input feature map x̃ has a spatial resolution of
2 × 32 × 33 with 64 channels. It passes through two different
× 1 × 1 convolutions to obtain f (x̃) and g(x̃). The contribution
j,i of the jth location from the feature map at the ith location is
alculated as follows

j,i =
exp

(
f (x̃i)Tg(x̃j)

)∑Ñ
i=1 exp

(
f (x̃i)Tg(x̃j)

) (2)

where Ñ is the number of spatial locations. β is then used as
weights to combine feature maps h(x̃), obtained through 1 × 1 × 1
convolution, and then the final output of the 3DSA layer is
obtained through another 1 × 1 × 1 convolution v(·).

3.4. Loss function

The model has three loss functions: reconstruction loss, GAN
loss and classifier loss, and the GAN has generator and discrimi-
nator losses.

Reconstruction Loss. As in Yang et al. [12], modified binary
cross entropy (BCE) [56] is used rather than mean square error
(MSE), to avoid a non-convex problem:

LBCE = −
1
N

N∑
i=1

[−ȳi log(yi) − α(1 − ȳi) log(1 − yi)]. (3)

When using the standard BCE equation the empty space will
dominate the generated volume, which encourages the model to
417
Fig. 7. Visual comparison of completed Multi categories on same view samples.

Fig. 8. Visualization of self-attention maps where the layer attends to features
relating to shapes.

Fig. 9. Visualization of cascade stages.

classify occupied grid cells as empty voxels, resulting in estima-
tion errors. Thus, α is introduced in Eq. (3) to represent the cost
weight of the terms. ȳi represents the ith voxel in the ground
truth and yi represents the ith voxel in the reconstructed shape
where N is the number of voxels in the space.

GAN Loss. LG (Eq. (4)) is the loss for generating fake shapes,
while LD (Eq. (5)) is the discriminator loss used by WGAN-GP [57].
represents the generated shape from input x (2.5D) and ȳ is

the ground truth for the complete shape. In order to tackle the
vanishing gradient problem, WGAN-GP adds a penalty term (with
weight λ) to encourage the gradient norm of the discriminator to
e close to 1; ŷ is a perturbed version of y.

G = −E[D(y|x)]. (4)

D = E[D(y|x)] − E[D(ȳ|x)] + λE[(∥∇ŷD(ŷ|x)∥2 − 1)2]. (5)

Classifier Loss. We use log loss. M represents the number
f classes. y is a binary indicator for whether class label c is
he correct classification for observation o. p is the predicted
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Classifier = −

M∑
c=1

[yo,c log(po,c)]. (6)

Combined generator loss. As the generator has two objec-
tives, a weight is applied to balance both losses during optimiza-
tion as follows:

Lweighted = γ LBCE + (1 − γ )LG + ζ LClassifier . (7)

Lweighted is minimized when training the generator, and LD is
inimized when training the discriminator.

. Experiments

.1. Training details

The model was trained for 20 epochs with a batch size of 3.
e set the learning rate for both the generator and discriminator

o 0.0001. For the optimizer, Adam [58] was used with β1 = 0.9,
β2 = 0.999, and ϵ = 10−8. We set the WGAN-GP gradient penalty
to λ = 10 and α = 0.35 for modified binary cross entropy. Finally,
we set the weighted loss parameter γ = 0.8 and ζ = 0.01.
The networks were trained on Nvidia GTX 1080ti, and it took on
average 4.5 days to train a model.

4.2. Dataset

In our experiments, we used datasets provided by Yang et al.
[12], for which the authors had generated depth views from
ShapeNet datasets. In total, 272 CAD models were used. The
breakdown was: training used 220 models, testing 40 models, and
validation 12 models. All models in the dataset were voxelized
to a 2563 grid. Datasets were split into two sets: same view
(all input depth images captured in one direction, 125 different
views) and cross view (depth images from multiple views, 216
different views). For training, only the same view depth images
were generated, while for testing and validation both same view
and cross view sets generated. In total, there are 26000 training
samples. The same view test consists of 4500 samples and 8000
cross view test samples. The validation set contains 1500 samples
for same view and 2500 for cross view. Four categories have
training sets (chair, table, bench, couch) while the rest are used
for testing as unseen objects (plane, car, monitor, faucet, guitar,
firearm).

4.3. Evaluation

To compare our work with other state-of-the-art methods,
we evaluated our model using intersection over union (IoU).
IoU was applied on a per voxel basis to the ground truth and
recovered shape. The second evaluation metric was mean value
cross-entropy (CE).

As discussed in Yang et al. [12], Chamfer distance and earth
mover distance are infeasible for high-resolution voxel sets due
to the high computational cost.

Comparison to prior work. To evaluate the performance of
the model in reconstructing a 3D shape from a single-depth
view, we compared it to three recent works on reconstructing
a 3D shape from a single-depth image. (1) The 3D-EPN model
presented by Dai et al. [59] completed the shape by leveraging
semantic features; the resolution of the reconstructed shape was
323. The model then used a retrieval approach to collect similar
shapes for shape reconstruction. (2) Varley et al. [60] addressed
the issue of robot grasp planning; the model reconstructed a 3D
shape from 2.5D images that were captured using a depth camera.
418
Fig. 10. Comparison of applying self-attention to the discriminator (left) and
generator (right). A more meaningful self-attention map and shape are obtained
when incorporating self-attention in the discriminator.

Fig. 11. Qualitative results of single category reconstruction on testing datasets
with cross viewing angles.

Table 1
IoU and Cross entropy evaluation metric for Single categories, same view, com-
paring 3D-EPN [59], [60], SnowFlakeNet [61], SeedFormer [62], 3D-RecGAN++
[12] (denoted as Yang in the table) and our 3DCascade-GAN.
IoU Bench Chair Couch Table

3D-EPN 0.423 0.488 0.631 0.508
Varley 0.227 0.317 0.544 0.233
SnowFlakeNet 0.562 0.631 0.745 0.659
SeedFormer 0.553 0.618 0.740 0.656
Yang 0.580 0.647 0.753 0.679
Ours 0.641 0.701 0.809 0.698
CE Bench Chair Couch Table

3D-EPN 0.087 0.105 0.144 0.101
Varley 0.111 0.157 0.195 0.191
SnowFlakeNet 0.037 0.063 0.068 0.043
SeedFormer 0.038 0.065 0.069 0.044
Yang 0.034 0.060 0.066 0.040
Ours 0.030 0.053 0.063 0.038

The model resolution was 403 voxels. (3) SnowflakesNet [61]
processes a point cloud representation, and the model predicts
a complete shape from an incomplete point cloud. We process
the output by voxelizing the output points to 2563 resolution for
quantitative comparison. (4) SeedFormer [62] also uses a point
cloud representation where the input is an incomplete point
cloud and the prediction is a complete shape. We process the
output by voxelizing the output points to 2563 resolution for
quantitative comparison. (5) 3D RecGAN++ [12] reconstructed a
3D shape from a 2.5D image with a resolution of 643 and up
sampled to 2563. For methods based on implicit representations,
neither Park et al. [44] or Genova et al. [63] provided the code
for 3D completion, so we trained the model of Mescheder et al.
[64] on our datasets, but it failed to learn the representation.

For the qualitative comparison, we show results of 3D Rec-
GAN++ [12], SnowFlakeNet [61] and SeedFormer [62], as these
models are state-of-the-art and have the same recovered shape
resolution as our model. Note, in the qualitative results for Xiang
et al. [61],Zhou et al. [62] we show point cloud representations
to avoid the potential distortions caused by discretization.
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Fig. 12. Qualitative results of Multi-categories reconstruction on testing datasets with cross viewing angles.
Fig. 13. Qualitative results of Multi-categories reconstruction on testing datasets
ith same viewing angles for unseen objects.

Fig. 14. Qualitative results of Multi-categories reconstruction on testing datasets
ith cross viewing angles for unseen objects.

.4. Results

Seen shape category experimental results. The model was
trained on 4 different datasets (chair, table, bench, and couch). A
single category means each one was trained separately with the
same settings as mentioned. On the other hand, Multi-categories
means the model was trained on all the 4 datasets (chair, table,
bench, and couch). The IoU and CE results for single categories,
same view are displayed in Table 1. Table 2 shows IoU and CE
results for Multi categories same view. Table 3 presents single
categories cross view using IoU and CE respectively and Table 4
shows cross view for Multi categories. After training, we find
419
Table 2
IoU and Cross entropy evaluation metric for Multi categories, same view.
IoU Bench Chair Couch Table

3D-EPN 0.428 0.484 0.634 0.506
Varley [60] 0.234 0.317 0.543 0.236
SnowFlakeNet 0.548 0.624 0.736 0.633
SeedFormer 0.542 0.613 0.727 0.628
3D-RecGAN++ 0.581 0.640 0.745 0.667
3DCascade-GAN 0.624 0.669 0.773 0.682
CE Bench Chair Couch Table

3D-EPN 0.087 0.107 0.138 0.102
Varley [60] 0.103 0.132 0.197 0.170
SnowFlakeNet 0.035 0.053 0.064 0.043
SeedFormer 0.036 0.054 0.066 0.045
3D-RecGAN++ 0.030 0.051 0.063 0.039
3DCascade-GAN 0.028 0.049 0.060 0.037

Table 3
IoU and Cross entropy evaluation metric for Single categories, cross view.
IoU Bench Chair Couch Table

3D-EPN 0.408 0.446 0.572 0.482
Varley [60] 0.185 0.278 0.475 0.187
SnowFlakeNet 0.508 0.578 0.628 0.603
SeedFormer 0.503 0.563 0.627 0.601
3D-RecGAN++ 0.531 0.594 0.646 0.618
3DCascade-GAN 0.585 0.628 0.680 0.647
CE Bench Chair Couch Table

3D-EPN 0.086 0.112 0.163 0.103
Varley [60] 0.108 0.171 0.210 0.186
SnowFlakeNet 0.045 0.079 0.118 0.055
SeedFormer 0.046 0.080 0.120 0.056
3D-RecGAN++ 0.041 0.074 0.111 0.053
3DCascade-GAN 0.038 0.070 0.109 0.051

Table 4
IoU evaluation metric for Multi categories, cross view.
IoU Bench Chair Couch Table

3D-EPN 0.415 0.452 0.531 0.477
Varley [60] 0.201 0.283 0.480 0.199
SnowFlakeNet 0.534 0.586 0.631 0.612
SeedFormer 0.532 0.583 0.629 0.609
3D-RecGAN++ 0.540 0.594 0.643 0.621
3DCascade-GAN 0.574 0.620 0.673 0.633
CE Bench Chair Couch Table

3D-EPN 0.091 0.115 0.147 0.111
Varley [60] 0.105 0.143 0.207 0.174
SnowFlakeNet 0.039 0.068 0.095 0.050
SeedFormer 0.040 0.069 0.097 0.052
3D-RecGAN++ 0.038 0.061 0.091 0.048
3DCascade-GAN 0.036 0.058 0.089 0.047

the best threshold between [0.1, 0.9] with a step of 0.05 on
a validation dataset using only the IoU criterion. After finding
the best threshold to represent the model, we applied it on the
test dataset as suggested by Yang et al. [12]. In the quantitative
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Table 5
IoU and cross entropy evaluation metric for multi-category training and applied
to unseen object categories, cross view, comparing 3D-EPN, [60], SnowFlakeNet
[61] (denoted Snow), SeedFormer [62] (denoted Seed), 3D-RecGAN++ and our
3DCascade-GAN.
IoU Car Faucet Firearm Guitar Monitor Plane

3D-EPN 0.446 0.439 0.324 0.359 0.448 0.309
Varley 0.489 0.260 0.274 0.255 0.334 0.283
Snow 0.534 0.510 0.409 0.437 0.549 0.384
Seed 0.527 0.507 0.407 0.435 0.546 0.383
Yang 0.553 0.529 0.416 0.449 0.555 0.390
Ours 0.564 0.537 0.425 0.455 0.560 0.394
CE Car Faucet Firearm Guitar Monitor Plane

3D-EPN 0.160 0.086 0.033 0.036 0.127 0.065
Varley 0.171 0.123 0.028 0.030 0.136 0.043
Snow 0.103 0.060 0.018 0.016 0.078 0.033
Seed 0.105 0.061 0.018 0.017 0.079 0.034
Yang 0.100 0.055 0.014 0.015 0.074 0.031
Ours 0.098 0.054 0.013 0.013 0.074 0.031

results, both IoU and CE demonstrated that our model outper-
formed the state-of-the-art model, and qualitatively it can be seen
that our method recovered 3D shapes at high resolution with
accurate details. For the qualitative results for single categories in
same view testing datasets, see Fig. 6, where artifacts appear in
the results of 3D RecGAN++ such as incorrect structure/geometry
and Multi categories also in same view datasets in Fig. 7. For
single categories and cross view, see Fig. 11. Fig. 12 shows Multi
categorizes in cross view datasets. Fig. 8 visualizes self-attention
maps when completing some shapes, which clearly capture global
structures. The intermediate results after each of the three stages
are shown in Fig. 9.

Unseen shape category experimental results. Lastly, we con-
uct experiments on six more categories where the model is
rained on chair, bench, couch, table and then tested on car,
aucet, firearm, guitar, monitor, plane for both same view and
ross view datasets. The IoU and CE results for cross-view re-
ults are shown in Table 5 and same view results in Table 6.
ig. 13 shows visualization for the same view dataset and Fig. 14
hows cross view visualization. Our method performs consis-
ently better than state-of-the-art methods in all categories, and
oth same-view and cross-view cases.

.5. Ablation studies

In this section, we describe three ablation studies: dynamic
atent code, second self-attention layer and classifier. For compar-
son, we choose the chair datasets for our ablation experiments as
hese samples show more complex structure compared to bench,
able and couch.

Dynamic latent code. We conducted an experiment where the
ynamic layer was disabled and a fixed 2000 code size was used;
he result was worse compared to the dynamic layer, as shown in
able 9. Also, three different experiments with three different K
alues: 50, 100 and 150 on a single encoder–decoder conducted.
e found that the result was worse when K = 50; however,
erformance with both K = 100 and 150 had the same result. We

also observe the model behavior when k approaches n (K = 600,
= 900), and the results show the performance drops gradually.
sing the dynamic latent code encoder tends to optimize the
atent codes where most values are set to zero, and these codes
ary based on input shape. Furthermore, to show effectiveness
f dynamic latent code, we trained the model with/without each
omponents, the results shown in Table 7.
Self-attention. We tried using self-attention in both the net-

orks (i.e. the encoder–decoder and discriminator), as shown
n Fig. 10, and tried using it on different layers to achieve the
420
Table 6
IoU and cross entropy evaluation metric for multi-category training and applied
to unseen object categories, same view, comparing 3D-EPN, [60], SnowFlakeNet
[61] (denoted Snow), SeedFormer [62] (denoted Seed), 3D-RecGAN++ and our
3DCascade-GAN.
IoU Car Faucet Firearm Guitar Monitor Plane

3D-EPN 0.450 0.442 0.339 0.351 0.444 0.314
Varley 0.484 0.260 0.280 0.255 0.341 0.295
Snow 0.548 0.526 0.412 0.438 0.554 0.371
Seed 0.545 0.524 0.409 0.435 0.553 0.367
Yang 0.555 0.536 0.426 0.442 0.562 0.394
Ours 0.559 0.541 0.430 0.455 0.569 0.395
CE Car Faucet Firearm Guitar Monitor Plane

3D-EPN 0.170 0.088 0.036 0.036 0.123 0.066
Varley 0.173 0.122 0.029 0.030 0.130 0.042
Snow 0.104 0.056 0.018 0.017 0.069 0.033
Seed 0.105 0.058 0.019 0.018 0.068 0.034
Yang 0.102 0.053 0.016 0.014 0.067 0.031
Ours 0.101 0.053 0.016 0.013 0.065 0.031

Table 7
Ablation study on Dynamic latent code and self-attention.

Chair-IoU Chair-CE

3D-Cascade-GAN 0.701 0.053
without Dynamic layer 0.663 0.054
without self-attention 0.692 0.053
without self-attention & dynamic 0.654 0.054

Table 8
Ablation study on Classifier.

Bench Chair Couch Table

with classifier 0.624 0.669 0.773 0.682
without classifier 0.622 0.667 0.771 0.681

Table 9
Ablation study on Dynamic latent code, we compare fixed latent code with
different variation of dynamic code.

Chair-IoU Chair-CE

Fixed latent code: 2000 0.649 0.059

n = 1000, K = 50 0.645 0.061
n = 1000, K = 100 0.701 0.053
n = 1000, K = 150 0.700 0.053
n = 1000, K = 600 0.698 0.057
n = 1000, K = 900 0.656 0.059

optimum results. The trials revealed that adding self-attention to
the encoder–decoder did not improve the results; in fact, the self-
attention maps obtained when adding the self-attention layer to
the generator network did not capture global structures well, and
lead to poor reconstruction results. On the other hand, adding
our self-attention layer to the discriminator effectively increased
its capability to differentiate between real and fake 3D shapes,
and eventually helped improve the capability of the generator to
produce improved reconstruction.

Classifier. For the classifier, we compared the full version of
the model (including cascade, dynamic latent code, self-attention
and classifier) against a model without a classifier. As shown in
Table 8, there are slight differences in that the classifier enhances
the shapes, and this improvement is consistent.

5. Conclusion

In this paper, we proposed an end-to-end model for 3D re-
construction from a single depth image. We introduced a 3D
self-attention layer to attend to the non-local features, helping
to connect the recovered views with the known view of the 3D

shape. We also demonstrate introducing a dynamic latent code as



F. Alhamazani, Y.-K. Lai and P.L. Rosin Computers & Graphics 115 (2023) 412–422

a
l
s
d
a
q
s
O
o

C

i
o
M

D

c
t

D

A

C

R

n aid to optimizing the encoder, reducing the effective size of the
atent space which enhanced the results. These additions helped
tabilize adversarial learning which leads to better estimation as
emonstrated on different shape categories, both qualitatively
nd quantitatively. We further added multi-stage networks to se-
uentially refine 3D shapes. Furthermore, incorporating the clas-
ifier network showed improvement to the reconstructed shapes.
ur method produces shapes with improved structure/geometry,
utperforming state-of-the-art methods.

RediT authorship contribution statement

Fahd Alhamazani: Methodology, Software, Validation, Writ-
ng – original draft. Yu-Kun Lai: Conceptualization, Methodol-
gy, Writing – review & editing, Supervision. Paul L. Rosin:
ethodology, Writing – review & editing, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgment

The study benefited from Advanced Research Computing at
ardiff (ARCCA) computing facilities.

eferences

[1] Janoch A, Karayev S, Jia Y, Barron JT, Fritz M, Saenko K, et al. A category-
level 3-D object dataset: Putting the Kinect to work. In: ICCV workshop.
2011.

[2] Li X, Yi W, Chi H-L, Wang X, Chan AP. A critical review of virtual and
augmented reality (VR/AR) applications in construction safety. Autom
Constr 2018;86:150–62.

[3] Theodoropoulos A, Antoniou A. VR games in cultural heritage: A systematic
review of the emerging fields of virtual reality and culture games. Appl
Sci 2022;12(17):8476.

[4] Li Q, Cao R, Zhu J, Fu H, Zhou B, Fang X, et al. Learn then match: A fast
coarse-to-fine depth image-based indoor localization framework for dark
environments via deep learning and keypoint-based geometry alignment.
ISPRS J Photogramm Remote Sens 2023;195:169–77.

[5] Macario Barros A, Michel M, Moline Y, Corre G, Carrel F. A comprehensive
survey of visual SLAM algorithms. Robotics 2022;11(1):24.

[6] Liu Y, Xu H, Liu D, Wang L. A digital twin-based sim-to-real transfer
for deep reinforcement learning-enabled industrial robot grasping. Robot
Comput-Integr Manuf 2022;78:102365.

[7] Cheng J, Zhang L, Chen Q, Hu X, Cai J. A review of visual SLAM methods
for autonomous driving vehicles. Eng Appl Artif Intell 2022;114:104992.

[8] Wan L, Jiang J, Zhang H. Incomplete 3D shape retrieval via sparse
dictionary learning. In: Pacific graphics short papers. 2015.

[9] Cheung G, Kanade T, Bouguet J, Holler M. A real time system for robust
3D voxel reconstruction of human motions. In: IEEE CVPR, vol. 2. 2000
p. 714–20.

[10] Nießner M, Zollhöfer M, Izadi S, Stamminger M. Real-time 3D reconstruc-
tion at scale using voxel hashing. ACM Trans Graph 2013;32(6):169.

[11] Hane C, Tulsiani S, Malik J. Hierarchical surface prediction for 3D object
reconstruction. In: Intl. conf. 3D vision. 2017.

[12] Yang B, Rosa S, Markham A, Trigoni N, Wen H. Dense 3D object recon-
struction from a single depth view. IEEE Trans Pattern Anal Mach Intell
2019;41(12):2820–34.

[13] Wu J, Wang Y, Xue T, Sun X, Freeman B, Tenenbaum J. MarrNet: 3D shape
reconstruction via 2.5d sketches. In: Proceedings of the neural information
processing systems. 2017, p. 540–50.

[14] Zhang X, Zhang Z, Zhang C, Tenenbaum J, Freeman B, Wu. J. Learning to

reconstruct shapes from unseen classes. In: NIPS. 2018, p. 2257–68.

421
[15] Wu J, Zhang C, Zhang X, Zhang Z, Freeman WT, Tenenbaum JB. Learning
shape priors for single-view 3D completion and reconstruction. In: ECCV.
2018, p. 673–91.

[16] Yan X, Yang J, Yumer E, Guo Y, Lee H. Perspective transformer nets:
Learning single-view 3D object reconstruction without 3D supervision. In:
NIPS. 2016, p. 1696–704.

[17] Yu J, Yin W, Hu Z, Liu Y. 3D reconstruction for multi-view objects. Comput
Electr Eng 2023;106:108567.

[18] Xie H, Yao H, Zhang S, Zhou S, Sun W. Pix2Vox++: multi-scale context-
aware 3D object reconstruction from single and multiple images. Int J
Comput Vis 2020;128(12):2919–35.

[19] Huang Z, Jampani V, Thai A, Li Y, Stojanov S, Rehg JM. ShapeClipper:
Scalable 3D shape learning from single-view images via geometric and
CLIP-based consistency. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2023, p. 12912–22.

[20] Xian Y, Chibane J, Bhatnagar BL, Schiele B, Akata Z, Pons-Moll G. Any-shot
GIN: Generalizing implicit networks for reconstructing novel classes. In:
International conference on 3D vision. IEEE; 2022, p. 526–35.

[21] Hui KH, Li R, Hu J, Fu CW. Neural template: Topology-aware reconstruction
and disentangled generation of 3D meshes. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2022, p. 18572–82.

[22] Hafiz AM, Bhat RUA, Parah SA, Hassaballah M. SE-MD: a single-encoder
multiple-decoder deep network for point cloud reconstruction from 2D
images. Pattern Anal Appl 2023;1–12.

[23] Kurenkov A, Ji J, Garg A, Mehta V, Gwak J, Choy C, et al. DeformNet:
Free-form deformation network for 3D shape reconstruction from a single
image. In: IEEE winter conference on applications of computer vision. 2018.

[24] Kanazawa A, Tulsiani S, Efros A, Malik J. Learning category-specific mesh
reconstruction from image collections. In: ECCV. 2018, p. 371–86.

[25] Wang N, Zhang Y, Li Z, Fu Y, Liu W, Jiang Y. Pixel2mesh: Generating 3D
mesh models from single RGB images. In: ECCV. 2018, p. 52–67.

[26] Miao Y, Jiang H, Jiang L, Tong M. Research on 3D reconstruction of furniture
based on differentiable renderer. IEEE Access 2022;10:94312–20.

[27] Wen C, Zhang Y, Cao C, Li Z, Xue X, Fu Y. Pixel2Mesh++: 3D mesh
generation and refinement from multi-view images. IEEE Trans Pattern
Anal Mach Intell 2022;45(2):2166–80.

[28] Richter S, Roth S. Matryoshka networks: Predicting 3D geometry via nested
shape layers. In: IEEE CVPR. 2018, p. 1936–44.

[29] Peng K, Islam R, Quarles J, Desai K. TMVNet: Using transformers for
multi-view voxel-based 3D reconstruction. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2022, p. 222–30.

[30] Lin C, Kong C, Lucey S. Learning efficient point cloud generation for dense
3D object reconstruction. In: AAAI. 2018.

[31] Gao J, Kong D, Wang S, Li J, Yin B. DASI: Learning domain adaptive shape
impression for 3D object reconstruction. IEEE Trans Multimed 2022.

[32] Yang G, Cui Y, Belongie S, Hariharan B. Learning single-view 3D
reconstruction with limited pose supervision. In: ECCV. 2018, p. 86–101.

[33] Robert T, Thome N, Cord M. HybridNet: Classification and reconstruction
cooperation for semi-supervised learning. In: ECCV. 2018, p. 153–69.

[34] Jiang L, Shi S, Qi X, Jia J. GAL: Geometric adversarial loss for single-view
3D-object reconstruction. In: ECCV. 2018, p. 802–16.

[35] Gwak J, Choy C, Chandraker M, Garg A, Savarese S. Weakly supervised 3D
reconstruction with adversarial constraint. In: IEEE intl. conf. 3D vision.
2017, p. 263–72.

[36] Tatarchenko M, Dosovitskiy A, Brox T. Octree generating networks: Effi-
cient convolutional architectures for high-resolution 3D outputs. In: ICCV.
2017.

[37] Wang PS, Liu Y, Tong X. Deep octree-based CNNs with output-guided
skip connections for 3D shape and scene completion. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition
workshops. 2020, p. 266–7.

[38] Hu T, Han Z, Zwicker M. 3D shape completion with multi-view consistent
inference. In: Proceedings of the AAAI conference on artificial intelligence,
vol. 34, no. 07. 2020, p. 10997–1004.

[39] Wang X, Ang Jr MH, Lee GH. Cascaded refinement network for point cloud
completion. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020, p. 790–9.

[40] Huang Z, Yu Y, Xu J, Ni F, Le X. PF-Net: Point fractal network for 3D point
cloud completion. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, p. 7662–70.

[41] Wen X, Li T, Han Z, Liu Y-S. Point cloud completion by skip-attention net-
work with hierarchical folding. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2020, p. 1939–48.

[42] Pan L, Chen X, Cai Z, Zhang J, Zhao H, Yi S, Liu Z. Variational relational
point completion network. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2021, p. 8524–33.

http://refhub.elsevier.com/S0097-8493(23)00162-0/sb1
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb1
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb1
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb1
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb1
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb2
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb2
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb2
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb2
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb2
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb3
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb3
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb3
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb3
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb3
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb4
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb4
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb4
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb4
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb4
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb4
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb4
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb5
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb5
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb5
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb6
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb6
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb6
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb6
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb6
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb7
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb7
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb7
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb8
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb8
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb8
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb9
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb9
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb9
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb9
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb9
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb10
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb10
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb10
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb11
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb11
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb11
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb12
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb12
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb12
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb12
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb12
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb13
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb13
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb13
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb13
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb13
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb14
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb14
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb14
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb15
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb15
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb15
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb15
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb15
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb16
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb16
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb16
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb16
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb16
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb17
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb17
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb17
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb18
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb18
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb18
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb18
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb18
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb19
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb19
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb19
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb19
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb19
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb19
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb19
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb20
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb20
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb20
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb20
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb20
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb21
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb21
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb21
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb21
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb21
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb22
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb22
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb22
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb22
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb22
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb23
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb23
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb23
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb23
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb23
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb24
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb24
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb24
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb25
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb25
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb25
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb26
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb26
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb26
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb27
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb27
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb27
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb27
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb27
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb28
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb28
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb28
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb29
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb29
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb29
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb29
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb29
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb30
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb30
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb30
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb31
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb31
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb31
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb32
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb32
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb32
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb33
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb33
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb33
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb34
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb34
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb34
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb35
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb35
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb35
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb35
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb35
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb36
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb36
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb36
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb36
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb36
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb37
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb37
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb37
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb37
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb37
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb37
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb37
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb38
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb38
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb38
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb38
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb38
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb39
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb39
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb39
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb39
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb39
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb40
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb40
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb40
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb40
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb40
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb41
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb41
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb41
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb41
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb41
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb42
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb42
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb42
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb42
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb42


F. Alhamazani, Y.-K. Lai and P.L. Rosin Computers & Graphics 115 (2023) 412–422
[43] Wang Y, Tan DJ, Navab N, Tombari F. ForkNet: Multi-branch volumetric
semantic completion from a single depth image. In: Proceedings of the
IEEE/CVF international conference on computer vision. 2019, p. 8608–17.

[44] Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S. DeepSDF: Learn-
ing continuous signed distance functions for shape representation. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, p. 165–74.

[45] Wu T, Pan L, Zhang J, Wang T, Liu Z, Lin D. Density-aware chamfer distance
as a comprehensive metric for point cloud completion. In: Advances in
neural information processing systems. 2021.

[46] Alliegro A, Valsesia D, Fracastoro G, Magli E, Tommasi T. Denoise and
contrast for category agnostic shape completion. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2021, p.
4629–38.

[47] Li S, Gao P, Tan X, Wei M. ProxyFormer: Proxy alignment assisted point
cloud completion with missing part sensitive transformer. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition.
2023, p. 9466–75.

[48] Chen Z, Long F, Qiu Z, Yao T, Zhou W, Luo J, et al. AnchorFormer:
Point cloud completion from discriminative nodes. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2023, p.
13581–90.

[49] Wang Y, Tan DJ, Navab N, Tombari F. SoftPool++: An encoder–
decoder network for point cloud completion. Int J Comput Vis
2022;130(5):1145–64.

[50] Zhang Z, Yu Y, Da F. Partial-to-partial point generation network for point
cloud completion. IEEE Robot Autom Lett 2022;7(4):11990–7.

[51] Yang Y, Feng C, Shen Y, Tian D. FoldingNet: Point cloud auto-encoder via
deep grid deformation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, p. 206–15.

[52] Wei M, Zhu M, Zhang Y, Sun J, Wang J. Cyclic global guiding network for
point cloud completion. Remote Sens 2022;14(14):3316.
422
[53] Xiao Y, Li Y, Yu Q, Liu S, Gang J. DF-Net: Dynamic and folding network
for 3D point cloud completion. IEEE Access 2022;10:97835–42.

[54] Zhang J, Chen X, Cai Z, Pan L, Zhao H, Yi S, et al. Unsupervised 3D
shape completion through GAN inversion. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2021, p. 1768–77.

[55] Zhang H, I. G, Metaxas D, Odena A. Self-attention generative adversarial
networks. 2018, arXiv:1805.08318.

[56] Brock A, Lim T, Ritchie JM, Weston N. Generative and discriminative voxel
modeling with convolutional neural networks. 2016, arXiv:1608.04236.

[57] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A. Improved
training of Wasserstein GANs. In: NIPS. 2017, p. 5767–77.

[58] Kingma D, Ba J. Adam: A method for stochastic optimization. 2014, arXiv:
1412.6980.

[59] Dai A, Ruizhongtai Qi C, Nießner M. Shape completion using 3D-
encoder-predictor CNNs and shape synthesis. In: CVPR. 2017, p.
5868–77.

[60] Varley J, DeChant C, Richardson A, Ruales J, Allen P. Shape completion
enabled robotic grasping. In: IEEE/RSJ IROS. 2017, p. 2442–7.

[61] Xiang P, Wen X, Liu Y-S, Cao Y-P, Wan P, Zheng W, et al. Snowflake
point deconvolution for point cloud completion and generation with skip-
transformer. IEEE Trans Pattern Anal Mach Intell 2023;45(5):6320–38.
http://dx.doi.org/10.1109/TPAMI.2022.3217161.

[62] Zhou H, Cao Y, Chu W, Zhu J, Lu T, Tai Y, et al. SeedFormer: Patch seeds
based point cloud completion with upsample transformer. 2022, arXiv
preprint arXiv:2207.10315.

[63] Genova K, Cole F, Sud A, Sarna A, Funkhouser T. Local deep implicit
functions for 3D shape. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2020, p. 4857–66.

[64] Mescheder L, Oechsle M, Niemeyer M, Nowozin S, Geiger A. Occupancy
networks: Learning 3D reconstruction in function space. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition.
2019, p. 4460–70.

http://refhub.elsevier.com/S0097-8493(23)00162-0/sb43
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb43
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb43
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb43
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb43
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb44
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb44
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb44
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb44
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb44
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb44
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb44
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb45
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb45
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb45
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb45
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb45
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb46
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb46
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb46
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb46
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb46
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb46
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb46
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb47
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb47
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb47
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb47
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb47
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb47
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb47
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb48
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb48
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb48
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb48
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb48
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb48
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb48
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb49
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb49
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb49
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb49
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb49
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb50
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb50
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb50
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb51
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb51
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb51
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb51
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb51
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb52
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb52
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb52
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb53
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb53
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb53
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb54
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb54
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb54
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb54
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb54
http://arxiv.org/abs/1805.08318
http://arxiv.org/abs/1608.04236
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb57
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb57
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb57
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb59
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb59
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb59
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb59
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb59
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb60
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb60
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb60
http://dx.doi.org/10.1109/TPAMI.2022.3217161
http://arxiv.org/abs/2207.10315
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb63
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb63
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb63
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb63
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb63
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb64
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb64
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb64
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb64
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb64
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb64
http://refhub.elsevier.com/S0097-8493(23)00162-0/sb64

	3DCascade-GAN: Shape completion from single-view depth images
	Introduction
	Related Work
	3DCascade-GAN
	Network architecture
	Dynamic Latent Code Selection
	3D Self-Attention Layer
	Loss Function

	Experiments
	Training Details
	Dataset
	Evaluation
	Results
	Ablation Studies

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


